EP1153442B1 - Halbleiterbauelement zur erzeugung von mischfarbiger elektromagnetischer strahlung - Google Patents

Halbleiterbauelement zur erzeugung von mischfarbiger elektromagnetischer strahlung Download PDF

Info

Publication number
EP1153442B1
EP1153442B1 EP00907442.8A EP00907442A EP1153442B1 EP 1153442 B1 EP1153442 B1 EP 1153442B1 EP 00907442 A EP00907442 A EP 00907442A EP 1153442 B1 EP1153442 B1 EP 1153442B1
Authority
EP
European Patent Office
Prior art keywords
semiconductor layer
semiconductor
wavelength
substrate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00907442.8A
Other languages
English (en)
French (fr)
Other versions
EP1153442A1 (de
Inventor
Detlef Hommel
Helmut Wenisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Publication of EP1153442A1 publication Critical patent/EP1153442A1/de
Application granted granted Critical
Publication of EP1153442B1 publication Critical patent/EP1153442B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation

Definitions

  • the invention relates to a semiconductor component for generating mixed-color electromagnetic radiation, in particular white light, which has a semiconductor chip with a first semiconductor layer and a second semiconductor layer arranged adjacently to the latter and having an electroluminescent region.
  • white light is mainly produced with incandescent or fluorescent tubes that emit light with a broad wavelength spectrum.
  • LEDs light-emitting diodes
  • semiconductor laser diodes have an emission spectrum which is typically only 10 to 25 nm wide, ie. H. they are almost monochromatic. But they have the particular advantage that they require only a fraction of the current required by an incandescent lamp or a fluorescent tube. In addition, their life is significantly greater than that of incandescent or fluorescent tubes. If a large-area emitter is necessary, LEDs or laser diodes can be easily interconnected into arrays.
  • LEDs of the three basic colors red, green and blue or the two complementary colors blue and yellow additive color mixing can be used to produce light that appears white to the human eye.
  • Particular disadvantages here are, however, that three or two light emitting diodes must be electrically controlled individually, thereby consuming control electronics (different types of LEDs usually require different drive voltages) are necessary that a high installation cost is required and that the component miniaturization is severely limited.
  • a semiconductor device which has a semiconductor chip with a first semiconductor layer and a second semiconductor layer arranged adjacently thereto, which is applied to a substrate, wherein the first semiconductor layer is arranged between the substrate and the second semiconductor layer, the second semiconductor layer contains an electroluminescent region emitting light with a wavelength ⁇ E , and the first semiconductor layer has a band gap smaller than the band gap of the electroluminescent region and absorbs a part of the light and re-emits light having a larger wavelength ⁇ R , the electroluminescent region emits electromagnetic radiation having a wavelength of 780 nm, the first semiconductor layer Re-emitted light of a second, different from the first wavelength ⁇ E wavelength ⁇ R , which is emitted from the semiconductor device together with the light of the first color.
  • a white light-emitting luminescence diode device in which, for example, a YAG phosphor-containing luminescence conversion layer is applied to a light emitting diode chip emitting blue light.
  • the luminescence conversion layer emits when excited by blue light or UV radiation in the yellow spectral range. For the eye, the mixed color of blue primary and yellow secondary light is perceived as white.
  • the disadvantage here is the additional process step (s) for producing the luminescence conversion layer.
  • the object of the present invention is to develop a mixed-color light emitting semiconductor device whose production requires little technical effort.
  • the first semiconductor layer preferably comprises a material whose position corresponds to the absorption edge of a wavelength ⁇ abs , which is greater than the wavelength ⁇ E of the radiation emitted by the second semiconductor layer, and that upon excitation with radiation smaller wavelength than ⁇ abs radiation of the wavelength ⁇ R re-emitted, which is greater than ⁇ abs .
  • the substrate used for the epitaxial growth of the second semiconductor layer as a first semiconductor layer.
  • both the first and second semiconductor layers are epitaxially deposited on a growth substrate.
  • An advantageous embodiment comprises a first semiconductor layer (R), the ZnSe, and a second semiconductor layer (E) comprising a Cd x Zn 1-x Se / ZnSe quantum well system (where 0 ⁇ x ⁇ 1), in particular a multiple quantum well system, as active zone.
  • semiconductor layer is meant here not only a single layer of homogeneous semiconductor material, but may also be a layer systems or a layer sequence of several different layers and / or graded layers meant.
  • the substrate R is monocrystalline and prepared by melt-drawing, cutting into thin slices and polishing.
  • a functional semiconductor layer E which in the following is usually referred to briefly as the emission layer E, is an arrangement of one or more semiconductor layers which serve to generate electromagnetic radiation when the current flows through the chip in an electroluminescent region B.
