EP1080786B1 - Verfahren zur Fliessbettstrahlmahlung, Vorrichtung zur Durchführung dieses Verfahrens und Anlage mit einer solchen Vorrichtung zur Durchführung dieses Verfahrens - Google Patents

Verfahren zur Fliessbettstrahlmahlung, Vorrichtung zur Durchführung dieses Verfahrens und Anlage mit einer solchen Vorrichtung zur Durchführung dieses Verfahrens Download PDF

Info

Publication number
EP1080786B1
EP1080786B1 EP00117288A EP00117288A EP1080786B1 EP 1080786 B1 EP1080786 B1 EP 1080786B1 EP 00117288 A EP00117288 A EP 00117288A EP 00117288 A EP00117288 A EP 00117288A EP 1080786 B1 EP1080786 B1 EP 1080786B1
Authority
EP
European Patent Office
Prior art keywords
jet
bed
fluidized
housing
centrifugal force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00117288A
Other languages
English (en)
French (fr)
Other versions
EP1080786A1 (de
Inventor
Roland Dr.-Ing. Nied
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1999139897 external-priority patent/DE19939897A1/de
Priority claimed from DE1999143670 external-priority patent/DE19943670A1/de
Application filed by Individual filed Critical Individual
Publication of EP1080786A1 publication Critical patent/EP1080786A1/de
Application granted granted Critical
Publication of EP1080786B1 publication Critical patent/EP1080786B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • B02C19/068Jet mills of the fluidised-bed type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/10Separating or sorting of material, associated with crushing or disintegrating with separator arranged in discharge path of crushing or disintegrating zone
    • B02C23/12Separating or sorting of material, associated with crushing or disintegrating with separator arranged in discharge path of crushing or disintegrating zone with return of oversize material to crushing or disintegrating zone

