EP1029101B1 - Erzeugnis, insbesondere bauteil einer gasturbine, mit keramischer wärmedämmschicht, und verfahren zu dessen herstellung - Google Patents

Erzeugnis, insbesondere bauteil einer gasturbine, mit keramischer wärmedämmschicht, und verfahren zu dessen herstellung Download PDF

Info

Publication number
EP1029101B1
EP1029101B1 EP98961067A EP98961067A EP1029101B1 EP 1029101 B1 EP1029101 B1 EP 1029101B1 EP 98961067 A EP98961067 A EP 98961067A EP 98961067 A EP98961067 A EP 98961067A EP 1029101 B1 EP1029101 B1 EP 1029101B1
Authority
EP
European Patent Office
Prior art keywords
product
oxide
base body
calcium
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98961067A
Other languages
English (en)
French (fr)
Other versions
EP1029101A1 (de
Inventor
Beate Heimberg
Wolfram Beele
Karl Kempter
Ulrich Bast
Thomas Haubold
Michael Hoffmann
Axel Endriss
Peter Greil
Chu-Wan Hong
Fritz Aldinger
Hans-J. Seifert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Siemens AG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG, Siemens AG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP1029101A1 publication Critical patent/EP1029101A1/de
Application granted granted Critical
Publication of EP1029101B1 publication Critical patent/EP1029101B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Definitions