  • the substrate R with a thickness of several 100 .mu.m as a stable mechanical support is about a factor of 100 thicker than an epitaxially grown emission layer E.
  • a typical functional semiconductor layer E of a luminescence diode chip usually consists of a plurality of semiconductor layers of different thickness, composition and doping. Frequently used as the electroluminescent region B is a p-n junction with quantum film (s). The thickness of the overall system is usually in the micron range.
  • this is produced, for example, by MBE (Molecular Beam Epitaxy) and / or MOVPE (Organometallic Vapor Phase Epitaxy).
  • the emission wavelength ⁇ E of the functional semiconductor layer E shorter than the wavelength ⁇ abs , which corresponds to the absorption edge of the substrate R.
  • the radiative recombination at the wavelength ⁇ R (re-emission wavelength) dominates at room or operating temperature with a high degree of effectiveness when excited with radiation having a shorter wavelength than ⁇ abs .
  • the band gap from the substrate R is therefore smaller than that of the In the substrate R, during operation of the luminescence diode chip, absorption of at least a portion of the radiation emitted by the emission layer E in the direction of the substrate R takes place. This is followed by a re-emission from the substrate R at a re-emission wavelength ⁇ R which is greater than ⁇ abs , in which case states in the band gap of the substrate R are involved.
  • the modification according to FIG. 2 is different from that of FIG. 1 essentially in that the absorption and re-emission does not take place in the growth substrate A, but that here a separate re-emission layer R is provided which is arranged between the growth substrate A and the emission layer E and which has the same properties, as the substrate of the embodiment of FIG. 1 ,
  • the growth substrate A is either transparent or absorbent and serves exclusively as a growth substrate.
  • the modification according to FIG. 3 is essentially identical to that of FIG. 2 except for the difference that here the re-emission layer R is not arranged between the growth substrate A and the functional semiconductor layer B, but on the side opposite the growth substrate A side of the emission layer E.
  • the emission wavelength ⁇ E can be set within certain limits, the condition ⁇ E ⁇ abs is observed.
  • the position of the absorption edge of the substrate or the re-emission layer R is determined by the choice of the substrate or re-emission layer material.
  • the re-emission wavelength ⁇ R (relative to the absorption edge A) depends on the way in which the band gap states are generated.
  • wavelength spectrum is plotted on the abscissa, the wavelength ⁇ and the ordinate, the intensity in each case without scaling.
  • the emission spectrum ES of the emission layer E with a peak wavelength ⁇ E is at shorter wavelengths than the re-emission spectrum RS of the re-emission layer R with a peak wavelength ⁇ R.
  • the absorption edge K of the re-emission layer R lies.
  • the energy is applied vertically.
  • the left part shows the bandgap of the emission layer E; the vertical and serpentine arrow indicates a bright transition in the emission layer.
  • the right part of the band diagram shows the band gap of the re-emission layer R with states in the band gap.
  • the vertical and the serpentine arrow in turn indicate a radiating transition in the re-emission layer.
  • the re-emission in the re-emission layer R is excited by the radiation emitted by the emission layer E.
  • a preferred material system for the production of such a semiconductor chip is, for example, a second semiconductor layer E which contains Cd x Zn 1-x Se / ZnSe (where 0 ⁇ x ⁇ 1) on a ZnSe substrate as the first semiconductor layer R.
  • ZnSe has a band gap of 2.7 eV at room temperature, which corresponds to a wavelength of 460 nm.
  • the high temperatures or lack of purity of the starting materials result in that impurities are inadvertently incorporated into the crystals, which can then lead to conditions in the band gap.
  • a particularly strong room temperature luminescence around 600 nm shows conductive ZnSe substrates, as can be produced, for example, by subsequent tempering in zinc vapor or by doping with aluminum.
  • a simple ZnSe-pn diode having a (Cd, Zn) Se / ZnSe multiple quantum well system as the active zone (electroluminescent region B) is suitable as the second semiconductor layer E.
  • the wavelength ⁇ E of the radiation emitted by such an active zone can be shifted from the blue (460 nm) to the green (540 nm).
  • the absorption edge ⁇ abs of the substrate is shifted by a high iodine content to about 515 nm.
  • the substrate it is preferable to use a ZnSe: I substrate prepared by Bridgeman growth. Further possible substrate breeding methods are iodine transport breeding and sublimation breeding.
  • the substrate described above may not necessarily have served as a substrate during the growth process of the layers. Rather, a contact of the layer and absorption / re-emission substrate can also be produced only afterwards, for example by wafer bonding.
  • the desired mixed color can be achieved by suitable choice of the emitting layer (second semiconductor layer E) and the substrate (first semiconductor layer R).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Description

