EP1012892A1 - Dispositif electroluminescent - Google Patents

Dispositif electroluminescent

Info

Publication number
EP1012892A1
EP1012892A1 EP98934728A EP98934728A EP1012892A1 EP 1012892 A1 EP1012892 A1 EP 1012892A1 EP 98934728 A EP98934728 A EP 98934728A EP 98934728 A EP98934728 A EP 98934728A EP 1012892 A1 EP1012892 A1 EP 1012892A1
Authority
EP
European Patent Office
Prior art keywords
formula
layer
organic
ligand
electroluminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98934728A
Other languages
German (de)
English (en)
Inventor
Frank Alain NÜESCH
François ROTZINGER
Lynda Si-Ahmed
Libero Zuppiroli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecole Polytechnique Federale de Lausanne EPFL
Original Assignee
Ecole Polytechnique Federale de Lausanne EPFL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecole Polytechnique Federale de Lausanne EPFL filed Critical Ecole Polytechnique Federale de Lausanne EPFL
Publication of EP1012892A1 publication Critical patent/EP1012892A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • the present invention relates to an electroluminescent device.
  • Light-emitting devices can in particular be used as light-emitting diodes used in the design of display elements or even flat screens of computers or television sets.
  • a solid, semiconductor and electroluminescent organic substance is arranged in a layer between two electrodes, at least one of which is made of a material which is transparent, or at least translucent, to light.
  • this organic substance When an electrical voltage is applied between the two electrodes, this organic substance has the property of emitting light.
  • the passage of current is then accompanied by a transfer of charges between, on the one hand, each of the electrodes and, on the other hand, the organic, semi-conductive and electroluminescent substance.
  • the electrode connected to the negative terminal injects electrons towards the organic substance.
  • the electrode connected to the positive terminal it injects holes towards the organic substance, in other words, it captures the electrons emitted by this substance.
  • the organic, semiconducting and light-emitting substance is chosen from fluorescent organic molecules, monomers or polymers. It can also consist of a mixture of these fluorescent molecules.
  • fluorescent molecules mention may be made of molecules belonging to the family of naphthalene, anthracene, coronene, perylene, but also acridine, carbazole, phthalocyanines, metal complexes of the 8-hydroxyquinoline optionally doped with coumarin or alternatively polymer molecules having a conjugated electronic system such as poly- (para-phenylene-vinylene) or poly (para-phenylene).
  • these materials must have good electrical current conduction properties, they must be chosen so that at least one of the two electrodes is transparent, or at least translucent, to light in order to allow the passage of the radiation emitted by the organic electroluminescent substance.
  • these materials must be chosen so that each of the electrodes can inject charges, holes for one, electrons for the other, towards the organic, semiconducting and electroluminescent substance. This transfer of one or the other of the charges is highly dependent on the height of the energy barrier which may exist between on the one hand the working function of the electrode, in other words its capacity to extract or collect electrons, and on the other hand the oxidation or reduction potential of the organic substance.
  • the material of the hole-injecting electrode can be transparent to light.
  • the material of the electron injecting electrode is generally opaque to light. The consequence is that it is not possible to imagine that the devices available to date can emit the same quality of light indifferently through one or the other of their faces, and even simultaneously through two sides.
  • the materials used for the production of transparent hole-injecting electrodes are generally chosen from metal oxides. Mention may be made, for example, of mixed indium and tin oxide.
  • Electrodes made of materials based on metal oxides cannot inject enough holes directly into certain organic emitters. This is particularly the case when the light-emitting substance is aluminum tris ( ⁇ -hydroxyquinoline). This substance has remarkable emission properties but its oxidation potential is unfortunately too high, much greater than the working function of the electrode.
  • Organic substances are then used which can be designated by the term electrocatalyst, the role of which is to facilitate the crossing of the energy barrier and, consequently, the injection of holes towards the electroluminescent substance. They also allow the transport of holes from the electrode to the electroluminescent substance while hampering the reverse transfer of electrons to the electrode.
  • CW Tang et al have described an electroluminescent device in which is interposed, between the electrode based on metal oxides and the layer made up of the electroluminescent substance, a layer made up of an electro-catalyst derived from triphenylamine (Appl . Phys. Lett., 1987, 51., 913).
  • Patent US Pat. No. 5,231,329 discloses a similar device, in which an electrocatalyst, of polymer structure derived from aniline, is placed between the electrode based on mixed indium and tin oxide. and the organic emitter of polymer structure derived from 8-hydroxyquinoline.
  • the materials generally used for the production of electron injecting electrodes are chosen from metals or metal alloys which conduct electricity. Mention may be made, for example, of aluminum, magnesium, titanium, molybdenum or else an alloy of magnesium and silver.
  • metallic materials cannot be transparent to light when they are arranged in a layer within such electroluminescent devices.
  • These metallic materials also have the other disadvantages, unlike metallic oxides, of being sensitive to corrosion and of being unable to be shaped according to photo-lithography or screen printing techniques.
  • it may be a metal oxide-organic substance interface in the case of injecting holes, or a metal-organic substance interface in the case of injecting electrons.
  • An electroluminescent device comprising an electrode made of mixed indium tin oxide and an organic electroluminescent substance, in this case poly (para-phenylene), was constructed. They were able to link chemically, thanks to an attachment group, the organic substance electroluminescent to the metal oxide of the electrode.
  • an organic electroluminescent substance in this case poly (para-phenylene)
  • the heterogeneity between inorganic materials, on the one hand, and organic materials, on the other hand, causes another difficulty frequently encountered when designing light-emitting devices, which is to be able to ensure good distribution as well as good adhesion of the organic material composing the layer deposited on the surface of the material of one or other of the electrodes, but also of being able to control its thickness. Defects in one or other of these parameters are likely to initiate breakdowns, thereby destroying the device.
  • the object of the present invention is to provide an electroluminescent device in which it is possible to adapt at will the working function of any electrode, consisting of a conductive material chosen from metallic oxides and metallic nitrides, with potentials d oxidation-reduction of a wide variety of solid, semiconducting and electroluminescent organic substances.
  • the invention also aims to provide an electroluminescent device in which it is possible to adapt at will the working function of any electrode, consisting of a conductive material chosen from metal oxides and metal nitrides, so that the same material of this electrode can inject, as the case may be, holes or electrons towards these electroluminescent substances.
  • the invention also aims to provide an electroluminescent device in which the material constituting at least one of the two electrodes, in particular that of the electron injecting electrode, is transparent, or at least translucent, to light .
  • the present invention relates to an electroluminescent device of multilayer structure comprising:
  • a first electrode comprising a layer, consisting of an electrically conductive material, transparent or translucent, chosen from metal oxides and metal nitrides, said layer being deposited on a transparent support, consisting of a glass plate , made of silica, alumina, or a polymer sheet;
  • a layer disposed between the two electrodes, comprising a solid, semiconductive and electroluminescent organic substance, optionally ion-conducting, said layer being optionally bordered by one or more intermediate layers, consisting of electrocatalysts;
  • a layer of monomolecular structure disposed between the layer made of the conductive material and the layer made of the electroluminescent substance;
  • this device being characterized in that said layer of monomolecular structure consists of a dipolar organic compound whose structure has an ⁇ electronic system, a functional group, vicinal or not of the ⁇ electronic system, said dipolar organic compound, on the one hand , being chemically linked via said functional group to said conductive material and, on the other hand, having a chemical affinity for said organic electroluminescent substance.
  • said organic dipole compound gives said conductive material constituting the first electrode, to which it is chemically linked, the property either of injecting holes, or of injecting electrons, to said solid organic, semiconductor and electroluminescent substance.
  • the values of the dipole moments of the dipole organic compounds. can be evaluated by applying in particular the semi-empirical Hartree Fock calculation method carried out under ideal conditions using the ZINDO method (J. Ridley et al, Theoret. Chim. Acta., 1976, 42, 223 and A. Bacon and al, Theoret, Chim. Acta., 1979, 53, 21).
  • the semi-empirical method should not be applied to the isolated molecule but to this same molecule in its adsorbed state on the surface of the electrode material.
  • the ZINDO method make it possible to determine the net dipole moment of the adsorbed molecule by proceeding for example as follows: we can, thanks to the ZINDO method, first of all optimize the geometry of the molecule placed in the vicinity of a piece of surface of the material representing the electrode; we can then calculate, in this geometry, the dipole moment of the adsorbed molecule itself.
  • the dipolar organic compound chemically bonded to said material is advantageously chosen so that its electrical dipole moment is a vector whose value absolute is between 1 Debye and 50 Debyes.
  • the orientation of this vector is such that the positive pole is in the vicinity of the conductive material while the negative pole is far from it.
  • the dipolar organic compound chemically bonded to said material is advantageously chosen so that its electrical dipole moment ⁇ is a vector whose absolute value is between 1 and 50 Debye Debyes.
  • the orientation of this vector is such that the negative pole is in the vicinity of the conductive material while the positive pole is far from it.
  • Said dipolar organic compound the structure of which has an ⁇ electronic system, a functional group, vicinal or not of the ⁇ electronic system, is chemically linked to said conductive material via said functional group.
  • Said functional group is advantageously chosen from the group comprising carboxylic acid, carboxylate, phosphoric acid, phosphonate and the chelating groups ⁇ -keto-enolate, oxime, hydroxyquinoline.
  • said functional grouping is in the vicinal position relative to said electronic system ⁇ so as to guarantee better recovery of the electronic orbitals and, thereby, to ensure better charge transfer between the electrode and the organic electroluminescent substance. .