  • the invention relates to a product which a hot, can be exposed to aggressive gas, with a metallic base body, which is a bonding agent layer forming a bonding oxide carries and has a ceramic thermal barrier coating.
  • the invention further relates to hot gas components in thermal machines, especially in a gas turbine, to protect against a hot aggressive gas with a Thermal insulation layer are provided.
  • US-PS 4,585,481 is a protective layer to protect a metallic substrate made of a superalloy High temperature oxidation and corrosion specified.
  • This Protective layer has 5 to 40% chromium, 8 to 35% aluminum, 0.1 up to 2% of an oxygen-active element from group IIIb of the periodic table including the lanthanides and actinides and mixtures thereof, 0.1 to 7% silicon, 0.1 to 3% Hafnium and a radical comprising nickel and / or cobalt (The percentages relate to percent by weight).
  • the corresponding protective layers made of MCrAlY alloys are according to US-PS 4,585,481 using a Plasma spraying applied.
  • a gas turbine component is described in US Pat. No. 4,321,310, which is a body made of a nickel-based superalloy MAR-M-200 has.
  • On the base material is a layer of an MCrAlY alloy, in particular one NiCoCrAlY alloy with 18% chromium, 23% cobalt, 12.5% aluminum, 0.3% yttrium and a remainder made of nickel.
  • This layer of the MCrAlY alloy has a polished Surface on which an aluminum oxide layer is applied is.
  • a ceramic thermal barrier coating is on this aluminum oxide layer applied, which has a stem-shaped structure having. Due to this columnar microstructure of the thermal insulation layer the crystallite columns are perpendicular to the surface of the basic body. Stabilized as a ceramic material Zirconia specified.
  • GB 2 286 977 A1 describes a composition for an inorganic Coating described, the coating is applied to a low alloy steel and one Possesses high temperature resistance.
  • the main characteristic of Coating is its corrosion resistance, which is due to integration of iron in the coating is reached.
  • the coating exhibits metal oxides before a chemical reaction on, which at temperatures above 1000 ° C in spinels convert.
  • a high-temperature protective layer comprising a metallic mixed oxide system
  • A is a metal from group IIIb of the periodic table
  • B is a metal from main group II (alkaline earth metals) from the periodic table
  • M is a metal from one of groups VIb, VIIb and VIIIb from the periodic table.
  • the stoichiometric factor X is between 0 and 0.8.
  • the coating is used on a temperature-resistant steel or an alloy for use at temperatures above 600 ° C, especially for a component of a gas turbine.
  • An austenitic material based on nickel, cobalt or iron is preferably used as the base material for the component of the gas turbine.
  • the object of the invention is to provide a product with a metallic Base body and a thermal insulation layer attached to it, especially with a metallic mixed oxide system, specify.
  • the invention is based on the knowledge that previously used ceramic thermal insulation layers despite the use of, for example partially stabilized zirconia a Thermal Have expansion coefficients that only about a maximum of 70% the coefficient of thermal expansion of the used Basic body, in particular made of a super alloy. Due to the smaller compared to the metallic base body thermal expansion coefficient result when applied with a hot gas thermal stresses. To at changing thermal load such resulting stresses counteracting this is a stretch-tolerant microstructure the thermal insulation layer is required, e.g. by Setting an appropriate porosity or a stem-shaped Structure of the thermal insulation layer.
  • thermal barrier coating known from the prior art made of partially stabilized zirconium oxide with stabilizers how yttrium oxide, cerium oxide and lanthanum oxide tensions occur, that from a thermally induced phase transition (tetragonal in monoclinic and cubic) result. Also at an associated change in volume is a maximum permissible Surface temperature for thermal insulation layers made of zirconium oxide given.
  • the object is directed to a product solved in that the ceramic thermal barrier coating is a metallic Mixed oxide system comprising lanthanum aluminate and / or Has calcium zirconate.
  • the thermal barrier coating is immediate or indirectly through an adhesive layer to the Basic body connected.
  • the connection is preferably made over an oxide layer, which e.g. by oxidation of the base body or the adhesion promoter layer is formed.
  • the connection can also or additionally via mechanical clamping, e.g. due to a roughness of the base body or the adhesion promoter layer.
  • thermal insulation layers serve to extend the life of hot gas products, in particular components in gas turbines, such as blades and heat shields.
  • the thermal barrier coating has a low thermal conductivity, a high melting point and chemical inertness.
  • a lanthanum aluminate is also understood to mean a mixed oxide, in particular with a perovskite structure, in which the lanthanum is partially replaced by a substitute element. If necessary, it is possible that the aluminum is at least partially replaced by a further substitute element.
  • a chemical structural formula of the type La 1-x M x Al 1-y N y O 3 can be specified for the lanthanum aluminate in question.
  • M stands for a substitute element, which preferably comes from the group of lanthanides (rare earths).
  • N stands for chrome, for example.
  • the substitute element is more preferably gadolinium (Gd).
  • the substitute factor X can be up to 0.8 and is preferably in the range of about 0.5. In the range of 0.5, the thermal conductivity of such a lanthanum aluminate has a minimum, so that the thermal insulation layer thus has a particularly low thermal conductivity.
  • the substitution factor y is preferably in the range of 0.
  • the metallic mixed oxide system has calcium zirconate, preferably in a perovskite structure, the calcium being partially replaced by at least one subtitle element, in particular strontium (Sr) or barium (Ba).
  • a chemical structural formula of the type Ca 1-x Sr x Zr 1-y MyO 3 can be specified for such a calcium zirconate.
  • the substitute factor X is greater than zero to 1, in particular greater than 0.2, and less than 0.8, and is preferably in the range of 0.5.
  • such a calcium zirconate also has a minimum of thermal conductivity, so that the thermal conductivity of the thermal barrier coating is also particularly low. It is also possible to use a mixed oxide system with barium zirconate or strontium zirconate.
  • Ba 1-x X x Zr 1-y M y O 3 , Sr 1-x X x Zr 1-y MyO 3 can stand for Ti or Hf.
  • the lanthanum aluminates and the calcium, Strontium or barium zirconate mixed crystals as ternary Oxide or pseudo-ternary oxide.
  • a ternary oxide here means an oxide in which oxygen (Anions) are connected to two other elements (cations) is.
  • a pseudoternary oxide is a substance understood that atoms of more than two different atoms has chemical elements (cations). Here but these atoms (cations) only belong to two different ones Element groups, the atoms of each element in each of the three different element groups in crystallographically equivalent.
  • the ternary oxide is preferably based on elements which form materials of the perovskite material group, with appropriate mixed crystal formation and microstructure modification being made possible.
  • the two different forms of perovskites due to valence namely perovskite A (A 2+ B 4+ O 3 ) and perovskite B (A 3+ B 3+ O 3 ), can occur.
  • Coating materials with a perovskite structure have the general chemical structural formula ABO 3 .
  • the ions, which are identified by the placeholder A are smaller than the ions, which are designated by the placeholder B.
  • the perovskite structure has four atoms in a unit cell.
  • the perovskite structure can be characterized by the fact that the larger B ions and the O ions together form a densest cubic sphere packing in which 1/4 of the octahedral gaps are occupied by A ions.
  • the B ions are coordinated by 12 O ions in the form of a cubic octahedron, the O ions are each adjacent to four B ions and two A ions.
  • the ternary oxide is preferably lanthanum aluminate (LaAlO 3 ) or calcium zirconate (CaZrO 3 ). These ternary oxides have a low tendency to sinter, a high thermal conductivity and a high coefficient of thermal expansion. In addition, they have high phase stability and a high melting point.
  • the thermal expansion coefficient of the ternary oxide is preferably between 7 x 10 -6 / K and 17 x 10 -6 / K.
  • the thermal conductivity is preferably between 1.0 and 4.0 W / mK.
  • the specified value ranges for expansion coefficient and thermal conductivity apply to bodies made of a ternary non-porous material.
  • the thermal conductivity can be further reduced by specifically introducing porosities.
  • the melting temperature is significantly more than 1750 ° C.
  • Calcium zirconate (CaZrO 3 ) has an expansion coefficient at a temperature between 500 and 1500 ° C of 15 x 10 -6 / K and a thermal conductivity of approx. 1.7 W / mK.
  • Lanthanum aluminate (LaAlO 3 ) has a thermal expansion coefficient of approximately 10 x 10 -6 / K at a temperature in the range of approximately 500 to 1500 ° C. The thermal conductivity is around 4.0 W / mK.
  • Lanthanum aluminate and calcium zirconate can be synthesized as perovskite by conventional methods such as the so-called mixed oxide method.
  • the ternary oxide is essentially phase-pure.
  • a full implementation of the lanthanum oxide (La 2 O 3 ) used in the production certainly avoids a two-phase process.
  • Calcium zirconate is particularly suitable due to its ease of manufacture, its favorable phases or a variable crystal chemistry, ie in particular an exchange of zirconium by titanium and hafnium. It is also sprayable.
  • Lanthanum aluminate has a low tendency to sinter and favorable adhesive conditions, which are caused in particular by the aluminum.
  • the mixed oxide system can have a further oxide, the ceramic thermal barrier coating permitting a higher surface temperature and a longer service life than a thermal barrier coating made of zirconium oxide.
  • the further oxide can be calcium oxide (CaO) or zirconium oxide (ZrO 2 ) or a mixture thereof, in particular if the ternary oxide is calcium zirconate.
  • the ternary oxide can have magnesium oxide (MgO) or strontium oxide (SrO) as additional oxide. It is also possible for the ternary oxide to have yttrium oxide (Y 2 O 3 ), scandium oxide (Sc 2 O 3 ) or a rare earth oxide as well as a mixture of these oxides.
  • the lanthanum aluminate can have aluminum oxide together with zirconium oxide and optionally also with yttrium oxide.
  • the mixed oxide system with the ternary oxide can additionally have hafnium oxide (HfO 2 ) and / or magnesium oxide (MgO).
  • the adhesion promoter layer is preferably an alloy one of the elements of the metallic mixed oxide system, in particular ternary oxides, for example lanthanum, zircon, Aluminum or other. Suitable as an adhesive layer particularly when using a base body from a Nickel-based cobalt-based, or chrome-based superalloy Alloy type MrCrAlY.
  • M stands for one of the elements or several elements of the group comprising iron, cobalt or nickel, Cr for chrome and Al for aluminum.
  • Y stands for yttrium, cerium, scandium or a group IIIb element the periodic table and the actinides or lanthanides.
  • the MCrAlY alloy can contain other elements, e.g. Rhenium.
  • the product is preferably a component of a thermal Machine, especially a gas turbine. It can be a turbine blade, a turbine vane or heat shield a combustion chamber.
  • a thermal Machine especially a gas turbine. It can be a turbine blade, a turbine vane or heat shield a combustion chamber.
  • an inventive Thermal insulation layer is particularly in the case of gas turbine blades with full load operation of the gas turbine even at an operating temperature of 1250 ° C on the surface of the thermal barrier coating a service life greater than that of conventional thermal insulation layers available from zirconium oxide.
  • a ternary oxide, in particular as a perovskite undergoes no phase change the operating temperature of the gas temperature, which is above 1250 ° C, in particular can be up to about 1400 ° C.
  • the thermal insulation layer is preferably applied by atmospheric plasma spraying, especially with a predeterminable porosity. It is also possible to use the metallic one Mixed oxide system using a suitable vapor deposition process, a suitable PVD process (Physical Vapor Deposition), in particular a reactive PVD method.
  • a suitable vapor deposition process Physical Vapor Deposition
  • a reactive PVD method When applying the thermal barrier coating using a Vapor deposition process, e.g. an electron beam PVD process, if necessary, a stem structure is also achieved.
  • a reactive PVD process there is a reaction in particular a transformation of the individual components a ternary oxide or a pseudoternary oxide, only during the coating process, especially immediately when hitting the product.
  • non-reactive Evaporation processes are the ones that have already been pre-reacted Products, especially the ternary oxides with perovskite structure, evaporates and separate again from the steam on the Product from.
  • pre-reacted products is special especially when using a plasma spraying process advantageous.
  • the gas turbine blade 3 shown in FIG. 1 has a metallic base body 1 made of a nickel-based cobalt base, or chrome-based superalloy.
  • a coated airfoil 9 extends between a blade root 10 and a sealing strip 8.
  • an adhesion promoter layer 2 is applied to the base body 1.
  • the adhesion promoter layer 2 can be an alloy of the MCrAlY type comprising chromium, aluminum, yttrium, lanthanum and / or zircon and a remainder of one or more elements from the group comprising iron, cobalt and nickel.
  • a thermal insulation layer 4 with a metallic mixed oxide system is applied to the adhesive layer 2.
  • the mixed oxide system here preferably has lanthanum aluminate (LaAlO 3 ), it being possible for the lanthanum to be partially replaced by, for example, gadolinum.
  • the mixed oxide system can alternatively have calcium zirconate with partial substitution of calcium by strontium (Ca 1-X Sr X Zr 2 O 3 ).
  • Another oxide, such as aluminum oxide or zirconium oxide, is preferably added to the ternary oxide (LaAlO 3 , Ca 1 -X Sr X ZrO 3 ).
  • the oxide layer 5 with the bonding oxide is formed between the adhesive layer 2 and the thermal barrier layer 4.
  • the bonding oxide is preferably formed by oxidation of the adhesion-promoting layer 2, which leads to a proportion of lanthanum oxide in the presence of lanthanum, to a proportion of zirconium oxide etc. in the case of zirconium.
  • the oxide layer 5 provides a good connection of the thermal insulation layer 4 to the metallic base body 1 via the adhesive layer 2.
  • a hot aggressive gas 7 flows past an outer surface 6 of the thermal insulation layer 4, which gas is effectively kept away from the metallic base body 1 by the ceramic thermal insulation layer 4 and the adhesive layer 2.
  • a hot aggressive gas 7 flows past an outer surface 6 of the thermal insulation layer 4, which gas is effectively kept away from the metallic base body 1 by the ceramic thermal insulation layer 4 and the adhesive layer 2.
  • FIG. 3 shows a layer system analogous to FIG. 2, in which an adhesion promoter layer 2 is applied to the base body 1 and the thermal insulation layer 4 is applied thereon.
  • the adhesion promoter layer 2 has a surface that is so rough that the thermal insulation layer 4 is bonded to the adhesion promoter layer 2 and thus to the base body 1 essentially without chemical bonding by mechanical clipping.
  • Such roughness of a surface 11 of the adhesion promoter layer 2 can already be achieved by applying the adhesion promoter layer 2, for example by vacuum spraying (plasma spraying).
  • plasma spraying in particular, products which have already been prereacted (for example La 1-x Gd x AlO 3 or Ca 1-x Sr x ZrO 3 ) are applied to the product.
  • the thermal insulation layer 4 can also be attached directly to the metallic base body 1 by a corresponding roughness of the metallic base body 1. It is also possible to apply an additional bonding layer, for example with an aluminum nitride or a chromium nitride, between the adhesion promoter layer 2 and the heat insulation layer 4.
  • phase diagram of lanthanum aluminate shown in FIG. 4 and the phase diagram of FIG Calcium zirconate can be seen that with a suitable choice of Additions of oxides have a melting temperature of well above 1750 ° C and a high phase stability without phase transition given at operating temperatures above 1250 ° C is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft ein Erzeugnis (3), welches einem heißen aggressiven Gas (7) aussetzbar ist, insbesondere einem Bauteil einer thermischen Maschine, wie einer Gasturbine. Das Erzeugnis (3) weist einen metallischen Grundkörper (1) auf, auf dem eine keramische Wärmedämmschicht (4) aufgebracht ist. Die Wärmedämmschicht (4) weist ein metallisches Mischoxidsystem und Lanthanaluminat und/oder Kalziumzirkonat auf, wobei das Kalzium zum Teil durch ein Substitutelement, insbesondere Strontium, ersetzt ist.