  • Die Erfindung betrifft ein Halbleiterbauelement zur Erzeugung von mischfarbiger elektromagnetischer Strahlung, insbesondere von weißem Licht, das einen Halbleiterchip mit einer ersten Halbleiterschicht und einer benachbart zu dieser angeordneten zweiten Halbleiterschicht mit einem elektrolumineszierenden Bereich aufweist.
  • Weißes Licht wird heutzutage hauptsächlich mit Glühlampen oder Leuchtstoffröhren erzeugt, die Licht mit einem breiten Wellenlängenspektrum abgeben.
  • Lichtemittierende Halbleiterbauelemente, wie Lumineszenzdioden (LEDs) oder Halbleiterlaserdioden, haben hingegen ein Emissionsspektrum, das typischerweise nur 10 bis 25 nm breit ist, d. h. sie sind nahezu monochromatisch. Sie haben aber den besonderen Vorteil, daß sie nur einen Bruchteil des Stromes benötigen, den eine Glühlampe oder eine Leuchtstoffröhre benötigt. Zudem ist ihre Lebensdauer deutlich größer als die von Glühlampen oder Leuchtstoffröhren. Wenn ein großflächiger Emitter notwendig ist, können LEDs oder Laserdioden auf einfache Weise zu Arrays zusammengeschaltet werden.
  • Mit LEDs der drei Grundfarben rot, grün und blau oder der zwei Komplementärfarben blau und gelb läßt sich durch additive Farbmischung Licht erzeugen, das für das menschliche Auge weiß erscheint. Besondere Nachteile sind hierbei aber, daß drei bzw. zwei Lumineszenzdioden einzeln elektrisch angesteuert werden müssen, wodurch aufwendige Ansteuerelektroniken (verschiedenartige LEDs benötigen in der Regel unterschiedliche Ansteuerspannungen) notwendig sind, daß ein hoher Montageaufwand erforderlich ist und daß die Bauteil-Miniaturisierung stark begrenzt ist.
  • In der EP-A-0 486 052 wird ein Halbleiterbauelement beschrieben, das einen Halbleiterchip mit einer ersten Halbleiterschicht und einer benachbart zu dieser angeordneten zweiten Halbleiterschicht aufweist, die auf einem Substrat aufgebracht ist, wobei die erste Halbleiterschicht zwischen dem Substrat und der zweiten Halbleiterschicht angeordnet ist,
    die zweite Halbleiterschicht einen elektrolumineszierenden Bereich enthält, der Licht mit einer Wellenlänge λE aussendet, und
    die erste Halbleiterschicht eine Bandlücke aufweist, die kleiner als die Bandlücke des elektrolumineszierenden Bereichs ist und einen Teil des Lichts absorbiert und Licht mit einer größeren Wellenlänge λR re-emittiert, der elektrolumineszierenden Bereich elektromagnetische Strahlung mit einer Wellenlänge von 780 nm aussendet, die erste Halbleiterschicht Licht einer zweiten, von der ersten Wellenlänge λE unterschiedlichen Wellenlänge λR re-emittiert, das von dem Halbleiterbauelement gemeinsam mit dem Licht der ersten Farbe emittiert wird.
  • In der WO97/50132 ist ein weißes Licht emittierendes Lumineszenzdioden-Bauelement beschrieben, bei dem auf einen blaues Licht emittierenden Lumineszenzdiodenchip beispielsweise eine YAG-Phosphor enthaltende Lumineszenz-Konversionsschicht aufgebracht ist. Die Lumineszenz-Konversionsschicht emittiert bei Anregung durch blaues Licht oder UV-Strahlung im gelben Spektralbereich. Für das Auge wird die Mischfarbe aus blauem Primär- und gelbem Sekundärlicht als Weiß wahrgenommen. Nachteilig ist hier der/die zusätzliche/n Prozeßschritt/e zum Herstellen der Lumineszenz-Konversionsschicht.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, ein mischfarbiges Licht aussendendes Halbleiterbauelement zu entwickeln, dessen Herstellung einen geringen technischen Aufwand erfordert.
  • Diese Aufgabe wird im Wesentlichen durch ein Halbleiterbauelement mit den Merkmalen des Anspruches 1 gelöst.
  • Vorteilhafte Ausführungsformen und Weiterbildungen des Halbleiterbauelments sind Gegenstand der Unteransprüche 2 bis 6.
  • Bei einem Halbleiterbauelement der eingangs genannten Art weist demgemäß die erste Halbleiterschicht vorzugsweise ein Material auf, dessen Lage der Absorptionskante einer Wellenlänge λabs entspricht, die größer ist als die Wellenlänge λE der von der zweiten Halbleiterschicht emittierten Strahlung, und das bei Anregung mit Strahlung einer kleineren Wellenlänge als λabs Strahlung der Wellenlänger λR re-emittiert, die größer ist als λabs.
  • Bei einer bevorzugten Ausführungsform ist als erste Halbleiterschicht das Substrat zum epitaktischen Aufwachsen der zweiten Halbleiterschicht genutzt.
  • Bei einer Abwandlung ist sowohl die erste als auch die zweite Halbleiterschicht mittels Epitaxie auf einem Aufwachs-Substrat aufgebracht.
  • Eine vorteilhafte Ausführungsform weist auf, eine erste Halbleiterschicht (R), die ZnSe, und eine zweite Halbleiterschicht (E), die ein CdxZn1-xSe/ZnSe-Quantentrogsystem (mit 0 ≤ x ≤ 1), insbesondere ein Mehrfachquantentrogsystem, als aktive Zone enthält.
  • Mit dem Begriff Halbleiterschicht ist hier nicht nur eine einzelne Schicht aus homogenem Halbleitermaterial gemeint, sondern kann auch ein Schichtsysteme oder eine Schichtenfolge aus mehreren verschiedenen Schichten und/oder graduierte Schichten gemeint sein.