  • the chemical bond brought into play between this group and the conductive material of the electrode is a covalent bond, an ionic bond, a dipole-dipole bond or a hydrogen bond.
  • said dipolar organic compound gives the conductive material, to which it is chemically bonded via said functional group, the property of injecting holes towards the solid organic substance, semiconductor and electroluminescent, if said functional group is chosen from the group comprising carboxylic and phosphoric acids.
  • said dipolar organic compound confers on the conductive material, to which it is chemically bonded via said functional group, the property of injecting electrons towards the solid, semiconductive and electroluminescent organic substance, if said functional group is chosen from the group comprising carboxylate, phosphonate.
  • said dipolar organic compound chemically bonded to said conductive material, is able to carry and then transfer to the solid organic, semiconductive and electroluminescent substance, the charges, as appropriate electrons or holes, which have been extracted from the conductive material.
  • the organic dipole compound is in the form of an organometallic complex of general formulas (I) to (VI) below:
  • M is chosen from Ru (ll), Os (ll), Cr (ll), Al (lll), Ga (lll) and ln (lll), is a ligand of general formula a), and
  • L is a ligand of general formula b
  • L is a ligand of general formula b
  • L ' is a ligand of general formula a), c), d) or e);
  • L and L ' are, independently of one another, a ligand of general formula a), c), d) or e);
  • L is a ligand of general formula b
  • L ' is a ligand of general formula f
  • L is a ligand of general formula a), c), d) or e),
  • X is selected from the group of co-ligands comprising CI “ , Br, I-, NCS " , CN-
  • L is a ligand of general formula f
  • R is chosen from the group comprising hydrogen, phenyl, vinyl, primary, secondary, tertiary or quaternary amine, hydroxyl, alkyl of 1 to 30 carbon atoms;
  • the ligands L and L ′ are chosen as a function of the chemical affinity that they show towards the solid, semiconductive and electroluminescent organic substance.
  • said dipolar organic compound confers on the conductive material, to which it is chemically bonded via said functional group, the property of injecting holes towards the solid, semiconductive and electroluminescent organic substance, if it is found under the form of an organometallic complex of previous general formulas (V) and (VI) in which the groups G 1 and G 2 , present on formula a) of the ligand, are identical and are chosen from -COOH and -PO3H2 .
  • said dipolar organic compound confers on the conductive material, to which it is chemically bonded via said functional group, the property of injecting holes towards the solid, semiconductive and electroluminescent organic substance, if it is found in the form of an organo-metallic complex of general formula V:
  • M is chosen from Ru (ll), Os (ll), Cr (ll), Al (lll), Ga (lll) and ln (lll),
  • L1 and L are identical and are ligands of general formula a) as defined above and in which the groups G " ! And G 2 are identical and are chosen from -COOH and -PO3H2, and
  • X is selected from the group of co-ligands comprising CI “ , Br, I “ , NCS “ , CN ⁇ ,
  • said organic dipolar compound confers on the conductive material, to which it is chemically bonded via said functional group, the property of injecting holes towards the solid, semiconductive and electroluminescent organic substance, if it is dithiocyanate of bis (4,4'-dicarboxy-2,2 , -bipyridyl) ruthenium (II) in the form of tetra-acid.
  • said organic dipolar compound confers on the conductive material, to which it is chemically bonded via said group.
  • functional the property of injecting electrons towards the solid, semiconductor and electroluminescent organic substance, if it is in the form of an organometallic complex of general formulas above (I) to (IV) in which the groups G " 1 and G 2 , present on formula a) of the ligand L- !, are identical and are chosen from -COO " and -PO3H " .
  • said dipolar organic compound confers on the conductive material, to which it is chemically bonded via said functional group, the property of injecting electrons towards the solid, semiconductive and electroluminescent organic substance, if it is found in the form of an organometallic complex of general formula IV:
  • M is chosen from Ru (ll), Os (ll), Cr (ll), Al (lll), Ga (lll) and ln (lll),
  • L " ! Is a ligand of general formula a) as defined above and in which the groups G ⁇ and G 2 are identical and are chosen from -COO" and -PO3H-, and
  • L and L ' are identical and are ligands of general formula d) as defined above.
  • said dipolar organic compound confers on the conductive material, to which it is chemically bonded via said functional group, the property of injecting electrons towards the solid, semiconductive and electroluminescent organic substance, if it is the [ bis- (4,4'-di-phenyl-1 ) 10-phenanthrolene) - (4,4 , -dicarboxy-2,2'-bipyridyl)] ruthenium (II) in the form of internal salts.
  • the organic dipole compound has one of the following general formulas (VII) or (VIII):
  • G 3 is the carboxylic acid or phosphoric acid group
  • R is chosen from the group comprising hydrogen, linear or branched alkyl of 1 to 20 carbon atoms, hydroxyl, ether, primary, secondary, tertiary or quaternary amine, nitro, cyano, ester;
  • G ⁇ is the carboxylate or phosphonate group, n is from 0 to 6, m is 0 or 1, and
  • R is linear or branched alkyl of 1 to 6 carbon atoms.
  • said dipolar organic compound confers on the conductive material, to which it is chemically bonded via said functional group, the property of injecting holes towards the solid, semiconductive and electroluminescent organic substance, if it has the formula previous general (VII).
  • said dipolar organic compound confers on the conductive material, to which it is chemically bonded via said functional group, the property of injecting holes towards the solid, semiconductive and electroluminescent organic substance, if it is l 4-nitro-benzoic acid.
  • said dipolar organic compound confers on the conductive material, to which it is chemically bonded via said functional group, the property of injecting electrons towards the solid, semiconductive and electroluminescent organic substance, if it has the formula previous general (VIII).
  • said dipolar organic compound confers on the conductive material, to which it is chemically bonded via said functional group, the property of injecting electrons to the substance ⁇ , solid organic, semiconductor and emitting, if the 4-carboxy-tri-N-betaine formulationthylanilium or 4-carboxy-1-methylpyridinium betaine.
  • the electrically conductive material, in particular of the first electrode is preferably chosen from titanium oxide, zinc oxide, tin oxide, gallium nitride and mixed oxide of indium and tin. These materials have the great advantage of being transparent or translucent in light. They thus allow any radiation emitted by the solid, semiconducting and electroluminescent organic substance to pass through.
  • said conductive material is the mixed oxide of indium and tin. It is generally accepted, in the field of solid electroluminescent devices, that the working function of an electrode made of such a material is 4.7 eV. Such an electrode is generally capable of injecting holes, very frequently with the help of electrocatalysts.
  • a layer comprising a solid, semiconductive and electroluminescent organic substance, optionally bordered by one or more intermediate layers made up of electrocatalysts, is disposed between the two electrodes.
  • solid, semiconductor and electroluminescent organic substance is meant a substance consisting of one or more electroluminescent molecules and optionally comprising, as a mixture, additives such as dopants of these molecules such as fluorophores, electro-catalysts, ionic entities accompanied by ion conductors.
  • the organic, semiconductor and electroluminescent substance is chosen from organic, monomeric or polymeric, fluorescent molecules such as molecules belonging to the family of naphthalene, anthracene, coronene, perylene, but also acridine, rubuene, quinacridone, phthalocyanines, carbazole, derivatives of tris- (8-hydroxyquinoline) complexed with metals such as aluminum, possibly doped with coumarin, or alternatively polymeric molecules poly (para-phenylene-vinylene) or poly- (para-phenylene).
  • fluorescent molecules such as molecules belonging to the family of naphthalene, anthracene, coronene, perylene, but also acridine, rubuene, quinacridone, phthalocyanines, carbazole, derivatives of tris- (8-hydroxyquinoline) complexed with metals such as aluminum, possibly doped with coumarin, or alternatively polymeric molecules poly (para-phenylene-vinylene) or poly- (para
  • the electrocatalysts can be chosen from tripjaenylamine and oxadiazole derivatives, but also poly (phenylvinylene) carrying nitrile groups, polyvinylcarbazole or polymethylphenylsilane.
  • the second electrode of the device according to the invention may consist of a conductive material such as aluminum, silver, copper, magnesium, nickel, titanium or alloys of these metals such as the alloy magnesium and silver.
  • the second electrode of the device can also be made of an electrically conductive material, transparent or translucent, chosen from metallic oxides and metallic nitrides, to which a dipolar organic compound would have been chemically bonded in accordance with one of the variants of the device according to the invention.
  • the polar organic substance will confer on the material of the second electrode the property of injecting charges of opposite nature from those injected by the first electrode, the material of which is already chemically bonded to a dipolar organic substance of different nature.
  • the present invention also relates to the organic dipole compounds for the electroluminescent device according to the invention which are in the form of organometallic complexes of general formulas (I) to (V) below:
  • M is chosen from Ru (ll), Os (ll), Cr (ll), Al (lll), Ga (lll) and ln (lll),
  • L " 1 is a ligand of general formula a)
  • L is a ligand of general formula b
  • L is a ligand of general formula b
  • L ' is a ligand of general formula a), c), d) or e);
  • L and L ' are, independently of one another, a ligand of general formula a), c), d) or e);
  • L is a ligand of general formula b
  • L ' is a ligand of general formula f
  • L is a ligand of general formula d) or e), and
  • X is selected from the group of co-ligands comprising CI “ , Br, I", NCS “ , CN “ ,
  • G ⁇ and G 2 are identical or different and are chosen from the group comprising -COOH, -COO ", -PO3H2, -PQ3H-;
  • R is chosen from the group comprising hydrogen, phenyl, vinyl, primary, secondary, tertiary or quaternary amine, hydroxyl, alkyl of 1 to 30 carbon atoms; formula c),
  • organometallic complexes of general formulas (I) to (VI) are obtained by reacting successively the various heterocycles precursors of ligands L and L 'on ruthenium chloride (III).