Description

Die Erfindung betrifft ein Erzeugnis, welches einem heißen, aggressiven Gas aussetzbar ist, mit einem metallischen Grundkörper, der eine ein Anbindungsoxid bildende Haftvermittlerschicht trägt und eine keramische Wärmedämmschicht aufweist. Die Erfindung betrifft weiterhin heißgasbeaufschlagte Bauteile in thermischen Maschinen, insbesondere in einer Gasturbine, die zum Schutz vor einem heißen aggressiven Gas mit einer Wärmedämmschicht versehen sind.
In der US-PS 4,585,481 ist eine Schutzschicht zum Schutz eines metallischen Substrats aus einer Superlegierung gegen Hochtemperatur-Oxidation und -Korrosion angegeben. Für die Schutzschichten findet eine MCrAlY-Legierung Anwendung. Diese Schutzschicht weist 5 bis 40% Chrom, 8 bis 35% Aluminium, 0,1 bis 2% eines sauerstoffaktiven Elements aus der Gruppe IIIb des Periodensystems einschließlich der Lanthanide und Actinide sowie Mischungen davon, 0,1 bis 7% Silizium, 0,1 bis 3% Hafnium sowie einen Rest umfassend Nickel und/oder Kobalt angegeben (Die prozentualen Angaben beziehen sich auf Gewichtsprozent). Die entsprechenden Schutzschichten aus MCrAlY-Legierungen werden gemäß der US-PS 4,585,481 mittels eines Plasmaspritzverfahrens aufgebracht.
In der US-PS 4,321,310 ist eine Gasturbinenkomponente beschrieben, die einen Grundkörper aus einer Nickel-Basis-Superlegierung MAR-M-200 aufweist. Auf den Grundwerkstoff ist eine Schicht aus einer MCrAlY-Legierung, insbesondere einer NiCoCrAlY-Legierung mit 18% Chrom, 23% Kobalt, 12,5% Aluminium, 0,3% Yttrium und einem Rest aus Nickel aufgebracht. Diese Schicht aus der MCrAlY-Legierung weist eine polierte Oberfläche auf, auf die eine Aluminiumoxidschicht aufgebracht ist. Auf diese Aluminiumoxidschicht ist eine keramische Wärmedämmschicht aufgebracht, welche eine stengelförmige Struktur aufweist. Durch diese kolumnare Mikrostruktur der Wärmedämmschicht stehen die Kristallitsäulen senkrecht zur Oberfläche des Grundkörpers. Als keramischer Werkstoff wird stabilisiertes Zirkonoxid angegeben.
In der US-PS 5,236,787 ist angegeben, zwischen dem Grundkörper und einer keramischen Wärmedämmschicht eine Zwischenschicht einzubringen, die aus einer Metall-Keramik-Mischung besteht. Dadurch soll der metallische Anteil dieser Zwischenschicht zum Grundkörper hin zunehmen und zur Wärmedämmschicht abnehmen. Umgekehrt soll entsprechend der keramische Anteil in Nähe des Grundkörpers niedrig, in Nähe der Wärmedämmschicht hoch sein. Als Wärmedämmschicht wird ein durch Yttriumoxid stabilisiertes Zirkonoxid mit Anteilen von Ceroxid angegeben. Durch die Zwischenschicht soll eine Anpassung der unterschiedlichen thermischen Ausdehnungskoeffizienten zwischen metallischem Grundkörper und keramischer Wärmedämmschicht erreicht werden.
In der US-PS 4,764,341 ist das Anbinden einer dünnen Metallschicht auf einer Keramik für die Herstellung von elektrischen Schaltkreisen, sogenannten gedruckten Schaltungen, beschrieben. Für die Metallschicht werden Nickel, Kobalt, Kupfer sowie Legierungen dieser Metalle verwendet. Zur Anbindung der Metallschicht an ein keramisches Substrat wird auf das keramische Substrat ein Zwischenoxid, wie Aluminiumoxid, Chromoxid, Titanoxid oder Zirkonoxid, aufgebracht, welches bei einer hinreichend hohen Temperatur durch Oxidation ein ternäres Oxid unter Einbeziehung eines Elementes der metallischen Beschichtung bildet.
In der GB 2 286 977 A1 ist eine Zusammensetzung für eine anorganische Beschichtung beschrieben, wobei die Beschichtung auf einen niedrig legierten Stahl aufgebracht wird und eine Hochtemperaturbeständigkeit besitzt. Die Haupteigenschaft der Beschichtung ist ihre Korrosionsfestigkeit, die durch Einbindung von Eisen in die Beschichtung erreicht wird. Die Beschichtung weist vor einer chemischen Reaktion Metalloxide auf, die sich bei Temperaturen oberhalb von 1000 °C in Spinelle umwandeln.
Aus der US-PS 4,971,839 ist eine Hochtemperaturschutzschicht umfassend ein metallisches Mischoxidsystem bekannt, welches eine Perowskitstruktur mit der chemischen Strukturformel A1-xBxMO3 aufweist. Hierin ist A ein Metall der Gruppe IIIb des Periodensystems, B ein Metall der Hauptgruppe II (Erdalkalimetalle) des Periodensystems und M ein Metall aus einem der Gruppen VIb, VIIb und VIIIb des Periodensystems. Der Stöchiometriefaktor X liegt hierbei zwischen 0 und 0,8. Die Beschichtung wird hierbei auf einen temperaturbeständigen Stahl oder eine Legierung für den Einsatz bei Temperaturen oberhalb von 600 °C verwendet, insbesondere für ein Bauteil einer Gasturbine. Vorzugsweise wird ein austenitisches Material basierend auf Nickel, Kobalt oder Eisen als Grundwerkstoff für das Bauteil der Gasturbine verwendet.
In dem Artikel "On the development of plasma-sprayed thermal barrier coatings" von R. Sivakumar und M.P.Srivastava in: Oxidation of metals, Vol. 20, Nos. 3/4, 1983, sind verschiedene Beschichtungen, die ein Zirkonat aufweisen, angebeben. Diese Beschichtungen sind auf Bauteilen aus Nimonik-75 und alternativ einer Haftschicht der Art CoCrAlY mittels Plasmaspritzens aufgebracht. Es sind Ergebnisse betreffend Calciumzirkonate und Magnesiumzirkonate bei einer zyklischen Temperaturbelastung angegeben.
Aufgabe der Erfindung ist es, ein Erzeugnis mit einem metallischen Grundkörper und einer darauf angebundenen Wärmedämmschicht, insbesondere mit einem metallischen Mischoxidsystem, anzugeben.
Die Erfindung geht von der Erkenntnis aus, daß bisher eingesetzte keramische Wärmedämmschichten trotz Einsatz von beispielsweise teilstabilisiertem Zirkonoxid einen thermischen Ausdehnungskoeffizienten aufweisen, der nur etwa maximal 70% der thermischen Ausdehnungskoeffizienten der eingesetzten Grundkörper, insbesondere aus einer Superlegierung, besitzt. Durch den gegenüber dem metallischen Grundkörper geringeren thermischen Ausdehnungskoeffizient resultieren bei Beaufschlagung mit einem heißen Gas thermische Spannungen. Um bei wechselnder thermischer Belastung solche resultierenden Spannungen entgegenzuwirken, ist eine dehnungstolerante Mikrostruktur der Wärmedämmschicht erforderlich, z.B. durch Einstellung einer entsprechenden Porosität oder einer stengelförmigen Struktur der Wärmedämmschicht. Zusätzlich können bei einer aus dem Stand der Technik bekannten Wärmedämmschicht aus teilstabilisiertem Zirkonoxid mit Stabilisatoren wie Yttriumoxid, Ceroxid und Lanthanoxid Spannungen auftreten, die aus einer thermisch bedingten Phasenumwandlung (tetragonal in monoklin und kubisch) resultieren. Auch bei einer damit verbundenen Volumenänderung ist eine maximale zulässige Oberflächentemperatur für Wärmedämmschichten aus Zirkonoxid gegeben.
Erfindungsgemäß wird die auf ein Erzeugnis gerichtete Aufgabe dadurch gelöst, daß die keramische Wärmedämmschicht ein metallisches Mischoxidsystem umfassend Lanthanaluminat und/oder Kalziumzirkonat aufweist. Die Wärmedämmschicht ist unmittelbar oder mittelbar durch eine Haftvermittlerschicht an den Grundkörper angebunden. Die Anbindung erfolgt vorzugsweise über eine Oxidschicht, welche z.B. durch Oxidation des Grundkörpers oder der Haftvermittlerschicht gebildet ist. Die Anbindung kann auch oder zusätzlich über eine mechanische Verklammerung, z.B. durch eine Rauhigkeit des Grundkörpers oder der Haftvermittlerschicht, erfolgen.