Definitions

  • a flow of a fluid and solid particles suspended in the fluid is generated in a fluidized bed such that the solid particles are comminuted by energy exchange.
  • Part of the flow of solid particles below a certain mass or weight is branched off in a classifier and subjected to further processing, e.g. supplied in a filter, while solid particles remain above the aforementioned limit in the residual flow and the fluidized bed grinding are fed again until their mass or their weight is below the limit.
  • fluid bed flow is promoted by fluid jets that are introduced into the fluidized bed at high energy, causing the solid particles in the fluidized bed to undergo increased energy exchange.
  • This effect is particularly well achieved, even if the high-energy fluid jets are a suspension of fluid and solid particles, optionally the fluidized bed were removed, have experienced an increase in energy and then returned with their increased energy in the fluidized bed.
  • a fluid bed jet mill that includes an agitator that repeatedly delivers particles to the jet.
  • the agitator rotates on a vertical axis and thus pushes particles from a bed of good into the jets, as in claim 16 of the published patent application DE 20 40 519 is specified.
  • This particles are indeed returned to the rays, but it is achieved by far no optimal energy exchange of the particles to be separated solid particles.
  • the invention aims to improve the energy exchange of the solid particles to be separated.
  • the core of the invention for achieving the goal is, firstly, that centrifugal forces are exerted on the solid particles in the region of the penetration of the high-energy fluid jets into the fluidized bed in such a way that the energy exchange between the solid particles, which become parts of the high-energy fluid jets, already begins immediately after the penetration of the high-energy radiation into the fluidized bed and on the other hand generally the concentration of the solid particles within the fluid jets is improved.
  • This is inventively achieved in that a housing surrounding the fluidized bed for generating centrifugal forces rotates about an axis, so that the centrifugal forces act on the fluidized bed in the region of at least one fluid jet entering the fluidized bed in the energy.
  • the present invention thus shows ways in which the high-energy fluid jets with high energy can be introduced into the fluidized bed and thereby prevents the solid particles to be separated are first displaced into the fluidized bed without significant energy exchange.
  • the Fig. 1 illustrates a hot-steam fluid bed jet mill, as known in the art.
  • a cylindrical housing 1 encloses a chamber 2, which receives the fluidized bed 3 in the lower region and is the actual grinding chamber.
  • This fluidized bed 3 consists of fluid particles in a fluid, which are suspended more or less evenly distributed in the fluid. They have different masses and should be ground evenly to the finest particles.
  • 5 high-energy fluid jets 6, 7 injected, which pass through the fluidized bed 3, and that solid particles collide and are decomposed by the energy exchange.
  • the particles remain so long in the fluidized bed and in particular in the range of energetically entering the fluidized bed fluid jets 6, 7 until their mass has become so low that they of the upwardly directed beam 8 - the sum of the colliding and thereby the energy exchange between solid particles conveying individual energy beams into the fluidized bed 3 entering individual jets 6, 7 - are entrained, while the not yet correspondingly finely ground solid particles in the field of individual jets, ie remain in the actual fluidized bed 3 and further decomposed by energy exchange.
  • a fine-material outlet chamber 9 to which in turn the fine-material outlet nozzle 10 led out of the housing 1 adjoins.
  • the fine material particles leaving the mill through the outlet nozzle and suspended in a part of the fluid are sent for further processing, for example in a filter in which particles and fluid are separated from one another.
  • the ground material passes through a Mahlguteinlassstutzen 11 in the lid of the housing in the mill.
  • 12 is a steam supply for the rinsing rinsing between the stationary arranged in the housing 1
  • Feingutaustritsshunt 9 and a rotatably mounted classifying wheel 13 is referred to.
  • the classifying wheel 13 causes only very finely ground material to reach the outlet connector 10, while the material is not quite as finely grounded and exploits gravity as the original millbase gets into the fluidized bed 3 and is further decomposed there.
  • the drive 14 of the classifying wheel 13 is mounted outside of the housing 1 on the lid and functionally connected to the classifying wheel 13 through the housing cover.
  • the invention in the fluidized bed jet mill according to the Fig. 1 be implemented by maintaining the rotation of the classifying wheel 13 with respect to the mill housing 1, the mill is brought in its entirety to rotate about its longitudinal axis.
  • the mill housing 1 is mounted at its upper and its lower end in suitable bearings 15, 16 and it is the mill housing 1 associated with a rotary drive 17, so that the mill is rotated by its drive at such a rotational speed or peripheral speed in that characterized in the fluidized bed by arrows and by the reference numeral 18, the inwardly directed jet forces counteracting centrifugal force and the transfugal and transpedalen energies are balanced against each other so that an energy exchange between solid particles of the fluidized bed and optionally the energy beams 6, 7 in the areas takes place immediately before the grinding nozzles.
  • the nozzle 4, 5 and 11 ring chambers upstream and the nozzle 10 must be followed by an annular chamber, wherein in each case a part of the chamber wall of the mill must be associated mitcardend and another part of the chamber wall must be stationary, both chamber wall parts are sealed from each other.
  • Fig. 1 While it is in the mill according to the Fig. 1 is a known, originally fixed fluidized bed jet mill, which has been redesigned according to the invention by bringing the housing 1 to rotate about its longitudinal axis 1a is the fluidized bed jet mill according to Fig. 2 designed according to the invention from the outset.
  • An essential part is a rotor or housing 2.1 made of an inner casing 2.2 and an outer casing 2.3.
  • the inner housing 2.2 and the outer housing 2.3 are rotatably connected to each other, which is indicated by weld beads 2.4.
  • the inner casing 2.2 and the outer casing 2.3 are mutually associated substantially cylindrical parts, that between them a fluid-tight annular chamber 2.5 is formed and the inner casing 2.2 encloses a grinding chamber 2.6.
  • An approximately frustoconical cover plate 2.7 of the inner housing 2.2 is penetrated by a Mahlguteinlassrohr 2.8, so that the suspension of carrier fluid and suspended therein solid particles passes through the Mahlguteinlassrohr 2.8 into the grinding chamber 2.6, in which the solid particles are subjected to the grinding process.
  • a second cover plate 2.9 is opposite to the first cover plate 2.7 and is interspersed by a fine material outlet 2.10, so that suspended by the Feingutauslassrohr 2.10 the suspension of carrier fluid and suspended therein, ground to the desired low mass solid particles, ie the ground to a desired degree of fineness of the product Milling chamber 2.6 discharged and can be fed to further processing.
  • the cover plates 2.7 and 2.9 are inclined relative to each other so that they are connected at their larger, equal circumference with the cylindrical peripheral wall 2.11 of the inner housing 2.2 and so assigned to each other that the Mahlguteinlassrohr 2.8 and the fine material outlet 2.10 are assigned to each other coaxially, before the Mahlguteinlassrohr 2.8 and the fine-material outlet pipe 2.10 is arranged in each case a traffic cone 2.12 or 2.13, of which the inlet cone 2.8 associated cone 2.12 brings the entering into the grinding chamber 2.6 regrind in the region of the cylindrical peripheral wall 2.11 or supports this flow during the Feingutauslassrohr 2.10 assigned Traffic cone 2.13 from the edge of the Feingutauslassrohres 2.10 so funnel-shaped expanded that he defines together with the traffic cone 2.12 a well-circumscribed Mahlshukernb Scheme between inlet pipe 2.8 and outlet 2.10.
  • At least two jet nozzles 2.14 and 2.15 are now held in pairs opposite each other in such a way that through them grinding jets 2.16 and 2.17 penetrate into the fluidized bed forming during the operation of the device, in particular in the core region of the grinding chamber 2.6.
  • the grinding jets 2.16 and 2.17 fluidize the suspension in a fluidized bed, solid particles collide and are decomposed by energy exchange, whereby the fluidized bed jet milling is given.
  • the formation of the grinding jets 2.16 and 2.17 is carried out by fluid, which is conveyed through the jet nozzles 2.14 and 2.15, after it has been removed from the annular chamber 2.5.
  • the supply of high-energy fluid in the up to the jet nozzles 2.14 and 2.15 closed annular chamber 2.5 takes place from a source of pressurized fluid through a concentrically surrounding the Mahlguteinlassrohr 2.8 inlet nozzle 2.18.
  • Fig. 3 is a variant of the device according to the Fig. 2 represented, which differs from the embodiment according to the Fig. 2 differs in that instead of storage on both sides of the mill in the camps 2.19 and 2.20, the mill is cantilevered by the nozzle 3.18 (analogous to the nozzle 2.18 in the Fig. 2 ) is rotatably mounted in the two axially staggered bearings 3.19 and 3.20.
  • a drive 3.23 acts on the inlet port 3.18.
  • a feeder 3.24 is arranged by means of the pressurized fluid into the annular space between inlet pipe 3.18 and Mahlguteinlassrohr 3.8 and from this into the annular chamber 3.5 passes. Otherwise, the mill is the Fig. 3 the mill of Fig. 2 Accordingly, and in both cases, the operation is essentially the same. Same parts are therefore in both Figures 2 and 3 denoted by the same numbers behind the figure hint 2 and 3, respectively. Due to the floating bearing with the two bearings 3.19 and 3.20 there is a greater degree of freedom in the utilization of the space on the other side of the mill.
  • an air classifier 3.25 which has as an essential sight a radially from outside to inside flowed bladed classifying wheel 3.26 in a housing 3.27.
  • the fines to be viewed come from the mill into the housing 3.27 so that it reaches the radially outer ends of the flow channels between the blades of the classifier wheel 3.26.
  • the relative fines pass from the inner ends of the blade channels into the centrally located fines discharge 3.28 in order to leave the housing 3.27 through them.
  • the mill downstream wind sifter is in the execution of the Fig. 4 integrated as an internal device in the mill.
  • the grinding chamber 4.6 is on the inner end of the projecting into the grinding chamber 4.6 fines outlet 4.10 the radially from outside to flow through, bladed classifying wheel 4.13 mounted rotatably.
  • the milled material reaches the outer ends of the blade channels and passes particles below a predetermined mass limit into the fines outlet port 4.10 to exit the mill and sifter, while coarser particles above that bulk boundary are rejected and subjected to a further refining operation. While in the previous solutions of the fine material outlet was firmly connected to the mill housing and was rotatable with this, is in the solution according to the Fig.
  • the grinding nozzles 4.14 and 4.15 are installed so that the high-energy grinding jets 4.16 and 4.17 are injected parallel to the axis of rotation 4.21 of the system, so that the centrifugal forces act laterally on the fluidized bed in the grinding chamber and its solid particles in the range between Push the grinding nozzles into the grinding jets.
  • the Mahlgutholzgabe takes place in the axial direction at one outer end of the inlet tube 4.8 and the exit of the fine material through the fines outlet 4.10, which is also axially and coaxially arranged to the inlet pipe 4.8 on the other side of the mill housing 4.2, 4.9, carried out in the embodiments according to the Fig. 5 the grinding material feed 5.11 and the fine material outlet 5.10 on the same side of the mill housing 5.1.
  • the plant resembles according to the Fig. 5 the plant according to the Fig. 4 , which is expressed by the reference numerals, in turn, the embodiment below the centerline belonging to the axis 5.21 the embodiments according to the FIGS. 1 to 3 while the embodiment above the center line is similar to the embodiment shown in FIG Fig. 4 is shown above the center line 4.21, ie, the centrifugal force supports the introduction of solid particles from the fluidized bed in the grinding jets.
  • Fig. 4 and the Fig. 5 in their below the rotation axis / center line 4.21 or 5.21 lying parts corresponding to the preceding embodiments embodiments in which by means of an accelerating nozzle 4.14 or 5.14, as one of two nozzles forming a pair of nozzles and diametrically opposed nozzles, a high-flow fluid jet 4.6 or 5.6 for penetrating perpendicular to the axis of rotation in the fluidized bed 4.3 or 5.3 is induced to suck particles from the fluidized bed, which are decomposed by energy exchange, especially in the fluid jet wherein a centrifugal force due to the rotation of the mill about the axis of rotation / centerline 4.21 and / or 5.21 keeps the particles in the immediate vicinity of the nozzle outlet so as to act on the concentration of particles in the jet.
  • the show Fig. 4 and the Fig. 5 in their lying above the axis of rotation / center line 4.21 and 5.21 parts other embodiments in which the centrifugal force is applied in another way to affect the particle distribution in the beam.
  • the centrifugal force supports the suction of the particles from the fluidized bed into the flow-energy-rich fluid jet over the entire jet length in that the suction effect and the centrifugal force are directed in the same direction to the jet center line and consequently more particles enter the grinding jet than through the flow energy of the grinding jet alone or the prevailing in the grinding jet vacuum happens, as is the case with conventional jet mills with non-rotating mill housing.
  • Fig. 6 taken with the sub-figures 6A and 6B.
  • the hydrostatic or quasi-hydrostatic pressure (corresponding to gas or liquid as fluid), represented by the arrows 6.P, over the length of 6.L the grinding jet 6.6, the longitudinal axis of 6.61 with the axis of rotation 6.21 of the mill in the presentation of the Fig. 6A encloses a right angle, radially increases from the inside to the outside and in the region of the outlet of the nozzle is the largest 6.4.
  • the hydrostatic pressure resulting from the centrifugal force, which promotes the suction effect for the particles in the grinding jet, is therefore greatest at the nozzle outlet, ie, in a region in which, according to the state of the art, none are exiting
  • the fluidized bed sucked particles are present in larger numbers.
  • the hydrostatic pressure thus supremely pushes particles into the grinding jet.
  • Fig. 6B .6.P1 is the pressure of the material to be ground in front of the nozzle
  • 6.P2 the pressure curve under the effect of centrifugal force
  • 6.P3 the pressure curve without the influence of centrifugal force in the diagram, in which the radius r is plotted against the pressure P.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Disintegrating Or Milling (AREA)

