EP1030311B1 - Decoder-Anschlussanordnung für Speicherchips mit langen Bitleitungen - Google Patents

Decoder-Anschlussanordnung für Speicherchips mit langen Bitleitungen Download PDF

Info

Publication number
EP1030311B1
EP1030311B1 EP00103532A EP00103532A EP1030311B1 EP 1030311 B1 EP1030311 B1 EP 1030311B1 EP 00103532 A EP00103532 A EP 00103532A EP 00103532 A EP00103532 A EP 00103532A EP 1030311 B1 EP1030311 B1 EP 1030311B1
Authority
EP
European Patent Office
Prior art keywords
decoder
region
memory cell
cell array
bit lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00103532A
Other languages
English (en)
French (fr)
Other versions
EP1030311A1 (de
Inventor
Robert Feurle
Sabine Mandel
Helmut Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP1030311A1 publication Critical patent/EP1030311A1/de
Application granted granted Critical
Publication of EP1030311B1 publication Critical patent/EP1030311B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/18Bit line organisation; Bit line lay-out
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63GMERRY-GO-ROUNDS; SWINGS; ROCKING-HORSES; CHUTES; SWITCHBACKS; SIMILAR DEVICES FOR PUBLIC AMUSEMENT
    • A63G9/00Swings
    • A63G9/04Swings with moving supporting-points
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63GMERRY-GO-ROUNDS; SWINGS; ROCKING-HORSES; CHUTES; SWITCHBACKS; SIMILAR DEVICES FOR PUBLIC AMUSEMENT
    • A63G9/00Swings
    • A63G9/02Swings with two suspensory axles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • G11C5/025Geometric lay-out considerations of storage- and peripheral-blocks in a semiconductor storage device
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels

Definitions

  • the line decoders is, parallel to the bit lines at the edge of a memory cell array provided and only at their respective Ends via vias to a power grid connected.
  • FIG. 2 shows that word lines extend in a memory cell array 1 WL in the y direction, while bit lines BL in the x direction are arranged. To simplify the drawing only one word line WL or two bit lines BL are shown.
  • Parallel to the bit lines BL is at the edge of the memory cell array 1 in the x-direction, a decoder 2 provided in which the individual word lines WL and their Decoders are extremely close to each other.
  • a first metallization level forming decoder is isolated through a silicon dioxide layer, in a second metallization plane a series of parallel ones Power supply lines 3 provided. These power supply lines 3 are with the decoders only at the edge of the Decoder area 3 via vias 4, 5 by the silicon dioxide layer extend, electrically connected. It is not possible, such vias 4, 5 also in Course of the power supply lines 3, approximately in the middle, which is based on the fact that Metalltechnischsebene the individual decoder or their word lines close together.
  • Existing decoder terminal arrangements So have vias 4, 5 only at the edges of the decoder areas 2, which are connected to a Memory cell array 1 adjacent.
  • the two Metallmaschinesebenen not as before only at both ends of the decoder area, but at least one another time, for example, connected to each other in the middle.
  • this additional Connection of the two metallization levels is in advantageously uses the zone of the decoder area, which corresponds to the bit line twist area in the memory cell array.
  • bit line twist for the bit lines whose coupling capacity is practically halved due to the twist so the bitlines run longer than without a twist can be.
  • the power supply lines it is possible, the power supply lines to reduce to about a quarter of its previous thickness or the length of the decoder area practically too double, without a reduction in switching speed through higher capacities or RC constants to accept have to.
  • FIG. 2 has already been explained at the beginning.
  • Fig. 1 will be for corresponding parts, the same reference numerals as used in Fig. 2.
  • bit lines extending in the x direction BL (not shown in detail) in a bit line twist area 8 each through a twist. That's hot, two neighbors Bit lines BL cross each other here, so that in the Memory cell array 1 to the left of the bit line twist area 8 a first bit line, which in Fig. 1 in the y direction above from a second bitline, this first bitline in the part to the right of the bit line twist area of the memory cell array 1 below the second bit line is guided here now in the y direction above the first Bit line is.
  • This bit line twist is known practically due to the electrical symmetry Halving the coupling capacity achieved. By this halving The coupling capacity makes it possible to virtually anyone omit second sense amplifier.
  • decoder area 2 it now exists below the bitline twist area 8, a dummy area 7, in which Due to the bit line twist in area 8 no decoder needed become. According to the invention this area 7 is now for additional vias 6 between the power supply lines 3 having upper metallization level and the lower metallization level of the decoder exploited.
  • the width of the bit line twist area 8 is, for example about 2.4 microns, while the memory cell array 1 left and right of this bit line twist area 8 a Width of about 200 microns has. That is, the entire memory cell array 1 has a width of just over 400 microns.
  • a Width of about 200 microns has. That is, the entire memory cell array 1 has a width of just over 400 microns.
  • the dummy area 7 is thus like the bit line twist area 8 also about 2.4 microns wide. This width is perfect sufficient for the desired vias between the two metallization levels. Through this additional Vias 6 in the dummy area 7 becomes a low-resistance connection between the power supply lines 3 and the decoder in the decoder 2 created.
  • the two metallization levels not as before only at the two ends of the Area 2 contacted each other. Rather, such will be one Contacting via the plated-through holes 6 also in the Center of the area 2 made.
  • additional vias provide, if appropriate further dummy areas 7 are used.
  • the invention is not based on line decoders, that is, in the row direction limited, as shown in FIG. 1. Much more is an application of the invention also in the column direction possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)

