EP1162428B1 - Procédé et dispositif pour allumer une tête de combat dans un missile suiveur de cible - Google Patents

Procédé et dispositif pour allumer une tête de combat dans un missile suiveur de cible Download PDF

Info

Publication number
EP1162428B1
EP1162428B1 EP01113715A EP01113715A EP1162428B1 EP 1162428 B1 EP1162428 B1 EP 1162428B1 EP 01113715 A EP01113715 A EP 01113715A EP 01113715 A EP01113715 A EP 01113715A EP 1162428 B1 EP1162428 B1 EP 1162428B1
Authority
EP
European Patent Office
Prior art keywords
hit
target
missile
predicted
influencing variables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01113715A
Other languages
German (de)
English (en)
Other versions
EP1162428A2 (fr
EP1162428A3 (fr
Inventor
Ulrich Dr. Hartmann
Thomas Schilli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl BGT Defence GmbH and Co KG
Original Assignee
Diehl BGT Defence GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl BGT Defence GmbH and Co KG filed Critical Diehl BGT Defence GmbH and Co KG
Publication of EP1162428A2 publication Critical patent/EP1162428A2/fr
Publication of EP1162428A3 publication Critical patent/EP1162428A3/fr
Application granted granted Critical
Publication of EP1162428B1 publication Critical patent/EP1162428B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C9/00Time fuzes; Combined time and percussion or pressure-actuated fuzes; Fuzes for timed self-destruction of ammunition
    • F42C9/14Double fuzes; Multiple fuzes
    • F42C9/148Proximity fuzes in combination with other fuzes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C13/00Proximity fuzes; Fuzes for remote detonation