Description

  • Bei der Fließbettmahlung wird in einem Fließbett eine Strömung aus einem Fluid und in dem Fluid suspendierten Feststoffpartikeln derart erzeugt, dass die Feststoffpartikel durch Energieaustausch zerkleinert werden. Ein Teil der Strömung mit Feststoffpartikeln unterhalb einer bestimmten Masse bzw. eines bestimmten Gewichtes wird in einem Sichter abgezweigt und der weiteren Verarbeitung z.B. in einem Filter zugeführt, während Feststoffpartikel oberhalb des vorgenannten Grenzwertes in der Restströmung verbleiben und der Fließbettmahlung so lange erneut zugeführt werden, bis ihre Masse bzw. ihr Gewicht unterhalb des Grenzwertes liegt.
  • Bei der Fließbettstrahlmahlung wird die Strömung im Fließbett durch Fluidstrahlen begünstigt, die mit hoher Energie in das Fließbett eingeführt werden und die Feststoffpartikel im Fließbett zu erhöhtem Energieaustausch veranlassen. Diese Wirkung wird insbesondere dann besonders gut erzielt, wenn auch die energiereichen Fluidstrahlen eine Suspension aus Fluid und Feststoffpartikeln sind, gegebenenfalls dem Fließbett entnommen wurden, eine Energieerhöhung erfahren haben und dann mit ihrer erhöhten Energie in das Fließbett zurückgeführt werden.
  • Um dieses Prinzip besonders gut praktisch umsetzen zu können, wurden bereits mehrere Maßnahmen vorgeschlagen.
  • Einer dieser Vorschläge geht von der Erkenntnis aus, dass die energiereichen Gasstrahlen beim Eintritt in das Fließbett Feststoffpartikel aus dem Fließbett aufnehmen und so auch innerhalb der energiereichen Fluidstrahlen eine Partikelzerlegung erfolgt, wobei diese Partikelzerlegung dann besonders wirksam erfolgt, wenn in den energiereichen Gasstrahlen dahingehend Einfluss auf die Partikelverteilung genommen wird, dass die Partikel über den Strahlquerschnitt möglichst gleichmäßig verteilt sind.
  • Bei allen diesen Lösungen wurde nicht bewusst dem Umstand Rechnung getragen, dass die energiereichen Fluidstrahlen beim Eintritt in das Fließbett nicht nur einen Energieaustausch zwischen Feststoffpartikeln des Fließbettes und/oder den energiereichen Fluidstrahlen bewirken, sondern dass dieser Energieaustausch erst ab einer bestimmten Entfernung vom Eindringen der energiereichen Strahlen in das Fließbett beginnt, weil die energiereichen Fluidstrahlen zunächst einmal als relativ laminare Strömungen zumindest die Feststoffpartikel in das Fließbett hinein verdrängen, ehe eine Verwirbelung erfolgt, die zum gewollten Energieaustausch führt.
  • Aus der Offenlegungsschrift DE 20 40 519 ist eine Fließbettstrahlmühle bekannt, die ein Rührwerk enthält, mit dem Partikel immer wieder dem Strahl zugeführt werden. Dazu rotiert das Rührwerk auf einer Vertikalachse und schiebt so Partikel aus einem Gutbett in die Strahlen, wie im Anspruch 16 der Offenlegungsschrift DE 20 40 519 angegeben ist. Damit werden zwar Partikel wieder den Strahlen zugeführt, aber es wird bei weitem kein optimaler Energieaustausch der zu zerlegenden Feststoffpartikel erzielt.
  • Die Erfindung hat das Ziel, den Energieaustausch der zu zerlegenden Feststoffpartikel zu verbessern.
  • Dieses Ziel wird mit einem Verfahren zur Fließbettstrahlmahlung nach dem Anspruch 1 sowie mit einer Vorrichtung zur Durchführung dieses Verfahrens nach Anspruch 4 und mit einer Anlage mit einer solchen Vorrichtung nach dem Anspruch 13 erreicht.
  • Kern der Erfindung zur Erreichung des Ziels ist es zum einen, dass auf die Feststoffpartikel im Bereich des Eindringens der Fluidstrahlen hoher Energie in das Fließbett Fliehkräfte derart zur Wirkung gebracht werden, dass der Energieaustausch zwischen den Feststoffpartikeln, die zu Teilen der energiereichen Fluidstrahlen werden, bereits unmittelbar nach dem Eindringen der energiereichen Strahlen in das Fließbett beginnt und zum anderen generell die Konzentration der Feststoffpartikel innerhalb der Fluidstrahlen verbessert wird. Dies wird erfindungsgemäß dadurch erreicht, dass sich ein das Fließbett umgebendes Gehäuse zur Erzeugung von Fliehkräften um eine Achse dreht, so dass die Fliehkräfte auf das Fließbett im Bereich des energiereich in das Fließbett eintretenden zumindest einen Fluidstrahles wirken. Die vorliegende Erfindung zeigt damit Möglichkeiten auf, wie die energiereichen Fluidstrahlen mit hoher Energie in das Fließbett eingeführt werden können und dabei verhindert wird, dass die zu zerlegenden Feststoffpartikel zunächst ohne nennenswerten Energieaustausch in das Fließbett hinein verdrängt werden.
  • Sowohl die apparativen Gegebenheiten als auch die Funktionen und die Wirkungen der erfindungsgemäßen Ausgestaltungen unterscheiden sich grundsätzlich von dem aus der Offenlegungsschrift DE 20 40 519 vorbekannten Rührwerk, das Partikel aus einem Gutbett in die Strahlen schiebt. Erfindungsgemäß werden im Gegensatz zu diesem Stand der Technik die Fließbettfeststoffpartikel trotz der energiereich in das Fließbett eingeführten Fluidstrahlen im Bereich des Eintrittes der energiereichen Fluidstrahlen in das Fließbett gehalten, so dass der Energieaustausch zwischen Feststoffpartikeln im Fließbett zuverlässig bereits sehr intensiv im unmittelbaren Bereich des Eintrittes der energiereichen Fluidstrahlen in das Fließbett erfolgt.
  • Die Erfindung wird nachfolgend anhand der Zeichnung näher erläutert, in der jedoch nur beispielsweise Ausführungen gezeigt sind, die keine Einschränkung der wesentlichen Merkmale der Erfindung darstellen, wie sie sich aus den Patentansprüchen ergeben. In der Zeichnung zeigen:
  • Fig. 1
    als Mittellängsschnitt eine als solche bekannte Fließbettstrahlmühle in einer Ausbildung gemäß der Erfindung;
    Fig. 2
    ebenfalls als Mittellängsschnitt eine bereits von Anfang an erfindungsgemäß ausgebildete Fließbettstrahlmühle;
    Fig.3 bis 5
    jeweils als Mittellängsschnitte andere bereits von Anfang an erfindungsgemäß ausgebildete Fließbettstrahlmühlen und
    Fig. 6
    mit den Teilfiguren 6a und 6b Diagramme zur Erläuterung der Funktionsweise der Erfindung in einer Ausführungsform, wie sie in den einen Hälften von Fig. 4 und Fig. 5 dargestellt ist.
