EP1162428B1 - Procédé et dispositif pour allumer une tête de combat dans un missile suiveur de cible - Google Patents
Procédé et dispositif pour allumer une tête de combat dans un missile suiveur de cible Download PDFInfo
- Publication number
- EP1162428B1 EP1162428B1 EP01113715A EP01113715A EP1162428B1 EP 1162428 B1 EP1162428 B1 EP 1162428B1 EP 01113715 A EP01113715 A EP 01113715A EP 01113715 A EP01113715 A EP 01113715A EP 1162428 B1 EP1162428 B1 EP 1162428B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- hit
- target
- missile
- predicted
- influencing variables
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42C—AMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
- F42C9/00—Time fuzes; Combined time and percussion or pressure-actuated fuzes; Fuzes for timed self-destruction of ammunition
- F42C9/14—Double fuzes; Multiple fuzes
- F42C9/148—Proximity fuzes in combination with other fuzes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42C—AMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
- F42C13/00—Proximity fuzes; Fuzes for remote detonation
Definitions
- the invention relates to a method for igniting a warhead in target-tracking missiles, which have an impact fuse and a proximity fuse for igniting a warhead.
- the invention further relates to a device for igniting a warhead in target-tracking missiles, which have an impact fuse and a proximity fuse for igniting a warhead, wherein the proximity fuse ignites the warhead with the Zündverzugszeit.
- Targeted missiles are guided to a destination by a seeker head.
- a seeker head contains an image-resolving detector, usually a two-dimensional array of detector elements.
- the resulting image of a visual field scene containing the target is switched to image processing means. From the image processing steering signals are obtained, through which the guided missile is guided to the destination. As the target approaches closer, the seeker provides an image of the target, which increases as the missile approaches the target.
- the guided missile contains a warhead, ie an explosive charge through which the target is to be destroyed with the greatest possible security.
- the trajectory of the missile may differ slightly from the ideal trajectory due to various influences. This may be due, for example, to the encounter geometry, such as maneuvering the target, inaccuracies in the flight guidance of the missile or by limitations in the maneuverability of the missile. In such a case, the guided missile will not hit the target at the optimum location. Of the Missile may even fly past the target at a greater or lesser distance.
- the guided missile has an impact fuze.
- the impact fuse ignites the warhead when the missile impacts the target directly.
- the missile also has a proximity fuse. The proximity fuse responds when the missile has approached the target sufficiently well.
- the ignition delay time is a fixed, empirically found value.
- the invention has for its object to cause the ignition of the warhead in a guided missile with impact and approach fuse so that the damage to the target is as large as possible.
- hit files can be determined according to size and direction.
- this hit deposit is now predicted as a function of various observable influencing variables.
- the ignition delay time is then set.
- the ignition delay time is set so long that the warhead can be fired when the missile impacts the target by the impact fuze.
- an ignition delay time is set which is optimized for the effectiveness of the detonating warhead.
- the dependency of the hit deposit on the influencing variables and on the remaining flight time of the guided missile can be determined and stored by simulation.
- the influencing variables may include steering-specific variables, such as the visual line rotational rates, which result from the geometry of the target and guided missile.
- the influencing factors may also include missile-specific variables such as rudder deflection or lateral acceleration. These factors are particularly important when the missile reaches the limits of its maneuverability.
- influencing variables e.g. the line of sight rotation rate
- the predicted hit deposits are determined for a given residual flight time.
- the hit deposits determined in this way are provided at an exit delayed by the residual flight time on which the determination is based.
- predicted hit deposits are available, which are based on the predictors, which were measured before the specified associated residual flight times and now refer to the time at which the proximity sensor responds. Then no residual flight time to be estimated, which is usually possible only with great inaccuracy.
- a hit deposit obtained in this way on the basis of a single remaining flight time may be corrupted by noise.
- Embodiments of the device are the subject of further claims.
- the guided missile contains an impact fuze, which responds to the target when the missile strikes directly and ignites the warhead inside the target, possibly with a very short ignition delay time.
- the guided missile continues to contain a proximity fuse.
- the proximity fuse responds when the guided missile has approached the target to a small distance.
- the proximity fuse also ignites when the guided missile does not hit the target directly but passes close to the target at a small distance.
