EP1029101B1 - Produit, en particulier composant d'une turbine a gaz, a couche thermo-isolante en ceramique, et procede pour obtenir ladit produit - Google Patents

Produit, en particulier composant d'une turbine a gaz, a couche thermo-isolante en ceramique, et procede pour obtenir ladit produit Download PDF

Info

Publication number
EP1029101B1
EP1029101B1 EP98961067A EP98961067A EP1029101B1 EP 1029101 B1 EP1029101 B1 EP 1029101B1 EP 98961067 A EP98961067 A EP 98961067A EP 98961067 A EP98961067 A EP 98961067A EP 1029101 B1 EP1029101 B1 EP 1029101B1
Authority
EP
European Patent Office
Prior art keywords
product
oxide
base body
calcium
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98961067A
Other languages
German (de)
English (en)
Other versions
EP1029101A1 (fr
Inventor
Beate Heimberg
Wolfram Beele
Karl Kempter
Ulrich Bast
Thomas Haubold
Michael Hoffmann
Axel Endriss
Peter Greil
Chu-Wan Hong
Fritz Aldinger
Hans-J. Seifert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Siemens AG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG, Siemens AG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP1029101A1 publication Critical patent/EP1029101A1/fr
Application granted granted Critical
Publication of EP1029101B1 publication Critical patent/EP1029101B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Definitions