Definitions

  • the invention relates to a method for igniting a warhead in target-tracking missiles, which have an impact fuse and a proximity fuse for igniting a warhead.
  • the invention further relates to a device for igniting a warhead in target-tracking missiles, which have an impact fuse and a proximity fuse for igniting a warhead, wherein the proximity fuse ignites the warhead with the Zündverzugszeit.
  • Targeted missiles are guided to a destination by a seeker head.
  • a seeker head contains an image-resolving detector, usually a two-dimensional array of detector elements.
  • the resulting image of a visual field scene containing the target is switched to image processing means. From the image processing steering signals are obtained, through which the guided missile is guided to the destination. As the target approaches closer, the seeker provides an image of the target, which increases as the missile approaches the target.
  • the guided missile contains a warhead, ie an explosive charge through which the target is to be destroyed with the greatest possible security.
  • the trajectory of the missile may differ slightly from the ideal trajectory due to various influences. This may be due, for example, to the encounter geometry, such as maneuvering the target, inaccuracies in the flight guidance of the missile or by limitations in the maneuverability of the missile. In such a case, the guided missile will not hit the target at the optimum location. Of the Missile may even fly past the target at a greater or lesser distance.
  • the guided missile has an impact fuze.
  • the impact fuse ignites the warhead when the missile impacts the target directly.
  • the missile also has a proximity fuse. The proximity fuse responds when the missile has approached the target sufficiently well.
  • the ignition delay time is a fixed, empirically found value.
  • the invention has for its object to cause the ignition of the warhead in a guided missile with impact and approach fuse so that the damage to the target is as large as possible.
  • hit files can be determined according to size and direction.
  • this hit deposit is now predicted as a function of various observable influencing variables.
  • the ignition delay time is then set.
  • the ignition delay time is set so long that the warhead can be fired when the missile impacts the target by the impact fuze.
  • an ignition delay time is set which is optimized for the effectiveness of the detonating warhead.
  • the dependency of the hit deposit on the influencing variables and on the remaining flight time of the guided missile can be determined and stored by simulation.
  • the influencing variables may include steering-specific variables, such as the visual line rotational rates, which result from the geometry of the target and guided missile.
  • the influencing factors may also include missile-specific variables such as rudder deflection or lateral acceleration. These factors are particularly important when the missile reaches the limits of its maneuverability.
  • influencing variables e.g. the line of sight rotation rate
  • the predicted hit deposits are determined for a given residual flight time.
  • the hit deposits determined in this way are provided at an exit delayed by the residual flight time on which the determination is based.
  • predicted hit deposits are available, which are based on the predictors, which were measured before the specified associated residual flight times and now refer to the time at which the proximity sensor responds. Then no residual flight time to be estimated, which is usually possible only with great inaccuracy.
  • a hit deposit obtained in this way on the basis of a single remaining flight time may be corrupted by noise.
  • Embodiments of the device are the subject of further claims.
  • the guided missile contains an impact fuze, which responds to the target when the missile strikes directly and ignites the warhead inside the target, possibly with a very short ignition delay time.
  • the guided missile continues to contain a proximity fuse.
  • the proximity fuse responds when the guided missile has approached the target to a small distance.
  • the proximity fuse also ignites when the guided missile does not hit the target directly but passes close to the target at a small distance.
  • the ignition usually takes place with a Zündverzugszeit.
  • a detonating warhead of a guided missile has two effects, namely a pressure effect and a fragmentation effect. The effect of pressure is particularly noticeable if the warhead detonates within the target or in the immediate vicinity of the target.
  • the approach point of the proximity fuse is often poorly defined. This response point may e.g. Depending on the type of target or on the direction from which the guided missile approaches the target. It may therefore happen that with early response of the proximity fuse and fixed ignition delay time the warhead is ignited before the missile occurs on the target, even if the missile would achieve a direct hit without this premature ignition. Then the effectiveness of the warhead would not be maximal and the probability of destruction reduced. For this case, a longer ignition delay time of the proximity fuse would be more favorable since it would allow the impact fuze to take effect.
  • the ignition delay time is made dependent on the predicted hit deposit.
  • a target here an enemy fighter aircraft, as seen by the image-resolving detector of the guided missile.
  • This target has a "desired aimpoint".