  • the present invention also relates to the organic dipolar compounds for. the electroluminescent device according to the invention of general formula (VII) below: formula (VII), in which,
  • G 3 is the carboxylic acid or phosphoric acid group
  • A is chosen from the group comprising -HC ⁇ CH-, -O-, and
  • R is chosen from the group comprising hydrogen, linear or branched alkyl of 1 to 20 carbon atoms, hydroxyl, ether, primary, secondary, tertiary or quaternary amine, nitro, cyano, ester.
  • any suitable process can be implemented, in particular the techniques used for the manufacture from devices of the prior art.
  • the layer made of an electrically conductive material, transparent or translucent, chosen from metal oxides and metal nitrides it is possible to use the methods, known per se, of deposition by thermal spraying, in particular at using a plasma torch, or the deposition techniques from the liquid phase as well as the chemical vapor deposition methods.
  • the method using a plasma torch (“plasma spattering") is particularly suitable for applying the mixed oxide of indium and tin.
  • the layer consisting of the conductive material is first formed, by depositing this material on a substrate having the form of a film, a sheet or a wafer, and serving as a support for the electroluminescent device.
  • This substrate is advantageously made of a transparent insulating material such as glass, silica, alumina, preferably sapphire or quartz, or else a polymer.
  • the conductive material is then prepared in order to make its surface active and to allow the chemical fixation of the dipolar organic compound. This material then undergoes various cleaning treatments ranging from an ultrasonic treatment, a mechanical brush treatment, to a bombardment treatment. ionic or plasma treatment in an enclosure placed under vacuum. ⁇ The surface layer of conductive material is then freed from any organic residue, and any absorbed gases.
  • any technique in which the compound is dissolved in a solvent can be used. This can be the technique by dipping or "dip-coating" of the conductive material in such a dilute solution containing the compound, this for a sufficient time to allow the functional group of the dipolar organic compound to bond to the organic material.
  • Another technique can also be the application of the so-called spinning process or "spin-coating" in which a small amount of a dilute solution of the organic compound is deposited on the conductive material which is rotated in order to obtain a uniform distribution of the compound. It is also possible to deposit the organic dipolar compound by applying the technique based on thermal evaporation or sublimation.
  • the substrate obtained is rinsed with a pure solvent or even with the same solution containing the organic dipolar compound, but this time of lower concentration. Any molecule which is not linked to the conductive material is then eliminated.
  • the layer consisting of the solid, semiconducting and electroluminescent organic substance, as well as possibly the intermediate layers consisting of electro-catalysts, are deposited successively by applying methods identical to those described above, but this time without necessarily having to implement a rinsing step.
  • the deposition of the conductive material constituting the second electrode is done according to methods known per se and suitable for each type of material. For example, if the material is a metal or a metal alloy, it can be deposited according to the technique by thermal evaporation under vacuum. If the material is a metal oxide, it can be deposited by applying either the technique by thermal evaporation under vacuum, or by the so-called spinning process.
  • the various components of the device are each composed of transparent or translucent materials and the thicknesses of the layers of the materials constituting the two electrodes, of the layer consisting of the solid, semiconducting and electroluminescent organic substance as well as that any intermediate layers made up of electro-catalysts are adjusted so that these layers are all transparent or translucent.
  • an electroluminescent device can emit light emitting on its two faces.
  • auxiliary layers such as reflective layers, forming a mirror, or semi-transparent and / or dielectric layers, in order to direct the light emitted by the device or reinforce certain components, in particular by forming microcavities.
  • a second type of multicolored display can be produced using elements formed by juxtaposing a plurality, for example three, of devices according to the invention, these devices comprising layers of different electroluminescent organic materials having lengths d 'different light emission wave, operating by mixing colors controlled by variation of voltages applied to the different devices composing each element.
  • a third type of multicolored display can be produced using elements formed by juxtaposing a plurality, for example three, of devices according to the invention, these devices comprising additional auxiliary layers favoring the selection of a domain of narrow wavelengths within the light emission spectrum emitted by the organic electroluminescent layer or layers, operating by mixtures of colors controlled by variation of voltages applied to the various devices composing each element.
  • Figure 1 is a schematic sectional view of an embodiment of the device
  • Figure 2 is a representation of a mode of binding of bis- (4,4'-dicarboxy-2,2'-bipyridyl) -ruthenium (ll) dithiocyanate, dipolar substance giving the material the property of injecting holes , accompanied by the representation of its electric dipole moment as well as a symbolic representation of the different energy levels;
  • FIG. 3 is a diagram showing the characteristic curve in full current - voltage line obtained with, as an electroluminescent substance, aluminum tris- (8-hydroxyquinoline) by binding bis- (4,4'-dicarboxy- 2 dithiocyanate) , 2'-bipyridyl) -ruthenium (ll) to an electrode, the curve in dotted lines is the control curve obtained without having bound a compound;
  • FIG. 4 is a diagram showing the characteristic curve in full light intensity - voltage line obtained with, as electroluminescent substance, aluminum tris- ( ⁇ -hydroxyquinoline) by binding bis (4,4′-di-carboxy dithiocyanate) -2,2'-bipyridyl) -ruthenium (ll) at an electrode, the curve in dotted lines is the control curve obtained without having bound a compound;
  • FIG. 5 is a representation of a mode of bonding of 4-nitrobenzoic acid, a dipolar substance giving the material the property of injecting holes, accompanied by the representation of its electrical dipole moment as well as a symbolic representation of the different energy levels;
  • FIG. 6 is a diagram showing the characteristic curve in solid current line - voltage obtained with, as electroluminescent substance, aluminum tris- (8-hydroxyquinoline) by binding 4-nitrobenzoic acid to an electrode, the curve in line dotted line is the control curve obtained without having bound a compound;
  • FIG. 7 is a diagram showing the characteristic curve in full light intensity - voltage line obtained with, as an electroluminescent substance, aluminum tris- ( ⁇ -hydroxyquinoline) by binding 4-nitrobenzoic acid to a electrode, the curve in dotted lines is the control curve obtained without having bound the compound;
  • Figure 8 is a diagram showing the characteristic curve in full current - voltage obtained with, as an electroluminescent substance, N, N'-di-ethyl-3,3'-bicarbazole by binding N, N'-dioctyl acid -3,3'-bicarbazyl-6,6'-dicarboxylic to an electrode, the curve in dotted lines is the control curve obtained without having bound a compound;
  • FIG. 9 is a diagram showing the characteristic curve in full light intensity - voltage obtained with, as an electroluminescent substance, N, N'-diethyl-3,3'-bicarbazole by binding the acid N, N'-dioctyl- 3,3'-bicarbazyl-6,6'-dicarboxylic to an electrode, the curve in dotted lines is the control curve obtained without having bound a compound;
  • FIG. 10 is a representation of a mode of binding of [bis (4,4'-diphenyl-1,10-phenanthrolene) - (4,4'-dicarbbxy-2,2'-bipyridyl)] ruthenium (ll) , dipolar substance giving the material the property of injecting electrons, accompanied by the representation of its electric dipole moment as well as a symbolic representation of the different energy levels;
  • FIG. 11 is a diagram showing the characteristic curve in full current - voltage line obtained with, as an electroluminescent substance, aluminum tris- (8-hydroxyquinoline) by binding of [bis (4,4′-diphenyl-1,10) -phenantrolene) - (4,4'-dicarboxy-2,2'-bipyridyl)] - ruthenium (ll) at an electrode, the curve in dotted lines is the control curve obtained without having bound a compound;
  • FIG. 12 is a diagram showing the characteristic curve in full light intensity - voltage obtained with, as an electroluminescent substance, tris- ( ⁇ -hydroxyquinoline) by binding [bis (4,4'-diphenyl-1, 10-phenanthrolene) ) - (4,4'-dicarboxy-2,2'-bipyridyl)] - ruthenium (ll) at an electrode, the curve in dotted lines is the control curve obtained without having bound any compound.
  • Example 1 (Preparation of a first alternative embodiment of the device according to the invention in which the first electrode has the property of injecting holes)
  • a glass plate 1 covered with a thin conductive layer of mixed indium tin oxide (commercial product designated by the name ITO) with a thickness of 80 nm and an electrical resistivity of 50 ⁇ , is cleaned in an ultrasonic bath in ethanol, then in acetone before being mechanically rubbed in distilled water containing a surfactant using a brush based on polymers.
  • a new cleaning operation is carried out in an ultrasonic bath containing a detergent and then in distilled water.
  • the substrate thus cleaned is then introduced into a glove box, placed under an argon atmosphere, connected to a vacuum enclosure.
  • the conductive substrate is soaked in an ethanolic solution, free of water and oxygen, containing bis (4,4'-dicarboxy-2,2'-bipyridyl) - ruthenium (ll) dithiocyanate at a concentration of 10 -4 M.
  • Le substrate is then quickly rinsed with the same ethanolic solution, this time at a concentration of 10 ⁇ 6 M.
  • the layer 3 of monomolecular structure is thus formed.
  • the substrate is again placed in a vacuum enclosure, a layer of a thick of 140 nm consisting of aluminum tris- (8-hydroxyquinoline) is then deposited by thermal evaporation Finally, the second electrode consisting of aluminum is deposited in the form of a layer 6 with a thickness of 50 nm according to a method known per se.