Diese Wärmedämmschichten dienen der Verlängerung der Lebensdauer von heißgasbeaufschlagten Erzeugnissen, insbesondere Bauteilen in Gasturbinen, wie Schaufeln und Hitzeschilde. Die Wärmedämmschicht besitzt eine geringe Wärmeleitfähigkeit, einen hohen Schmelzpunkt sowie eine chemische Inertheit. Unter einem Lanthanaluminat wird hierbei auch ein Mischoxid, insbesondere mit Perowskitstruktur, verstanden, bei dem das Lanthan teilweise durch ein Substitutelement ersetzt ist. Gegebenenfalls ist es hierbei möglich, daß das Aluminium durch ein weiteres Substitutelement zumindest teilweise ersetzt ist. Für das betreffende Lanthanaluminat läßt sich eine chemische Strukturformel der Art La1-xMxAl1-yNyO3 angeben. M steht hierbei für ein Substituts-Element, welches vorzugsweise aus der Gruppe der Lanthaniden (seltene Erden) stammt. N steht z.B. für Chrom. Weiter bevorzugt ist das Substitutelement hierbei Gadolinium (Gd). Der Substitutsfaktor X kann hierbei bis zu 0,8 betragen und liegt vorzugsweise im Bereich von etwa 0,5. Im Bereich von 0,5 weist die Wärmeleitfähigkeit eines solchen Lanthanaluminats ein Minimum auf, so daß die Wärmedämmschicht hiermit eine besonders geringe Wärmeleitfähigkeit besitzt. Der Substitutsfaktor y liegt vorzugsweise im Bereich von 0.
Zusätzlich oder alternativ weist das metallische Mischoxidsystem Kalziumzirkonat, vorzugsweise in einer Perowskitstruktur, auf, wobei das Kalzium teilweise durch zumindest ein Subtitutelement, insbesondere Strontium (Sr) oder Barium (Ba) ersetzt ist. Für ein solches Kalziumzirkonat läßt sich ein chemische Strukturformel der Art Ca1-xSrxZr1-yMyO3 angeben. Der Substitutsfaktor X ist hierbei größer als Null bis 1, insbesondere größer als 0,2, und kleiner als 0,8, und liegt vorzugsweise im Bereich von 0,5. In diesem Bereich hat ein solches Kalziumzirkonat ebenfalls ein Minimum der Wärmeleitfahigkeit, so daß hierdurch auch die Wärmeleitfähigkeit der Wärmedämmschicht besonders gering ist. Es ist ebenfalls möglich, ein Mischoxidsystem mit Bariumzirkonat oder Strontiumzirkonat zu verwenden. (Ba1-xXxZr1-yMyO3, Sr1-xXxZr1-yMyO3), mit X; Ca, Sr bzw. Ba. M kann hierbei für Ti oder Hf stehen.
Im folgenden werden die Lanthanaluminate sowie die Kalzium-, Strontium oder Bariumzirkonat-Mischkristalle als ternäres Oxid bzw. pseudoternäres Oxid bezeichnet.
Ein ternäres Oxid bezeichnet hierbei ein Oxid, bei dem Sauerstoff (Anionen) mit zwei weiteren Elementen (Kationen) verbunden ist. Unter einem pseudoternären Oxid wird eine Substanz verstanden, die an sich Atome von mehr als zwei verschiedenen chemischen Elementen (Kationen) aufweist. Hierbei gehören diese Atome (Kationen) aber nur zu zwei unterschiedlichen Elementgruppen, wobei die Atome der einzelnen Elemente in jeweils einer der drei unterschiedlichen Elementgruppen in kristallographischer Hinsicht gleich wirkend sind.
Vorzugsweise basiert das ternäre Oxid auf Elementen, die Materialien der Stoffgruppe Perowskite bilden, wobei eine entsprechende Mischkristallbildung und Mikrostrukturmodifikation ermöglicht ist. Hierbei können die beiden unterschiedlichen valenzbedingten Formen der Perowskite, nämlich Perowskit A (A2+B4+O3) und Perowskit B (A3+B3+O3), auftreten. Beschichtungswerkstoffe mit einer Perowskitstruktur haben die allgemeine chemische Strukturformel ABO3. Hierbei sind die Ionen, welche durch den Platzhalter A gekennzeichnet sind, gegenüber den Ionen, die durch den Platzhalter B bezeichnet sind, kleiner. Die Perowskitstruktur weist vier Atome in einer Elementarzelle auf. Die Perowskitstruktur läßt sich dadurch charakterisieren, daß die größeren B-Ionen und die O-Ionen zusammen eine kubisch dichteste Kugelpackung bilden, in der 1/4 der oktaedrischen Lücken mit A-Ionen besetzt sind. Die B-Ionen werden von jeweils 12 O-Ionen in Form eines Kubo-Oktaeders koordiniert, den O-Ionen sind jeweils vier B-Ionen und zwei A-Ionen benachbart.
Das ternäre Oxid ist vorzugsweise Lanthanaluminat (LaAlO3) oder Kalziumzirkonat (CaZrO3). Diese ternären Oxide haben eine geringe Sinterneigung, eine hohe Wärmeleitfähigkeit und einen hohen thermischen Ausdehnungskoeffizienten. Darüber hinaus verfügen sie über eine hohe Phasenstabilität und einen hohen Schmelzpunkt.
Der thermische Ausdehnungskoeffizient des ternären Oxides liegt vorzugsweise zwischen 7 x 10-6/K und 17 x 10-6/K. Die Wärmeleitfähigkeit liegt vorzugsweise zwischen 1,0 und 4,0 W/mK. Die angegebenen Wertebereiche für Ausdehnungskoeffizient und Wärmeleitfähigkeit gelten für Körper 2us einem ternaren porenfreien Werkstoff. Durch gezielt eingebrachte Porositäten kann die Wärmeleitfähigkeit weiter verringert werden. Die Schmelztemperatur beträgt hierbei deutlich mehr als 1750 °C.
Kalziumzirkonat (CaZrO3) hat einen Ausdehnungskoeffizienten bei einer Temperatur zwischen 500 und 1500 °C von 15 x 10-6/K und eine Wärmeleitfähigkeit von ca. 1,7 W/mK. Lanthanaluminat (LaAlO3) hat einen thermischen Ausdehnungskoeffizienten von etwa 10 x 10-6/K bei einer Temperatur im Bereich von ca. 500 bis 1500 °C. Die Wärmeleitfähigkeit liegt bei etwa 4,0 W/mK. Lanthanaluminat sowie Kalziumzirkonat lassen sich als Perowskit durch konventionelle Methoden, wie beispielsweise die sogenannte Mixed-Oxide-Methode synthetisieren. Bereits nach etwa 3 Stunden Reaktionsglühen (1400 °C bei CaZrO3; 1700 °C bei LaAlO3) an Luft liegt das ternäre Oxid im wesentlichen phasenrein vor. Durch eine vollständige Umsetzung des bei der Herstellung eingesetzten Lanthanoxides (La2O3) wird sicher eine Zweiphasigkeit vermieden. Kalziumzirkonat eignet sich insbesondere durch seine leichte Herstellbarkeit, seine gunstigen Phasen bzw. eine variable Kristallchemie, d.h. insbesondere einen Austausch von Zirkon durch Titan und Hafnium aus. Darüber hinaus ist es spritzfähig. Lanthanaluminat hat eine geringe Sinterneigung sowie gunstige Haftbedingungen, die insbesondere durch das Aluminium hervorgerufen werden.
Das Mischoxidsystem kann ein weiteres Oxid aufweisen, wobei die keramische Wärmedämmschicht, die eine höhere Oberflächentemperatur und eine höhere Einsatzdauer als eine Wärmedämmschicht aus Zirkonoxid zuläßt. Das weitere Oxid kann Calciumoxid (CaO) oder Zirkonoxid (ZrO2) oder eine Mischung daraus sein, insbesondere dann, wenn das ternäre Oxid Kalziumzirkonat ist.
Weiterhin kann das ternäre Oxid als zusätzliches Oxid Magnesiumoxid (MgO) oder Strontiumoxid (SrO) aufweisen. Es ist ebenfalls möglich, daß das ternäre Oxid als Oxid Yttriumoxid (Y2O3), Scandiumoxid (Sc2O3) oder ein Oxid der Seltenen Erden sowie eine Mischung aus diesen Oxiden aufweist.
Das Lanthanaluminat kann als weiteres Oxid Aluminiumoxid zusammen mit Zirkonoxid und gegebenenfalls weiterhin mit Yttriumoxid aufweisen. Alternativ kann das Mischoxidsystem mit dem ternären Oxid zusätzlich Hafniumoxid (HfO2) und/oder Magnesiumoxid (MgO) aufweisen.