  • This desired impingement point is designated 12 in FIG.
  • the actual impact point now differs from the desired one Impact point 12 on distance and direction. That's the "hit deposit”.
  • the hit deposits are indicated in Fig.1 by circles 14. 16, 18 in the manner of a shooting target. If the point of impact is still within the inner circle 18, which determines a "critical hit deposit”, there is still a direct hit, ie the missile strikes the target directly. For larger hit deposits, the guided missile can fly past the target 10.
  • the warhead is ignited by the proximity fuse, as shown by point 20 in FIG.
  • a direct hit may also occur with the amount following larger hit deposits, as shown in FIG. 1 by point 22.
  • the ignition of the warhead by the proximity fuse with an optimal Zündverzugszeit, so that maximum fragmentation effect is achieved.
  • V r V T - V M .
  • V T the target speed
  • V M the speed of the missile.
  • the relative velocity vector V r always becomes a certain one Have false angle ⁇ with respect to the target 26.
  • the line-of-sight rotation rate increases in inverse proportion to the residual distance
  • FIG. 5 shows such a relationship, obtained from a six-dimensional simulation, between hit-deposit and visual line rotation rate as a function of the remaining flight time.
  • the horizontal coordinates in Fig. 5 are remaining flight time and hit deposit.
  • the vertical coordinate is the mean line of sight rotation rate.
  • FIG. 5 clearly shows the expected almost linear increase in the visual line rotational rate as a function of the hit deposit.
  • FIG. 6 shows the relationship between hit deposit and line-of-sight rotation acceleration, which is likewise obtained from a six-dimensional simulation.
  • the line-of-sight rotation acceleration ⁇ shows a marked increase only for small residual flight times t r . However, this increase is very clear for larger hit deposits.
  • Figures 5 and 6 show steering-specific parameters determined by the relative movement of guided missile 24 and target 26 as indicators of the size of the hit deposit.
  • missile-specific parameters indicators for the size of the hit deposit.
  • a non-perfectly adjusted autopilot can give rise to restless flight behavior of the guided missile, which in turn can lead to larger hit deposits.
  • an operation of the guided missile at the limits of its aerodynamic or flight mechanical performance can be used as an indicator of a tendency for a larger hit deposit.
  • Such an operation can be characterized by high angles of attack, large rudder deflections or high lateral accelerations. These influences will be referred to as "stress factors" below.
  • FIG. 7 shows the relationship between hit deposit and rudder deflection, likewise obtained by six-dimensional simulation, as a function of the remaining flight time. Large rudder deflections usually occur in connection with large angles of attack, large lateral accelerations or large turning rates. Figure 7 shows that large rudder deflections, especially when they reach the maximum rudder ratio, are associated with larger hit deposits.
  • FIG. 8 shows the similar relationship between hit-deposit and measured lateral acceleration as a function of the remaining flight time.
  • the horizontal coordinates in Figure 8 are remaining flight time and hit deposit.
  • the vertical coordinate is the measured average lateral acceleration of the guided missile.
  • High lateral acceleration indicates that the encounter occurs at the limit of steering missile performance, e.g. near the inner firing range boundary. Depending on the flight condition, the high lateral acceleration may also be associated with a large angle of incidence of the missile.
  • the lateral acceleration also shows, according to FIG. 8, a clear correlation with the hit deposit, which increases for high lateral accelerations, and with the remaining flight time.
  • the various influencing variables on the one hand the steering-specific parameters such as visual line turning rate ⁇ and line-of-sight rotation acceleration ⁇ and on the other hand the missile-specific parameters such as rudder deflection and lateral acceleration are, as shown in FIG. 9, switched to a hit prediction factor 28.
  • the hit-store predictor is also the Residual flight time ("time-to-go") switched, which is estimated by image processing a viewfinder image of the seeker head of the missile. This is a way of taking into account the remaining flight time.
  • the hit-list predictor 28 predicts either a direct hit with a signal at an output 30 or a near fly-by with a signal at an output 32 based on the measured steering-specific and missile-specific input parameters.
  • the signals at the outputs 30 and 32 are connected to an igniter section 34.
  • the igniter portion 34 includes a proximity fuze that responds to the target as the missile approaches. This is indicated by an input 36 "target detection".
  • a first ignition delay time table 38 which provides a relatively long first ignition delay time for the proximity fuse. This ignition delay time table 38 takes effect when the hit-store predictor at the output 30 signals a direct hit.
  • the proximity sensor is also associated with a second ignition delay time table 40 which provides a shorter, second ignition delay time for the proximity sensor.
  • the first Zündverzugszeit is chosen so long that the impact fuze of the missile can be effective before an ignition of the warhead can be done via the proximity sensor.