Description

Die vorliegende Erfindung betrifft eine Decoder-Anschlußanordnung für Speicherchips mit
  • in einer ersten Richtung verlaufenden langen Bitleitungen,
  • die Bitleitungen in einem Speicherzellenfeld kreuzenden und in einer zweiten Richtung verlaufenden Wortleitungen,
  • Wortleitungs-Decodern, die in einem Decoderbereich liegen und eine erste Metallisierungsebene bilden, wobei der Decoderbereich an einen in der ersten Richtung verlaufenden Rand des Speicherzellenfeldes angrenzt, und
  • Versorgungsleitungen für die Decoder, die im Decoderbereich in einer über der ersten Metallisierungsebene liegenden zweiten Metallisierungsebene geführt sind, wobei zwischen den beiden Metallisierungsebenen jeweils durch Kontaktierungen an Seitenrändern des Decoderbereiches vorgesehen sind, wobei im Speicherzellenfeld die Bitleitungen in einem Twist-Bereich einen Twist bilden. Eine solche Anordnung ist z.B. aus US-A-5 091 887 bekannt.
Array-Segmente von integrierten Halbleiterspeichern und damit Speicherzellenfelder sollen möglichst groß gestaltet werden, um in jedem einzelnen Speicherzellenfeld möglichst viel Information speichern zu können. Mit größer werdenden, zusammenhängenden Array-Segmenten werden aber auch Zeilen-Decoder bzw. Zeilentreiber länger, so daß es zunehmend schwieriger wird, diese Decoder niederohmig mit Stromversorgungsnetzen zu verbinden.
Gegenwärtig sind die Zeilen-Decoder, wie dies eingangs angedeutet ist, parallel zu den Bitleitungen am Rand eines Speicherzellenfeldes vorgesehen und dabei jeweils nur an ihren Enden über Durchkontaktierungen mit einem Stromversorgungsnetz verbunden. Eine derartige bestehende Anordnung ist in Fig. 2 gezeigt: in einem Speicherzellenfeld 1 verlaufen Wortleitungen WL in y-Richtung, während Bitleitungen BL in x-Richtung angeordnet sind. Zur Vereinfachung der Zeichnung sind nur eine Wortleitung WL bzw. zwei Bitleitungen BL dargestellt. Parallel zu den Bitleitungen BL ist am Rand des Speicherzellenfeldes 1 in der x-Richtung ein Decoderbereich 2 vorgesehen, in welchem die einzelnen Wortleitungen WL und deren Decoder äußerst eng zueinander liegen. Oberhalb dieser, eine erste Metallisierungsebene bildenden Decoder ist, isoliert durch eine Siliziumdioxidschicht, in einer zweiten Metallisierungsebene eine Reihe von zueinander parallelen Stromversorgungsleitungen 3 vorgesehen. Diese Stromversorgungsleitungen 3 sind mit den Decodern lediglich am Rand des Decoderbereiches 3 über Durchkontaktierungen 4, 5 die durch die Siliziumdioxidschicht verlaufen, elektrisch verbunden. Es ist nicht möglich, solche Durchkontaktierungen 4, 5 auch im Verlauf der Stromversorgungsleitungen 3, etwa in deren Mitte, vorzusehen, was darauf beruht, daß in der darunterliegenden Metallisierungsebene die einzelnen Decoder bzw. deren Wortleitungen eng nebeneinanderliegen. Bestehende Decoder-Anschlußanordnungen haben also Durchkontaktierungen 4, 5 lediglich an den Rändern der Decoderbereiche 2, welche an ein Speicherzellenfeld 1 angrenzen.