Die Haftvermittlerschicht ist vorzugsweise eine Legierung umfassend eines der Elemente des metallischen Mischoxidsystems, insbesondere ternären Oxids, beispielsweise Lanthan, Zirkon, Aluminium oder andere. Als Haftvermittlungsschicht eignet sich insbesondere bei Verwendung eines Grundkörpers aus einer Nickelbasis-Kobaltbasis, oder Chrombasis-Superlegierung eine Legierung der Art MrCrAlY. Hierbei steht M für eines der Elemente oder mehrere Elemente der Gruppe umfassend Eisen, Kobalt oder Nickel, Cr für Chrom und Al für Aluminium. Y steht für Yttrium, Cer, Scandium oder ein Element der Gruppe IIIb des Periodensystems sowie der Aktiniden oder Lanthaniden. Die MCrAlY-Legierung kann weitere Elemente, z.B. Rhenium, aufweisen.
Das Erzeugnis ist vorzugsweise ein Bauteil einer thermischen Maschine, insbesondere einer Gasturbine. Es kann eine Turbinenlaufschaufel, eine Turbinenleitschaufel oder ein Hitzeschild einer Brennkammer sein. Mit einer erfindungsgemäßen Wärmedämmschicht ist insbesondere bei Gasturbinenschaufeln bei Vollastbetrieb der Gasturbine auch bei einer Betriebstemperatur von 1250 °C an der Oberfläche der Wärmedämmschicht eine Standzeit größer als die konventioneller Wärmedämmschichten aus Zirkonoxid erreichbar. Ein ternäres Oxid, insbesondere als Perowskit, erfährt keine Phasenumwandlung bei der Betriebstemperatur der Gastemperatur, die über 1250 °C, insbesondere bis etwa 1400 °C betragen kann.
Vorzugsweise erfolgt die Aufbringung der Wärmedämmschicht durch atmosphärisches Plasmaspritzen, insbesondere mit einer vorgebbaren Porosität. Es ist ebenfalls möglich, das metallische Mischoxidsystem mittels eines geeigneten Aufdampfverfahrens, eines geeigneten PVD-Verfahrens (Physical Vapour Deposition), insbesondere eines reaktiven PVD-Verfahrens, aufzubringen. Bei Aufbringen der Wärmedämmschicht mittels eines Aufdampfverfahrens, z.B. eines Elektronenstrahl-PVD-Verfahrens, wird, falls erforderlich, auch eine Stengelstruktur erreicht. Bei einem reaktiven PVD-Verfahren erfolgt eine Reaktion, insbesondere eine Umwandlung, der einzelnen Bestandteile eines ternären Oxides oder eines pseudoternären Oxides, erst während des Beschichtungsprozesses, insbesondere unmittelbar beim Auftreffen auf das Erzeugnis. Bei einem nicht reaktiven Aufdampfverfahren werden die bereits vorreagierten Produkte, insbesondere die ternären Oxide mit Perowskitstruktur, verdampft und scheiden sich wieder aus dem Dampf auf dem Erzeugnis ab. Die Verwendung vorreagierter Produkte ist insbesondere bei Anwendung eines Plasmaspritz-Verfahrens besonders vorteilhaft.
Anhand der in der Zeichnung dargestellten Ausführungsbeispiele wird das Erzeugnis mit der Wärmedämmschicht näher erläutert. Es zeigen:
FIG 1
Eine perspektivische Darstellung einer Gasturbinenlaufschaufel,
FIG 2, 3
jeweils einen Ausschnitt eines Querschnitts durch die Turbinenschaufel analog Figur 1,
FIG 4
eine Darstellung des Phasendiagramms von Lanthanaluminat bei Zusatz von Lanthanoxid und Aluminiumoxid, und
FIG 5
das Phasendiagramm für Kalziumzirkonat bei Zusatz von Zirkonoxid und Kalziumoxid.
Die in Figur 1 dargestellte Gasturbinenlaufschaufel 3 weist einen metallischen Grundkörper 1 aus einer Nickelbasis-Kobaltbasis, oder Chrombasis-Superlegierung auf. Zwischen einem Schaufelfuß 10 und einem Dichtband 8 erstreckt sich ein beschichtetes Schaufelblatt 9. Auf den Grundkörper 1 ist gemäß Figur 2 eine Haftvermittlerschicht 2 aufgebracht. Die Haftvermittlerschicht 2 kann eine Legierung der Art MCrAlY sein umfassend Chrom, Aluminium, Yttrium, Lanthan und/oder Zirkon sowie einen Rest aus einem Element oder mehreren Elementen aus der Gruppe umfassend Eisen, Kobalt und Nickel. Auf der Haftvermittlungsschicht 2 ist eine Wärmedämmschicht 4 mit einem metallischen Mischoxidsystem aufgebracht. Das Mischoxidsystem weist hierbei vorzugsweise Lanthanaluminat (LaAlO3) auf, wobei das Lanthan teilweise durch z.B. Gadolinum ersetzt sein kann. Das Mischoxidsystem kann auch alternativ Kalziumzirkonat mit einer Teilsubstituierung des Kalziums durch Strontium (Ca1-XSrXZr2O3) aufweisen. Dem ternären Oxid (LaAlO3, Ca1-XSrXZrO3) vorzugsweise ein weiteres Oxid, wie Aluminiumoxid oder Zirkonoxid, beigemischt. Zwischen der Haftvermittlungsschicht 2 und der Wärmedämmschicht 4 ist die Oxidschicht 5 mit dem Anbindungsoxid gebildet. Das Anbindungsoxid entsteht vorzugsweise durch eine Oxidation der Haftvermittlungsschicht 2, welches bei Vorhandensein von Lanthan zu einem Anteil von Lanthanoxid, bei Zirkon zu einem Anteil von Zirkonoxid etc. führt. Durch die Oxidschicht 5 erfolgt eine gute Anbindung der Wärmedämmschicht 4 über die Haftvermittlungsschicht 2 an den metallischen Grundkörper 1. An einer äußeren Oberfläche 6 der Wärmedämmschicht 4 strömt bei einem Einsatz der Gasturbinenlaufschaufel 1 in einer nicht näher dargestellten Gasturbine ein heißes aggressives Gas 7 vorbei, welches durch die keramische Wärmedämmschicht 4 und die Haftvermittlungsschicht 2 wirksam von dem metallischen Grundkörper 1 ferngehalten wird. Hierdurch wird selbst bei wechselnden thermischen Belastungen der Gasturbinenschaufeln eine hohe Standzeit erreicht.
In Figur 3 ist ein Schichtsystem analog zu Figur 2 dargestellt, bei dem auf den Grundkörper 1 eine Haftvermittlerschicht 2 und darauf die Wärmedämmschicht 4 aufgebracht ist. Die Haftvermittlerschicht 2 weist hierbei eine so rauhe Oberfläche auf, daß die Wärmedämmschicht 4 im wesentlichen ohne eine chemische Anbindung durch eine mechanische Verklammerung an die Haftvermittlerschicht 2 und damit an den Grundkörper 1 angebunden ist. Eine solche Rauhigkeit einer Oberfläche 11 der Haftvermittlerschicht 2 kann bereits durch das Aufbringen der Haftvermittlerschicht 2, beispielsweise durch Vakuumspritzen (Plasma-Spritzen), erfolgen. Insbesondere beim Plasmaspritzen werden auf das Erzeugnis bereits vorreagierte Produkte (z.B. La1-xGdxAlO3 oder Ca1-xSrxZrO3) aufgebracht. Das heißt, die Produkte werden in einem Arbeitsschritt vor der eigentlichen Beschichtung hergestellt und dann im wesentlichen ohne weitere chemische. Reaktionen und Umwandlungen auf das Erzeugnis 3 aufgebracht. Eine unmittelbare Anbringung der Wärmedämmschicht 4 an den metallischen Grundkörper 1 kann hierbei auch durch eine entsprechende Rauhigkeit des metallischen Grundkörpers 1 erfolgen. Es ist ebenfalls moglich, zwischen der Haftvermittlerschicht 2 und der Wärmedämmschicht 4 eine zusätzliche Anbindungsschicht beispielsweise mit einem Aluminiumnitrid oder einem Chromnitrid aufzubringen.
Gemäß dem in Figur 4 dargestellten Phasendiagramm von Lanthanaluminat und dem in Figur 5 dargestellten Phasendiagramm von Calciumzirkonat ist erkennbar, daß bei geeigneter Wahl der Zusätze an Oxiden eine Schmelztemperatur von deutlich oberhalb 1750 °C sowie eine hohe Phasenstabilitat ohne Phasenübergang bei Betriebstemperaturen von über 1250 °C gegeben ist.