  • Die Erfindung wird im Folgenden anhand von drei Abwandlungen in Verbindung mit den Figuren 1 bis 5 näher erläutert. Es zeigen:
    • Figur 1 einen ersten prinzipiellen Aufbau eines Lumineszenzdiodenchips
    • Figur 2 einen zweiten prinzipiellen Aufbau eines Lumineszenzdiodenchips
    • Figur 3 einen dritten prinzipiellen Aufbau eines Lumineszenzdiodenchips und
    • Figur 4 ein prinzipielles Wellenlängenspektrum eines erfindungsgemäßen Lumineszenzdiodenchips
    • Figur 5 ein prinzipielles Bänderschema eines erfindungsgemäßen Lumineszenzdiodenchips.
  • Im folgenden werden verschiedene Einzelaspekte eines erfindungsgemäßen Halbleiterbauelements, wie es in Anspruch 1 definiert wird, behandelt.
  • Bei dem prinzipiellen Aufbau eines Lumineszenzdiodenchips C in der Abwandlung gemäß Figur 1 ist auf einem Substrat R eine funktionelle Halbleiterschicht E aufgebracht.
  • In der Regel ist das Substrat R einkristallin und mittels Ziehen aus der Schmelze, Schneiden in dünne Scheiben und Polieren hergestellt.
  • Unter einer funktionellen Halbleiterschicht E, die im folgenden meist kurz mit Emissionsschicht E bezeichnet wird, ist eine Anordnung einer oder mehrerer Halbleiterschichten zu verstehen, die dazu dienen, bei Stromfluß durch den Chip in einem elekrolumineszierenden Bereich B elektromagnetische Strahlung zu erzeugen.
  • Das Substrat R ist mit einer Dicke von mehreren 100µm als stabile mechanische Unterlage etwa einen Faktor 100 dicker als eine auf diesem epitaktisch gewachsene Emissionsschicht E.
  • Eine typische funktionelle Halbleiterschicht E eines Lumineszenzdiodenchips besteht bekannterweise meist aus einer Mehrzahl von Halbleiterschichten unterschiedlicher Dicke, Zusammensetzung und Dotierung. Oft kommt als elektrolumineszierender Bereich B ein p-n-Übergang mit Quantenfilm(en) zum Einsatz. Die Dicke des Gesamtsystems liegt üblicherweise im µm-Bereich.
  • Um gezielte Änderungen der Eigenschaften durch gezielte Verunreinigungen (Dotierung) oder Beimischungen, sowie die Herstellung von atomar glatten Grenzflächen innerhalb der funktionellen Halbleiterschicht E zu erzielen ist diese beispielsweise mittels MBE (Molekularstrahlepitaxie) und/oder MOVPE (Metallorganische Dampfphasenepitaxie) hergestellt.
  • Bei der Abwandlung gemäß Figur 1 ist die Emissionswellenlänge λE der funktionellen Halbleiterschicht E kürzer als die Wellenlänge λabs, die der Absorptionskante des Substrates R entspricht.
  • Im Substrat R dominiert bei Raum- bzw. Betriebstemperatur die strahlende Rekombination bei der Wellenlänge λR (Re-Emissionswellenlänge) mit einer hohen Effektivität, wenn mit Strahlung kürzerer Wellenlänge als λabs angeregt wird. Die Bandlücke vom Substrat R ist demnach kleiner als die des emittierenden Überganges der Emissionsschicht E. Im Substrat R erfolgt im Betrieb des Lumineszenzdiodenchips eine Absorption zumindest eines Teiles der von der Emissionsschicht E in Richtung des Substrats R ausgesandten Strahlung. Es folgt eine Re-Emission vom Substrat R bei einer Re-Emissionswellenlänge λR, die größer ist als λabs, wobei hier Zustände in der Bandlücke des Substrates R beteiligt sind.
  • Damit ist ein kompakter Chip realisiert, der Strahlung S zweier deutlich unterschiedlicher Wellenlängen emittiert. Weil sich beide lichterzeugenden Volumina in unmittelbarer Nähe zueinander befinden, kann für das menschliche Auge der Eindruck von mischfarbigem Licht und im Spezialfall auch von weißem Licht entstehen. Dieser Effekt wird noch verstärkt, wenn sich der Lumineszenzdiodenchip, wie bei LEDs üblich und in Figur 1 schematisch dargestellt, in einem kleinen Parabolspiegel P befindet.
  • Die Abwandlung gemäß Figur 2 unterscheidet sich von der der Figur 1 im Wesentlichen dadurch, daß die Absorption und Re-Emission nicht im Aufwachs-Substrat A stattfindet, sondern daß hier eine separate Re-Emissionsschicht R vorgesehen ist, die zwischen dem Aufwachs-Substrat A und der Emissionsschicht E angeordnet ist und die dieselben Eigenschaften aufweist, wie das Substrat des Ausführungsbeispieles von Figur 1. Das Aufwachs-Substrat A ist hier entweder transparent oder absorbierend ausgebildet und dient hier ausschließlich als Aufwachs-Substrat.
  • Die Abwandlung gemäß Figur 3 ist im Wesentlichen identisch zu der der Figur 2, bis auf den Unterschied, daß hier die Re-Emissionsschicht R nicht zwischen dem Aufwachs-Substrat A und der funktionellen Halbleiterschicht B, sondern auf der dem Aufwachs-Substrat A gegenüberliegenden Seite der Emissionsschicht E angeordnet ist.
  • Durch Variation z. B. der Quantentrogdicke in einer funktionellen Halbleiterschicht E mit Quantentrogstruktur oder der Zusammensetzung(en) in der funktionellen Halbleiterschicht E kann die Emissionswellenlänge λE in gewissen Grenzen eingestellt werden, wobei die Bedingung λEabs zu beachten ist. Die Lage der Absorptionskante des Substrats bzw. der Re-Emissionsschicht R ist durch die Wahl des Substrat- bzw. Re-Emissionsschicht-Materials bestimmt. Die Re-Emissionswellenlänge λR (relativ zur Absorptionskante A) hängt von der Art der Erzeugung der Zustände der Bandlücke ab.