  • An electric current is applied between the positive terminal connected to the first electrode, consisting of indium tin oxide on which the dipolar organic compound has been chemically bonded, and the negative terminal to the second electrode, consisting of aluminum.
  • the characteristics obtained are presented in FIGS. 3 and 4 and compared to those obtained when the organic compound has not been bonded to the material of the electrode. It is very clearly observed that the first electrode injects holes, for increasing values of the voltage, only from +20 V. This passage of the current is then accompanied by a remarkable emission of light whose intensity then only increases.
  • the witness device on the other hand, is not capable of injecting holes at such a voltage and obviously cannot emit light.
  • Example 2 (Preparation of a second alternative embodiment of the device according to the invention in which the first electrode has the property of injecting holes)
  • the dipolar organic compound constituting layer 3 of a monomolecular thickness is 4-nitrobenzoic acid.
  • the evaluated absolute value of its electric dipole moment is 5 Debyes.
  • a solution of this acid in tetrahydrofuran at a concentration of 10-3 M is deposited on the conductive substrate under an inert atmosphere. After several hours of contact, the substrate is rinsed with tetrahydrofuran and is then dried.
  • Layer 4 consisting of aluminum tris ( ⁇ -hydroxyquinoline) has a thickness of 140 nm.
  • An electric current is applied between the positive terminal connected to the first electrode, consisting of indium tin oxide on which the dipolar organic compound has been chemically bound, and the negative terminal to the second electrode, consisting of aluminum. .
  • the characteristics obtained are presented in FIGS. 6 and 7 and compared with those obtained when the organic compound has not been bonded to the material of the electrode. It is very clearly observed that the first electrode injects holes, for increasing values of the voltage, only from +20 V. This passage of the current is then accompanied by a remarkable emission of light whose intensity then only increases.
  • the witness device on the other hand, is not capable of injecting holes at such a voltage and obviously cannot emit light.
  • Example 3 (Preparation of a third alternative embodiment of the device according to the invention in which the first electrode has the property of injecting holes)
  • the dipolar organic compound constituting layer 3 is the acid 2,2 ': 5', 2 ": 5", 2 , "-tetrathienyl -5 "'- caboxylic.
  • An electric current is then applied between the positive terminal connected to the first electrode, consisting of indium tin oxide on which the dipolar organic compound has been chemically bonded, and the negative terminal to the second electrode.
  • the first electrode injects holes, for increasing values of the voltage, only from +22 V. This passage of the current is then accompanied by a remarkable emission of light whose intensity then only increases.
  • the witness device on the other hand, is not capable of injecting holes at such a voltage and obviously cannot emit light.
  • Example 4 (Preparation of a fourth variant of the device according to the invention in which the first electrode has the property of injecting holes)
  • the dipolar organic compound constituting layer 3 of a monomolecular thickness is N, N'-dioctyl-3,3'-bicarbazyl-6,6'-di-caboxylic acid
  • the electroluminescent substance is N.
  • N'-diethyl-S.S'-bicarbazole is made of an alloy of magnesium and silver.
  • Layer 4 consisting of N, N'-diethyl-3,3'-bicarbazole has a thickness of 100 nm.
  • An electric current is applied between the positive terminal connected to the first electrode, consisting of indium tin oxide on which has been chemically bonded the dipolar organic compound, and the negative terminal to the second electrode.
  • the characteristics obtained are presented in FIGS. 8 and 9 and compared with those obtained when the organic compound has not been bonded to the material of the electrode. It is very clearly observed that the first electrode injects holes, for increasing values of the voltage, only from +13 V. This passage of the current is then accompanied by a remarkable emission of light whose intensity then only increases.
  • the witness device on the other hand, is not capable of injecting holes at such a voltage and obviously cannot emit light.
  • Example 5 (Preparation of a fifth alternative embodiment of the device according to the invention in which the first electrode has the property of injecting electrons)
  • the substrate is rinsed with the same ethanolic solution, this time at a concentration of 10 " 6 M
  • the substrate is then placed in a vacuum enclosure, a layer with a thickness of 90 nm of the aluminum tris ( ⁇ -hydroxyquinoline) is then deposited for thermal evaporation.
  • a second intermediate layer 5 consisting of N, N'-bis (3-methylphenyl) -N, N , - (bisphenyl) benzidine with a thickness of 50 nm.
  • the second electrode made of gold is deposited in the form of a layer 6 with a thickness of 50 nm according to a method known per se.
  • An electric current is applied between the positive terminal connected to the first electrode, consisting of indium tin oxide on which the dipolar organic compound has been chemically bonded, and the negative terminal to the second electrode, consisting of gold. .
  • the characteristics obtained are presented in FIGS. 10 and 11 and compared with those obtained when the organic compound has not been bonded to the material of the electrode. It is very clearly observed that the first electrode injects electrons, for decreasing values of the voltage, only from -10 V. This passage of the current is then accompanied by a remarkable emission of light whose intensity then only increases.
  • the witness device for its part, is not capable of injecting electrons and obviously cannot emit light.
  • Example 6 (Preparation of a sixth alternative embodiment of the device according to the invention in which the first electrode has the property of injecting electrons)
  • the dipolar organic compound constituting layer 3 is the compound of bipyridinium structure as represented by formula 6a.
  • the first electrode injects electrons, for decreasing voltage values, only from -13 V.
  • the witness device meanwhile, is not capable of injecting electrons and obviously cannot emit the light.
  • Example 7 (Preparation of a seventh variant of the device according to the invention in which the first electrode has the property of injecting electrons)
  • An electric current is applied between the positive terminal connected to the first electrode, consisting of indium tin oxide on which the dipolar organic compound has been chemically bonded, and the negative terminal to the second electrode, consisting of gold. .
  • the first electrode injects electrons, for decreasing values of the voltage, only from -13 V. This passage of the current is then accompanied by a remarkable emission of light whose intensity does then only increase.
  • the witness device for its part, is not capable of injecting electrons and obviously cannot emit light.
  • Example ⁇ (Preparation of an eighth alternative embodiment of the device according to the invention in which the first electrode has the property of injecting electrons)
  • the dipolar organic compound constituting layer 3 is 4-carboxy-1-methylpyridinium betaine.
  • An electric current is applied between the positive terminal connected to the first electrode, consisting of indium tin oxide on which the dipolar organic compound has been chemically bonded, and the negative terminal to the second electrode, consisting of gold. .
  • the first electrode only injects electrons, for values decreasing voltage, from -15 V. This passage of the current is then accompanied by a remarkable emission of light whose intensity then only increases.
  • the witness device for its part, is not capable of injecting electrons and obviously cannot emit light.
  • Example 9 (Preparation of a control device in which an electrode made of indium tin oxide is not capable of injecting neither enough holes nor enough electrons.)
  • the substrate is then introduced into a glove box placed under an argon atmosphere, connected to a vacuum enclosure. It is then subjected to ion bombardment for 6 minutes under an argon pressure of 8.10 "2 mbar, a voltage of 120 V, as well as an RF power of 10 W.
  • the conductive substrate is dipped in ethanol free of water and oxygen and is then dried The substrate is again placed in a vacuum chamber a layer with a thickness of 140 nm consisting of tris- ( ⁇ -hydroxyquinoline) d aluminum is then deposited by thermal evaporation Finally, the second electrode made of aluminum is deposited in the form of a layer 6 with a thickness of 50 nm according to a method known per se. An electric current is applied between the terminal positive connected to the first electrode, made of indium tin oxide, and the negative terminal to the second electrode, made of aluminum.
  • Example 10 (Preparation of a control device in which an electrode consisting of indium tin oxide is not capable of injecting either enough holes or enough electrons.)
  • the solid, semiconducting and electroluminescent organic substance is N, N'-diethyl-3,3'-bicarbazole, replacing the aluminum tris- ( ⁇ -hydroxyquinoline) and the second electrode consists of an alloy of magnesium and silver.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Pyridine Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

Le dispositif électroluminescent de structure multicouche comprend: i) une première électrode comprenant une couche, constituée d'un matériau conducteur de l'électricité, transparent ou translucide, choisi parmi les oxydes métalliques et les nitrures métalliques, ladite couche étant déposée sur un support transparent, constitué d'une plaque en verre, en silice, en alumine, ou d'une feuille de polymère; ii) une deuxième électrode; iii) une couche, disposée entre les deux électrodes, comprenant une substance organique solide, semi-conductrice et électroluminescente, ladite couche étant éventuellement bordée d'une ou de plusieurs couches intermédiaires, constituées d'électro-catalyseurs; et iv) une couche de structure monomoléculaire, disposée entre la couche constituée du matériau conducteur et la couche constituée de la substance électroluminescente. Ce dispositif est en outre caractérisé en ce que ladite couche est constituée d'un composé organique dipolaire dont la structure possède un système électronique π, un groupement fonctionel, vicinal ou non du système électronique π. De plus, le composé organique dipolaire, d'une part, est lié chimiquement par l'intermédiaire du groupement fonctionnel au matériau conducteur et, d'autre part, a une affinité chimique pour la substance organique électroluminescente.

Description

Dispositif électroluminescent
La présente invention concerne un dispositif électroluminescent.
Des dispositifs électroluminescents peuvent notamment être utilisés comme diodes électroluminescentes entrant dans la conception d'éléments d'affichage ou encore d'écrans plats d'ordinateurs ou d'appareils de télévision.
Dans de tels dispositifs, de structure multicouche, une substance organique solide, semi-conductrice et électroluminescente, est disposée en couche entre deux électrodes dont l'une au moins est constituée en un matériau transparent, ou tout au moins translucide, à la lumière.