  • the invention relates to a product which a hot, can be exposed to aggressive gas, with a metallic base body, which is a bonding agent layer forming a bonding oxide carries and has a ceramic thermal barrier coating.
  • the invention further relates to hot gas components in thermal machines, especially in a gas turbine, to protect against a hot aggressive gas with a Thermal insulation layer are provided.
  • US-PS 4,585,481 is a protective layer to protect a metallic substrate made of a superalloy High temperature oxidation and corrosion specified.
  • This Protective layer has 5 to 40% chromium, 8 to 35% aluminum, 0.1 up to 2% of an oxygen-active element from group IIIb of the periodic table including the lanthanides and actinides and mixtures thereof, 0.1 to 7% silicon, 0.1 to 3% Hafnium and a radical comprising nickel and / or cobalt (The percentages relate to percent by weight).
  • the corresponding protective layers made of MCrAlY alloys are according to US-PS 4,585,481 using a Plasma spraying applied.
  • a gas turbine component is described in US Pat. No. 4,321,310, which is a body made of a nickel-based superalloy MAR-M-200 has.
  • On the base material is a layer of an MCrAlY alloy, in particular one NiCoCrAlY alloy with 18% chromium, 23% cobalt, 12.5% aluminum, 0.3% yttrium and a remainder made of nickel.
  • This layer of the MCrAlY alloy has a polished Surface on which an aluminum oxide layer is applied is.
  • a ceramic thermal barrier coating is on this aluminum oxide layer applied, which has a stem-shaped structure having. Due to this columnar microstructure of the thermal insulation layer the crystallite columns are perpendicular to the surface of the basic body. Stabilized as a ceramic material Zirconia specified.
  • GB 2 286 977 A1 describes a composition for an inorganic Coating described, the coating is applied to a low alloy steel and one Possesses high temperature resistance.
  • the main characteristic of Coating is its corrosion resistance, which is due to integration of iron in the coating is reached.
  • the coating exhibits metal oxides before a chemical reaction on, which at temperatures above 1000 ° C in spinels convert.
  • a high-temperature protective layer comprising a metallic mixed oxide system
  • A is a metal from group IIIb of the periodic table
  • B is a metal from main group II (alkaline earth metals) from the periodic table
  • M is a metal from one of groups VIb, VIIb and VIIIb from the periodic table.
  • the stoichiometric factor X is between 0 and 0.8.
  • the coating is used on a temperature-resistant steel or an alloy for use at temperatures above 600 ° C, especially for a component of a gas turbine.
  • An austenitic material based on nickel, cobalt or iron is preferably used as the base material for the component of the gas turbine.
  • the object of the invention is to provide a product with a metallic Base body and a thermal insulation layer attached to it, especially with a metallic mixed oxide system, specify.
  • the invention is based on the knowledge that previously used ceramic thermal insulation layers despite the use of, for example partially stabilized zirconia a Thermal Have expansion coefficients that only about a maximum of 70% the coefficient of thermal expansion of the used Basic body, in particular made of a super alloy. Due to the smaller compared to the metallic base body thermal expansion coefficient result when applied with a hot gas thermal stresses. To at changing thermal load such resulting stresses counteracting this is a stretch-tolerant microstructure the thermal insulation layer is required, e.g. by Setting an appropriate porosity or a stem-shaped Structure of the thermal insulation layer.
  • thermal barrier coating known from the prior art made of partially stabilized zirconium oxide with stabilizers how yttrium oxide, cerium oxide and lanthanum oxide tensions occur, that from a thermally induced phase transition (tetragonal in monoclinic and cubic) result. Also at an associated change in volume is a maximum permissible Surface temperature for thermal insulation layers made of zirconium oxide given.
  • the object is directed to a product solved in that the ceramic thermal barrier coating is a metallic Mixed oxide system comprising lanthanum aluminate and / or Has calcium zirconate.
  • the thermal barrier coating is immediate or indirectly through an adhesive layer to the Basic body connected.
  • the connection is preferably made over an oxide layer, which e.g. by oxidation of the base body or the adhesion promoter layer is formed.
  • the connection can also or additionally via mechanical clamping, e.g. due to a roughness of the base body or the adhesion promoter layer.
  • thermal insulation layers serve to extend the life of hot gas products, in particular components in gas turbines, such as blades and heat shields.
  • the thermal barrier coating has a low thermal conductivity, a high melting point and chemical inertness.
  • a lanthanum aluminate is also understood to mean a mixed oxide, in particular with a perovskite structure, in which the lanthanum is partially replaced by a substitute element. If necessary, it is possible that the aluminum is at least partially replaced by a further substitute element.
  • a chemical structural formula of the type La 1-x M x Al 1-y N y O 3 can be specified for the lanthanum aluminate in question.
  • M stands for a substitute element, which preferably comes from the group of lanthanides (rare earths).
  • N stands for chrome, for example.
  • the substitute element is more preferably gadolinium (Gd).
  • the substitute factor X can be up to 0.8 and is preferably in the range of about 0.5. In the range of 0.5, the thermal conductivity of such a lanthanum aluminate has a minimum, so that the thermal insulation layer thus has a particularly low thermal conductivity.