  • Das Verhältnis (Intensität der vom Substrat R bzw. Re-Emissionsschicht R emittierten Strahlung)/(Intensität der von der funktionellen Halbleiterschicht E emittierten Strahlung) kann gezielt beeinflußt werden durch:
    1. a) die Dicke des Substrates bzw. der Re-Emissionsschicht R und damit des absorptiven und re-emittierenden Volumens (dies kann z. B. durch Abdünnen erreicht werden);
    2. b) die Rate der strahlenden Rekombination im Substrat bzw.
      der Re-Emissionsschicht R (dies kann durch gezielte Einbringung von (nicht) strahlenden Rekombinationskanälen erfolgen);
    3. c) die Effektivität des Wellenleiters (extrem helle LEDs sind als sogenannte Doppelheterostrukturen aufgebaut; dabei erreicht man einen wellenleitenden Effekt senkrecht zur Wachstumsrichtung durch entsprechende Brechzahlsprünge der Schichten; je besser diese Wellenführung, desto weniger Photonen werden überhaupt in das Substrat bzw. in die Re-Emissionsschicht R gelangen und desto größer wird ihr Anteil im Vergleich zu der vom Substrat bzw. von der Re-Emissionsschicht R emittierten Strahlung); und
    4. d) die Lage der Emissionswellenlänge λE relativ zur Absorptionskante des Substrates bzw. der Re-Emissionsschicht R (je näher die Emissionswellenlänge λE an der Absorptionskante des Substrates bzw. der Re-Emissionsschicht R liegt, desto transparenter wird das Substrat bzw. die Re-Emissionsschicht R und desto geringer wird die Absorption/Re-Emission dort. Um den Subtrat- bzw. Re-Emissionsschicht-Anteil geringer zu halten, kann es auch notwendig sein, von der Bedingung λEabs abzuweichen, wenn auch noch für λEabs genügend Absorption stattfindet).
  • Bei dem in Figur 4 dargestellten Wellenlängenspektrum ist auf der Abszisse die Wellenlänge λ und auf der Ordinate die Intensität jeweils ohne Skalierung aufgetragen. Das Emissionsspektrum ES der Emissionsschicht E mit einer Peak-Wellenlänge λE befindet sich bei kürzeren Wellenlängen als das Re-Emissionsspektrum RS der Re-Emissionsschicht R mit einer Peak-Wellenlänge λR. Bei einer Wellenlänge λabs zwischen dem Emissionsspektrum ES und dem Re-Emissionsspektrum RS liegt die Absorptionskante K der Re-Emissionsschicht R.
  • Bei dem Bänderschema von Figur 5 ist die Energie senkrecht aufgetragen. Der linke Teil zeigt die Bandlücke der Emissionsschicht E; der senkrechte und der schlangenförmige Pfeil deutet einen strahlenden Übergang in der Emissionsschicht an. Der rechte Teil des Bänderschemas zeigt die Bandlücke der Re-Emissionsschicht R mit Zuständen in der Bandlücke. Der senkrechte und der schlangenförmige Pfeil deuten wiederum einen strahlenden Übergang in der Re-Emissionsschicht an. Die Re-Emission in der Re-Emissionsschicht R wird durch die von der Emissionsschicht E ausgesandte Strahlung angeregt.
  • Ein bevorzugtes Materialsystem für die Herstellung eines derartigen Halbleiterchips ist beispielsweise eine zweite Halbleiterschicht E, die CdxZn1-xSe/ZnSe (mit 0 ≤ x ≤ 1) enthält, auf einem ZnSe-Substrat als erste Halbleiterschicht R.
  • ZnSe besitzt bei Raumtemperatur eine Bandlücke von 2,7eV, was einer Wellenlänge von 460 nm entspricht. Bei vielen Züchtungsmethoden von Volumenmaterial führen die hohen Temperaturen oder die mangelnde Reinheit der Ausgangsmaterialien dazu, daß Verunreinigungen unabsichtlich in die Kristalle eingebaut werden, die dann zu Zuständen in der Bandlücke führen können. Eine besonders starke Raumtemperatur-Lumineszenz um 600 nm zeigen leitfähige ZnSe-Substrate, wie sie zum Beispiel durch nachträgliches Tempern in Zinkdampf oder durch Dotierung mit Aluminium erzeugt werden können.
  • Als zweite Halbleiterschicht E eignet sich in diesem Fall beispielsweise eine einfache ZnSe-p-n-Diode mit einem (Cd,Zn)Se/ZnSe-Mehrfachquantentrogsystem als aktive Zone (elektrolumineszierender Bereich B). Je nach Cadmiumgehalt kann die Wellenlänger λE der von einer derartigen aktiven Zone emittierten Strahlung vom Blauen (460 nm) bis ins Grüne (540 nm) verschoben werden.
  • Die Absorptionskante λabs des Substrates ist durch einen höhen Jodgehalt zu etwa 515 nm hin verschoben. Damit sind alle Voraussetzungen für ein Halbleiterbauelment gemäß dem Ausführungsbeispiel von Figur 1 erfüllt, wenn zum Beispiel eine Lumineszenzdiodenstruktur mit 489 nm und/oder 508 nm Emissionswellenlänge auf dem Substrat aufgebracht ist.
  • Als Substrat wird bevorzugt ein ZnSe:I-Substrat verwendet, das mittels Bridgeman-Züchtung hergestellt ist. Weitere mögliche Substrat-Züchtungsmethoden sind die Jodtransport-Züchtung und die Sublimationszüchtung.
  • Das oben beschriebene Substrat muß nicht unbedingt als Substrat während des Wachstumsprozesses der Schichten gedient haben. Vielmehr kann ein Kontakt von Schicht und Absorptions/Re-Emissions-Substrat auch erst im Nachhinein zum Beispiel durch Wafer-Bonding hergestellt werden.
  • Die gewünschte Mischfarbe kann durch geeignete Wahl der emittierenden Schicht (zweite Halbleiterschicht E) und des Substrats (erste Halbleiterschicht R) erreicht werden.