Lorsqu'une tension électrique est appliquée entre les deux électrodes, cette substance organique a la propriété d'émettre de la lumière. Le passage du courant s'accompagne alors d'un transfert de charges entre, d'une part, chacune des électrodes et, d'autre part, la substance organique, semi-conductrice et électroluminescente. L'électrode reliée à la borne négative injecte des électrons vers la substance organique. Quant à l'électrode reliée à la borne positive, elle injecte des trous vers la substance organique, autrement dit, elle capte les électrons émis par cette substance.
On connaît déjà des dispositifs électroluminescents de ce genre dans lesquels la substance organique, semi-conductrice et électroluminescente, est choisie parmi des molécules organiques, monomères ou polymères, fluorescentes. Elle peut être aussi constituée d'un mélange de ces molécules fluorescentes. A titre d'exemple de molécules fluorescentes, on peut citer des molécules appartenant à la famille du naphtalène, de l'anthracène, du coronène, du pérylène, mais aussi de l'acridine, du carbazole, des phthalocyanines, des complexes métalliques de la 8-hydroxyquinoline éventuellement dopé par la coumarine ou bien encore des molécules polymériques ayant un système électronique conjugué telles que le poly- (para-phénylène-vinylène) ou le poly(para-phénylène).
En général, à un type de molécule organique fluorescente est associé une bande d'émission correspondant à une couleur particulière. Le grand choix de molécules permet maintenant de couvrir presque tout le spectre des couleurs. Le choix des matériaux des électrodes est important pour permettre la. réalisation d'un tel dispositif électroluminescent.
Outre bien sûr que ces matériaux doivent posséder de bonnes propriétés de conduction du courant électrique, ils doivent être choisis de telle sorte que l'une au moins des deux électrodes soit transparente, ou tout au moins translucide, à la lumière afin de laisser passer le rayonnement émis par la substance organique électroluminescente. De plus, ces matériaux doivent être choisis de telle sorte que chacune des électrodes puisse injecter des charges, des trous pour l'une, des électrons pour l'autre, vers la substance organique, semi-conductrice et électroluminescente. Ce transfert de l'une ou l'autre des charges est fortement dépendant de la hauteur de la barrière d'énergie qui peut exister entre d'une part la fonction de travail de l'électrode, autrement dit sa capacité à extraire ou à capter des électrons, et d'autre part le potentiel d'oxydation ou de réduction de la substance organique.
Selon l'état antérieur de la technique relative aux dispositifs de ce genre, seul le matériau de l'électrode injectrice de trous peut être transparent à la lumière. Le matériau de l'électrode injectrice d'électrons, quant à lui, est généralement opaque à la lumière. La conséquence en est qu'il n'est pas possible d'imaginer que les dispositifs disponibles à ce jour puissent émettre une même qualité de lumière indifféremment au travers de l'une ou l'autre de leurs faces, et même simultanément au travers des deux faces.
Les matériaux utilisés pour la réalisation d'électrodes transparentes injectrices de trous sont généralement choisis parmi les oxydes métalliques. On peut citer par exemple l'oxyde mixte d'indium et d'étain.
Ces matériaux à base d'oxydes métalliques sont capables d'injecter des trous directement dans de nombreux émetteurs organiques tels que par exemple le poly(para-phénylène-vinylène). Il a été montré par I. D. Parker que la fonction de travail de l'électrode est alors très proche du potentiel d'oxydation de la substance organique, semi-conductrice et électroluminescente (J. Appl. Phys., 1994, 75, 1656).
Cependant, il arrive que des électrodes constituées de matériaux à base d'oxydes métalliques ne puissent injecter suffisamment de trous directement dans certains émetteurs organiques. C'est en particulier le cas lorsque la substance électroluminescente est la tris(δ-hydroxyquinoline) d'aluminium. Cette substance possède des propriétés d'émission remarquables mais son potentiel d'oxydation est malheureusement trop élevé, très supérieur à la fonction de travail de l'électrode. On utilise alors des substances organiques que l'on peut désigner par le terme d'électro-catalyseur dont le rôle est de faciliter le franchissement de la barrière d'énergie et, par conséquent, l'injection de trous vers la substance électroluminescente. Elles permettent aussi le transport des trous à partir de l'électrode vers la substance électroluminescente tout en entravant le transfert inverse d'électrons vers l'électrode.
Ainsi, C. W. Tang et al ont décrit un dispositif électroluminescent dans lequel est interposé, entre l'électrode à base d'oxydes métalliques et la couche constituée de la substance électroluminescente, une couche constituée d'un électro-catalyseur dérivé de la triphénylamine (Appl. Phys. Lett., 1987, 51., 913).
Le brevet d'invention US 5.231.329 divulgue un dispositif similaire, dans lequel un électro-catalyseur, de structure polymère dérivée de l'aniline, est disposé entre l'électrode à base d'oxyde .mixte d'indium et d'étain et l'émetteur organique de structure polymère dérivée de la 8-hydroxyquinoline.
Récemment, Q. Pei et al ont décrit un dispositif électroluminescent dans lequel les charges transportées ne sont pas seulement des électrons et des trous, mais aussi des ions (Science, 1995, 269,1086). Dans ce type de dispositif, la substance semi-conductrice et électroluminescente, en l'occurrence un polymère ou un mélange de polymères, joue aussi le rôle de d'électrolyte solide pour le transport des ions. D'après les auteurs, l'optimisation d'une telle substance qui transporte à la fois des ions, des électrons et des trous, pose encore beaucoup de problèmes, notamment au contact avec les électrodes.
Les matériaux généralement utilisés pour la réalisation d'électrodes injectrices d'électrons sont choisis parmi des métaux ou des alliages métalliques conducteurs de l'électricité. On peut citer par exemple l'aluminium, le magnésium, le titane, le molybdène ou bien un alliage de magnésium et d'argent.
A l'évidence, de tels matériaux métalliques ne peuvent être transparent à la lumière lorsqu'ils sont disposés en couche au sein de tels dispositifs électroluminescents. Ces matériaux métalliques présentent aussi comme autres inconvénients, contrairement aux oxydes métalliques, d'être sensibles à la corrosion et de ne pouvoir être façonnés selon des techniques de photo-lithographie ou de sérigraphie.
Il arrive aussi que ces électrodes métalliques ne puissent injecter suffisamment d'électrons directement dans certains émetteurs organiques. Cela se produit lorsque cette substance organique possède un potentiel de réduction trop faible par rapport à la fonction de travail de l'électrode. Il est possible, dans ce cas aussi, d'interposer une couche constituée d'électro-catalyseurs, tel que par exemple des substances dérivées de l'oxadiazole.
L'introduction de couches constituées d'électro-catalyseurs organiques au sein des dispositifs électroluminescents ayant permis de s'affranchir en partie des contraintes dues au franchissement des barrières d'énergie, il est possible maintenant d'envisager l'emploi d'une grande variété de substances électroluminescentes et de couples d'électrodes et d'en faire de nombreuses combinaisons.
Reste que les transferts de charges entre les électrodes et les différentes sortes de substances organiques, émetteurs ou électro-catalyseurs, se font à l'interface de matériaux hétérogènes, inorganique d'une part, organique d'autre part. Selon les exemples précédents, ce peut être une interface oxyde métallique - substance organique dans le cas de l'injection de trous, ou alors une interface métal - substance organique dans le cas de l'injection d'électrons.
De forts champs électriques se créent au niveau de ces interfaces, en particulier, lorsque le transfert de charges est peu efficace. L'une des conséquences en est l'apparition de décollements de la couche organique appliquée sur l'électrode. Ce phénomène pourrait être à l'origine d'une partie des détériorations des matériaux que l'on observe au sein de ces dispositifs, ce qui ne permet pas de leur envisager une application industrielle.
Récemment, F. Nϋesch et al se sont intéressés aux phénomènes qui pourraient se produire aux interfaces des matériaux hétérogènes (Adv. Mater., 1997, 9, 222). Un dispositif électroluminescent comprenant une électrode constituée d'oxyde mixte d'indium et d'étain et une substance organique électroluminescente, en l'occurrence le poly(para-phénylène), a été construit. Ils ont pu lier chimiquement, grâce à un groupement d'attachement, la substance organique électroluminescente à l'oxyde métallique de l'électrode. Cependant, la mise en oeuvre de ce type de molécules polyaromatiques essentiellement apolaires est rendue difficile en raison de leur très mauvaise solubilité dans les solvants organiques usuels.
L'hétérogénéité entre matériaux inorganiques, d'une part, et organiques, d'autre part, provoque une autre difficulté fréquemment rencontrée lors de la conception de dispositifs électroluminescents et qui est de pouvoir s'assurer d'une bonne répartition ainsi que d'une bonne adhésion de la matière organique composant la couche déposée en surface du matériau de l'une ou l'autre des électrodes, mais aussi de pouvoir en contrôler son épaisseur. Des défectuosités dans l'un ou l'autre de ces paramètres sont susceptibles d'initier des claquages détruisant alors le dispositif.
La présente invention a pour but de fournir un dispositif électroluminescent dans lequel il est possible d'adapter à volonté la fonction de travail d'une électrode quelconque, constituée d'un matériau conducteur choisi parmi les oxydes métalliques et les nitrures métalliques, aux potentiels d'oxydo-réduction d'une grande variété de substances organiques solides, semi-conductrices et électroluminescentes.