  • Die Fig. 1 stellt eine mit Heißdampf betriebene Fließbettstrahlmühle dar, wie sie an sich bekannt ist. Ein zylindrisches Gehäuse 1 umschliesst eine Kammer 2, die im unteren Bereich das Fließbett 3 aufnimmt und die eigentliche Mahlkammer ist. Dieses Fließbett 3 besteht aus in einem Fluid befindlichen Feststoffpartikeln, die mehr oder weniger gleichmäßig verteilt in dem Fluid suspendiert sind. Sie haben unterschiedliche Massen und sollen zu feinsten Partikel gleichmäßig gemahlen werden. Hierzu werden durch zwei einander diametral gegenüberliegende Strahldüsen 4, 5 energiereiche Fluidstrahlen 6, 7 eingeblasen, die das Fließbett 3 derart durchsetzen, und dass Feststoffpartikel aufeinanderprallen und durch den Energieaustausch zerlegt werden. Die Partikel verharren so lange im Fließbett und insbesondere im Bereich der energiereich in das Fließbett eintretenden Fluidstrahlen 6, 7 bis ihre Masse so gering geworden ist, dass sie von dem nach oben gerichteten Strahl 8 - der Summe aus den aufeinanderprallenden und dabei den Energieaustausch zwischen Feststoffpartikeln fördernden energiereich in das Fließbett 3 eintretenden Einzelstrahlen 6, 7 - mitgerissen werden, während die noch nicht entsprechend fein gemahlenen Feststoffpartikel im Bereich der Einzelstrahlen, also im eigentlichen Fließbett 3 verbleiben und durch Energieaustausch weiter zerlegt werden. Im oberen Bereich der Kammer 2 bzw. des Gehäuses 1 befindet sich nun eine Feingutaustrittskammer 9, an die sich wiederum der aus dem Gehäuse 1 herausgeführte Feingutaustrittsstutzen 10 anschliesst. Das die Mühle durch den Austrittsstutzen verlassende Feingut aus feinsten Partikeln, die in einem Teil des Fluids suspendiert sind, werden der weiteren Verarbeitung beispielsweise in einem Filter zugeführt, in dem Partikel und Fluid voneinander getrennt werden.
  • Das Mahlgut gelangt durch einen Mahlguteinlassstutzen 11 im Deckel des Gehäuses in die Mühle. Mit 12 ist eine Dampfversorgung für die Spaltspülung zwischen der ortsfest in dem Gehäuse 1 angeordneten Feingutaustritsskammer 9 und einem darüber drehbar angeordneten Sichtrad 13 bezeichnet. Das Sichtrad 13 bewirkt unter Ausnutzung der in ihm, gegebenenfalls zwischen den Schaufeln bei einem beschaufelten Sichtrad, herrschenden Fliehkraft, dass nur feinstgemahlenes Gut in den Austrittsstutzen 10 gelangt, während noch nicht ganz so fein gemahlenes Gut abgewiesen und unter Ausnutzung der Schwerkraft wie das ursprüngliche Mahlgut in das Fließbett 3 gelangt und dort weiter zerlegt wird. Der Antrieb 14 des Sichtrades 13 ist außerhalb des Gehäuses 1 auf dessen Deckel gelagert und durch den Gehäusedeckel hindurch funktionell mit dem Sichtrad 13 verbunden.
  • Bei einer solchen an sich bekannten Fließbettstrahlmühle wurde nun beobachtet, dass im Bereich der Strahldüsen 4, 5, die in mehreren Paaren mit je zwei diametral einander gegenüberliegenden Einzeldüsen zur energiereichen Einbringung diametral einander entgegengerichteter Strahlen in das Fließbett angeordnet sein können, Feststoffpartikel in einer eher laminaren Anfangsströmung mitgerissen werden, bis in einer gewissen Entfernung von den Düsen die Verwirbelung und ein effektiver Energieaustausch zwischen den Partikeln stattfindet. Dies wird als Nachteil empfunden, weil der Bereich der eher laminaren Strömung als Mahlbereich gleichsam verloren ist. Dies wird nun mit der Erfindung vermieden und das Mitreissen der Partikel vor den Düsenauslässen ohne Energieaustausch zwischen ihnen wird behindert oder es werden mit anderen Worten die Feststoffpartikel trotz der energiereich in das Fließbett eintretenden Fluidstrahlen im Bereich der Düsenauslässe festgehalten und der Mahlprozess beginnt bereits unmittelbar nach dem Austritt der energiereichen Fluidstrahlen, wobei eine gewisse Verwirbelung bereits unmittelbar im Düsenbereich nicht nur hinnehmbar, sondern sogar wünschenswert ist, weil ja dadurch der Energieaustausch zwischen den Partikeln wenn nicht sogar ausgelöst, so zumindest begünstigt wird und die Strahlen unmittelbar nach dem Austritt aus den Düsen in besonders hohem Maße energiereich sind.
  • Die geschilderte, angestrebte Wirkung wird nun erfindungsgemäß dadurch aufgebracht, dass die Partikel einerseits der radial nach innen in die Mahlkammer gerichteten Strömungsenergie, wie geschildert, ausgesetzt werden, andererseits aber auch einer entgegengesetzt wirkenden Fliehkraft, wobei Zentripedalkräfte einerseits (Düsenauslassstrahlen) und Zentrifugalkräfte (Fliehkraft) so aufeinander abgestimmt werden, dass bereits unmittelbar im Düsenbereich der Grad der optimalen Partikelzerlegung vorliegt. Wie es ohne weiteres verständlich ist, kann diese Situation neben einer Reihe funktioneller Vorteile den baulichen Vorteil haben, dass die Mühle einen geringeren Durchmesser als eine stationäre Mühle haben kann, weil der Mahlbereich wandnäher beginnt oder es kann der Durchmesser beibehalten werden und es erfolgt die effiziente Mahlung in einem grosseren Durchmesserbereich.
  • Bei diesem Erkenntnisstand kann nun die Erfindung bei der Fließbettstrahlmühle gemäß der Fig. 1 dadurch umgesetzt werden, dass unter Beibehaltung der Drehung des Sichtrades 13 gegenüber dem Mühlengehäuse 1 die Mühle in ihrer Gesamtheit zum Drehen um ihre Längsachse gebracht wird. Das Mühlengehäuse 1 wird an seinem oberen und seinem unteren Ende in geeigneten Lagern 15, 16 gelagert und es wird dem Mühlengehäuse 1 ein Drehantrieb 17 zugeordnet, so dass die Mühle von ihrem Antrieb mit einer solchen Drehzahl bzw. Umfangsgeschwindigkeit in Umdrehung versetzt wird, dass sich im Fließbett eine durch Pfeile und mit dem Bezugszeichen 18 gekennzeichnete, den nach innen gerichteten Strahlkräften entgegenwirkende Fliehkraft ausbildet und die transfugalen und die transpedalen Energien so gegeneinander austariert werden, dass ein Energieaustausch zwischen Feststoffpartikeln des Fließbettes und gegebenenfalls der Energiestrahlen 6, 7 auch in den Bereichen unmittelbar vor den Mahldüsen erfolgt.
  • Um das Rohprodukt durch den Einlassstutzen 11 und die energiereichen Fluidstrahlen 6, 7 sowie etwaige weitere energiereiche Fluidstrahlen zum Eindringen in das Fließbett 3 in die Mühle einbringen und das feinstgemahlene Mahlgut durch den Auslassstutzen 10 aus der Mühle herausbringen zu können, müssen den Stutzen 4, 5 und 11 Ringkammern vorgeschaltet sein und muss dem Stutzen 10 eine Ringkammer nachgeschaltet sein, wobei in jedem Fall ein Teil der Kammerwand der Mühle mitdrehend zugeordnet sein und ein anderer Teil der Kammerwand stationär sein muss, wobei beide Kammerwandteile gegeneinander abgedichtet sind.