  • the second ignition delay time is shorter than the first ignition delay time. This second Zündverzugszeit is chosen so that in a flyby of the missile at the target by splinter effect maximum destruction is achieved at the destination.
  • an ignition pulse is generated at an output 42, whose ignition delay time corresponds to the direct hit or the flyby in the sense described above.
  • Fig. 10 is a block diagram showing the formation of the "direct hit” and “fly by” signals at the outputs 30 and 32.
  • the measurement or estimation of the residual flight time needed to determine the hit deposit presents difficulties. Instead, as in Fig.9, this residual flight time from the To estimate image processing and to apply it to the predictor 28 as a measured variable, in the preferred embodiment of FIG. 10, an estimation of the hit deposit is always carried out in parallel for various specified residual flight times, the current parameters being used as the basis. The thus estimated hit deposits are delayed by the predetermined residual flight time used in the estimation.
  • the proximity sensor When the proximity sensor responds then estimates of the hit deposit are available, for example based on the determined half a second influencing factors and in this estimation of the hit deposit based on a residual flight time of half a second based on the determined before a quarter of a second influencing factors and at Based on this estimation of the hit deposit a residual flight time of a quarter of a second, etc. From the all on the response time of the approaching fuse related and thus comparable hit deposits a weighted average is formed. Estimates based on shorter residual flight times may be weighted more heavily.
  • the influencing variables or parameters described with reference to FIGS. 5 to 8 give indications of the expected hit deposit.
  • the hit storage can not be easily calculated from this according to a specific algorithm.
  • the estimation of the hit deposit takes place on the basis of the influencing variables and the assumed residual flight time by means of "fuzzy inference systems".
  • FIG. 11 The influencing variables are converted into linguistic variables such as "large”, “medium”, “small” by means of membership functions. Since the membership functions usually overlap, a certain value of an influence variable with certain percentages ("membership factors”) can be assigned to different linguistic variables, ie about 75% "big” and 25% "medium”.
  • the linguistic quantities are processed according to given inference rules of the form "if ..., then ..”.
  • the results of the inference are linked according to the membership factors. This results in a numerical output variable due to the "defuzzification”. This is a known technique.
  • a plurality of such "fuzzy inference systems” 44.1, 44.2 ... 44.m are provided.
  • Each of these fuzzy inference systems is constantly updated from the current ones Influences influencing factors and requires an associated predetermined residual flight time t r1 , t r2 ... t rn ahead.
  • the fuzzy inference systems deliver numerical output variables in the form of predicted hit records at outputs 46.1, 46.2 ... 46.m.
  • shift registers 48.1, 48.2, ... 48.m the output quantities are each delayed by the associated remaining flight time t r1 , t r2 ... t rn .
  • Wm are then available with regard to the remaining flight times. These predicted matchlines are summed in a summation point 52 weighted. The weighted sum is applied to an evaluation circuit 54. The evaluation circuit 54 then provides the signals "direct hit” or “flyby" at the outputs 30 and 32, as explained with reference to FIG.
  • FIG. 11 schematically shows one of the fuzzy inference systems shown in FIG.
  • the fuzzy inference system has inputs 56.1, 56.2 ... 56.n for the various steering-specific or missile-specific influencing variables or parameters. Furthermore, the fuzzy inference system includes an input 58, to which a predetermined, the respective fuzzy inference system associated residual flight time t r1 , ... is switched. Each input is, as shown in Fig. 11 for input 56.1 is shown in full, connected in parallel to sorting members 60, through which the applied input variable, for example, the visual line rotation rate ⁇ , determined by a membership function membership factor of a linguisischen size "small", " medium or large.
  • the linguistic variables thus obtained are applied to a rule bank 62. In the rule bank 62, rules are stored in the form "if ...
  • Fig. 12 shows a shift register for delaying the predicted hit deposit by a residual flight time, e.g. corresponds to the shift register 48.1 of Fig.10.
  • the shift register 48.1 contains registers 68.1, 68.2 ... 68.p. In the register 68.1 with bits 1 to k of the fuzzy inference system 44.1 of the output 46.1 of the same current value of the predicted hit storage read.
  • the shift register 48.1 like the other shift registers, is driven by a memory clock at a clock input 70.
  • the respective current predicted hit storage from the fuzzy inference system 44.1 is read into the register 68.1 as a memory word.
  • this memory word is transferred from the register 68.1 in the register 68.2.
  • the previously stored in the register 68.2 memory word is simultaneously transferred to the next register 68.3, etc., while in the register 68.1, the new current predicted match storage is read.
  • the memory word read into the register 68.1 has arrived in the register 68p and is available there for readout as delayed, predicted hit storage w1 (FIG. 10).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Radar Systems Or Details Thereof (AREA)