- the ignition usually takes place with a Zündverzugszeit.
- a detonating warhead of a guided missile has two effects, namely a pressure effect and a fragmentation effect. The effect of pressure is particularly noticeable if the warhead detonates within the target or in the immediate vicinity of the target.
- the approach point of the proximity fuse is often poorly defined. This response point may e.g. Depending on the type of target or on the direction from which the guided missile approaches the target. It may therefore happen that with early response of the proximity fuse and fixed ignition delay time the warhead is ignited before the missile occurs on the target, even if the missile would achieve a direct hit without this premature ignition. Then the effectiveness of the warhead would not be maximal and the probability of destruction reduced. For this case, a longer ignition delay time of the proximity fuse would be more favorable since it would allow the impact fuze to take effect.
- the ignition delay time is made dependent on the predicted hit deposit.
- a target here an enemy fighter aircraft, as seen by the image-resolving detector of the guided missile.
- This target has a "desired aimpoint".
- This desired impingement point is designated 12 in FIG.
- the actual impact point now differs from the desired one Impact point 12 on distance and direction. That's the "hit deposit”.
- the hit deposits are indicated in Fig.1 by circles 14. 16, 18 in the manner of a shooting target. If the point of impact is still within the inner circle 18, which determines a "critical hit deposit”, there is still a direct hit, ie the missile strikes the target directly. For larger hit deposits, the guided missile can fly past the target 10.
- the warhead is ignited by the proximity fuse, as shown by point 20 in FIG.
- a direct hit may also occur with the amount following larger hit deposits, as shown in FIG. 1 by point 22.
- the ignition of the warhead by the proximity fuse with an optimal Zündverzugszeit, so that maximum fragmentation effect is achieved.
- V r V T - V M .
- V T the target speed
- V M the speed of the missile.
- the relative velocity vector V r always becomes a certain one Have false angle ⁇ with respect to the target 26.
- the line-of-sight rotation rate increases in inverse proportion to the residual distance
- FIG. 5 shows such a relationship, obtained from a six-dimensional simulation, between hit-deposit and visual line rotation rate as a function of the remaining flight time.
- the horizontal coordinates in Fig. 5 are remaining flight time and hit deposit.
- the vertical coordinate is the mean line of sight rotation rate.
- FIG. 5 clearly shows the expected almost linear increase in the visual line rotational rate as a function of the hit deposit.
- FIG. 6 shows the relationship between hit deposit and line-of-sight rotation acceleration, which is likewise obtained from a six-dimensional simulation.
- the line-of-sight rotation acceleration ⁇ shows a marked increase only for small residual flight times t r . However, this increase is very clear for larger hit deposits.
- Figures 5 and 6 show steering-specific parameters determined by the relative movement of guided missile 24 and target 26 as indicators of the size of the hit deposit.
- missile-specific parameters indicators for the size of the hit deposit.
- a non-perfectly adjusted autopilot can give rise to restless flight behavior of the guided missile, which in turn can lead to larger hit deposits.
- an operation of the guided missile at the limits of its aerodynamic or flight mechanical performance can be used as an indicator of a tendency for a larger hit deposit.
- Such an operation can be characterized by high angles of attack, large rudder deflections or high lateral accelerations. These influences will be referred to as "stress factors" below.
- FIG. 7 shows the relationship between hit deposit and rudder deflection, likewise obtained by six-dimensional simulation, as a function of the remaining flight time. Large rudder deflections usually occur in connection with large angles of attack, large lateral accelerations or large turning rates. Figure 7 shows that large rudder deflections, especially when they reach the maximum rudder ratio, are associated with larger hit deposits.
- FIG. 8 shows the similar relationship between hit-deposit and measured lateral acceleration as a function of the remaining flight time.
- the horizontal coordinates in Figure 8 are remaining flight time and hit deposit.
- the vertical coordinate is the measured average lateral acceleration of the guided missile.
- High lateral acceleration indicates that the encounter occurs at the limit of steering missile performance, e.g. near the inner firing range boundary. Depending on the flight condition, the high lateral acceleration may also be associated with a large angle of incidence of the missile.
- the lateral acceleration also shows, according to FIG. 8, a clear correlation with the hit deposit, which increases for high lateral accelerations, and with the remaining flight time.