Es ist nun von großer Bedeutung, daß die einzelnen Decoder möglichst niederohmig mit diesen Stromversorgungsleitungen 3 verbunden werden, was derzeit durch die in Fig. 2 gezeigte beidseitige Durchkontaktierung 4 bzw. 5 an den beiden Enden des Decoderbereiches 2 geschieht. Andere Möglichkeiten bestehen darin, die Stromversorgungsleitungen 3 durch möglichst breite Metallbahnen auszuführen oder die Decoder an beiden Seiten der Bitleitungen (d.h. in der Fig. 2 oben und unten) vorzusehen.
Alle diese Maßnahmen sind aber mit einem höheren Flächenbedarf verbunden, was äußerst unerwünscht ist.
Es ist daher Aufgabe der vorliegenden Erfindung, eine Decoder-Anschlußanordnung der eingangs genannten Art so zu verbessern, daß diese ohne zusätzlichen Flächenbedarf möglichst niederohmig an Stromversorgungsleitungen anschließbar ist.
Diese Aufgabe wird bei einer Decoder-Anschlußanordnung nach dem Oberbegriff des Patentanspruches 1 erfindungsgemäß dadurch gelöst, daß in der an den Bitleitung-Twist-Bereich angrenzenden Zone des Decoderbereiches zusätzliche Durchkontaktierungen zwischen den beiden Metallisierungsebenen vorgesehen sind.
Bei der erfindungsgemäßen Decoder-Anschlußanordnung sind also die beiden Metallisierungsebenen nicht wie bisher lediglich an beiden Enden des Decoderbereiches, sondern wenigstens ein weiteres Mal beispielsweise in dessen Mitte miteinander verbunden. Für eine flächenneutrale Realisierung dieser zusätzlichen Verbindung der beiden Metallisierungsebenen wird in vorteilhafter Weise die Zone des Decoderbereiches verwendet, die im Speicherzellenfeld dem Bitleitung-Twist-Bereich entspricht.
Außerdem wird durch den Bitleitung-Twist für die Bitleitungen deren Koppel-Kapazität infolge des Twistes praktisch halbiert, so daß die Bitleitungen länger als ohne Twist ausgeführt werden können. Zusätzlich ist es möglich, infolge der geringeren Koppel-Kapazität Leseverstärker (sense amplifier) einzusparen, da praktisch jeder zweite Leseverstärker weggelassen werden kann.
Durch die Erfindung ist es so möglich, die Stromversorgungsleitungen auf etwa ein Viertel ihrer bisherigen Dicke zu reduzieren oder die Länge des Decoderbereiches praktisch zu verdoppeln, ohne eine Verringerung der Schaltgeschwindigkeit durch höhere Kapazitäten bzw. RC-Konstanten in Kauf nehmen zu müssen.
Nachfolgend wird die Erfindung anhand der Zeichnungen näher erläutert. Es zeigen:
Fig. 1
eine schematische Draufsicht auf eine Decoder-Anschlußanordnung nach einem Ausführungsbeispiel der Erfindung und
Fig. 2
eine schematische Draufsicht auf eine bestehende Decoder-Anschlußanordnung.
Fig. 2 ist bereits eingangs erläutert worden. In Fig. 1 werden für einander entsprechende Teile die gleichen Bezugszeichen wie in Fig. 2 verwendet.