  • the substitution factor y is preferably in the range of 0.
  • the metallic mixed oxide system has calcium zirconate, preferably in a perovskite structure, the calcium being partially replaced by at least one subtitle element, in particular strontium (Sr) or barium (Ba).
  • a chemical structural formula of the type Ca 1-x Sr x Zr 1-y MyO 3 can be specified for such a calcium zirconate.
  • the substitute factor X is greater than zero to 1, in particular greater than 0.2, and less than 0.8, and is preferably in the range of 0.5.
  • such a calcium zirconate also has a minimum of thermal conductivity, so that the thermal conductivity of the thermal barrier coating is also particularly low. It is also possible to use a mixed oxide system with barium zirconate or strontium zirconate.
  • Ba 1-x X x Zr 1-y M y O 3 , Sr 1-x X x Zr 1-y MyO 3 can stand for Ti or Hf.
  • the lanthanum aluminates and the calcium, Strontium or barium zirconate mixed crystals as ternary Oxide or pseudo-ternary oxide.
  • a ternary oxide here means an oxide in which oxygen (Anions) are connected to two other elements (cations) is.
  • a pseudoternary oxide is a substance understood that atoms of more than two different atoms has chemical elements (cations). Here but these atoms (cations) only belong to two different ones Element groups, the atoms of each element in each of the three different element groups in crystallographically equivalent.
  • the ternary oxide is preferably based on elements which form materials of the perovskite material group, with appropriate mixed crystal formation and microstructure modification being made possible.
  • the two different forms of perovskites due to valence namely perovskite A (A 2+ B 4+ O 3 ) and perovskite B (A 3+ B 3+ O 3 ), can occur.
  • Coating materials with a perovskite structure have the general chemical structural formula ABO 3 .
  • the ions, which are identified by the placeholder A are smaller than the ions, which are designated by the placeholder B.
  • the perovskite structure has four atoms in a unit cell.
  • the perovskite structure can be characterized by the fact that the larger B ions and the O ions together form a densest cubic sphere packing in which 1/4 of the octahedral gaps are occupied by A ions.
  • the B ions are coordinated by 12 O ions in the form of a cubic octahedron, the O ions are each adjacent to four B ions and two A ions.
  • the ternary oxide is preferably lanthanum aluminate (LaAlO 3 ) or calcium zirconate (CaZrO 3 ). These ternary oxides have a low tendency to sinter, a high thermal conductivity and a high coefficient of thermal expansion. In addition, they have high phase stability and a high melting point.
  • the thermal expansion coefficient of the ternary oxide is preferably between 7 x 10 -6 / K and 17 x 10 -6 / K.
  • the thermal conductivity is preferably between 1.0 and 4.0 W / mK.
  • the specified value ranges for expansion coefficient and thermal conductivity apply to bodies made of a ternary non-porous material.
  • the thermal conductivity can be further reduced by specifically introducing porosities.
  • the melting temperature is significantly more than 1750 ° C.
  • Calcium zirconate (CaZrO 3 ) has an expansion coefficient at a temperature between 500 and 1500 ° C of 15 x 10 -6 / K and a thermal conductivity of approx. 1.7 W / mK.
  • Lanthanum aluminate (LaAlO 3 ) has a thermal expansion coefficient of approximately 10 x 10 -6 / K at a temperature in the range of approximately 500 to 1500 ° C. The thermal conductivity is around 4.0 W / mK.
  • Lanthanum aluminate and calcium zirconate can be synthesized as perovskite by conventional methods such as the so-called mixed oxide method.
  • the ternary oxide is essentially phase-pure.
  • a full implementation of the lanthanum oxide (La 2 O 3 ) used in the production certainly avoids a two-phase process.
  • Calcium zirconate is particularly suitable due to its ease of manufacture, its favorable phases or a variable crystal chemistry, ie in particular an exchange of zirconium by titanium and hafnium. It is also sprayable.
  • Lanthanum aluminate has a low tendency to sinter and favorable adhesive conditions, which are caused in particular by the aluminum.
  • the mixed oxide system can have a further oxide, the ceramic thermal barrier coating permitting a higher surface temperature and a longer service life than a thermal barrier coating made of zirconium oxide.
  • the further oxide can be calcium oxide (CaO) or zirconium oxide (ZrO 2 ) or a mixture thereof, in particular if the ternary oxide is calcium zirconate.
  • the ternary oxide can have magnesium oxide (MgO) or strontium oxide (SrO) as additional oxide. It is also possible for the ternary oxide to have yttrium oxide (Y 2 O 3 ), scandium oxide (Sc 2 O 3 ) or a rare earth oxide as well as a mixture of these oxides.
  • the lanthanum aluminate can have aluminum oxide together with zirconium oxide and optionally also with yttrium oxide.
  • the mixed oxide system with the ternary oxide can additionally have hafnium oxide (HfO 2 ) and / or magnesium oxide (MgO).
  • the adhesion promoter layer is preferably an alloy one of the elements of the metallic mixed oxide system, in particular ternary oxides, for example lanthanum, zircon, Aluminum or other. Suitable as an adhesive layer particularly when using a base body from a Nickel-based cobalt-based, or chrome-based superalloy Alloy type MrCrAlY.
  • M stands for one of the elements or several elements of the group comprising iron, cobalt or nickel, Cr for chrome and Al for aluminum.
  • Y stands for yttrium, cerium, scandium or a group IIIb element the periodic table and the actinides or lanthanides.
  • the MCrAlY alloy can contain other elements, e.g. Rhenium.