- the various influencing variables on the one hand the steering-specific parameters such as visual line turning rate ⁇ and line-of-sight rotation acceleration ⁇ and on the other hand the missile-specific parameters such as rudder deflection and lateral acceleration are, as shown in FIG. 9, switched to a hit prediction factor 28.
- the hit-store predictor is also the Residual flight time ("time-to-go") switched, which is estimated by image processing a viewfinder image of the seeker head of the missile. This is a way of taking into account the remaining flight time.
- the hit-list predictor 28 predicts either a direct hit with a signal at an output 30 or a near fly-by with a signal at an output 32 based on the measured steering-specific and missile-specific input parameters.
- the signals at the outputs 30 and 32 are connected to an igniter section 34.
- the igniter portion 34 includes a proximity fuze that responds to the target as the missile approaches. This is indicated by an input 36 "target detection".
- a first ignition delay time table 38 which provides a relatively long first ignition delay time for the proximity fuse. This ignition delay time table 38 takes effect when the hit-store predictor at the output 30 signals a direct hit.
- the proximity sensor is also associated with a second ignition delay time table 40 which provides a shorter, second ignition delay time for the proximity sensor.
- the first Zündverzugszeit is chosen so long that the impact fuze of the missile can be effective before an ignition of the warhead can be done via the proximity sensor.
- the second ignition delay time is shorter than the first ignition delay time. This second Zündverzugszeit is chosen so that in a flyby of the missile at the target by splinter effect maximum destruction is achieved at the destination.
- an ignition pulse is generated at an output 42, whose ignition delay time corresponds to the direct hit or the flyby in the sense described above.
- Fig. 10 is a block diagram showing the formation of the "direct hit” and “fly by” signals at the outputs 30 and 32.
- the measurement or estimation of the residual flight time needed to determine the hit deposit presents difficulties. Instead, as in Fig.9, this residual flight time from the To estimate image processing and to apply it to the predictor 28 as a measured variable, in the preferred embodiment of FIG. 10, an estimation of the hit deposit is always carried out in parallel for various specified residual flight times, the current parameters being used as the basis. The thus estimated hit deposits are delayed by the predetermined residual flight time used in the estimation.
- the proximity sensor When the proximity sensor responds then estimates of the hit deposit are available, for example based on the determined half a second influencing factors and in this estimation of the hit deposit based on a residual flight time of half a second based on the determined before a quarter of a second influencing factors and at Based on this estimation of the hit deposit a residual flight time of a quarter of a second, etc. From the all on the response time of the approaching fuse related and thus comparable hit deposits a weighted average is formed. Estimates based on shorter residual flight times may be weighted more heavily.
- the influencing variables or parameters described with reference to FIGS. 5 to 8 give indications of the expected hit deposit.
- the hit storage can not be easily calculated from this according to a specific algorithm.
- the estimation of the hit deposit takes place on the basis of the influencing variables and the assumed residual flight time by means of "fuzzy inference systems".
- FIG. 11 The influencing variables are converted into linguistic variables such as "large”, “medium”, “small” by means of membership functions. Since the membership functions usually overlap, a certain value of an influence variable with certain percentages ("membership factors”) can be assigned to different linguistic variables, ie about 75% "big” and 25% "medium”.
- the linguistic quantities are processed according to given inference rules of the form "if ..., then ..”.
- the results of the inference are linked according to the membership factors. This results in a numerical output variable due to the "defuzzification”. This is a known technique.
- a plurality of such "fuzzy inference systems” 44.1, 44.2 ... 44.m are provided.
- Each of these fuzzy inference systems is constantly updated from the current ones Influences influencing factors and requires an associated predetermined residual flight time t r1 , t r2 ... t rn ahead.
- the fuzzy inference systems deliver numerical output variables in the form of predicted hit records at outputs 46.1, 46.2 ... 46.m.
- shift registers 48.1, 48.2, ... 48.m the output quantities are each delayed by the associated remaining flight time t r1 , t r2 ... t rn .
- Wm are then available with regard to the remaining flight times. These predicted matchlines are summed in a summation point 52 weighted. The weighted sum is applied to an evaluation circuit 54. The evaluation circuit 54 then provides the signals "direct hit” or “flyby" at the outputs 30 and 32, as explained with reference to FIG.