Claims (6)

  1. Halbleiterbauelement, das einen Halbleiterchip (C) mit einer ersten Halbleiterschicht (R) und einer benachbart zu dieser angeordneten zweiten Halbleiterschicht (E) aufweist, die auf einem Substrat (A) aufgebracht ist, wobei die erste Halbleiterschicht (R) zwischen dem Substrat (A) und der zweiten Halbleiterschicht (E) angeordnet ist oder die erste Halbleiterschicht auf der dem Substrat gegenüber liegenden Seite der zweiten Halbleiterschicht angeordnet ist,
    die zweite Halbleiterschicht (E) einen elektrolumineszierenden Bereich (B) enthält, der Licht mit einer Wellenlänge λE aussendet, und
    die erste Halbleiterschicht (R) eine Bandlücke aufweist, die kleiner als die Bandlücke des elektrolumineszierenden Bereichs (B) ist und einen Teil des Lichts absorbiert und Licht mit einer größeren Wellenlänger λR re-emittiert,
    der elektrolumineszierende Bereich (B) sichtbares Licht einer ersten Farbe mit der Wellenlänge λE aussendet,
    die erste Halbleiterschicht (R) sichtbares Licht einer zweiten, von der ersten unterschiedlichen Farbe mit der Wellenlänge λR re-emittiert, das von dem Halbleiterbauelement gemeinsam mit dem Licht der ersten Farbe emittiert wird, und das Halbleiterbauelement ein Halbleiterbauelement zur Erzeugung mischfarbigen Lichts (S) ist,
    wobei die erste Halbleiterschicht (R) Zustände innerhalb der Bandlücke aufweist, die bei der Re-Emission beteiligt sind, wobei die Zustände innerhalb der Bandlücke gezielt eingebracht sind, wodurch das Verhältnis zwischen der Intensität der von der ersten Halbleiterschicht (R) emittierten Strahlung zu der von der zweiten Halbleiterschicht (E) emittierten Strahlung eingestellt wird wobei ein Kontakt von erster Halbleiterschicht (R) oder zweiter Halbleiterschicht (E) und Substrat (A) durch Wafer-bonding hergestellt ist.
  2. Halbleiterbauelement gemäß Anspruch 1,
    dadurch gekennzeichnet, dass die erste Halbleiterschicht (R) ein Material aufweist, das eine Absorptionskante besitzt, deren Energieniveau einer Wellenlänge λabs entspricht, die größer ist als die Wellenlänge λE der von der zweiten Halbleiterschicht (E) emittierten Strahlung, und das bei Anregung mit Strahlung einer kleineren Wellenlänge als λabs Strahlung der Wellenlänge λR re-emittiert, die größer als λabs ist.
  3. Halbleiterbauelement nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die erste Halbleiterschicht (R) dotiertes ZnSe und die zweite Halbleiterschicht (E) eine aktive Zone aufweist, die CdxZn1-xSe/ZnSe (mit 0 ≤ x ≤ 1) enthält.
  4. Halbleiterbauelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sich der Halbleiterchip (C) in einem Parabolspiegel befindet.
  5. Halbleiterbauelement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Substrat (A) von einem Aufwachs-Substrat verschieden ist.
  6. Halbleiterbauelement nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das mischfarbige Licht weißes Licht ist.
EP00907442.8A 1999-01-25 2000-01-25 Halbleiterbauelement zur erzeugung von mischfarbiger elektromagnetischer strahlung Expired - Lifetime EP1153442B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19902750A DE19902750A1 (de) 1999-01-25 1999-01-25 Halbleiterbauelement zur Erzeugung von mischfarbiger elektromagnetischer Strahlung
DE19902750 1999-01-25
PCT/DE2000/000201 WO2000044053A1 (de) 1999-01-25 2000-01-25 Halbleiterbauelement zur erzeugung von mischfarbiger elektromagnetischer strahlung