  • the product is preferably a component of a thermal Machine, especially a gas turbine. It can be a turbine blade, a turbine vane or heat shield a combustion chamber.
  • a thermal Machine especially a gas turbine. It can be a turbine blade, a turbine vane or heat shield a combustion chamber.
  • an inventive Thermal insulation layer is particularly in the case of gas turbine blades with full load operation of the gas turbine even at an operating temperature of 1250 ° C on the surface of the thermal barrier coating a service life greater than that of conventional thermal insulation layers available from zirconium oxide.
  • a ternary oxide, in particular as a perovskite undergoes no phase change the operating temperature of the gas temperature, which is above 1250 ° C, in particular can be up to about 1400 ° C.
  • the thermal insulation layer is preferably applied by atmospheric plasma spraying, especially with a predeterminable porosity. It is also possible to use the metallic one Mixed oxide system using a suitable vapor deposition process, a suitable PVD process (Physical Vapor Deposition), in particular a reactive PVD method.
  • a suitable vapor deposition process Physical Vapor Deposition
  • a reactive PVD method When applying the thermal barrier coating using a Vapor deposition process, e.g. an electron beam PVD process, if necessary, a stem structure is also achieved.
  • a reactive PVD process there is a reaction in particular a transformation of the individual components a ternary oxide or a pseudoternary oxide, only during the coating process, especially immediately when hitting the product.
  • non-reactive Evaporation processes are the ones that have already been pre-reacted Products, especially the ternary oxides with perovskite structure, evaporates and separate again from the steam on the Product from.
  • pre-reacted products is special especially when using a plasma spraying process advantageous.
  • the gas turbine blade 3 shown in FIG. 1 has a metallic base body 1 made of a nickel-based cobalt base, or chrome-based superalloy.
  • a coated airfoil 9 extends between a blade root 10 and a sealing strip 8.
  • an adhesion promoter layer 2 is applied to the base body 1.
  • the adhesion promoter layer 2 can be an alloy of the MCrAlY type comprising chromium, aluminum, yttrium, lanthanum and / or zircon and a remainder of one or more elements from the group comprising iron, cobalt and nickel.
  • a thermal insulation layer 4 with a metallic mixed oxide system is applied to the adhesive layer 2.
  • the mixed oxide system here preferably has lanthanum aluminate (LaAlO 3 ), it being possible for the lanthanum to be partially replaced by, for example, gadolinum.
  • the mixed oxide system can alternatively have calcium zirconate with partial substitution of calcium by strontium (Ca 1-X Sr X Zr 2 O 3 ).
  • Another oxide, such as aluminum oxide or zirconium oxide, is preferably added to the ternary oxide (LaAlO 3 , Ca 1 -X Sr X ZrO 3 ).
  • the oxide layer 5 with the bonding oxide is formed between the adhesive layer 2 and the thermal barrier layer 4.
  • the bonding oxide is preferably formed by oxidation of the adhesion-promoting layer 2, which leads to a proportion of lanthanum oxide in the presence of lanthanum, to a proportion of zirconium oxide etc. in the case of zirconium.
  • the oxide layer 5 provides a good connection of the thermal insulation layer 4 to the metallic base body 1 via the adhesive layer 2.
  • a hot aggressive gas 7 flows past an outer surface 6 of the thermal insulation layer 4, which gas is effectively kept away from the metallic base body 1 by the ceramic thermal insulation layer 4 and the adhesive layer 2.
  • a hot aggressive gas 7 flows past an outer surface 6 of the thermal insulation layer 4, which gas is effectively kept away from the metallic base body 1 by the ceramic thermal insulation layer 4 and the adhesive layer 2.
  • FIG. 3 shows a layer system analogous to FIG. 2, in which an adhesion promoter layer 2 is applied to the base body 1 and the thermal insulation layer 4 is applied thereon.
  • the adhesion promoter layer 2 has a surface that is so rough that the thermal insulation layer 4 is bonded to the adhesion promoter layer 2 and thus to the base body 1 essentially without chemical bonding by mechanical clipping.
  • Such roughness of a surface 11 of the adhesion promoter layer 2 can already be achieved by applying the adhesion promoter layer 2, for example by vacuum spraying (plasma spraying).
  • plasma spraying in particular, products which have already been prereacted (for example La 1-x Gd x AlO 3 or Ca 1-x Sr x ZrO 3 ) are applied to the product.
  • the thermal insulation layer 4 can also be attached directly to the metallic base body 1 by a corresponding roughness of the metallic base body 1. It is also possible to apply an additional bonding layer, for example with an aluminum nitride or a chromium nitride, between the adhesion promoter layer 2 and the heat insulation layer 4.
  • phase diagram of lanthanum aluminate shown in FIG. 4 and the phase diagram of FIG Calcium zirconate can be seen that with a suitable choice of Additions of oxides have a melting temperature of well above 1750 ° C and a high phase stability without phase transition given at operating temperatures above 1250 ° C is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention concerne un produit (3) destiné à être exposé à des gaz agressifs à haute température (7), en particulier un composant d'un moteur thermique, par exemple, d'une turbine à gaz. Le produit (3) présente un corps de base métallique (1) sur lequel est appliquée une couche thermo-isolante (4). Cette couche thermo-isolante (4) est constituée par un système d'oxydes mixtes de métaux et d'aluminate de lanthane et/ou de zirconate de calcium, dans lequel le calcium est remplacé en partie par un élément substituant, en particulier du strontium.