- FIG. 11 schematically shows one of the fuzzy inference systems shown in FIG.
- the fuzzy inference system has inputs 56.1, 56.2 ... 56.n for the various steering-specific or missile-specific influencing variables or parameters. Furthermore, the fuzzy inference system includes an input 58, to which a predetermined, the respective fuzzy inference system associated residual flight time t r1 , ... is switched. Each input is, as shown in Fig. 11 for input 56.1 is shown in full, connected in parallel to sorting members 60, through which the applied input variable, for example, the visual line rotation rate ⁇ , determined by a membership function membership factor of a linguisischen size "small", " medium or large.
- the linguistic variables thus obtained are applied to a rule bank 62. In the rule bank 62, rules are stored in the form "if ...
- Fig. 12 shows a shift register for delaying the predicted hit deposit by a residual flight time, e.g. corresponds to the shift register 48.1 of Fig.10.
- the shift register 48.1 contains registers 68.1, 68.2 ... 68.p. In the register 68.1 with bits 1 to k of the fuzzy inference system 44.1 of the output 46.1 of the same current value of the predicted hit storage read.
- the shift register 48.1 like the other shift registers, is driven by a memory clock at a clock input 70.
- the respective current predicted hit storage from the fuzzy inference system 44.1 is read into the register 68.1 as a memory word.
- this memory word is transferred from the register 68.1 in the register 68.2.
- the previously stored in the register 68.2 memory word is simultaneously transferred to the next register 68.3, etc., while in the register 68.1, the new current predicted match storage is read.
- the memory word read into the register 68.1 has arrived in the register 68p and is available there for readout as delayed, predicted hit storage w1 (FIG. 10).
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Radar Systems Or Details Thereof (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Claims (20)
- Procédé pour allumer une tête de combat dans des missiles de poursuite téléguidés (24), qui présentent une fusée percutante et une fusée détonatrice de proximité qui réagit lorsque le missile (24) s'approche d'une cible, à l'occasion de quoi une détonation de la tête de combat est déclenchée par la fusée percutante lors de l'impact du missile (24) sur la cible et par la fusée détonatrice de proximité avec un délai d'allumage par rapport à la réaction de la fusée détonatrice de proximité,
caractérisé par les étapes suivantes:a) enregistrement de paramètres spécifiques au guidage ou spécifiques au missile, comme des grandeurs d'influence qui sont déterminantes pendant le vol du missile téléguidé (24) pour un impact direct ou pour un survol, etb) réglage du délai d'allumage en fonction de telles grandeurs d'influence. - Procédé selon la revendication 1,
caractérisé en ce quea) un écart de tir prévu est déterminé à partir des grandeurs d'influence enregistrées etb) le délai d'allumage est réglé en fonction de l'écart de tir ainsi prévu. - Procédé selon la revendication 2,
caractérisé en ce que,
lorsque l'écart de tir prévu fait attendre un impact direct, un délai d'allumage est réglé, d'une durée telle que l'allumage de la tête de combat puisse se produire lors de l'impact du missile téléguidé (24) sur la cible par l'intermédiaire de la fusée percutante. - Procédé selon la revendication 2 ou 3,
caractérisé en ce que,
lorsque l'écart de tir prévu fait attendre un survol de la cible par le missile téléguidé (24), un délai d'allumage est réglé qui est optimisé en tenant compte de l'efficacité de la tête de combat qui éclate à côté de la cible. - Procédé selon l'une quelconque des revendications 2 à 4,
caractérisé en ce que
la dépendance de l'écart de tir par rapport aux grandeurs d'influence et au temps de vol restant du missile téléguidé (24) est établie par simulation et mémorisée. - Procédé selon l'une quelconque des revendications 1 à 5,
caractérisé en ce que