L'invention a aussi pour but de fournir un dispositif électroluminescent dans lequel il est possible d'adapter à volonté la fonction de travail d'une électrode quelconque, constituée d'un matériau conducteur choisi parmi les oxydes métalliques et les nitrures métalliques, de sorte que le même matériau de cette électrode puisse injecter, selon les cas, des trous ou alors des électrons vers ces substances électroluminescentes.
L'invention a aussi pour but de fournir un dispositif électroluminescent dans lequel le matériau constituant l'une au moins des deux électrodes, en particulier celui de l'électrode injectrice d'électrons, est transparent, ou tout au moins translucide, à la lumière.
L'invention a pour autre but l'amélioration du transfert des charges à l'interface des matériaux hétérogènes et, par conséquent, d'éviter une détérioration des matériaux du dispositif électroluminescent. L'invention a encore pour but d'améliorer la répartition et l'adhésion de ta matière organique de la couche déposée sur le matériau de l'une ou l'autre des électrodes.
A cet effet, la présente invention concerne un dispositif électroluminescent de structure multicouche comprenant:
i) une première électrode comprenant une couche, constituée d'un matériau conducteur de l'électricité, transparent ou translucide, choisi parmi les oxydes métalliques et les nitrures métalliques, ladite couche étant déposée sur un support transparent, constitué d'une plaque en verre, en silice, en alumine, ou d'une feuille de polymère;
ii) une deuxième électrode;
iii) une couche, disposée entre les deux électrodes, comprenant une substance organique solide, semi-conductrice et électroluminescente, éventuellement conductrice d'ions, ladite couche étant éventuellement bordée d'une ou de plusieurs couches intermédiaires, constituées d'électro-catalyseurs; et
iv) une couche de structure monomoléculaire, disposée entre la couche constituée du matériau conducteur et la couche constituée de la substance électroluminescente;
ce dispositif étant caractérisé en ce que ladite couche de structure monomoléculaire est constituée d'un composé organique dipolaire dont la structure possède un système électronique π, un groupement fonctionnel, vicinal ou non du système électronique π, ledit composé organique dipolaire, d'une part, étant lié chimiquement par l'intermédiaire dudit groupement fonctionnel audit matériau conducteur et, d'autre part, ayant une affinité chimique pour ladite substance organique électroluminescente.
Par la nature de son moment dipolaire électrique, sa valeur et son orientatiofi relative, ledit composé organique dipolaire confère audit matériau conducteur constituant la première électrode, auquel il est lié chimiquement, la propriété, soit d'injecter des trous, soit d'injecter des électrons, vers ladite substance organique solide, semi-conductrice et électroluminescente. Les valeurs des moments dipolaires des composés organiques dipolaires. peuvent être évaluées en appliquant en particulier la méthode semi-empirique de calcul Hartree Fock réalisée selon des conditions idéales en utilisant la méthode ZINDO (J. Ridley et al, Theoret. Chim. Acta., 1976, 42, 223 et A. Bacon et al, Theoret. Chim. Acta., 1979, 53, 21). En toute rigueur, la méthode semi-empirique ne doit pas être appliquée à la molécule isolée mais à cette même molécule dans son état adsorbé sur la surface du matériau de l'électrode. La méthode ZINDO, ainsi que d'autres programmes de calcul utilisés en chimie théorique, permettent de déterminer le moment dipolaire net de la molécule adsorbée en procédant par exemple comme suit: on peut, grâce à la méthode ZINDO, optimiser tout d'abord la géométrie de la molécule placée au voisinage d'un morceau de surface du matériau représentant l'électrode; on peut ensuite calculer, dans cette géométrie, le moment dipolaire de la molécule adsorbée elle-même.
Afin que ledit matériau conducteur constituant la première électrode puisse injecter des trous vers la substance organique solide, semi-conductrice et électroluminescente, le composé organique dipolaire lié chimiquement audit matériau est choisi avantageusement de telle sorte que son moment dipolaire électrique soit un vecteur dont la valeur absolue est comprise entre 1 Debye et 50 Debyes. L'orientation de ce vecteur est telle que le pôle positif se trouve au voisinage du matériau conducteur alors que le pôle négatif en est éloigné.
En liant chimiquement au matériau conducteur des composés organiques dipolaires ayant de tels moments dipolaires, il est possible d'injecter des trous vers des substances organiques solides, semi-conductrices et électroluminescentes, en franchissant des barrières d'énergie qui auraient été comprises entre 0,5 eV et 1 ,5 eV si le matériau conducteur avait été utilisé nu.
Le passage du flux de charges, en l'occurrence de trous, est probablement dû à une augmentation de la fonction de travail de l'électrode constituée dudit matériau conducteur auquel a été lié chimiquement ledit composé organique dipolaire. Ceci peut s'expliquer par un effet coopératif des dipôles du composé organique qui génère un champ électrique en surface de l'électrode et diminue la barrière d'énergie à franchir.
Afin que ledit matériau conducteur constituant la première électrode puisse injecter des électrons vers la substance organique solide, semi-conductrice et électroluminescente, le composé organique dipolaire lié chimiquement audit matériau est choisi avantageusement de telle sorte que son moment dipolaire ^ électrique soit un vecteur dont la valeur absolue est comprise entre 1 Debye et 50 Debyes. L'orientation de ce vecteur est telle que le pôle négatif se trouve au voisinage du matériau conducteur alors que le pôle positif en est éloigné.
En liant chimiquement au matériau conducteur des composés organiques dipolaires ayant de tels moments dipolaires, il est possible d'injecter des électrons vers des substances organiques solides, semi-conductrices et électroluminescentes, en franchissant des barrières d'énergie qui auraient été comprises entre 0,5 eV et 1 ,5 eV si le matériau conducteur avait été utilisé nu.
Le passage du flux de charges, en l'occurrence d'électrons, est probablement dû à une diminution de la fonction de travail de l'électrode constituée dudit matériau conducteur auquel a été lié chimiquement ledit composé organique dipolaire. Ceci peut s'expliquer par un effet coopératif des dipôles du composé organique qui génère un champ électrique en surface de l'électrode et diminue la barrière d'énergie à franchir.
Ledit composé organique dipolaire, dont la structure possède un système électronique π, un groupement fonctionnel, vicinal ou non du système électronique π, est lié chimiquement audit matériau conducteur par l'intermédiaire dudit groupement fonctionnel. Ledit groupement fonctionnel est avantageusement choisi parmi le groupe comprenant les acide carboxylique, carboxylate, acide phosphorique, phosphonate et les groupements chélatants α-céto-énolate, oxime, hydroxyquinoline. De préférence, ledit groupement fonctionnel se trouve en position vicinale par rapport audit système électronique π de façon à garantir un meilleur recouvrement des orbitales électroniques et, par là même, d'assurer un meilleur transfert de charges entre l'électrode et la substance organique électroluminescente.
Selon le groupement fonctionnel choisi, la liaison chimique mise en jeu entre ce groupement et le matériau conducteur de l'électrode est une liaison covalente, une liaison ionique, une liaison dipôle - dipôle ou une liaison hydrogène.
De préférence, ledit composé organique dipolaire confère au matériau conducteur, auquel il est lié chimiquement par l'intermédiaire dudit groupement fonctionnel, la propriété d'injecter des trous vers la substance organique solide, semi-conductrice et électroluminescente, si ledit groupement fonctionnel est choisi parmi le groupe comprenant les acides carboxylique et phosphorique.
De préférence, ledit composé organique dipolaire confère au matériau conducteur, auquel il est lié chimiquement par l'intermédiaire dudit groupement fonctionnel, la propriété d'injecter des électrons vers la substance organique solide, semi-conductrice et électroluminescente, si ledit groupement fonctionnel est choisi parmi le groupe comprenant les carboxylate, phosphonate.
Par le système électronique π qui constitue une partie de sa structure, ledit composé organique dipolaire, lié chimiquement audit matériau conducteur, est à même de porter puis à transférer vers la substance organique solide, semi- conductrice et électroluminescente, les charges, selon les cas électrons ou trous, qui ont été extraites du matériau conducteur.
Par l'affinité chimique que montre ledit composé organique dipolaire envers la substance organique solide, semi-conductrice et électroluminescente, le transfert des charges, selon les cas électrons ou trous, entre le composé organique dipolaire et la substance organique électroluminescente se fait facilement. Cette affinité chimique se traduit en terme de liaisons de type ionique, de type dipôle - dipôle, de type transfert de charge, de type hydrogène ou bien de type Van der Waals, entre une partie de la structure chimique du composé organique dipolaire et une partie de la structure chimique de la substance organique électroluminescente.