Claims (14)

  1. Produit (3) qui peut être soumis à un gaz agressif chaud comprenant un corps (1) de base métallique sur lequel est déposée une couche (4) calorifuge en céramique, qui comporte un système métallique d'oxyde mixte comprenant un aluminate de lanthane.
  2. Produit (3) suivant la revendication 1, dans lequel le lanthane de l'aluminate de lanthane est remplacé partiellement par au moins un élément de remplacement.
  3. Produit (3) suivant la revendication 2, dans lequel le au moins un élément de remplacement provient du groupe des lanthanides et est notamment le gadolinium (Gd).
  4. Produit (3) qui peut être soumis à un gaz agressif chaud, comprenant un corps (1) de base métallique sur lequel est déposée une couche (4) calorifuge en céramique, qui comporte un système métallique d'oxyde mixte comprenant un zirconate de calcium, dans lequel le calcium est remplacé en partie par au moins un élément, notamment par du strontium (Sr).
  5. Produit (3) suivant l'une des revendications précédentes, dans lequel l'élément de remplacement remplace jusqu'à 0,8, et de préférence 0,5, du lanthane ou du calcium.
  6. Produit (3) suivant l'une des revendications précédentes, dans lequel le système métallique d'oxyde mixte comporte un oxyde supplémentaire.
  7. Produit (3) suivant l'une des revendications précédentes, dans lequel il est prévu entre le corps (1) de base et la couche (4) calorifuge une couche (2) d'accrochage formant un oxyde de liaison.
  8. Produit (3) suivant l'une des revendications précédentes, dans lequel la couche (2) d'accrochage est un alliage comprenant l'un des éléments du système métallique d'oxyde mixte.
  9. Produit (3) suivant l'une des revendications précédentes, dans lequel le corps (4) de base métallique comporte un superalliage à base de nickel, de cobalt et/ou de chrome.
  10. Produit (3) suivant l'une des revendications précédentes, caractérisé par une conformation en élément d'une machine thermique, notamment d'une turbine à gaz.
  11. Produit (3) suivant la revendication 10, caractérisé par une conformation en aube mobile de turbine, en aube directrice de turbine ou en bouclier thermique d'une chambre de combustion.
  12. Produit (3) suivant l'une des revendications précédentes, caractérisé en ce que le coefficient α de dilatation thermique de l'oxyde ternaire est compris entre 7*10-6/K et 17*10-6/K.
  13. Produit (3) suivant l'une des revendications précédentes, caractérisé en ce que la conductivité calorifique de l'oxyde ternaire est comprise entre 1,0 W/mK et 4,0 W/mK.
  14. Procédé de fabrication d'une couche calorifuge sur un produit comportant un corps de base métallique qui consiste à déposer, au moyen d'une pulvérisation par plasma ou par un procédé de dépôt en phase vapeur, un système métallique d'oxyde mixte ayant préréagi et comprenant un aluminate de lanthane et/ou un zirconate de calcium, dans lequel du calcium est remplacé partiellement par au moins un élément, notamment par du strontium (Sr).
EP98961067A 1997-11-03 1998-11-03 Produit, en particulier composant d'une turbine a gaz, a couche thermo-isolante en ceramique, et procede pour obtenir ladit produit Expired - Lifetime EP1029101B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19748508 1997-11-03
DE19748508 1997-11-03
PCT/DE1998/003205 WO1999023271A1 (fr) 1997-11-03 1998-11-03 Produit, en particulier composant d'une turbine a gaz, a couche thermo-isolante en ceramique