Claims (14)

  1. Erzeugnis (3), welches einem heißen aggressiven Gas aussetzbar ist, mit einem metallischen Grundkörper (1), auf den eine keramische Wärmedämmschicht (4) aufgebracht ist, die ein metallisches Mischoxidsystem umfassend ein Lanthanaluminat aufweist.
  2. Erzeugnis (3) nach Anspruch 1, bei dem das Lanthan in dem Lanthanaluminat teilweise durch zumindest ein Substitutelement ersetzt ist.
  3. Erzeugnis (3) nach Anspruch 2, bei dem das zumindest eine Substitutelement aus der Gruppe der Lanthanide stammt, insbesondere Gadolinium (Gd) ist.
  4. Erzeugnis (3), welches einem heißen aggressiven Gas aussetzbar ist, mit einem metallischen Grundkörper (1), auf den eine keramische Wärmedämmschicht (4) aufgebracht ist, die ein metallisches Mischoxidsystem aufweist, umfassend ein Kalziumzirkonat, in dem Kalzium teilweise durch zumindest. ein Element, insbesondere Strontium (Sr), ersetzt ist.
  5. Erzeugnis (3) nach einem der vorhergehenden Ansprüche, bei dem das Substitutelement bis 0,8, vorzugsweise 0,5, des Lanthans bzw. des Kalziums ersetzt.
  6. Erzeugnis (3) nach einem der vorhergehenden Ansprüche, bei dem das metallische Mischoxidsystem ein weiteres Oxid aufweist.
  7. Erzeugnis (3) nach einem der vorhergehenden Ansprüche, bei dem zwischen Grundkörper (1) und Wärmedämmschicht (4) eine ein Anbindungsoxid bildende Haftvermittlerschicht (2) angeordnet ist.
  8. Erzeugnis (3) nach einem der vorhergehenden Anspruche, bei dem die Haftvermittlerschicht (2) eine Legierung umfassend eines der Elemente des metallischen Mischoxidsystems ist.
  9. Erzeugnis (3) nach einem der vorhergehenden Ansprüche, bei dem der metallische Grundkörper (4) eine Superlegierung auf Basis von Nickel, Kobalt und/oder Chrom aufweist.
  10. Erzeugnis (3) nach einem der vorhergehenden Anspruche, gekennzeichnet durch eine Ausgestaltung als Bauteil einer thermischen Maschine, insbesondere einer Gasturbine.
  11. Erzeugnis (3) nach Anspruch 10, gekennzeichnet, durch eine Ausgestaltung als Turbinenlaufschaufel, Turbinenleitschaufel oder Hitzeschild eine Brennkammer.
  12. Erzeugnis (3) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der thermische Ausdehnungskoeffizient α des ternären Oxides zwischen 7*10-6/K und 17*10-6/K beträgt.
  13. Erzeugnis (3) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Wärmeleitfähigkeit des ternären Oxides zwischen 1,0 W/mK und 4,0 W/mK beträgt.
  14. Verfahren zur Herstellung eine Wärmedämmschicht auf einem Erzeugnis mit einem metallischen Grundkörper, wobei mittels Plasmaspritzens oder einem Aufdampfverfahren ein vorreagiertes metallisches Mischoxidsystem umfassend ein Lanthanaluminat und/oder ein Kalziumzirkonat, in dem Kalzium teilweise durch zumindest ein Element, insbesondere Strontium (Sr), ersetzt ist, aufgebracht wird.
EP98961067A 1997-11-03 1998-11-03 Erzeugnis, insbesondere bauteil einer gasturbine, mit keramischer wärmedämmschicht, und verfahren zu dessen herstellung Expired - Lifetime EP1029101B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19748508 1997-11-03
DE19748508 1997-11-03
PCT/DE1998/003205 WO1999023271A1 (de) 1997-11-03 1998-11-03 Erzeugnis, insbesondere bauteil einer gasturbine, mit keramischer wärmedämmschicht

Publications (2)

Publication Number Publication Date
EP1029101A1 EP1029101A1 (de) 2000-08-23
EP1029101B1 true EP1029101B1 (de) 2001-09-12