Selon l'une des variantes du dispositif électroluminescent conforme à l'invention, le composé organique dipolaire se trouve sous la forme d'un complexe organo-métallique de formules générales (I) à (VI) suivantes :
ML1(L)4 formule (I),
dans laquelle,
M est choisi parmi Ru(ll), Os(ll), Cr(ll), Al(lll), Ga(lll) et ln(lll), est un ligand de formule générale a), et
L est un ligand de formule générale b);
ML1(L)2L' formule (II),
dans laquelle, M et L** sont tels que définis ci-dessus,
L est un ligand de formule générale b), et
L' est un ligand de formule générale a), c), d) ou e);
L L' formule (III),
dans laquelle,
M et L- sont tels que définis ci-dessus,
L et L' sont, indépendamment l'un de l'autre, un ligand de formule générale a), c), d) ou e);
MLlL formule (IV),
dans laquelle,
M et L'' sont tels que définis ci-dessus, L est un ligand de formule générale b), et L' est un ligand de formule générale f);
ML L(X)2 formule (V),
M et L'' sont tels que définis ci-dessus,
L est un ligand de formule générale a), c), d) ou e),
X est sélectionné parmi le groupe de co-ligands comprenant CI", Br, I-, NCS", CN-
NCO-;
MLlLX formule (VI),
dans laquelle,
M, L^ et X sont tels que définis ci-dessus,
L est un ligand de formule générale f);
les formules générales a), b), c), d) et f) étant
formule a), dans laquelle G^ et G^ sont identiques ou différents et sont choisis parmi le groupe comprenant les -COOH, -COO", -PO3H2, -PO3H-;
formule b),
dans laquelle R est choisi parmi le groupe comprenant les hydrogène, phényle, vinyle, aminé primaire, secondaire, tertiaire ou quaternaire, hydroxyle, alkyle de 1 à 30 atomes de carbone;
formule c),
dans laquelle les R sont définis, indépendamment l'un de l'autre, tels que ci-dessus;
formule d),
dans laquelle les R sont définis, indépendamment l'un de l'autre, tels que ci-dessus;
formule e),
dans laquelle les R sont définis, indépendamment l'un de l'autre, tels que ci-dessus;
formule f), dans laquelle les R sont définis, indépendamment l'un de l'autre, tels que ci-dessus.
Les ligands L et L' sont choisis en fonction de l'affinité chimique qu'ils montrent envers la substance organique solide, semi-conductrice et électroluminescente.
De préférence, ledit composé organique dipolaire confère au matériau conducteur, auquel il est lié chimiquement par l'intermédiaire dudit groupement fonctionnel, la propriété d'injecter des trous vers la substance organique solide, semi-conductrice et électroluminescente, s'il se trouve sous la forme d'un complexe organo-métallique de formules générales précédentes (V) et (VI) dans lesquelles les groupements G1 et G2, présents sur la formule a) du ligand , sont identiques et sont choisis parmi -COOH et -PO3H2.
De préférence encore, ledit composé organique dipolaire confère au matériau conducteur, auquel il est lié chimiquement par l'intermédiaire dudit groupement fonctionnel, la propriété d'injecter des trous vers la substance organique solide, semi-conductrice et électroluminescente, s'il se trouve sous forme d'un complexe organo-métallique de formule générale V :
ML"lL(X)2 formule (V),
dans laquelle,
M est choisi parmi Ru(ll), Os(ll), Cr(ll), Al(lll), Ga(lll) et ln(lll),
Ll et L sont identiques et sont des ligands de formule générale a) telle que définie ci-dessus et dans laquelle les groupements G"! et G2 sont identiques et sont choisis parmi les -COOH et -PO3H2, et
X est sélectionné parmi le groupe de co-ligands comprenant CI", Br, I", NCS", CN~,
NCO-.
De préférence encore, ledit composé organique dipolaire confère au matériau conducteur, auquel il est lié chimiquement par l'intermédiaire dudit groupement fonctionnel, la propriété d'injecter des trous vers la substance organique solide, semi-conductrice et électroluminescente, si il est le dithiocyanate de bis(4,4'-dicarboxy-2,2,-bipyridyl)ruthénium(ll) sous la forme de tétra-acide.
De préférence, ledit composé organique dipolaire confère au matériau conducteur, auquel il est lié chimiquement par l'intermédiaire dudit groupement fonctionnel, la propriété d'injecter des électrons vers la substance organique solide, semi-conductrice et électroluminescente, s'il se trouve sous la forme d'un complexe organo-métallique de formules générales précédentes (I) à (IV) dans lesquelles les groupements G"1 et G2, présents sur la formule a) du ligand L-!, sont identiques et sont choisis parmi -COO" et -PO3H".
De préférence encore, ledit composé organique dipolaire confère au matériau conducteur, auquel il est lié chimiquement par l'intermédiaire dudit groupement fonctionnel, la propriété d'injecter des électrons vers la substance organique solide, semi-conductrice et électroluminescente, s'il se trouve sous forme d'un complexe organo-métallique de formule générale IV :
ML1 LL' formule (IV),
dans laquelle,
M est choisi parmi Ru(ll), Os(ll), Cr(ll), Al(lll), Ga(lll) et ln(lll),
L"! est un ligand de formule générale a) telle que définie ci-dessus et dans laquelle les groupements G^ et G2 sont identiques et sont choisis parmi -COO" et -PO3H-, et
L et L' sont identiques et sont des ligands de formule générale d) telle que définie ci-dessus.
De préférence encore, ledit composé organique dipolaire confère au matériau conducteur, auquel il est lié chimiquement par l'intermédiaire dudit groupement fonctionnel, la propriété d'injecter des électrons vers la substance organique solide, semi-conductrice et électroluminescente, si il est le [bis-(4,4'-di- phényl-1 )10-phénantrolène)-(4,4,-dicarboxy-2,2'-bipyridyl)]ruthénium(ll) sous la forme de sels internes.
Selon une autre des variantes du dispositif électroluminescent conforme à l'invention, le composé organique dipolaire possède l'une des formules générales (VII) ou (VIII) suivantes :
G3-(CH2 )m ^ \\ a W < V"R
B— -C / B— C formule (VII), n
dans laquelle,
G3 est le groupement acide carboxylique ou acide phosphorique, A est choisi parmi le groupe comprenant -HC=CH-, -O-, -S-, et ^
- lorsque A est -HC=CH- ou -S-, alors B et C sont tous deux -CH-,
- lorsque A est -O-, alors B et C sont tous deux -N-, m va de 0 à 6, n va de 0 à 20,
R est choisi parmi le groupe comprenant les hydrogène, alkyle linéaire ou ramifié de 1 à 20 atomes de carbone, hydroxyle, éther, amine primaire, secondaire, tertiaire ou quaternaire, nitro, cyano, ester;
formule (VIII) dans laquelle,
G^ est le groupement carboxylate ou phosphonate, n va de 0 à 6, m vaut 0 ou 1 , et
R est un alkyle linéaire ou ramifié de 1 à 6 atomes de carbone.
De préférence, ledit composé organique dipolaire confère au matériau conducteur, auquel il est lié chimiquement par l'intermédiaire dudit groupement fonctionnel, la propriété d'injecter des trous vers la substance organique solide, semi-conductrice et électroluminescente, s'il possède la formule générale précédente (VII).
De préférence encore, ledit composé organique dipolaire confère au matériau conducteur, auquel il est lié chimiquement par l'intermédiaire dudit groupement fonctionnel, la propriété d'injecter des trous vers la substance organique solide, semi-conductrice et électroluminescente, s'il est l'acide 4-nitro- benzoïque.
De préférence, ledit composé organique dipolaire confère au matériau conducteur, auquel il est lié chimiquement par l'intermédiaire dudit groupement fonctionnel, la propriété d'injecter des électrons vers la substance organique solide, semi-conductrice et électroluminescente, s'il possède la formule générale précédente (VIII).
De préférence encore, ledit composé organique dipolaire confère au matériau conducteur, auquel il est lié chimiquement par l'intermédiaire dudit groupement fonctionnel, la propriété d'injecter des électrons vers la substance^, organique solide, semi-conductrice et électroluminescente, s'il est la 4-carboxy- tri-N-méthylanilium bétaïne ou la 4-carboxy-1-méthylpyridinium bétaïne.
Dans le dispositif électroluminescent conforme à l'invention, le matériau conducteur de l'électricité, en particulier de la première électrode, est de préférence choisi parmi l'oxyde de titane, l'oxyde de zinc, l'oxyde d'étain, le nitrure de gallium et l'oxyde mixte d'indium et d'étain. Ces matériaux ont le grand avantage d'être transparent ou translucide à la lumière. Ils laissent ainsi passer tout rayonnement émis par la substance organique solide, semi-conductrice et électroluminescente.
De préférence encore, ledit matériau conducteur est l'oxyde mixte d'indium et d'étain. Il est généralement admis, dans le domaine des dispositifs électroluminescents solides, que la fonction de travail d'une électrode constituée d'un tel matériau est de 4,7 eV. Une telle électrode est généralement capable d'injecter des trous, très fréquemment avec l'aide d'électro-catalyseurs.
Dans le dispositif électroluminescent conforme à l'invention, une couche, comprenant une substance organique solide, semi-conductrice et électroluminescente, éventuellement bordée d'une ou plusieurs couches intermédiaires constituées d'électro-catalyseurs, est disposée entre les deux électrodes.
Par substance organique solide, semi-conductrice et électroluminescente, on entend une substance constituée d'une ou de plusieurs molécules électroluminescentes et comprenant éventuellement, en mélange, des additifs tels que des dopants de ces molécules comme des fluorophores, des électro-catalyseurs, des entités ioniques accompagnées de conducteurs d'ions.
Dans le dispositif électroluminescent conforme à l'invention, la substance organique, semi-conductrice et électroluminescente, est choisie parmi des molécules organiques, monomères ou polymères, fluorescentes telles des molécules appartenant à la famille du naphtalène, de l'anthracène, du coronène, du pérylène, mais aussi de l'acridine, du rubuène, de la quinacridone, des phthalo- cyanines, du carbazole, des dérivés de la tris-(8-hydroxyquinoline) complexée à des métaux tels que l'aluminium, éventuellement dopés par de la coumarine, ou bien encore des molécules polymériques le poly(para-phénylène-vinylène) ou le poly- (para-phénylène). Les électro-catalyseurs peuvent être choisis parmi les dérivés de la tripjaényl- amine et de l'oxadiazole, mais aussi le poly-(phényl-vinylène) portant des groupements nitrile, le polyvinylcarbazole ou le polyméthylphénylsilane.