Publications (2)

Publication Number Publication Date
EP1029101A1 EP1029101A1 (fr) 2000-08-23
EP1029101B1 true EP1029101B1 (fr) 2001-09-12

Family

ID=7847454

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98961067A Expired - Lifetime EP1029101B1 (fr) 1997-11-03 1998-11-03 Produit, en particulier composant d'une turbine a gaz, a couche thermo-isolante en ceramique, et procede pour obtenir ladit produit

Country Status (6)

Country Link
US (2) US6440575B1 (fr)
EP (1) EP1029101B1 (fr)
JP (1) JP2001521988A (fr)
DE (1) DE59801471D1 (fr)
RU (1) RU2218447C2 (fr)
WO (1) WO1999023271A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004025798A1 (de) * 2004-05-26 2005-12-22 Mtu Aero Engines Gmbh Wärmedämmschichtsystem
DE102015205807A1 (de) * 2015-03-31 2016-10-06 Siemens Aktiengesellschaft Beschichtungssystem für Gasturbinen

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365281B1 (en) * 1999-09-24 2002-04-02 Siemens Westinghouse Power Corporation Thermal barrier coatings for turbine components
EP1143030A1 (fr) 2000-04-03 2001-10-10 ABB Alstom Power N.V. Matériau pour extrémité d'une aube de turbine et procédé de sa fabrication ou réparation
JP3955724B2 (ja) * 2000-10-12 2007-08-08 株式会社ルネサステクノロジ 半導体集積回路装置の製造方法
US7001859B2 (en) * 2001-01-22 2006-02-21 Ohio Aerospace Institute Low conductivity and sintering-resistant thermal barrier coatings
US6812176B1 (en) 2001-01-22 2004-11-02 Ohio Aerospace Institute Low conductivity and sintering-resistant thermal barrier coatings
US6846574B2 (en) * 2001-05-16 2005-01-25 Siemens Westinghouse Power Corporation Honeycomb structure thermal barrier coating
JP2003073794A (ja) * 2001-06-18 2003-03-12 Shin Etsu Chem Co Ltd 耐熱性被覆部材
US6887588B2 (en) * 2001-09-21 2005-05-03 General Electric Company Article protected by thermal barrier coating having a sintering inhibitor, and its fabrication
US6821641B2 (en) * 2001-10-22 2004-11-23 General Electric Company Article protected by thermal barrier coating having a sintering inhibitor, and its fabrication
DE10200803A1 (de) * 2002-01-11 2003-07-31 Forschungszentrum Juelich Gmbh Herstellung eines keramischen Werkstoffes für eine Wärmedämmschicht sowie eine den Werkstoff enthaltene Wärmedämmschicht
EP1464721A3 (fr) * 2002-04-10 2004-11-24 Siemens Aktiengesellschaft Système de revêtement de barrière thermique
DE10226295A1 (de) * 2002-06-13 2004-01-08 Forschungszentrum Jülich GmbH Wärmedämmschicht aus einem komplexen Perowskit
JP4481027B2 (ja) * 2003-02-17 2010-06-16 財団法人ファインセラミックスセンター 遮熱コーティング部材およびその製造方法
DE10334698A1 (de) * 2003-07-25 2005-02-10 Rolls-Royce Deutschland Ltd & Co Kg Deckbandsegment für eine Strömungsmaschine
US20060177676A1 (en) * 2003-08-13 2006-08-10 Ulrich Bast Heat-insulation material and arrangement of a heat-insulation layer containing said heat-insulation material
US20060177665A1 (en) * 2003-08-13 2006-08-10 Siemens Aktiengesellschaft Arrangement of at least one heat-insulation layer on a carrier body
US6969555B2 (en) * 2003-10-06 2005-11-29 General Electric Company Aluminate coating for a silicon containing substrate
US20050129869A1 (en) * 2003-12-12 2005-06-16 General Electric Company Article protected by a thermal barrier coating having a group 2 or 3/group 5 stabilization-composition-enriched surface
EP1657536A1 (fr) * 2004-11-05 2006-05-17 Siemens Aktiengesellschaft Dispositif comportant au moins un revêtement luminescent de barrière thermique sur un substrat
JP2007052100A (ja) * 2005-08-16 2007-03-01 Konica Minolta Opto Inc 光学反射部材
US7504157B2 (en) * 2005-11-02 2009-03-17 H.C. Starck Gmbh Strontium titanium oxides and abradable coatings made therefrom
US7662489B2 (en) * 2006-01-20 2010-02-16 United Technologies Corporation Durable reactive thermal barrier coatings
FR2897748B1 (fr) * 2006-02-20 2008-05-16 Snecma Services Sa Procede de depot de barriere thermique par torche plasma
WO2007140805A1 (fr) 2006-06-08 2007-12-13 Siemens Aktiengesellschaft Composants de turbine revêtus et procédé pour revêtir un composant de turbine
DE102006040360A1 (de) * 2006-08-29 2008-03-06 FNE Forschungsinstitut für Nichteisen-Metalle Freiberg GmbH Wärmedämmstoff mit hoher zyklischer Temperaturbelastbarkeit
JP5100313B2 (ja) * 2007-10-31 2012-12-19 株式会社東芝 酸化ランタン化合物の製造方法
EP2128299B1 (fr) * 2008-05-29 2016-12-28 General Electric Technology GmbH Structure de préambule de synchronisation pour système OFDM
EP2196559A1 (fr) 2008-12-15 2010-06-16 ALSTOM Technology Ltd Système de revêtement de barrière thermique, composants revêtus avec celle-ci et procédé pour l'application d'un système de revêtement de barrière thermique à des composants
US20110110790A1 (en) * 2009-11-10 2011-05-12 General Electric Company Heat shield
US20150274981A1 (en) * 2010-09-22 2015-10-01 Skyworks Solutions, Inc. Dual function lanthanide coatings
US9347126B2 (en) 2012-01-20 2016-05-24 General Electric Company Process of fabricating thermal barrier coatings
DE102012101032A1 (de) * 2012-02-08 2013-08-08 Eads Deutschland Gmbh Kreiskolbenmotor und Verfahren zum Herstellen eines Kreiskolbenmotors
EP3055444A4 (fr) 2013-10-09 2017-06-07 United Technologies Corporation Revêtement de barrière thermique à adhésion améliorée
US10676403B2 (en) 2014-01-16 2020-06-09 Honeywell International Inc. Protective coating systems for gas turbine engine applications and methods for fabricating the same