Im Unterschied zu der bestehenden Decoder-Anschlußanordnung von Fig. 2 führen bei der erfindungsgemäßen Decoder-Anschlußanordnung gemäß Fig. 1 die in x-Richtung verlaufenden Bitleitungen BL (nicht näher gezeigt) in einem Bitleitung-Twist-Bereich 8 jeweils einen Twist durch. Das heiß, zwei benachbarte Bitleitungen BL überkreuzen hier einander, so daß in dem Speicherzellenfeld 1 links von dem Bitleitung-Twist-Bereich 8 eine erste Bitleitung, die in Fig. 1 in y-Richtung oberhalb von einer zweiten Bitleitung verläuft, diese erste Bitleitung in dem rechts von dem Bitleitung-Twist-Bereich liegenden Teil des Speicherzellenfeldes 1 unterhalb der zweiten Bitleitung geführt ist, die hier nunmehr in y-Richtung oberhalb der ersten Bitleitung ist. Durch diesen Bitleitung-Twist wird bekanntlich infolge der elektrischen Symmetrie praktisch eine Halbierung der Koppel-Kapazität erreicht. Durch diese Halbierung der Koppel-Kapazität ist es möglich, praktisch jeden zweiten Leseverstärker wegzulassen.
Im Decoderbereich 2 besteht nun unterhalb des Bitleitung-Twist-Bereiches 8 ein Leer- bzw. Dummy-Bereich 7, in welchem infolge des Bitleitung-Twistes im Bereich 8 keine Decoder benötigt werden. Erfindungsgemäß wird dieser Bereich 7 nun für zusätzliche Durchkontaktierungen 6 zwischen der die Stromversorgungsleitungen 3 aufweisenden oberen Metallisierungsebene und der unteren Metallisierungsebene der Decoder ausgenutzt.
Die Breite des Bitleitung-Twist-Bereiches 8 beträgt beispielsweise etwa 2,4 µm, während das Speicherzellenfeld 1 links und rechts von diesem Bitleitung-Twist-Bereich 8 eine Breite von ca. 200 µm hat. Das heißt, das gesamte Speicherzellenfeld 1 hat eine Breite von knapp über 400 µm. Selbstverständlich können auch andere Zahlenwerte, bei höherem Technologieniveau beispielsweise kleinere Zahlenwerte, gewählt werden.
Der Dummy-Bereich 7 ist damit wie der Bitleitung-Twist-Bereich 8 ebenfalls etwa 2,4 µm breit. Diese Breite ist vollkommen ausreichend für die gewünschten Durchkontaktierungen zwischen den beiden Metallisierungsebenen. Durch diese zusätzliche Durchkontaktierungen 6 in dem Dummy-Bereich 7 wird eine niederohmige Verbindung zwischen den Stromversorgungsleitungen 3 und den Decodern im Decoderbereich 2 geschaffen.
Im Gegensatz zum Stand der Technik werden somit bei der erfindungsgemäßen Decoder-Anschlußanordnung die beiden Metallisierungsebenen nicht wie bisher nur an den beiden Enden des Bereiches 2 miteinander kontaktiert. Vielmehr wird eine solche Kontaktierung über die Durchkontaktierungen 6 auch in der Mitte des Bereiches 2 vorgenommen. Selbstverständlich ist es gegebenenfalls auch möglich, noch zusätzliche Durchkontaktierungen vorzusehen, wenn entsprechende weitere Dummy-Bereiche 7 verwendet werden. Außerdem ist die Erfindung nicht auf Zeilen-Decoder, also auf in Zeilenrichtung verlaufende Anordnungen begrenzt, wie dies in der Fig. 1 dargestellt ist. Vielmehr ist eine Anwendung der Erfindung auch in Spaltenrichtung möglich.
Der durch die Erfindung bedingte zusätzliche Flächenbedarf von etwa 2,4 µm ist äußerst gering. Überdies wird dieser zusätzliche Flächenbedarf durch die Einsparung an Fläche für Leseverstärker infolge des Twistes der Bitleitungen mehr als kompensiert.