Family

ID=7847454

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98961067A Expired - Lifetime EP1029101B1 (de) 1997-11-03 1998-11-03 Erzeugnis, insbesondere bauteil einer gasturbine, mit keramischer wärmedämmschicht, und verfahren zu dessen herstellung

Country Status (6)

Country Link
US (2) US6440575B1 (de)
EP (1) EP1029101B1 (de)
JP (1) JP2001521988A (de)
DE (1) DE59801471D1 (de)
RU (1) RU2218447C2 (de)
WO (1) WO1999023271A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004025798A1 (de) * 2004-05-26 2005-12-22 Mtu Aero Engines Gmbh Wärmedämmschichtsystem
DE102015205807A1 (de) * 2015-03-31 2016-10-06 Siemens Aktiengesellschaft Beschichtungssystem für Gasturbinen

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365281B1 (en) * 1999-09-24 2002-04-02 Siemens Westinghouse Power Corporation Thermal barrier coatings for turbine components
EP1143030A1 (de) 2000-04-03 2001-10-10 ABB Alstom Power N.V. Werkstoff für Turbinenschaufelspitze und dessen Herstellungs-oder Reparierungsverfahren
JP3955724B2 (ja) * 2000-10-12 2007-08-08 株式会社ルネサステクノロジ 半導体集積回路装置の製造方法
US7001859B2 (en) * 2001-01-22 2006-02-21 Ohio Aerospace Institute Low conductivity and sintering-resistant thermal barrier coatings
US6812176B1 (en) 2001-01-22 2004-11-02 Ohio Aerospace Institute Low conductivity and sintering-resistant thermal barrier coatings
US6846574B2 (en) * 2001-05-16 2005-01-25 Siemens Westinghouse Power Corporation Honeycomb structure thermal barrier coating
JP2003073794A (ja) * 2001-06-18 2003-03-12 Shin Etsu Chem Co Ltd 耐熱性被覆部材
US6887588B2 (en) * 2001-09-21 2005-05-03 General Electric Company Article protected by thermal barrier coating having a sintering inhibitor, and its fabrication
US6821641B2 (en) * 2001-10-22 2004-11-23 General Electric Company Article protected by thermal barrier coating having a sintering inhibitor, and its fabrication
DE10200803A1 (de) * 2002-01-11 2003-07-31 Forschungszentrum Juelich Gmbh Herstellung eines keramischen Werkstoffes für eine Wärmedämmschicht sowie eine den Werkstoff enthaltene Wärmedämmschicht
EP1464721A3 (de) * 2002-04-10 2004-11-24 Siemens Aktiengesellschaft Wärmedämmschichtsystem
DE10226295A1 (de) * 2002-06-13 2004-01-08 Forschungszentrum Jülich GmbH Wärmedämmschicht aus einem komplexen Perowskit
JP4481027B2 (ja) * 2003-02-17 2010-06-16 財団法人ファインセラミックスセンター 遮熱コーティング部材およびその製造方法
DE10334698A1 (de) * 2003-07-25 2005-02-10 Rolls-Royce Deutschland Ltd & Co Kg Deckbandsegment für eine Strömungsmaschine
US20060177676A1 (en) * 2003-08-13 2006-08-10 Ulrich Bast Heat-insulation material and arrangement of a heat-insulation layer containing said heat-insulation material
US20060177665A1 (en) * 2003-08-13 2006-08-10 Siemens Aktiengesellschaft Arrangement of at least one heat-insulation layer on a carrier body
US6969555B2 (en) * 2003-10-06 2005-11-29 General Electric Company Aluminate coating for a silicon containing substrate
US20050129869A1 (en) * 2003-12-12 2005-06-16 General Electric Company Article protected by a thermal barrier coating having a group 2 or 3/group 5 stabilization-composition-enriched surface
EP1657536A1 (de) * 2004-11-05 2006-05-17 Siemens Aktiengesellschaft Anordnung mit mindestens einer Lumineszenz-Wärmedämmschicht auf einem Trägerkörper
JP2007052100A (ja) * 2005-08-16 2007-03-01 Konica Minolta Opto Inc 光学反射部材
US7504157B2 (en) * 2005-11-02 2009-03-17 H.C. Starck Gmbh Strontium titanium oxides and abradable coatings made therefrom
US7662489B2 (en) * 2006-01-20 2010-02-16 United Technologies Corporation Durable reactive thermal barrier coatings
FR2897748B1 (fr) * 2006-02-20 2008-05-16 Snecma Services Sa Procede de depot de barriere thermique par torche plasma
RU2414603C2 (ru) 2006-06-08 2011-03-20 Сименс Акциенгезелльшафт Турбинный компонент (варианты), турбина и способ покрытия турбинного компонента
DE102006040360A1 (de) 2006-08-29 2008-03-06 FNE Forschungsinstitut für Nichteisen-Metalle Freiberg GmbH Wärmedämmstoff mit hoher zyklischer Temperaturbelastbarkeit
JP5100313B2 (ja) * 2007-10-31 2012-12-19 株式会社東芝 酸化ランタン化合物の製造方法
EP2128299B1 (de) * 2008-05-29 2016-12-28 General Electric Technology GmbH Mehrlagige Wärmedämmschicht
EP2196559A1 (de) 2008-12-15 2010-06-16 ALSTOM Technology Ltd Wärmesperrenbeschichtungssystem, damit beschichtete Komponenten und Verfahren zum Auftragen eines Wärmesperrenbeschichtungssystems auf Komponenten
US20110110790A1 (en) * 2009-11-10 2011-05-12 General Electric Company Heat shield
US20150274981A1 (en) * 2010-09-22 2015-10-01 Skyworks Solutions, Inc. Dual function lanthanide coatings
US9347126B2 (en) 2012-01-20 2016-05-24 General Electric Company Process of fabricating thermal barrier coatings
DE102012101032A1 (de) * 2012-02-08 2013-08-08 Eads Deutschland Gmbh Kreiskolbenmotor und Verfahren zum Herstellen eines Kreiskolbenmotors
US10260141B2 (en) 2013-10-09 2019-04-16 United Technologies Corporation Method of forming a thermal barrier coating with improved adhesion
US10676403B2 (en) 2014-01-16 2020-06-09 Honeywell International Inc. Protective coating systems for gas turbine engine applications and methods for fabricating the same
RU2662003C2 (ru) 2014-02-25 2018-07-23 Сименс Акциенгезелльшафт Компонент газовой турбины, газотурбинный двигатель, способ изготовления компонента газотурбинного двигателя
WO2016133582A1 (en) 2015-02-18 2016-08-25 Siemens Aktiengesellschaft Turbine shroud with abradable layer having dimpled forward zone
US9151175B2 (en) 2014-02-25 2015-10-06 Siemens Aktiengesellschaft Turbine abradable layer with progressive wear zone multi level ridge arrays
US8939706B1 (en) 2014-02-25 2015-01-27 Siemens Energy, Inc. Turbine abradable layer with progressive wear zone having a frangible or pixelated nib surface
US9243511B2 (en) 2014-02-25 2016-01-26 Siemens Aktiengesellschaft Turbine abradable layer with zig zag groove pattern
RU2591024C2 (ru) * 2014-05-05 2016-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Способ обработки рабочих поверхностей деталей газотурбинных установок
RU2588973C2 (ru) * 2014-05-06 2016-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Способ обработки рабочих поверхностей деталей лопастных машин
RU2588956C2 (ru) * 2014-05-06 2016-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Способ обработки рабочих поверхностей газотурбинных установок
CN106457456A (zh) * 2014-06-17 2017-02-22 韩国能源技术研究院 薄板粘结方法和薄板组件
US10408079B2 (en) 2015-02-18 2019-09-10 Siemens Aktiengesellschaft Forming cooling passages in thermal barrier coated, combustion turbine superalloy components
WO2016172144A1 (en) 2015-04-23 2016-10-27 University Of Florida Research Foundation, Inc. Method for the generation of power
CN107868924B (zh) * 2016-09-23 2018-10-09 北京华石联合能源科技发展有限公司 一种热障涂层及包含其的超高温悬浮床加氢冷壁反应器
EP3470680A1 (de) * 2017-10-16 2019-04-17 OneSubsea IP UK Limited Erosionsbeständige schaufeln für kompressoren
WO2020098967A1 (en) * 2018-11-13 2020-05-22 Oerlikon Surface Solutions Ag, Pfäffikon Coated article exhibiting high corrosion and erosion resistance including ain-layer
EP4017923A4 (de) * 2019-09-06 2023-06-14 The University of Connecticut Wärmedämmschichten für verbrennungsmotoren
US11686208B2 (en) 2020-02-06 2023-06-27 Rolls-Royce Corporation Abrasive coating for high-temperature mechanical systems
US11415004B2 (en) 2020-12-09 2022-08-16 Honeywell International Inc. Corrosion and oxidation resistant coatings for gas turbine engines, and methods for producing the same
CN113214739A (zh) * 2021-06-22 2021-08-06 哈尔滨工业大学 一种掺杂二价金属锆盐的耐高温有机硅涂层及其制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393134A (en) 1977-01-27 1978-08-15 Mitsubishi Heavy Ind Ltd Heattproof acidification resistance metal portion material
US4339509A (en) 1979-05-29 1982-07-13 Howmet Turbine Components Corporation Superalloy coating composition with oxidation and/or sulfidation resistance
US4321310A (en) 1980-01-07 1982-03-23 United Technologies Corporation Columnar grain ceramic thermal barrier coatings on polished substrates
US4585481A (en) 1981-08-05 1986-04-29 United Technologies Corporation Overlays coating for superalloys
DE3539029A1 (de) * 1985-11-02 1987-05-07 Bbc Brown Boveri & Cie Hochtemperatur-schutzschicht und verfahren zu ihrer herstellung
DE3543802A1 (de) 1985-12-12 1987-06-19 Bbc Brown Boveri & Cie Hochtemperatur-schutzschicht und verfahren zu ihrer herstellung
US4764341A (en) 1987-04-27 1988-08-16 International Business Machines Corporation Bonding of pure metal films to ceramics
DE3926479A1 (de) 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
EP0486489B1 (de) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile
JPH03226553A (ja) * 1990-01-31 1991-10-07 Nippon Steel Corp 高耐用性を有する交流プラズマトーチ
US5077140A (en) 1990-04-17 1991-12-31 General Electric Company Coating systems for titanium oxidation protection
JP2747087B2 (ja) * 1990-05-31 1998-05-06 新日本製鐵株式会社 溶射被覆用材料及び溶射被覆耐熱部材
US5082741A (en) * 1990-07-02 1992-01-21 Tocalo Co., Ltd. Thermal spray material and thermal sprayed member using the same
US5032557A (en) * 1990-07-02 1991-07-16 Tocalo Co., Ltd. Thermal spray material and and thermal sprayed member using the same
US5401307A (en) 1990-08-10 1995-03-28 Siemens Aktiengesellschaft High temperature-resistant corrosion protection coating on a component, in particular a gas turbine component
JPH04231452A (ja) * 1990-12-28 1992-08-20 Nippon Steel Corp 溶射被覆材料および溶射被覆耐熱部材
JPH04231451A (ja) * 1990-12-28 1992-08-20 Nippon Steel Corp 溶射被覆用材料及び溶射被覆耐熱部材
US5236787A (en) 1991-07-29 1993-08-17 Caterpillar Inc. Thermal barrier coating for metallic components
JP2697469B2 (ja) * 1992-04-03 1998-01-14 株式会社日立製作所 ガスタービン動翼,静翼と燃焼器ライナ及び製造法
US5466280A (en) 1994-02-24 1995-11-14 Lee; Chwen-Chern Inorganic coating composition having high-heat-resisting, anti-rusting and anti-corrosive properties
US5512382A (en) 1995-05-08 1996-04-30 Alliedsignal Inc. Porous thermal barrier coating
US6258467B1 (en) * 2000-08-17 2001-07-10 Siemens Westinghouse Power Corporation Thermal barrier coating having high phase stability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004025798A1 (de) * 2004-05-26 2005-12-22 Mtu Aero Engines Gmbh Wärmedämmschichtsystem
DE102015205807A1 (de) * 2015-03-31 2016-10-06 Siemens Aktiengesellschaft Beschichtungssystem für Gasturbinen