les grandeurs d'influence comprennent des grandeurs telles que la vitesse de rotation de la ligne de visée, grandeurs qui sont obtenues à partir de la géométrie de la cible et du missile téléguidé (24). - Procédé selon l'une quelconque des revendications 1 à 6,
caractérisé en ce que
les grandeurs d'influence comprennent des grandeurs spécifiques au missile comme l'angle du gouvernail ou l'accélération transversale. - Procédé selon l'une quelconque des revendications 4 à 6,
caractérisé en ce que
le temps de vol restant est obtenu à partir d'un traitement d'image d'une image de la cible fournie par une tête chercheuse, déterminant la résolution d'image, du missile téléguidé (24). - Procédé selon la revendication 2,
caractérisé en ce quea) à partir des grandeurs d'influence, un écart de tir prévu est déterminé en permanence pour un temps de vol restant prédéfini, etb) l'écart de tir ainsi prévu pour un temps de vol restant déterminé, retardé de ce temps de vol restant, est mis à disposition en vue de la détermination du délai d'allumage lors de la réaction de la fusée détonatrice de proximité. - Procédé selon la revendication 9,
caractérisé en ce quea) à partir des grandeurs d'influence, pour différents temps de vol restants, des écarts de tir prévus s'y rapportant sont déterminés en parallèle,b) chaque écart de tir prévu déterminé pour un temps de vol restant, retardé de ce temps de vol restant s'y rapportant, est mis à disposition en vue de la détermination du délai d'allumage lors de la réaction de la fusée détonatrice de proximité etc) pour la détermination du délai d'allumage, une moyenne ou une moyenne pondérée des écarts de tir prévus, mis à disposition, retardés dans le temps, est établie. - Dispositif pour allumer une tête de combat dans des missiles de poursuite téléguidés (24) qui présentent une fusée percutante et une fusée détonatrice de proximité pour allumer la tête de combat, où la fusée détonatrice de proximité réagit lors de l'approche de la cible, et où la détonation de la tête de combat est déclenchée avec un délai d'allumage par rapport à la réaction de la fusée détonatrice de proximité,
caractérisé en ce que sont prévusa) des moyens pour enregistrer des paramètres spécifiques au guidage ou spécifiques au missile, comme des grandeurs d'influence qui sont déterminantes pendant le vol du missile téléguidé (24) pour un impact direct ou pour un survol, etb) des moyens de réglage (38, 40) pour régler le délai d'allumage de la fusée détonatrice de proximité en fonction de telles grandeurs d'influence. - Dispositif selon la revendication 11,
caractérisé par
des moyens pour déterminer un écart de tir prévu à partir des grandeurs d'influence ainsi déterminées, où les moyens de réglage sont réglables en fonction de l'écart de tir prévu ainsi déterminé. - Dispositif selon la revendication 12,
caractérisé en ce quea) grâce aux moyens de réglage (38, 40), lorsque l'écart de tir prévu fait attendre un impact direct, un délai d'allumage est réglable, d'une durée telle que l'allumage de la tête de combat puisse se produire lors de l'impact du missile téléguidé (24) sur la cible (26) par l'intermédiaire de la fusée percutante, etb) grâce aux moyens de réglage, lorsque l'écart de tir prévu fait attendre un survol de la cible (26) par le missile téléguidé (24), un délai d'allumage est réglable qui est optimisé en tenant compte de l'efficacité de la tête de combat qui éclate à côté de la cible. - Dispositif selon la revendication 13,
caractérisé par
des moyens de mémorisation, grâce auxquels la dépendance, établie par simulation, de l'écart de tir par rapport aux grandeurs d'influence et au temps de vol restant du missile téléguidé (24) est mémorisée. - Dispositif selon l'une quelconque des revendications 12 à 14,
caractérisé en ce que
les moyens pour enregistrer les grandeurs d'influence comprennenta) des moyens pour enregistrer des grandeurs spécifiques au guidage, comme la vitesse de rotation de la ligne de visée, grandeurs qui sont obtenues à partir de la géométrie de la cible et du missile téléguidé, etb) des moyens pour enregistrer des grandeurs spécifiques au missile téléguidé comme l'angle du gouvernail ou des accélérations transversales. - Dispositif selon la revendication 13,