Claims (20)

  1. Procédé pour allumer une tête de combat dans des missiles de poursuite téléguidés (24), qui présentent une fusée percutante et une fusée détonatrice de proximité qui réagit lorsque le missile (24) s'approche d'une cible, à l'occasion de quoi une détonation de la tête de combat est déclenchée par la fusée percutante lors de l'impact du missile (24) sur la cible et par la fusée détonatrice de proximité avec un délai d'allumage par rapport à la réaction de la fusée détonatrice de proximité,
    caractérisé par les étapes suivantes:
    a) enregistrement de paramètres spécifiques au guidage ou spécifiques au missile, comme des grandeurs d'influence qui sont déterminantes pendant le vol du missile téléguidé (24) pour un impact direct ou pour un survol, et
    b) réglage du délai d'allumage en fonction de telles grandeurs d'influence.
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    a) un écart de tir prévu est déterminé à partir des grandeurs d'influence enregistrées et
    b) le délai d'allumage est réglé en fonction de l'écart de tir ainsi prévu.
  3. Procédé selon la revendication 2,
    caractérisé en ce que,
    lorsque l'écart de tir prévu fait attendre un impact direct, un délai d'allumage est réglé, d'une durée telle que l'allumage de la tête de combat puisse se produire lors de l'impact du missile téléguidé (24) sur la cible par l'intermédiaire de la fusée percutante.
  4. Procédé selon la revendication 2 ou 3,
    caractérisé en ce que,
    lorsque l'écart de tir prévu fait attendre un survol de la cible par le missile téléguidé (24), un délai d'allumage est réglé qui est optimisé en tenant compte de l'efficacité de la tête de combat qui éclate à côté de la cible.
  5. Procédé selon l'une quelconque des revendications 2 à 4,
    caractérisé en ce que
    la dépendance de l'écart de tir par rapport aux grandeurs d'influence et au temps de vol restant du missile téléguidé (24) est établie par simulation et mémorisée.
  6. Procédé selon l'une quelconque des revendications 1 à 5,
    caractérisé en ce que
    les grandeurs d'influence comprennent des grandeurs telles que la vitesse de rotation de la ligne de visée, grandeurs qui sont obtenues à partir de la géométrie de la cible et du missile téléguidé (24).
  7. Procédé selon l'une quelconque des revendications 1 à 6,
    caractérisé en ce que
    les grandeurs d'influence comprennent des grandeurs spécifiques au missile comme l'angle du gouvernail ou l'accélération transversale.
  8. Procédé selon l'une quelconque des revendications 4 à 6,
    caractérisé en ce que
    le temps de vol restant est obtenu à partir d'un traitement d'image d'une image de la cible fournie par une tête chercheuse, déterminant la résolution d'image, du missile téléguidé (24).
  9. Procédé selon la revendication 2,
    caractérisé en ce que
    a) à partir des grandeurs d'influence, un écart de tir prévu est déterminé en permanence pour un temps de vol restant prédéfini, et
    b) l'écart de tir ainsi prévu pour un temps de vol restant déterminé, retardé de ce temps de vol restant, est mis à disposition en vue de la détermination du délai d'allumage lors de la réaction de la fusée détonatrice de proximité.
  10. Procédé selon la revendication 9,
    caractérisé en ce que
    a) à partir des grandeurs d'influence, pour différents temps de vol restants, des écarts de tir prévus s'y rapportant sont déterminés en parallèle,
    b) chaque écart de tir prévu déterminé pour un temps de vol restant, retardé de ce temps de vol restant s'y rapportant, est mis à disposition en vue de la détermination du délai d'allumage lors de la réaction de la fusée détonatrice de proximité et
    c) pour la détermination du délai d'allumage, une moyenne ou une moyenne pondérée des écarts de tir prévus, mis à disposition, retardés dans le temps, est établie.
  11. Dispositif pour allumer une tête de combat dans des missiles de poursuite téléguidés (24) qui présentent une fusée percutante et une fusée détonatrice de proximité pour allumer la tête de combat, où la fusée détonatrice de proximité réagit lors de l'approche de la cible, et où la détonation de la tête de combat est déclenchée avec un délai d'allumage par rapport à la réaction de la fusée détonatrice de proximité,
    caractérisé en ce que sont prévus
    a) des moyens pour enregistrer des paramètres spécifiques au guidage ou spécifiques au missile, comme des grandeurs d'influence qui sont déterminantes pendant le vol du missile téléguidé (24) pour un impact direct ou pour un survol, et
    b) des moyens de réglage (38, 40) pour régler le délai d'allumage de la fusée détonatrice de proximité en fonction de telles grandeurs d'influence.
  12. Dispositif selon la revendication 11,
    caractérisé par
    des moyens pour déterminer un écart de tir prévu à partir des grandeurs d'influence ainsi déterminées, où les moyens de réglage sont réglables en fonction de l'écart de tir prévu ainsi déterminé.
  13. Dispositif selon la revendication 12,
    caractérisé en ce que
    a) grâce aux moyens de réglage (38, 40), lorsque l'écart de tir prévu fait attendre un impact direct, un délai d'allumage est réglable, d'une durée telle que l'allumage de la tête de combat puisse se produire lors de l'impact du missile téléguidé (24) sur la cible (26) par l'intermédiaire de la fusée percutante, et
    b) grâce aux moyens de réglage, lorsque l'écart de tir prévu fait attendre un survol de la cible (26) par le missile téléguidé (24), un délai d'allumage est réglable qui est optimisé en tenant compte de l'efficacité de la tête de combat qui éclate à côté de la cible.
  14. Dispositif selon la revendication 13,
    caractérisé par
    des moyens de mémorisation, grâce auxquels la dépendance, établie par simulation, de l'écart de tir par rapport aux grandeurs d'influence et au temps de vol restant du missile téléguidé (24) est mémorisée.
  15. Dispositif selon l'une quelconque des revendications 12 à 14,
    caractérisé en ce que
    les moyens pour enregistrer les grandeurs d'influence comprennent
    a) des moyens pour enregistrer des grandeurs spécifiques au guidage, comme la vitesse de rotation de la ligne de visée, grandeurs qui sont obtenues à partir de la géométrie de la cible et du missile téléguidé, et
    b) des moyens pour enregistrer des grandeurs spécifiques au missile téléguidé comme l'angle du gouvernail ou des accélérations transversales.
  16. Dispositif selon la revendication 13,
    caractérisé par
    a) une tête chercheuse, déterminant la résolution d'image, du missile téléguidé, tête chercheuse qui fournit une image de la cible, et
    b) des moyens de traitement d'image pour estimer le temps de vol restant à partir de la modification de la grandeur de l'image de la cible.
  17. Dispositif selon l'une quelconque des revendications 12 à 14,
    caractérisé par
    a) un moyen (44.1) pour déterminer l'écart de tir à partir des grandeurs d'influence pour un temps de vol restant prédéfini et
    b) des moyens de temporisation (48.1), grâce auxquels l'écart de tir prévu pour le temps de vol restant prédéfini, retardé de ce temps de vol restant, peut être mis à disposition en vue de la détermination du délai d'allumage lors de la réaction de la fusée détonatrice de proximité.
  18. Dispositif selon la revendication 17,
    caractérisé en ce que
    a) les moyens (44.1, 44.2 ...) pour déterminer l'écart de tir à partir des grandeurs d'influence multipliées dans des canaux parallèles sont prévus, où chaque canal est alimenté par les grandeurs d'influence et où, dans les canaux, des écarts de tir prévus sont déterminés pour différents temps de vol restants,
    b) des moyens de temporisation (48.1, 48.2 ...) sont prévus, grâce auxquels chaque écart de tir ainsi prévu pour un temps de vol restant déterminé, retardé de ce temps de vol restant, peut être mis à disposition en vue de la détermination du délai d'allumage lors de la réaction de la fusée détonatrice de proximité.
  19. Dispositif selon la revendication 18,
    caractérisé en ce que
    les écarts de tir prévus, mis à disposition, retardés dans le temps, en vue de la détermination du délai d'allumage, sont fournis au moyen (52) en vue de l'établissement d'une moyenne pondérée des écarts de tir prévus, mis à disposition, retardés dans le temps.
  20. Dispositif selon l'une quelconque des revendications 11 à 19,
    caractérisé en ce que
    les moyens pour déterminer l'écart de tir à partir des grandeurs d'influence sont élaborés par un système d'inférence floue.
EP01113715A 2000-06-10 2001-06-05 Procédé et dispositif pour allumer une tête de combat dans un missile suiveur de cible Expired - Lifetime EP1162428B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10028746A DE10028746A1 (de) 2000-06-10 2000-06-10 Verfahren und Vorrichtung zur Bestimmung der Zündverzugszeit bei zielverfolgenden Lenkflugkörpern
DE10028746 2000-06-10