  • Während es sich bei der Mühle gemäß der Fig. 1 um eine an sich bekannte, ursprünglich feststehende Fließbettstrahlmühle handelt, die erfindungsgemäß umgestaltet wurde, indem das Gehäuse 1 zum Drehen um seine Längsachse 1a gebracht wird, ist die Fließbettstrahlmühle gemäß der Fig. 2 von vornherein erfindungsgemäß ausgebildet.
  • Wesentliches Teil ist dabei ein Rotor oder Gehäuse 2.1 aus einem Innengehäuse 2.2 und einem Außengehäuse 2.3. Das Innengehäuse 2.2 und das Außengehäuse 2.3 sind drehfest miteinander verbunden, was durch Schweissraupen 2.4 angedeutet ist. Das Innengehäuse 2.2 und das Außengehäuse 2.3 sind so einander zugeordnete im wesentlichen zylindrische Teile, dass zwischen ihnen eine fluiddichte Ringkammer 2.5 ausgebildet ist und das Innengehäuse 2.2 eine Mahlkammer 2.6 umschließt. Eine etwa kegelstumpfförmige Deckplatte 2.7 des Innengehäuses 2.2 ist von einem Mahlguteinlassrohr 2.8 durchsetzt, so dass die Suspension aus Trägerfluid und darin suspendierten Feststoffpartikeln durch das Mahlguteinlassrohr 2.8 in die Mahlkammer 2.6 gelangt, in der die Feststoffpartikel dem Mahlprozess unterworfen werden. Eine zweite Deckplatte 2.9 liegt der ersten Deckplatte 2.7 gegenüber und ist von einem Feingutauslassrohr 2.10 durchsetzt, so dass durch das Feingutauslassrohr 2.10 die Suspension aus Trägerfluid und darin suspendierten, auf die gewollte geringe Masse vermahlenen Feststoffpartikeln, also das auf einen gewünschten Feinheitsgrad gemahlene Produkt aus der Mahlkammer 2.6 abgeführt und der weiteren Verarbeitung zugeführt werden kann. Die Deckplatten 2.7 und 2.9 sind so gegeneinander geneigt, dass sie an ihren größeren, gleichen Umfängen mit der zylindrischen Umfangswand 2.11 des Innengehäuses 2.2 verbunden sind und so einander zugeordnet, dass das Mahlguteinlassrohr 2.8 und das Feingutauslassrohr 2.10 einander achsgleich zugeordnet sind, vor dem Mahlguteinlassrohr 2.8 und dem Feingutauslassrohr 2.10 ist je ein Leitkegel 2.12 bzw. 2.13 angeordnet, von denen der dem Einlassrohr 2.8 zugeordnete Leitkegel 2.12 das in die Mahlkammer 2.6 eintretende Mahlgut in den Bereich der zylindrischen Umfangswand 2.11 bringt bzw. diesen Strömungsverlauf unterstützt, während der dem Feingutauslassrohr 2.10 zugeordnete Leitkegel 2.13 sich vom Rand des Feingutauslassrohres 2.10 derart trichterförmig erweitert, dass er zusammen mit dem Leitkegel 2.12 einen gut umgrenzten Mahlkammerkernbbereich zwischen Einlassrohr 2.8 und Auslassrohr 2.10 definiert. In der zylindrischen Umfangswand 2.11 sind nun zumindest zwei Strahldüsen 2.14 und 2.15 einander entgegengerichtet paarweise so gehalten, dass durch sie Mahlstrahlen 2.16 und 2.17 in das während des Betriebes der Vorrichtung insbesondere im Kernbereich der Mahlkammer 2.6 sich ausbildende Fließbett energiereich eindringen. Die Mahlstrahlen 2.16 und 2.17 verwirbeln die Suspension im Fließbett, Feststoffpartikel prallen aufeinander und werden durch Energieaustausch zerlegt, womit die Fließbettstrahlmahlung gegeben ist.
  • Die Ausbildung der Mahlstrahlen 2.16 und 2.17 erfolgt durch Fluid, das durch die Strahldüsen 2.14 und 2.15 gefördert wird, nachdem es der Ringkammer 2.5 entnommen worden ist. Die Zufuhr des energiereichen Fluids in die bis auf die Strahldüsen 2.14 und 2.15 geschlossene Ringkammer 2.5 erfolgt von einer Druckfluidquelle aus durch einen konzentrisch das Mahlguteinlassrohr 2.8 umgebenden Einlassstutzen 2.18.
  • Das gesamte beschriebene System ist nun in Lagern 2.19 und 2.20 um die Symmetrieachse 2.21 drehbar gelagert, sodass sich während des Betriebes der Anlage eine den Einblasrichtungen der Mahlstrahlen 2.16 und 2.17 entgegegngerichtete Fliehkraft ausbildet. Der Antrieb des Systems ist nicht erfindungswesentlich und deshalb als bekannt vorausgesetzt und entsprechend nicht näher dargestellt. Wesentlich ist eine Relation zwischen der Energie der Mahlstrahlen 2.16 und 2.17 einerseits und der Fliehkraft 2.22 andererseits derart, dass die zu zerkleinernden Partikel in grössstmöglicher Nähe der Strahldüsen 2.14 und 2.15 gehalten werden, um in der Mahlkammer und ihrer Gesamtheit eine so geringe Masse zu erreichen, dass sie von den Mahlstrahlen in den Bereich des Beginns des Feingutauslassrohres 2.10 gefördert und durch eine geeignete Absaugvorrichtung (als üblich und bekannt vorausgesetzt und daher nicht näher dargestellt) durch das Feingutauslassrohr 2.10 abgesaugt werden.
  • In der Fig. 3 ist eine Variante der Vorrichtung gemäß der Fig. 2 dargestellt, die sich von der Ausführungsform gemäß der Fig. 2 dadurch unterscheidet, dass statt der Lagerung beiderseits der Mühle in den Lagern 2.19 und 2.20 die Mühle fliegend gelagert ist, indem der Stutzen 3.18 (analog dem Stutzen 2.18 in der Fig. 2) in den beiden axial gegeneinander versetzten Lagern 3.19 und 3.20 drehbar gelagert ist.
  • Seitlich der Mühle und der beiden Lager 3.19 und 3.20 wirkt ein Antrieb 3.23 auf den Einlassstutzen 3.18. Zwischen den beiden Lagern 3.19, 3.20 ist eine Aufgabevorrichtung 3.24 angeordnet mittels der Druckfluid in den Ringraum zwischen Einlassstutzen 3.18 und Mahlguteinlassrohr 3.8 und aus diesem in die Ringkammer 3.5 gelangt. Im übrigen ist die Mühle der Fig. 3 der Mühle der Fig. 2 entsprechend und in beiden Fällen ist die Arbeitsweise im wesentlichen gleich. Gleiche Teile sind deshalb in beiden Figuren 2 und 3 mit gleichen Ziffern hinter dem Figurenhinweis 2 bzw. 3 bezeichnet. Durch die fliegende Lagerung mit den beiden Lagern 3.19 und 3.20 besteht ein größerer Freiheitsgrad in der Ausnutzung des Raumes auf der anderen Seite der Mühle. An das freie Ende des Feingutauslassrohres 3.10 schliesst sich ein Windsichter 3.25 an, der als wesentliches Sichtmittel ein von außen nach innen radial durchströmtes beschaufeltes Sichtrad 3.26 in einem Gehäuse 3.27 aufweist. Das zu sichtende Feingut kommt aus der Mühle so in das Gehäuse 3.27, dass es in die radial äußeren Enden der Strömungskanäle zwischen den Schaufeln des Sichterrades 3.26 gelangt. Das relative Feingut gelangt aus den inneren Enden der Schaufelkanäle in den mittig angeordneten Feingutaustrag 3.28, um durch ihn das Gehäuse 3.27 zu verlassen. Das relativ gröbere Sichtgut wird an den äußeren Enden der Schaufelkanäle abgewiesen und fällt nach unten in den trichterförmigen Teil 3.27a des Gehäuses 3.27, von wo aus es über eine Leitung 3.29 dem der Mühle zuzuführenden Grobgut zugemischt wird und einem nochmaligen Mahlprozess unterworfen wird.