Publications (2)

Publication Number Publication Date
EP1153442A1 EP1153442A1 (de) 2001-11-14
EP1153442B1 true EP1153442B1 (de) 2015-01-07

Family

ID=7895252

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00907442.8A Expired - Lifetime EP1153442B1 (de) 1999-01-25 2000-01-25 Halbleiterbauelement zur erzeugung von mischfarbiger elektromagnetischer strahlung

Country Status (7)

Country Link
US (1) US6900466B2 (de)
EP (1) EP1153442B1 (de)
JP (1) JP4851648B2 (de)
CN (1) CN1166009C (de)
DE (1) DE19902750A1 (de)
TW (1) TW478177B (de)
WO (1) WO2000044053A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW497277B (en) 2000-03-10 2002-08-01 Toshiba Corp Semiconductor light emitting device and method for manufacturing the same
US7112916B2 (en) * 2002-10-09 2006-09-26 Kee Siang Goh Light emitting diode based light source emitting collimated light
DE102004052245A1 (de) * 2004-06-30 2006-02-02 Osram Opto Semiconductors Gmbh Strahlungsemittierender Halbleiterchip und strahlungsemittierendes Halbleiterbauelement mit einem derartigen Halbleiterchip
US8975614B2 (en) * 2011-08-23 2015-03-10 Micron Technology, Inc. Wavelength converters for solid state lighting devices, and associated systems and methods
US9331252B2 (en) 2011-08-23 2016-05-03 Micron Technology, Inc. Wavelength converters, including polarization-enhanced carrier capture converters, for solid state lighting devices, and associated systems and methods

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3137685C2 (de) 1981-09-22 1983-11-03 Siemens AG, 1000 Berlin und 8000 München Leuchtdiode für Signalleuchten.
FR2538171B1 (fr) * 1982-12-21 1986-02-28 Thomson Csf Diode electroluminescente a emission de surface
US4784722A (en) * 1985-01-22 1988-11-15 Massachusetts Institute Of Technology Method forming surface emitting diode laser
US4775876A (en) * 1987-09-08 1988-10-04 Motorola Inc. Photon recycling light emitting diode
DE3835942A1 (de) 1988-10-21 1990-04-26 Telefunken Electronic Gmbh Flaechenhafter strahler
JPH0429374A (ja) * 1990-05-24 1992-01-31 Omron Corp 面出射型半導体発光素子およびその作製方法
JPH04186679A (ja) * 1990-11-16 1992-07-03 Daido Steel Co Ltd 発光ダイオード
US5198690A (en) * 1990-11-26 1993-03-30 Sharp Kabushiki Kaisha Electroluminescent device of II-IV compound semiconductor
SE468410B (sv) * 1991-05-08 1993-01-11 Asea Brown Boveri Ytlysande lysdiod
US5488233A (en) * 1993-03-11 1996-01-30 Kabushiki Kaisha Toshiba Semiconductor light-emitting device with compound semiconductor layer
US5376580A (en) * 1993-03-19 1994-12-27 Hewlett-Packard Company Wafer bonding of light emitting diode layers
JPH0856203A (ja) 1994-08-12 1996-02-27 Sumitomo Electric Ind Ltd 無線測定方法および装置とこれを用いた無線中継装置
EP0811251A2 (de) 1995-12-21 1997-12-10 Koninklijke Philips Electronics N.V. Vielfarbige leuchtdiode, verfahren zu deren herstellung und vielfarbige anzeigevorrichtung mit einer anordnung solcher leuchtdioden
JP2734441B2 (ja) * 1996-01-29 1998-03-30 日本電気株式会社 有機薄膜el素子
JP3471161B2 (ja) 1996-03-22 2003-11-25 三菱電機株式会社 ケーブル接続用補助具及びケーブル接続方法
JPH11510968A (ja) * 1996-06-11 1999-09-21 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 紫外発光ダイオード及び紫外励起可視光放射蛍光体を含む可視発光ディスプレイ及び該デバイスの製造方法
KR100702740B1 (ko) 1996-06-26 2007-04-03 오스람 게젤샤프트 미트 베쉬랭크터 하프퉁 발광 변환 소자를 포함하는 발광 반도체 소자
TW383508B (en) * 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JPH1056203A (ja) * 1996-08-07 1998-02-24 Nippon Sanso Kk 発光素子
JPH10144961A (ja) * 1996-11-05 1998-05-29 Toyoda Gosei Co Ltd 半導体発光素子
US5966393A (en) * 1996-12-13 1999-10-12 The Regents Of The University Of California Hybrid light-emitting sources for efficient and cost effective white lighting and for full-color applications
JP3449194B2 (ja) 1997-01-28 2003-09-22 松下電工株式会社 回転機器の異常診断方法およびその装置
JPH10261818A (ja) * 1997-03-19 1998-09-29 Fujitsu Ltd 発光半導体装置
JPH10282494A (ja) * 1997-04-07 1998-10-23 Casio Comput Co Ltd 液晶表示装置
US6784463B2 (en) * 1997-06-03 2004-08-31 Lumileds Lighting U.S., Llc III-Phospide and III-Arsenide flip chip light-emitting devices
JP3559446B2 (ja) * 1998-03-23 2004-09-02 株式会社東芝 半導体発光素子および半導体発光装置
TW406442B (en) * 1998-07-09 2000-09-21 Sumitomo Electric Industries White colored LED and intermediate colored LED
TW413956B (en) * 1998-07-28 2000-12-01 Sumitomo Electric Industries Fluorescent substrate LED
JP4348488B2 (ja) * 1998-11-13 2009-10-21 住友電気工業株式会社 発光基板led素子