US9243511B2 (en) 2014-02-25 2016-01-26 Siemens Aktiengesellschaft Turbine abradable layer with zig zag groove pattern
US8939706B1 (en) 2014-02-25 2015-01-27 Siemens Energy, Inc. Turbine abradable layer with progressive wear zone having a frangible or pixelated nib surface
US9151175B2 (en) 2014-02-25 2015-10-06 Siemens Aktiengesellschaft Turbine abradable layer with progressive wear zone multi level ridge arrays
WO2015130526A2 (fr) 2014-02-25 2015-09-03 Siemens Aktiengesellschaft Revêtement formant une barrière thermique pour pièce de turbine présentant des éléments de rainure usinés pour isoler les fissures
RU2591024C2 (ru) * 2014-05-05 2016-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Способ обработки рабочих поверхностей деталей газотурбинных установок
RU2588973C2 (ru) * 2014-05-06 2016-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Способ обработки рабочих поверхностей деталей лопастных машин
RU2588956C2 (ru) * 2014-05-06 2016-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Способ обработки рабочих поверхностей газотурбинных установок
WO2015194861A1 (fr) * 2014-06-17 2015-12-23 한국에너지기술연구원 Procédé de connexion de plaque mince et ensemble plaque mince
WO2016133583A1 (fr) 2015-02-18 2016-08-25 Siemens Aktiengesellschaft Anneau de cerclage de turbine ayant couche abradable présentant des crêtes dotées de trous
US10408079B2 (en) 2015-02-18 2019-09-10 Siemens Aktiengesellschaft Forming cooling passages in thermal barrier coated, combustion turbine superalloy components
US10266420B2 (en) 2015-04-23 2019-04-23 University Of Florida Research Foundation, Inc Method for the generation of power
CN107868924B (zh) * 2016-09-23 2018-10-09 北京华石联合能源科技发展有限公司 一种热障涂层及包含其的超高温悬浮床加氢冷壁反应器
US10914183B2 (en) * 2017-10-16 2021-02-09 Onesubsea Ip Uk Limited Erosion resistant blades for compressors
WO2020098967A1 (fr) * 2018-11-13 2020-05-22 Oerlikon Surface Solutions Ag, Pfäffikon Article revêtu présentant une haute résistance à la corrosion et à l'érosion comprenant une couche de nitrure d'aluminium
WO2021046548A1 (fr) * 2019-09-06 2021-03-11 The University Of Connecticut Revêtements barrières thermiques pour moteurs à combustion interne
US11686208B2 (en) 2020-02-06 2023-06-27 Rolls-Royce Corporation Abrasive coating for high-temperature mechanical systems
US11415004B2 (en) 2020-12-09 2022-08-16 Honeywell International Inc. Corrosion and oxidation resistant coatings for gas turbine engines, and methods for producing the same
CN113214739A (zh) * 2021-06-22 2021-08-06 哈尔滨工业大学 一种掺杂二价金属锆盐的耐高温有机硅涂层及其制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393134A (en) 1977-01-27 1978-08-15 Mitsubishi Heavy Ind Ltd Heattproof acidification resistance metal portion material
US4339509A (en) 1979-05-29 1982-07-13 Howmet Turbine Components Corporation Superalloy coating composition with oxidation and/or sulfidation resistance
US4321310A (en) 1980-01-07 1982-03-23 United Technologies Corporation Columnar grain ceramic thermal barrier coatings on polished substrates
US4585481A (en) 1981-08-05 1986-04-29 United Technologies Corporation Overlays coating for superalloys
DE3539029A1 (de) 1985-11-02 1987-05-07 Bbc Brown Boveri & Cie Hochtemperatur-schutzschicht und verfahren zu ihrer herstellung
DE3543802A1 (de) * 1985-12-12 1987-06-19 Bbc Brown Boveri & Cie Hochtemperatur-schutzschicht und verfahren zu ihrer herstellung
US4764341A (en) 1987-04-27 1988-08-16 International Business Machines Corporation Bonding of pure metal films to ceramics
JP2773050B2 (ja) 1989-08-10 1998-07-09 シーメンス アクチエンゲゼルシヤフト 耐熱性耐食性の保護被覆層
DE3926479A1 (de) 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
JPH03226553A (ja) * 1990-01-31 1991-10-07 Nippon Steel Corp 高耐用性を有する交流プラズマトーチ
US5077140A (en) 1990-04-17 1991-12-31 General Electric Company Coating systems for titanium oxidation protection
JP2747087B2 (ja) * 1990-05-31 1998-05-06 新日本製鐵株式会社 溶射被覆用材料及び溶射被覆耐熱部材
US5082741A (en) * 1990-07-02 1992-01-21 Tocalo Co., Ltd. Thermal spray material and thermal sprayed member using the same
US5032557A (en) * 1990-07-02 1991-07-16 Tocalo Co., Ltd. Thermal spray material and and thermal sprayed member using the same
US5401307A (en) 1990-08-10 1995-03-28 Siemens Aktiengesellschaft High temperature-resistant corrosion protection coating on a component, in particular a gas turbine component
JPH04231451A (ja) * 1990-12-28 1992-08-20 Nippon Steel Corp 溶射被覆用材料及び溶射被覆耐熱部材
JPH04231452A (ja) * 1990-12-28 1992-08-20 Nippon Steel Corp 溶射被覆材料および溶射被覆耐熱部材
US5236787A (en) 1991-07-29 1993-08-17 Caterpillar Inc. Thermal barrier coating for metallic components
JP2697469B2 (ja) * 1992-04-03 1998-01-14 株式会社日立製作所 ガスタービン動翼,静翼と燃焼器ライナ及び製造法
US5466280A (en) 1994-02-24 1995-11-14 Lee; Chwen-Chern Inorganic coating composition having high-heat-resisting, anti-rusting and anti-corrosive properties
US5512382A (en) 1995-05-08 1996-04-30 Alliedsignal Inc. Porous thermal barrier coating
US6258467B1 (en) * 2000-08-17 2001-07-10 Siemens Westinghouse Power Corporation Thermal barrier coating having high phase stability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004025798A1 (de) * 2004-05-26 2005-12-22 Mtu Aero Engines Gmbh Wärmedämmschichtsystem
DE102015205807A1 (de) * 2015-03-31 2016-10-06 Siemens Aktiengesellschaft Beschichtungssystem für Gasturbinen