Claims (4)

  1. Decoder-Anschlußanordnung für Speicherchips mit:
    in einer ersten Richtung (x) verlaufenden langen Bitleitungen (BL),
    die Bitleitungen (BL) in einem Speicherzellenfeld (1) kreuzenden und in einer zweiten Richtung (y) verlaufenden Wortleitungen (WL),
    Wortleitungs-Decodern, die in einem Decoderbereich (2) liegen und eine erste Metallisierungsebene bilden, wobei der Decoderbereich (2) an einem in der ersten Richtung (x) verlaufenden Rand des Speicherzellenfeldes (1) angrenzt, und
    Versorgungsleitungen (3) für die Decoder, die im Decoderbereich (2) in einer über der ersten Metallisierungsebene liegenden zweiten Metallisierungsebene geführt sind, wobei zwischen den beiden Metallisierungsebenen jeweils Durchkontaktierungen (4, 5) an Seitenrändern des Decoderbereiches (2) vorgesehen sind, wobei im Speicherzellenfeld (1) die Bitleitungen (BL) in einem Bitleitung-Twist-Bereich (8) einen Twist bilden,
    dadurch gekennzeichnet daß,
    in der an den Bitleitung-Twist-Bereich (8) angrenzenden Zone des Decoderbereiches (2) zusätzliche Durchkontaktierungen (6) zwischen den beiden Metallisierungsebenen vorgesehen sind.
  2. Decoder-Anschlußanordnung nach Anspruch 1,
    dadurch gekennzeichnet, daß die zusätzlichen Durchkontaktierungen (6) in einem Dummy-Bereich (7) des Decoderbereiches (2) liegen.
  3. Decoder-Anschlußanordnung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß der Bitleitung-Twist-Bereich eine Breite von etwa 2,4 µm hat.
  4. Decoder-Anschlußanordnung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß die Breite des Speicherzellenfeldes (1) in der ersten Richtung etwa 400 µm beträgt.
EP00103532A 1999-02-19 2000-02-18 Decoder-Anschlussanordnung für Speicherchips mit langen Bitleitungen Expired - Lifetime EP1030311B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19907176A DE19907176A1 (de) 1999-02-19 1999-02-19 Decoder-Anschlußanordnung für Speicherchips mit langen Bitleitungen
DE19907176 1999-02-19

Publications (2)

Publication Number Publication Date
EP1030311A1 EP1030311A1 (de) 2000-08-23
EP1030311B1 true EP1030311B1 (de) 2005-02-02

Family

ID=7898172

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00103532A Expired - Lifetime EP1030311B1 (de) 1999-02-19 2000-02-18 Decoder-Anschlussanordnung für Speicherchips mit langen Bitleitungen

Country Status (6)

Country Link
US (1) US6205044B1 (de)
EP (1) EP1030311B1 (de)
JP (1) JP3663329B2 (de)
KR (1) KR100366273B1 (de)
DE (2) DE19907176A1 (de)
TW (1) TW459243B (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6947324B1 (en) 2000-06-28 2005-09-20 Marvell International Ltd. Logic process DRAM
US7184290B1 (en) 2000-06-28 2007-02-27 Marvell International Ltd. Logic process DRAM
US6570781B1 (en) 2000-06-28 2003-05-27 Marvell International Ltd. Logic process DRAM
US6717839B1 (en) 2003-03-31 2004-04-06 Ramtron International Corporation Bit-line shielding method for ferroelectric memories
KR100541818B1 (ko) * 2003-12-18 2006-01-10 삼성전자주식회사 반도체 메모리 장치의 라인 배치구조

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713858B2 (ja) * 1988-08-30 1995-02-15 三菱電機株式会社 半導体記憶装置
JPH02302986A (ja) * 1989-05-16 1990-12-14 Mitsubishi Electric Corp ダイナミック型半導体記憶装置
US5311477A (en) * 1991-07-17 1994-05-10 Sgs-Thomson Microelectronics, Inc. Integrated circuit memory device having flash clear
US5251168A (en) * 1991-07-31 1993-10-05 Texas Instruments Incorporated Boundary cells for improving retention time in memory devices
JP3440335B2 (ja) * 1993-08-18 2003-08-25 日本テキサス・インスツルメンツ株式会社 半導体メモリ装置
DE69526006T2 (de) * 1994-08-15 2003-01-02 International Business Machines Corp., Armonk Anordnung mit einem einzigen Verdrillungsgebiet und Verfahren für gepaarte linienförmige Leiter in integrierten Schaltungen
US5821592A (en) * 1997-06-30 1998-10-13 Siemens Aktiengesellschaft Dynamic random access memory arrays and methods therefor
US5864496A (en) * 1997-09-29 1999-01-26 Siemens Aktiengesellschaft High density semiconductor memory having diagonal bit lines and dual word lines
US6069815A (en) * 1997-12-18 2000-05-30 Siemens Aktiengesellschaft Semiconductor memory having hierarchical bit line and/or word line architecture
US6034879A (en) * 1998-02-19 2000-03-07 University Of Pittsburgh Twisted line techniques for multi-gigabit dynamic random access memories