  • Die Mühlen- und Sichtanlage gemäß der Fig. 4 gleicht im unteren Teil im wesentlichen der Anlage gemäß der Fig. 3, was dadurch zum Ausdruck kommt, dass gleiche Bezugszeichen hinter der auf die Figuren hinweisenden Leitzahl 3 bzw. 4 für gleiche Teile verwendet sind und weshalb auf eine ins Einzelne gehende Beschreibung verzichtet wird.
  • Der in der Fig. 3 der Mühle extern nachgeschaltete Windsichter ist bei der Ausführung gemäß der Fig. 4 als interne Vorrichtung in die Mühle integriert. In der Mahlkammer 4.6 ist auf dem inneren Ende des in die Mahlkammer 4.6 hineinragenden Feingutaustrittsstutzens 4.10 das radial von außen nach innen durchströmte, beschaufelte Sichtrad 4.13 drehfest aufgesetzt. Das gemahlene Gut gelangt an die äußeren Enden der Schaufelkanäle und durch diese hindurch gelangen Partikel unterhalb einer vorbestimmten Massegrenze in den Feingutauslassstutzen 4.10, um die Mühle und den Sichter zu verlassen, während gröbere Partikel oberhalb dieser Massegrenze abgewiesen und einem nochmaligen Mahlvorgang unterworfen werden. Während bei den bisherigen Lösungen der Feingutauslassstutzen fest mit dem Mühlengehäuse verbunden und mit diesem drehbar war, ist bei der Lösung gemäß der Fig. 4 der Feingutauslassstutzen 4.10 fest mit dem Sichtrad 4.13 verbunden und in Lagern 4.30 bis 4.31 in der Baugruppe aus Innengehäuse 4.2 und Außengehäuse 4.3 drehbar gelagert, so dass das Sichtrad 4.13 mit der für die Sichtung optimalen Drehzahl relativ zu der Baugruppe oder dem Gehäuse 4.1 aus Innengehäuse 4.2 und Außengehäuse 4.3 betrieben werden kann. Der Antrieb wirkt auf den Feingutauslassstutzen 4.10 und über diesen auf das Sichtrad 4.13. Was die Mahldüsen anlangt, so gleicht die Ausführungsform unterhalb der Mittellinie 4.21 den bisher beschriebenen Ausführungsformen.
  • Bei der Ausführungsform oberhalb der Mittellinie 4.21 sind die Mahldüsen 4.14 und 4.15 so eingebaut, dass die energiereichen Mahlstrahlen 4.16 und 4.17 parallel zur Drehachse 4.21 des Systems eingeblasen werden, so dass die Fliehkräfte seitlich auf das Fließbett in der Mahlkammer einwirken und dessen Feststoffpartikel im Bereich zwischen den Mahldüsen in die Mahlstrahlen drängen.
  • Während bei den beiden Ausführungsform gemäß der Fig. 4 die Mahlgutaufgabe in axialer Richtung am einen äußeren Ende des Einlassrohres 4.8 erfolgt und der Austritt des Feingutes durch den Feingutaustrittsstutzen 4.10 erfolgt, der ebenfalls axial und achsgleich zum Einlassrohr 4.8 auf der anderen Seite des Mühlengehäuses 4.2, 4.9 angeordnet ist, erfolgen bei den Ausführungsformen gemäß der Fig. 5 die Mahlgutaufgabe 5.11 und der Feingutauslass 5.10 auf derselben Seite des Mühlengehäuses 5.1. Ansonsten gleicht die Anlage gemäß der Fig. 5 der Anlage gemäß der Fig. 4, was durch die Bezugszeichen zum Ausdruck kommt, wobei wiederum die Ausführungsform unterhalb der zur Achse 5.21 gehörenden Mittellinie den Ausführungsformen gemäß den Figuren 1 bis 3 gleicht, während die Ausführungsform oberhalb der Mittellinie der Ausführungsform gleicht, die in der Fig. 4 oberhalb der Mittellinie 4.21 dargestellt ist, d.h. die Fliehkraft unterstützt die Einbringung von Feststoffpartikeln aus dem Fließbett in die Mahlstrahlen.
  • Wesentlich ist bei den Ausführungsformen gemäß den Figuren 1 bis 3 sowie 4 und 5 oberhalb der Mittellinie bzw. Drehachse, dass die Mahlströme radial nach innen gerichtet in das Fließbett eintreten und auf die zu mahlenden und zu sichtenden Feststoffpartikel infolge von Fliehkraft eine Gegenkraft einwirkt.
  • Es zeigen also die Fig. 4 und die Fig. 5 in ihren unterhalb der Drehachse/Mittellinie 4.21 bzw. 5.21 liegenden Teilen den vorhergehenden Ausführungen entsprechende Ausführungsformen, bei denen mittels einer Beschleunigungsdüse 4.14 bzw. 5.14, als einer von zwei ein Düsenpaar bildenden und diametral einander entgegengerichteten Düsen einen strömungsenergiereichen Fluidstrahl 4.6 bzw. 5.6 zum Eindringen senkrecht zur Drehachse in das Fließbett 4.3 bzw. 5.3 veranlasst wird, um aus dem Fließbett Partikel anzusaugen, die durch Energieaustausch vor allem im Fluidstrahl zerlegt werden, wobei eine Fliehkraft infolge der Drehung der Mühle um die Drehachse/Mittellinie 4.21 bzw. 5.21 die Partikel im unmittelbaren Bereich des Düsenauslasses hält, um derart auf die Partikelkonzentration im Strahl einzuwirken. Darüberhinaus zeigen die Fig. 4 und die Fig. 5 in ihren oberhalb der Drehachse/Mittellinie 4.21 bzw. 5.21 liegenden Teilen andere Ausführungsformen, bei denen auf andere Weise die Fliehkraft zur Einwirkung auf die Partikelverteilung im Strahl gebracht wird. Die Fliehkraft unterstützt auf der gesamten Strahllänge das Ansaugen der Partikel aus dem Fließbett in den strömungsenergiereichen Fluidstrahl dadurch, dass die Ansaugwirkung und die Fliehkraft in der gleichen Richtung auf die Strahlmittellinie gerichtet sind und demzufolge mehr Partikel in den Mahlstrahl gelangen als es durch die Strömungsenergie des Mahlstrahles allein bzw. den im Mahlstrahl herrschenden Unterdruck geschieht, wie es bei üblichen Strahlmühlen mit nicht rotierendem Mühlengehäuse der Fall ist.
  • Die Auswirkung der erfindungsgemäßen Rotation der Mühle bzw. der dadurch sich ausbildenden Fliehkraft kann der Fig. 6 mit den Teilfiguren 6A und 6B entnommen werden. Aus der Fig. 6A ist zu ersehen wie der hydrostatische bzw. quasi-hydrostatische Druck (entsprechend Gas oder Flüssigkeit als Fluid), dargestellt durch die Pfeile 6.P, über die Lange 6.L des Mahlstrahles 6.6, dessen Längsachse 6.61 mit der Drehachse 6.21 der Mühle in der Darstellung der Fig. 6A einen rechten Winkel einschliesst, radial von innen nach außen ansteigt und im Bereich des Auslasses der Düse 6.4 am grössten ist. Der die Ansaugwirkung für die Partikel in dem Mahlstrahl unterstützende, aus der Fliehkraft resultierende hydrostatische Druck ist also unmittelbar am Düsenauslass am grössten, d.h. in einem Bereich, in dem nach bisherigem Stand der Technik keine aus dem Fließbett angesaugte Partikel in grösserer Zahl vorhanden sind. Der hydrostatische Druck drückt also in höchstem Maße Partikel in den Mahlstrahl.
  • Der hieraus wiederum resultierende, für den Mahlprozess optimale Druckverlauf im Mahlstrahl ergibt sich aus der Fig. 6B.6.P1 ist dabei der Druck des Mahlgutes vor der Düse, 6.P2 der Druckverlauf unter Fliehkrafteinwirkung, 6.P3 der Druckverlauf ohne Fliehkrafteinfluss in dem Diagramm, in dem der Radius r über dem Druck P aufgetragen ist.