Also Published As

Publication number Publication date
WO1999023271A1 (fr) 1999-05-14
US6602553B2 (en) 2003-08-05
US20020164430A1 (en) 2002-11-07
RU2218447C2 (ru) 2003-12-10
DE59801471D1 (de) 2001-10-18
EP1029101A1 (fr) 2000-08-23
JP2001521988A (ja) 2001-11-13
US6440575B1 (en) 2002-08-27

Similar Documents

Publication Publication Date Title
EP1029101B1 (fr) Produit, en particulier composant d'une turbine a gaz, a couche thermo-isolante en ceramique, et procede pour obtenir ladit produit
EP0944746B1 (fr) Produit pouvant etre expose a un gaz chaud, pourvu d'une couche calorifuge, et son procede de production
DE69719701T2 (de) Wärmesperrschichtsysteme und -materialien
DE69615517T2 (de) Körper mit Hochtemperatur-Schutzschicht und Verfahren zum Beschichten
EP1029115B1 (fr) Produit, en particulier composant d'une turbine a gaz, a couche thermo-isolante en ceramique
DE60103904T2 (de) Wärmedämmschicht mit hoher phasenstabilität
EP1386017B1 (fr) Couche calorifuge a base de la2 zr2 o7 pour hautes temperatures
DE69905910T2 (de) Mehrschichtige wärmedämmende beschichtungssysteme
DE10056617C2 (de) Werkstoff für temperaturbelastete Substrate
EP1673490B1 (fr) Composant avec une couche de protection destinee a proteger le composant contre la corrosion et l'oxydation a des temperatures elevees
DE60002101T2 (de) Bildung von luft-plasma-gespritzten wärmedämmschichten für turbinenkomponenten
DE60021722T2 (de) Wärmedämmschicht
DE102005011225B4 (de) Wärmedämmstoff sowie Herstellungsverfahren und Verwendung
EP3426815B1 (fr) Couche d'adhésif destinée à se lier à une couche de protection à haute température sur un substrat et procédé de production
EP1498504B1 (fr) Alliages à base d'aluminium multinairs et leurs utilisation pour les couches protectrices contre chaleur et corrosion
EP1463845B1 (fr) Production d'un materiau ceramique pour une couche calorifuge et couche calorifuge correspondante contenant ledit materiau
EP0937786B1 (fr) Système de revêtement de barrière thermique avec une couche d'alumine intégrée
DE19801424B4 (de) Wärmedämmstoff für hohe Temperaturen und seine Verwendung
DE10158639A1 (de) Wärmedämmschicht auf Basis von La2Zr2O7 für hohe Temperaturen
DE4028173A1 (de) Keramikmaterial und daraus hergestellter isolierueberzug
DE69821480T2 (de) Wärmedämmendes Beschichtungssystem
EP2025653B1 (fr) Matériau calorifuge et son utilisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000511

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG

Owner name: SIEMENS AKTIENGESELLSCHAFT

RTI1 Title (correction)

Free format text: PRODUCT, ESPECIALLY A GAS TURBINE COMPONENT, WITH A CERAMIC HEAT INSULATING LAYER, AND PROCESS FOR MAKING THE SAME

17Q First examination report despatched

Effective date: 20010301

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 59801471

Country of ref document: DE

Date of ref document: 20011018

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011201

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091125

Year of fee payment: 12

Ref country code: CH

Payment date: 20100209

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161128

Year of fee payment: 19

Ref country code: DE

Payment date: 20161123

Year of fee payment: 19

Ref country code: FR

Payment date: 20161123

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59801471

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171103