Publications (3)

Publication Number Publication Date
EP1162428A2 EP1162428A2 (fr) 2001-12-12
EP1162428A3 EP1162428A3 (fr) 2004-02-25
EP1162428B1 true EP1162428B1 (fr) 2007-08-22

Family

ID=7645338

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01113715A Expired - Lifetime EP1162428B1 (fr) 2000-06-10 2001-06-05 Procédé et dispositif pour allumer une tête de combat dans un missile suiveur de cible

Country Status (3)

Country Link
US (1) US6584906B2 (fr)
EP (1) EP1162428B1 (fr)
DE (2) DE10028746A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7261035B1 (en) * 2005-01-31 2007-08-28 United States Of America As Represented By The Secretary Of The Navy Method and system for operation of a safe and arm device
IL189692A (en) * 2008-02-21 2014-07-31 Rafael Advanced Defense Sys A guided ammunition unit with a thunderbolt that can be replaced by its mode of flight
US8834163B2 (en) * 2011-11-29 2014-09-16 L-3 Communications Corporation Physics-based simulation of warhead and directed energy weapons
CN112035780B (zh) * 2020-09-04 2022-05-31 清华大学 一种导弹末制导阶段杀伤效果计算方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4168663A (en) * 1954-12-01 1979-09-25 The United States Of America As Represented By The Secretary Of The Army Computer fuzes
US3877377A (en) * 1955-01-17 1975-04-15 Us Army Proximity Fuze
US3613590A (en) * 1956-02-15 1971-10-19 Us Navy Vt fuse with inherent capacity for pd action when on a normal approach collision course
US3850103A (en) * 1973-12-04 1974-11-26 Us Army Computer interceptor proximity fuze
DE2514136C1 (de) * 1975-03-29 1985-10-31 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Zuendvorrichtung,bestehend aus einem Aufschlag- und einem UEberflugzuender
DE3011231A1 (de) * 1980-03-22 1981-10-01 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Schaltungsanordnung eines kombinierten annaeherungs- und aufschlagzuenders
JPH0718676B2 (ja) * 1989-08-29 1995-03-06 三菱プレシジョン株式会社 近接信管装置
JPH0718677B2 (ja) * 1989-08-30 1995-03-06 三菱プレシジョン株式会社 近接信管装置
US5696347A (en) * 1995-07-06 1997-12-09 Raytheon Company Missile fuzing system