Also Published As

Publication number Publication date
EP1029101A1 (de) 2000-08-23
JP2001521988A (ja) 2001-11-13
RU2218447C2 (ru) 2003-12-10
WO1999023271A1 (de) 1999-05-14
DE59801471D1 (de) 2001-10-18
US6440575B1 (en) 2002-08-27
US20020164430A1 (en) 2002-11-07
US6602553B2 (en) 2003-08-05

Similar Documents

Publication Publication Date Title
EP1029101B1 (de) Erzeugnis, insbesondere bauteil einer gasturbine, mit keramischer wärmedämmschicht, und verfahren zu dessen herstellung
EP0944746B1 (de) Erzeugnis, welches einem heissen gas aussetzbar ist, mit einer wärmedämmschicht sowie verfahren zur herstellung
EP1029115B1 (de) Erzeugnis, insbesondere bauteil einer gasturbine, mit keramischer wärmedämmschicht
DE60103904T2 (de) Wärmedämmschicht mit hoher phasenstabilität
EP1386017B1 (de) WÄRMEDÄMMSCHICHT AUF BASIS VON La2 Zr2 O7 FÜR HOHE TEMPERATUREN
DE10056617C2 (de) Werkstoff für temperaturbelastete Substrate
EP1673490B1 (de) Bauteil mit einer schutzschicht zum schutz des bauteils gegen korrosion und oxidation bei hohen temperaturen
DE60021722T2 (de) Wärmedämmschicht
EP1373685B1 (de) Gasturbinenschaufel
EP1859195B1 (de) Wärmedämmstoff sowie herstellungsverfahren und verwendung
EP3472366B1 (de) Selbst heilende wärmedämmschichten sowie verfahren zur herstellung derselben
EP1498504B1 (de) Aluminiumbasierte multinäre Legierungen und deren Verwendung als wärme- und korrosionsschützende Beschichtungen
EP3426815B1 (de) Haftvermittlerschicht zur anbindung einer hochtemperaturschutzschicht auf einem substrat, sowie verfahren zur herstellung derselben
EP1463845B1 (de) Herstellung eines keramischen werkstoffes für eine wärmedämmschicht sowie eine den werkstoff enthaltende wärmedämmschicht
EP0937786B1 (de) Wärmedämmschichtsystem mit integrierter Aluminiumoxidschicht
DE19801424B4 (de) Wärmedämmstoff für hohe Temperaturen und seine Verwendung
DE10158639A1 (de) Wärmedämmschicht auf Basis von La2Zr2O7 für hohe Temperaturen
DE4028173A1 (de) Keramikmaterial und daraus hergestellter isolierueberzug
DE69821480T2 (de) Wärmedämmendes Beschichtungssystem
EP2025653B1 (de) Wärmedämmstoff, sowie Verwendung desselben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000511

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG

Owner name: SIEMENS AKTIENGESELLSCHAFT

RTI1 Title (correction)

Free format text: PRODUCT, ESPECIALLY A GAS TURBINE COMPONENT, WITH A CERAMIC HEAT INSULATING LAYER, AND PROCESS FOR MAKING THE SAME

17Q First examination report despatched

Effective date: 20010301

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 59801471

Country of ref document: DE

Date of ref document: 20011018

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011201

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091125

Year of fee payment: 12

Ref country code: CH

Payment date: 20100209

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161128

Year of fee payment: 19

Ref country code: DE

Payment date: 20161123

Year of fee payment: 19

Ref country code: FR

Payment date: 20161123

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59801471

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171103