Also Published As

Publication number Publication date
KR20000062568A (ko) 2000-10-25
TW459243B (en) 2001-10-11
JP3663329B2 (ja) 2005-06-22
DE19907176A1 (de) 2000-08-31
JP2000243933A (ja) 2000-09-08
KR100366273B1 (ko) 2002-12-31
DE50009385D1 (de) 2005-03-10
EP1030311A1 (de) 2000-08-23
US6205044B1 (en) 2001-03-20

Similar Documents

Publication Publication Date Title
DE69526006T2 (de) Anordnung mit einem einzigen Verdrillungsgebiet und Verfahren für gepaarte linienförmige Leiter in integrierten Schaltungen
DE4433695C2 (de) Dynamische Halbleiterspeichervorrichtung
EP1184871B1 (de) MRAM-Anordnung
DE602005002546T2 (de) Verbessertes layout einer sram-speicherzelle
DE3937068C2 (de) Dynamische Halbleiterspeicheranordnung
DE19625169A1 (de) Hierarchische Wortleitungsstruktur für Halbleiterspeichervorrichtung
DE102005056427A1 (de) Speicherzellenfeld
DE10065703A1 (de) Säulentransistor in einer Halbleitervorrichtung
DE10255203B3 (de) Dynamische Speicherzelle mit zwei vertikalen Auswahltransistoren
DE69024167T2 (de) Halbleiterspeicheranordnung
EP1030311B1 (de) Decoder-Anschlussanordnung für Speicherchips mit langen Bitleitungen
DE69614947T2 (de) Halbleiterspeicheranordnung mit einer Schaltungsanordnungstruktur für hohe Geschwindigkeit
DE4126050C2 (de) Anordnung von Wortleitungstreiberstufen in einer Halbleiterspeicheranordnung
DE19907921C1 (de) Halbleiterspeicheranordnung mit Dummy-Bauelementen auf durchgehenden Diffusionsgebieten
DE102006035076B4 (de) Integrierter Halbleiterspeicher und Verfahren zum Betreiben eines integrierten Halbleiterspeichers
DE102004062451A1 (de) Halbleiterspeicherbauelement mit verschränkten Leitungen, Leitungsentwurfsstruktur und Leitungsentwurfsverfahren
EP1032043A2 (de) Halbleiterspeicheranordnung mit Bitleitungs-Twist
DE69020237T2 (de) Halbleiterspeicheranordnung mit einer Bitleitungsstruktur mit niedrigem Geräusch.
DE60118833T2 (de) Halbleiter-Speicher mit unterteilter Wortleitungstruktur
DE10101630B4 (de) Halbleiterspeicherbauelement mit Eingabe-/Ausgabeleitungsstruktur
DE10304626A1 (de) Halbleiter-Speichervorrichtung
EP0199231B1 (de) In CMOS-Technik aufgebaute Zelle
DE10231206A1 (de) Halbleitervorrichtung
DE19918932A1 (de) Halbleiterspeichervorrichtung
DE69119252T2 (de) Halbleiterspeicheranordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000918

AKX Designation fees paid
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IE IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INFINEON TECHNOLOGIES AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IE IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50009385

Country of ref document: DE

Date of ref document: 20050310

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050418

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20051103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080220

Year of fee payment: 9

Ref country code: IE

Payment date: 20080220

Year of fee payment: 9

Ref country code: IT

Payment date: 20080223

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080415

Year of fee payment: 9

Ref country code: FR

Payment date: 20080214

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090218

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090218

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090302

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090218