caractérisé para) une tête chercheuse, déterminant la résolution d'image, du missile téléguidé, tête chercheuse qui fournit une image de la cible, etb) des moyens de traitement d'image pour estimer le temps de vol restant à partir de la modification de la grandeur de l'image de la cible. - Dispositif selon l'une quelconque des revendications 12 à 14,
caractérisé para) un moyen (44.1) pour déterminer l'écart de tir à partir des grandeurs d'influence pour un temps de vol restant prédéfini etb) des moyens de temporisation (48.1), grâce auxquels l'écart de tir prévu pour le temps de vol restant prédéfini, retardé de ce temps de vol restant, peut être mis à disposition en vue de la détermination du délai d'allumage lors de la réaction de la fusée détonatrice de proximité. - Dispositif selon la revendication 17,
caractérisé en ce quea) les moyens (44.1, 44.2 ...) pour déterminer l'écart de tir à partir des grandeurs d'influence multipliées dans des canaux parallèles sont prévus, où chaque canal est alimenté par les grandeurs d'influence et où, dans les canaux, des écarts de tir prévus sont déterminés pour différents temps de vol restants,b) des moyens de temporisation (48.1, 48.2 ...) sont prévus, grâce auxquels chaque écart de tir ainsi prévu pour un temps de vol restant déterminé, retardé de ce temps de vol restant, peut être mis à disposition en vue de la détermination du délai d'allumage lors de la réaction de la fusée détonatrice de proximité. - Dispositif selon la revendication 18,
caractérisé en ce que
les écarts de tir prévus, mis à disposition, retardés dans le temps, en vue de la détermination du délai d'allumage, sont fournis au moyen (52) en vue de l'établissement d'une moyenne pondérée des écarts de tir prévus, mis à disposition, retardés dans le temps. - Dispositif selon l'une quelconque des revendications 11 à 19,
caractérisé en ce que
les moyens pour déterminer l'écart de tir à partir des grandeurs d'influence sont élaborés par un système d'inférence floue.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10028746A DE10028746A1 (de) | 2000-06-10 | 2000-06-10 | Verfahren und Vorrichtung zur Bestimmung der Zündverzugszeit bei zielverfolgenden Lenkflugkörpern |
DE10028746 | 2000-06-10 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1162428A2 EP1162428A2 (fr) | 2001-12-12 |
EP1162428A3 EP1162428A3 (fr) | 2004-02-25 |
EP1162428B1 true EP1162428B1 (fr) | 2007-08-22 |
Family
ID=7645338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01113715A Expired - Lifetime EP1162428B1 (fr) | 2000-06-10 | 2001-06-05 | Procédé et dispositif pour allumer une tête de combat dans un missile suiveur de cible |
Country Status (3)
Country | Link |
---|---|
US (1) | US6584906B2 (fr) |
EP (1) | EP1162428B1 (fr) |
DE (2) | DE10028746A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7261035B1 (en) * | 2005-01-31 | 2007-08-28 | United States Of America As Represented By The Secretary Of The Navy | Method and system for operation of a safe and arm device |
IL189692A (en) * | 2008-02-21 | 2014-07-31 | Rafael Advanced Defense Sys | A guided ammunition unit with a thunderbolt that can be replaced by its mode of flight |
US8834163B2 (en) * | 2011-11-29 | 2014-09-16 | L-3 Communications Corporation | Physics-based simulation of warhead and directed energy weapons |
CN112035780B (zh) * | 2020-09-04 | 2022-05-31 | 清华大学 | 一种导弹末制导阶段杀伤效果计算方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4168663A (en) * | 1954-12-01 | 1979-09-25 | The United States Of America As Represented By The Secretary Of The Army | Computer fuzes |
US3877377A (en) * | 1955-01-17 | 1975-04-15 | Us Army | Proximity Fuze |
US3613590A (en) * | 1956-02-15 | 1971-10-19 | Us Navy | Vt fuse with inherent capacity for pd action when on a normal approach collision course |
US3850103A (en) * | 1973-12-04 | 1974-11-26 | Us Army | Computer interceptor proximity fuze |
DE2514136C1 (de) * | 1975-03-29 | 1985-10-31 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Zuendvorrichtung,bestehend aus einem Aufschlag- und einem UEberflugzuender |