Also Published As

Publication number Publication date
US20020008244A1 (en) 2002-01-24
CN1338121A (zh) 2002-02-27
EP1153442A1 (de) 2001-11-14
CN1166009C (zh) 2004-09-08
JP2003529200A (ja) 2003-09-30
DE19902750A1 (de) 2000-08-03
TW478177B (en) 2002-03-01
WO2000044053A1 (de) 2000-07-27
US6900466B2 (en) 2005-05-31
JP4851648B2 (ja) 2012-01-11

Similar Documents

Publication Publication Date Title
DE60035856T2 (de) Lichtemittierende diodenvorrichtung mit einem phosphoreszierenden substrat
DE102008021572B4 (de) Festkörperlampe und Leuchte damit
DE112009002311B4 (de) Lichtquellenvorrichtung und optoelektronisches Bauelement
DE69937091T2 (de) LED mit fluoreszierendem Substrat
DE69533276T2 (de) Lichtemittierende Halbleitervorrichtungen
DE102008011866B4 (de) Lichtquellenanordnung mit einer Halbleiterlichtquelle
DE102016223645A1 (de) Wellenlängen umwandelndes Material und seine Anwendung
DE102007057710B4 (de) Strahlungsemittierendes Bauelement mit Konversionselement
WO2009079990A1 (de) Beleuchtungseinrichtung
DE2053849A1 (de) Mehrfarbiges Licht mittlerende Dioden
EP2659525B1 (de) Konversionselement und leuchtdiode mit einem solchen konversionselement
DE112011102386T5 (de) System und Verfahren für ausgewählte Anregungs-LEDs mit mehreren Leuchtstoffen
DE102008020158A1 (de) Abgeschrägter LED-Chip mit transparentem Substrat
EP1099258B1 (de) Lichtquelle zur erzeugung sichtbaren lichts
DE112006001360T5 (de) Tief-Ultraviolettlicht emittierende Vorrichtungen und Verfahren zur Herstellung von Tief-Ultraviolettlicht emittierenden Vorrichtungen
DE102005020695B4 (de) Vorrichtung zur Emission von Strahlung mit einstellbarer Spektraleigenschaft
WO2016180930A1 (de) Strahlungsemittierendes optoelektronisches bauelement
DE102006025964A1 (de) Mehrfachquantentopfstruktur, strahlungsemittierender Halbleiterkörper und strahlungsemittierendes Bauelement
DE69117781T2 (de) Licht-emittierender Dünnfilm und elektrolumineszente Dünnfilmvorrichtung
WO2016193385A1 (de) Lichtemittierendes halbleiterbauelement, lichtemittierendes halbleiterbauteil und verfahren zur herstellung eines lichtemittierenden halbleiterbauelements
EP1153442B1 (de) Halbleiterbauelement zur erzeugung von mischfarbiger elektromagnetischer strahlung
DE102012101412A1 (de) Optoelektronisches Halbleiterbauteil
WO2017129446A1 (de) Konversionselement und strahlungsemittierendes halbleiterbauelement mit einem solchen konversionselement
DE112019006162T5 (de) Verfahren zur Herstellung eines lichtemittierenden Halbleiterbauelements und lichtemittierende Halbleiterbauelement
DE102004052245A1 (de) Strahlungsemittierender Halbleiterchip und strahlungsemittierendes Halbleiterbauelement mit einem derartigen Halbleiterchip

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20071219

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140725

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WENISCH, HELMUT

Inventor name: HOMMEL, DETLEF

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50016398

Country of ref document: DE

Effective date: 20150219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50016398

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190123

Year of fee payment: 20

Ref country code: GB

Payment date: 20190121

Year of fee payment: 20

Ref country code: FR

Payment date: 20190123

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50016398

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200124