Also Published As

Publication number Publication date
US6584906B2 (en) 2003-07-01
DE10028746A1 (de) 2001-12-13
EP1162428A2 (fr) 2001-12-12
US20030047102A1 (en) 2003-03-13
DE50112899D1 (de) 2007-10-04
EP1162428A3 (fr) 2004-02-25

Similar Documents

Publication Publication Date Title
EP2118615B1 (fr) Procédé et dispositif de protection contre des munitions d'attaque volantes
DE2833079C1 (de) Lenkgeschoss
DE69817267T2 (de) Im-Flug-Programmierverfahren für Auslösungsmoment eines Geschosselements, Feuerleitung und Zünder zur Durchführung dieses Verfahrens
CH626442A5 (fr)
DE2452586C3 (de) Verfahren und Vorrichtung zur Festlegung der Dauer des Flugweges eines Geschosses
EP0547391A1 (fr) Procédé pour élever la probabilité de succès pour une défence anti-aérienne utilisant des projectiles à dispersion télé-commandée
EP1162428B1 (fr) Procédé et dispositif pour allumer une tête de combat dans un missile suiveur de cible
CH669659A5 (fr)
DE3013405C2 (de) Verfahren zum Vermeiden des Nachrichtens von Abschußgeräten für ballistische Flugkörper
DE2325355B2 (de) Verfahren zur Zielsteuerung eines Flugkörpers
DE3821309C2 (fr)
DE2922592C2 (de) Verfahren zur Abwehr von Flugkörpern
EP0309734A1 (fr) Méthode pour l'allumage d'un projectile dans la proximité d'une cible
DE3123339A1 (de) Verfahren zur fernzuendung eines sprenggeschosses, insbesondere eines hubschrauberabwehrgeschosses sowie einrichtung und geschoss zur durchfuehrung des verfahrens
DE3326748C2 (fr)
DE3924087C1 (de) Tandem-Gefechtskopf zur Bekämpfung aktiver Ziele
DE2522927B1 (de) System zur taeuschung, ablenkung und vernichtung von lenkwaffen
DE2514136C1 (de) Zuendvorrichtung,bestehend aus einem Aufschlag- und einem UEberflugzuender
DE4133405C2 (de) Submunition für Tiefflugeinsatz
DE3337873A1 (de) Geschoss fuer granatwerfersysteme
EP0580047B1 (fr) Procédé pour le déclenchement du détonateur d'une tête militaire et dispositif pour la mise en oeuvre du procédé
EP2989408B1 (fr) Procédé d'exploitation d'un système d'arme
DE3311620A1 (de) Verfahren zur verzoegerung der zuendkreisfreigabe
DE4034618A1 (de) Mine
DE3617487C1 (en) Warhead detonator for guided missile - compares radius vector valve with threshold signal as target is approached

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040821

AKX Designation fees paid

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 20041126

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DIEHL BGT DEFENCE GMBH & CO.KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50112899

Country of ref document: DE

Date of ref document: 20071004

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071001

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080526

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50112899

Country of ref document: DE

Owner name: DIEHL DEFENCE GMBH & CO. KG, DE

Free format text: FORMER OWNER: DIEHL BGT DEFENCE GMBH & CO. KG, 88662 UEBERLINGEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200619

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200625

Year of fee payment: 20

Ref country code: SE

Payment date: 20200625

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200819

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200625

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50112899

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210604

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210604