Claims (13)

  1. Verfahren zur Fließbettstrahlmahlung von in einem Fluid suspendiertem partikelförmigem Mahlgut unter Verwendung zumindest eines energiereich in das Fließbett (3) eindringenden Fluidstrahles (6, 7; 2.16, 2.17; 3.16, 3.17) und unter Aufbringung einer Fliehkraft (18; 2.22) auf die Partikel im Bereich des zumindest einen Fluidstrahles (6, 7; 2.16, 2.17; 3.16, 3.17) zur Beeinflussung der Partikelkonzentration im Bereich des zumindest einen energiereich in das Fließbett eintretenden Fluidstrahles (6, 7; 2.16, 2.17; 3.16, 3.17), dadurch gekennzeichnet, dass sich ein das Fließbett (3) umgebendes Gehäuse (1; 2.1; 3.1; 4.1; 5.1) zur Erzeugung der Fliehkraft (18; 2.22) um seine Längsachse (la; 2.21; 4.21; 5.21) dreht, so dass die Fliehkraft (18; 2.22) auf das Fließbett (3) im Bereich des energiereich in das Fließbett (3) eintretenden zumindest einen Fluidstrahles (6, 7; 2.16, 2.17; 3.16, 3.17) wirkt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Fliehkraft (18; 2.22) senkrecht zur Strahlrichtung zur Wirkung gebracht wird, um die Sogwirkung des Strahles auf Feststoffpartikel des Fließbetts (3) im Umgebungsbereich des Strahles durch den von der Fliehkraft (18; 2.22) bewirkten Staudruck auf der gesamten Strahllänge zu unterstützen.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Fliehkraft (18; 2.22) der Richtung des Fluidstrahles (6, 7; 2.16, 2.17; 3.16, 3.17) entgegengerichtet ist mit dem Ziel, einen Gradienten der Partikelkonzentration längs der Strahlrichtung herbeizuführen, wobei die höchste Konzentration bevorzugt im unmittelbaren Bereich des Strahleintrittes auftritt.
  4. Vorrichtung zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche, wobei das Fließbett (3) von einem Gehäuse (1; 2.1; 3.1; 4.1; 5.1) umschlossen ist, dadurch gekennzeichnet,
    dass das Gehäuse zur Erzeugung einer auf das Fließbett (3) im Bereich des energiereich in das Fließbett (3) eintretenden zumindest einen Fluidstrahles (6, 7; 2.16, 2.17; 3.16, 3.17) wirkenden Fliehkraft (18; 2.22) um eine Achse (la; 2.21; 4.21; 5.21) dreht, und
    dass der zumindest eine Fluidstrahl (2.16, 2.17) senkrecht zu der Achse (2.21; 4.21; 5.21) der Fliehkraft (18; 2.22) oder der Fliehkraft (18) entgegengerichtet, in das Fließbett (3) zum Eindringen gebracht wird.
  5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass das sich drehende Gehäuse (2.1) ein Innengehäuse (2.2) ist, das von einem Außengehäuse (2.3) umgeben ist, wobei in einem Bereich (2.5) zwischen Innengehäuse (2.2) und Außengehäuse (2.3) ein Überdruck erzeugt und für die Betriebsdauer aufrechterhalten wird, welcher Überdruck ausreicht, den zumindest einen, mit hoher Energie in das Innengehäuse (2.2) energiereich eintretenden Fluidstrahl (2.16, 2.17) zu speisen.
  6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass Innengehäuse (2.2) und Außengehäuse (2.3) drehfest miteinander verbunden sind.
  7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass das zylindrische Außengehäuse (2.3) in einer Deckplatte konzentrisch mit einem Einlassstutzen (2.18) versehen ist, durch den das Medium des zumindest einen, energiereich in das Innengehäuse (2.2) eintretenden Fluidstrahls (2.16, 2.17) in den Bereich zwischen beiden Gehäusen (2.2, 2.3) gelangt.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass in dem Einlassstutzen (2.18) konzentrisch ein Einlassrohr (2.8) angeordnet ist, durch das hindurch das Mahlgut in die vom Innengehäuse (2.2) umschlossene Mahlkammer (2.6) gelangt.
  9. Vorrichtung nach den Ansprüchen 7 und 8, dadurch gekennzeichnet, dass achsgleich in einer der erstgenannten Deckplatte des Außengehäuses (2.3) gegenüberliegenden auslassseitigen Deckplatte des Außengehäuses (2.3) ein Auslassstutzen (2.10) für das gemahlene Gut angeordnet ist.
  10. Vorrichtung nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass an der mahlkammerseitigen Auslassöffnung des Mahlguteinlassrohres (2.8) eine Leitvorrichtung (2.12) innerhalb der Mahlkammer (2.6) angeordnet ist, durch die das in die Mahlkammer (2.6) gelangende Mahlgut in den Bereich des zumindest einen, energiereich in die Mahlkammer (2.6) eingeführten Fluidstrahls (2.16, 2.17) gelangt, der einen Mahlstrahl bildet.
  11. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass der mahlkammerseitigen Einlassöffnung des Auslassstutzens (2.10) für das gemahlene Gut eine Leitvorrichtung (2.13) vorgeschaltet ist, die die Verbringung des zum Austreten aus der Mahlkammer (2.6) bestimmten Mahlgutes in den Bereich der Einlassöffnung des Auslassstutzens (2.10) begünstigt.
  12. Anlage mit einer Vorrichtung nach einem der Ansprüche 4 bis 11 zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 3, wobei das gemahlene Gut einem Sichter (3.25; 4.13) mit einer vorbestimmten Trenngrenze zugeführt wird, wobei das unterhalb dieser Grenze liegende, gröbere Gut dem der Fließbettstrahlmühle zuzuführenden Mahlgut wieder zugeführt wird und das oberhalb dieser Grenze liegende Feingut einer Weiterverarbeitung, beispielsweise in einem Filter zugeführt wird.
  13. Anlage nach Anspruch 12, wobe der Sichter ein von der Mühle baulich getrennter, funktionell mit ihr zusammenwirkender Windsichter (3.25) oder ein baulich in die Mühle integrierter Windsichter (4.13) ist.
EP00117288A 1999-08-23 2000-08-17 Verfahren zur Fliessbettstrahlmahlung, Vorrichtung zur Durchführung dieses Verfahrens und Anlage mit einer solchen Vorrichtung zur Durchführung dieses Verfahrens Expired - Lifetime EP1080786B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE1999139897 DE19939897A1 (de) 1999-08-23 1999-08-23 Verfahren zur Fließbettstrahlmahlung, Vorrichtung zur Durchführung dieses Verfahrens und Anlage mit einer solchen Vorrichtung zur Durchführung dieses Verfahrens
DE19939897 1999-08-23
DE1999143670 DE19943670A1 (de) 1999-09-13 1999-09-13 Verfahren zur Fließbettstrahlmahlung, Vorrichtung zur Durchführung dieses Verfahrens und Anlage mit einer solchen Vorrichtung zur Durchführung dieses Verfahrens
DE19943670 1999-09-13

Publications (2)

Publication Number Publication Date
EP1080786A1 EP1080786A1 (de) 2001-03-07
EP1080786B1 true EP1080786B1 (de) 2009-06-10

Family

ID=26054696

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00117288A Expired - Lifetime EP1080786B1 (de) 1999-08-23 2000-08-17 Verfahren zur Fliessbettstrahlmahlung, Vorrichtung zur Durchführung dieses Verfahrens und Anlage mit einer solchen Vorrichtung zur Durchführung dieses Verfahrens