DE3011231A1 (de) * | 1980-03-22 | 1981-10-01 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Schaltungsanordnung eines kombinierten annaeherungs- und aufschlagzuenders |
JPH0718676B2 (ja) * | 1989-08-29 | 1995-03-06 | 三菱プレシジョン株式会社 | 近接信管装置 |
JPH0718677B2 (ja) * | 1989-08-30 | 1995-03-06 | 三菱プレシジョン株式会社 | 近接信管装置 |
US5696347A (en) * | 1995-07-06 | 1997-12-09 | Raytheon Company | Missile fuzing system |
-
2000
- 2000-06-10 DE DE10028746A patent/DE10028746A1/de not_active Withdrawn
-
2001
- 2001-06-05 EP EP01113715A patent/EP1162428B1/fr not_active Expired - Lifetime
- 2001-06-05 DE DE50112899T patent/DE50112899D1/de not_active Expired - Lifetime
- 2001-06-08 US US09/877,346 patent/US6584906B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE10028746A1 (de) | 2001-12-13 |
DE50112899D1 (de) | 2007-10-04 |
EP1162428A2 (fr) | 2001-12-12 |
EP1162428A3 (fr) | 2004-02-25 |
US20030047102A1 (en) | 2003-03-13 |
US6584906B2 (en) | 2003-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2118615B1 (fr) | Procédé et dispositif de protection contre des munitions d'attaque volantes | |
DE2833079C1 (de) | Lenkgeschoss | |
DE69607944T2 (de) | Verfahren und vorrichtung zur bahnkorrektur eines ballistischen geschosses mittels radialen schüben | |
CH626442A5 (fr) | ||
EP1079198B1 (fr) | Procédé pour l'estimation du mouvement relatif entre missile et cible | |
DE69121427T2 (de) | Geschoss und sein Verwendungsverfahren | |
DE2452586C3 (de) | Verfahren und Vorrichtung zur Festlegung der Dauer des Flugweges eines Geschosses | |
EP0547391A1 (fr) | Procédé pour élever la probabilité de succès pour une défence anti-aérienne utilisant des projectiles à dispersion télé-commandée | |
EP1162428B1 (fr) | Procédé et dispositif pour allumer une tête de combat dans un missile suiveur de cible | |
CH669659A5 (fr) | ||
DE69625927T2 (de) | Vorrichtung zur bekämpfung von luftzielen | |
DE3013405C2 (de) | Verfahren zum Vermeiden des Nachrichtens von Abschußgeräten für ballistische Flugkörper | |
DE2325355B2 (de) | Verfahren zur Zielsteuerung eines Flugkörpers | |
DE3821309C2 (fr) | ||
DE2922592C2 (de) | Verfahren zur Abwehr von Flugkörpern | |
EP0309734A1 (fr) | Méthode pour l'allumage d'un projectile dans la proximité d'une cible | |
DE3123339A1 (de) | Verfahren zur fernzuendung eines sprenggeschosses, insbesondere eines hubschrauberabwehrgeschosses sowie einrichtung und geschoss zur durchfuehrung des verfahrens | |
DE3326748C2 (fr) | ||
DE3924087C1 (de) | Tandem-Gefechtskopf zur Bekämpfung aktiver Ziele | |
DE2522927B1 (de) | System zur taeuschung, ablenkung und vernichtung von lenkwaffen | |
DE2514136C1 (de) | Zuendvorrichtung,bestehend aus einem Aufschlag- und einem UEberflugzuender | |
DE4133405C2 (de) | Submunition für Tiefflugeinsatz | |
EP2989408B1 (fr) | Procédé d'exploitation d'un système d'arme | |
DE3311620A1 (de) | Verfahren zur verzoegerung der zuendkreisfreigabe | |
DE69719852T2 (de) | Vorrichtung zur Rollwinkelbestimmung eines Flugkörpers, insbesondere einer Munition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20040821 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT SE |
|
17Q | First examination report despatched |
Effective date: 20041126 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DIEHL BGT DEFENCE GMBH & CO.KG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50112899 Country of ref document: DE Date of ref document: 20071004 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20071001 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080526 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50112899 Country of ref document: DE Owner name: DIEHL DEFENCE GMBH & CO. KG, DE Free format text: FORMER OWNER: DIEHL BGT DEFENCE GMBH & CO. KG, 88662 UEBERLINGEN, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200619 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200625 Year of fee payment: 20 Ref country code: SE Payment date: 20200625 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200819 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200625 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50112899 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20210604 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20210604 |