Country Status (5)

Country Link
US (1) US6398139B1 (de)
EP (1) EP1080786B1 (de)
JP (1) JP4801832B2 (de)
DE (1) DE50015655D1 (de)
ES (1) ES2327810T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070826A (ja) * 1999-08-23 2001-03-21 Roland Nied 流動層噴流式粉砕方法、かかる方法を実行するための装置、及びかかる装置を用いてかかる方法を実行するためのシステム

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10033628A1 (de) * 2000-07-11 2002-01-24 Hosokawa Alpine Ag & Co Fliessbett-Gegenstrahlmühle
KR100807710B1 (ko) * 2005-08-18 2008-02-28 와커 헤미 아게 실리콘 분쇄 방법 및 장치
DE102005039118A1 (de) * 2005-08-18 2007-02-22 Wacker Chemie Ag Verfahren und Vorrichtung zum Zerkleinern von Silicium
CN100464906C (zh) * 2005-09-15 2009-03-04 自贡硬质合金有限责任公司 采用气流粉碎、分级生产碳化钨粉的方法
DE102006017472A1 (de) * 2006-04-13 2007-10-18 Nied, Roland, Dr. Ing. Verfahren zur Erzeugung feinster Partikel mittels einer Strahlmühle
DE102006023193A1 (de) 2006-05-17 2007-11-22 Nied, Roland, Dr.-Ing. Verfahren zur Erzeugung feinster Partikel mittels einer Strahlmühle
DE102006048865A1 (de) * 2006-10-16 2008-04-17 Roland Dr. Nied Verfahren zur Erzeugung feinster Partikel und Strahlmühle dafür sowie Windsichter und Betriebsverfahren davon
DE102006048864A1 (de) * 2006-10-16 2008-04-17 Roland Dr. Nied Verfahren zur Erzeugung feinster Partikel und Strahlmühle dafür sowie Windsichter und Betriebsverfahren davon
FR2941389B1 (fr) * 2009-01-29 2011-10-14 Fives Fcb Dispositif de separation granulometrique selective de matieres pulverulentes solides, a action centrifuge, et procede d'utilisation d'un tel dispositif
CN103025433B (zh) * 2010-07-30 2014-08-06 细川密克朗集团股份有限公司 喷射式磨机
WO2014034788A1 (ja) * 2012-09-03 2014-03-06 クラレノリタケデンタル株式会社 歯科用硬化性組成物
DE102018008127B4 (de) 2018-10-13 2022-06-09 Hosokawa Alpine Aktiengesellschaft Blaskopf und Verfahren zur Herstellung einer Mehrschichtschlauchfolie
DE102018009632B4 (de) 2018-12-11 2021-12-09 Hosokawa Alpine Aktiengesellschaft Vorrichtung zum Aufwickeln und Wickelwechsel von bahnförmigem Material und ein Verfahren dafür
DE102020006008B3 (de) 2020-10-01 2022-03-31 Hosokawa Alpine Aktiengesellschaft Fließbettgegenstrahlmühle zur Erzeugung feinster Partikel aus Aufgabegut geringer Schüttdichte und Verfahren dafür
JP7158754B2 (ja) * 2020-10-13 2022-10-24 杉山重工株式会社 ジェットミル及びジェットミルの稼働方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2040519C2 (de) * 1970-08-14 1984-04-12 Alpine Ag, 8900 Augsburg Fließbettstrahlmühle
DE3690101C2 (de) * 1985-03-01 1995-06-08 Freunt Ind Co Ltd Verfahren und Vorrichtung zum Überziehen von fluidisierten Körnern durch Besprühen
JPS62182139A (ja) * 1986-02-06 1987-08-10 日本鋼管株式会社 スラグ処理方法及び装置
IT1237296B (it) * 1989-11-28 1993-05-27 Metodo per il recupero delle sabbie di fonderia esauste mediante arrostimento.
DE19718668C2 (de) * 1997-05-02 2003-04-03 Hosokawa Alpine Ag & Co Verfahren zum Trennen und kontinuierlichen Austragen von schwer dispergierbaren Bestandteilen
US6398139B1 (en) * 1999-08-23 2002-06-04 Roland Nied Process for fluidized-bed jet milling, device for carrying out this process and unit with such a device for carrying out this process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070826A (ja) * 1999-08-23 2001-03-21 Roland Nied 流動層噴流式粉砕方法、かかる方法を実行するための装置、及びかかる装置を用いてかかる方法を実行するためのシステム

Also Published As

Publication number Publication date
JP4801832B2 (ja) 2011-10-26
US6398139B1 (en) 2002-06-04
EP1080786A1 (de) 2001-03-07
DE50015655D1 (de) 2009-07-23
JP2001070826A (ja) 2001-03-21
ES2327810T3 (es) 2009-11-04

Similar Documents

Publication Publication Date Title
EP1080786B1 (de) Verfahren zur Fliessbettstrahlmahlung, Vorrichtung zur Durchführung dieses Verfahrens und Anlage mit einer solchen Vorrichtung zur Durchführung dieses Verfahrens
EP2646160B1 (de) Dynamisches element für die trenneinrichtung einer rührwerkskugelmühle
DE4432200C1 (de) Rührwerksmühle
DE4243438C2 (de) Verfahren und Vorrichtung zur Fließbett-Strahlmahlung
DE2711515A1 (de) Klassierende strahlmuehle
EP0719585A1 (de) Rürhwerksmühle mit Separator zur Zurückhaltung von Mahlperlen
DE3145209C2 (de)
EP3107689B1 (de) Düsenkopf
EP0736328B1 (de) Vorrichtung für die Fliessbett-Strahlmahlung
EP0638365B1 (de) Verfahren und Vorrichtung zur Trennung eines feinkörnigen Feststoffes in zwei Kornfraktionen
DE1223237B (de) Strahlmuehle mit flachzylindrischer Mahlkammer
EP2450106B1 (de) Flotationsapparat und Flotationsverfahren
DE4402609C1 (de) Rührwerkskugelmühle
EP0904156B1 (de) Vorrichtung zum abscheiden der schwereren von den leichteren anteilen wässriger trüben mittels zentrifugalkraftwirkung
DE102017103956A1 (de) Prallreaktor
DE19943670A1 (de) Verfahren zur Fließbettstrahlmahlung, Vorrichtung zur Durchführung dieses Verfahrens und Anlage mit einer solchen Vorrichtung zur Durchführung dieses Verfahrens
DE2461793A1 (de) Verfahren und vorrichtung zur sichtung von mahlgut aus der prallzerkleinerung koerniger produkte
DE3730597C2 (de) Strahlmühle
DE4431534B4 (de) Maschine zur Einwirkung auf zerkleinerbares und klassierbares Rohgut, sowie Verfahren zum Betrieb der Maschine
DE19939897A1 (de) Verfahren zur Fließbettstrahlmahlung, Vorrichtung zur Durchführung dieses Verfahrens und Anlage mit einer solchen Vorrichtung zur Durchführung dieses Verfahrens
EP2146167B1 (de) Vorrichtung und Verfahren zum Entfernen von Fluiden
DE4446888C2 (de) Vorrichtung zur naßmechanischen Behandlung kontaminierter, körniger Materialien und deren Aufschlämmungen
DE102015007435A1 (de) Vorrichtung und Mahlwerkzeug zum Zerkleinern von Aufgabegut
DE10211916C5 (de) Rohrmühle
DE1952964C (de) Strahlmühle zum Pulverisieren vorgranulierten Materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010802

AKX Designation fees paid

Free format text: DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 20061106

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50015655

Country of ref document: DE

Date of ref document: 20090723

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2327810

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090610

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100311

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160831

Year of fee payment: 17

Ref country code: GB

Payment date: 20160830

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160825

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160819

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170817

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170817

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190903

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50015655

Country of ref document: DE