La deuxième électrode du dispositif conforme à l'invention peut être constituée d'un matériau conducteur tel que l'aluminium, l'argent, le cuivre, le magnésium, le nickel, le titane ou des alliages de ces métaux tels que l'alliage de magnésium et d'argent.
L'un des grands avantages du dispositif électroluminescent conforme à l'invention est que la deuxième électrode du dispositif peut aussi être constituée d'un matériau conducteur de l'électricité, transparent ou translucide, choisi parmi les oxydes métalliques et les nitrures métalliques, auquel on aurait lié chimiquement un composé organique dipolaire conformément à l'une des variantes du dispositif conforme à l'invention. Dans ce cas, la substance organique polaire conférera au matériau de la deuxième électrode la propriété d'injecter des charges de nature opposée de celles injectées par la première électrode dont le matériau est déjà lié chimiquement à une substance organique dipolaire de nature différente.
La présente invention concerne aussi les composés organiques dipolaires pour le dispositif électroluminescent conforme à l'invention se trouvant sous la forme de complexes organo-métalliques de formules générales (I) à (V) suivantes :
ML1(L)4 formule (I),
dans laquelle,
M est choisi parmi Ru(ll), Os(ll), Cr(ll), Al(lll), Ga(lll) et ln(lll),
L"1 est un ligand de formule générale a), et
L est un ligand de formule générale b);
ML (L)2L' formule (II),
dans laquelle,
M et L*1 sont tels que définis ci-dessus,
L est un ligand de formule générale b), et
L' est un ligand de formule générale a), c), d) ou e);
ML1 LU formule (III), dans laquelle,
M et sont tels que définis ci-dessus,
L et L' sont, indépendamment l'un de l'autre, un ligand de formule générale a), c), d) ou e);
ML L' formule (IV),
dans laquelle,
M et L"! sont tels que définis ci-dessus, L est un ligand de formule générale b), et L' est un ligand de formule générale f); et
ML1 L(X)2 formule (V),
M et L^ sont tels que définis ci-dessus,
L est un ligand de formule générale d) ou e), et
X est sélectionné parmi le groupe de co-ligands comprenant CI", Br, I", NCS", CN",
NCO";
les formules générales a), b), c), d) et f) étant :
formule a),
dans laquelle G^ et G2 sont identiques ou différents et sont choisis parmi le groupe comprenant les -COOH, -COO", -PO3H2, -PQ3H-;
formule b),
dans laquelle R est choisi parmi le groupe comprenant les hydrogène, phényle, vinyle, amine primaire, secondaire, tertiaire ou quaternaire, hydroxyle, alkyle de 1 à 30 atomes de carbone; formule c),
dans laquelle les R sont définis, indépendamment l'un de l'autre, tels que ci-dessus;
formule d),
dans laquelle les R sont définis, indépendamment l'un de l'autre, tels que ci-dessus;
formule e),
dans laquelle les R sont définis, indépendamment l'un de l'autre, tels que ci-dessus;
formule f),
dans laquelle les R sont définis, indépendamment l'un de l'autre, tels que ci-dessus.
De manière générale, les complexes organo-métalliques de formules générales (I) à (VI) s'obtiennent en faisant réagir successivement les différents hétérocycles précurseurs des ligands L et L' sur le chlorure de ruthénium(lll).
La présente invention concerne aussi les composés organiques dipolaires pour. le dispositif électroluminescent conforme à l'invention de formule générale (VII) suivante : formule (VII), dans laquelle,
G3 est le groupement acide carboxylique ou acide phosphorique,
A est choisi parmi le groupe comprenant -HC≈CH-, -O-, et
- lorsque A est -HC=CH-, alors B et C sont tous deux -CH-;
- lorsque A est -O-, alors B et C sont tous deux -N-, m va de 0 à 6, n va de 0 à 20,
R est choisi parmi le groupe comprenant les hydrogène, alkyle linéaire ou ramifié de 1 à 20 atomes de carbone, hydroxyle, éther, amine primaire, secondaire, tertiaire ou quaternaire, nitro, cyano, ester.
Pour la fabrication du dispositif électroluminescent conforme à l'invention, on peut mettre en oeuvre tout procédé approprié, en particulier les techniques employées pour la fabrication dès dispositifs de l'art antérieur.
Ainsi, pour former la couche constituée d'un matériau conducteur de l'électricité, transparent ou translucide, choisi parmi les oxydes métalliques et les nitrures métalliques, on peut employer les méthodes, connues en soi, de dépôt par pulvérisation thermique, en particulier au moyen d'une torche à plasma, ou encore les techniques de dépôt à partir de la phase liquide ainsi que les procédés de dépôt par réaction chimique en phase vapeur. La méthode mettant en oeuvre une torche à plasma ("plasma spattering") est particulièrement appropriée pour appliquer l'oxyde mixte d'indium et d'étain.
De préférence, on forme d'abord la couche constituée du matériau conducteur, en déposant ce matériau sur un substrat ayant la forme d'un film, d'une feuille ou d'une plaquette, et servant de support au dispositif électroluminescent. Ce substrat est avantageusement constitué d'un matériau isolant transparent tel que du verre, de la silice, de l'alumine, de préférence du saphir ou du quartz, ou bien un polymère.
Le matériau conducteur est ensuite préparé afin de rendre sa surface active et de permettre la fixation chimique du composé organique dipolaire. Ce matériau subi alors différents traitement de nettoyage allant d'un traitement par ultrasons, d'un traitement à la brosse mécanique, jusqu'à un traitement par bombardement ionique ou traitement par plasma au sein d'une enceinte placée sous vide. La ^ couche superficielle du matériau conducteur est alors libérée de tout résidu organique ainsi que de tout gaz absorbé.
Pour déposer le composé organique dipolaire, on peut employer toute technique dans laquelle le composé est mis en solution dans un solvant. Ce peut être la technique par trempage ou "dip-coating" du matériau conducteur dans une telle solution diluée contenant le composé, ceci pendant un temps suffisant afin de permettre la liaison du groupement fonctionnel du composé organique dipolaire sur le matériau organique. Une autre technique peut être aussi l'application du procédé dit de la tournette ou "spin-coating" dans laquelle on dépose une faible quantité d'une solution diluée du composé organique sur le matériau conducteur que l'on met en rotation afin d'obtenir une répartition uniforme du composé. Il est aussi possible de déposer le composé organique dipolaire en appliquant la technique basée sur l'évaporation thermique ou sublimation.
Afin d'obtenir une couche 'monomoléculaire, le substrat obtenu est rincé par un solvant pur ou bien encore par une même solution contenant le composé organique dipolaire, mais cette fois de concentration inférieure. Toute molécule qui ne serait pas liée au matériau conducteur est alors éliminée.
La couche constituée de la substance organique solide, semi-conductrice et électroluminescente, ainsi qu'éventuellement les couches intermédiaires constituées d'électro-catalyseurs, sont déposées successivement en appliquant des méthodes identiques à celles décrites ci-dessus, mais cette fois sans avoir nécessairement à mettre en oeuvre une étape de rinçage.
Le dépôt du matériau conducteur constituant la deuxième électrode se fait selon les méthodes connues en soi et appropriées pour chaque type de matériau. Par exemple, si le matériau est un métal ou un alliage métallique, il peut être déposé selon la technique par évaporation thermique sous vide. Si le matériau est un oxyde métallique, il peut être déposé en appliquant soit la technique par évaporation thermique sous vide, soit par le procédé dit à la tournette.
Avantageusement, les différents constituants du dispositif sont chacun composés de matières transparentes ou translucides et les épaisseurs des couches des matériaux constituant des deux électrodes, de la couche constituée de la substance organique solide, semi-conductrice et électroluminescente ainsi que celle des couches intermédiaires éventuelles constituées des électro-catalyseurs, sont réglées de façon que ces couches soient toutes transparentes ou translucides.
De cette façon, on peut réaliser un dispositif électroluminescent émettant de la lumière sur ses deux faces.
On peut également de manière connue en soi éventuellement former, sur les faces externes du dispositif selon l'invention, une ou plusieurs couches auxiliaires supplémentaires telles que des couches réfléchissantes, formant miroir, ou des couches semi-transparentes et/ou diélectriques, afin de diriger la lumière émise par le dispositif ou d'en renforcer certaines composantes, notamment par formation de microcavités.
On peut, en outre, en superposant une pluralité, par exemple trois, de dispositifs selon l'invention, émettant chacun de la lumière sur ses deux faces, ces dispositifs comportant des couches de matières organiques électroluminescentes différentes ayant des longueurs d'onde d'émission lumineuse différentes, fabriquer un dispositif d'affichage multicolore, fonctionnant par mélanges de couleurs commandés par variation des tensions appliquées aux différentes couches de ce dispositif.
Un deuxième type d'affichage multicolore peut être réalisé à l'aide d'éléments formés par juxtaposition d'une pluralité, par exemple trois, de dispositifs selon l'invention, ces dispositifs comportant des couches de matières organiques électroluminescentes différentes ayant des longueurs d'onde d'émission lumineuse différentes, fonctionnant par mélanges de couleurs commandés par variation de tensions appliqués aux différents dispositifs composant chaque élément.
Un troisième type d'affichage multicolore peut être réalisé à l'aide d'éléments formés par juxtaposition d'une pluralité, par exemple trois, de dispositifs selon l'invention, ces dispositifs comportant des couches auxiliaires supplémentaires favorisant la sélection d'un domaine de longueurs d'onde étroit à l'intérieur du spectre d'émission lumineux émis par la ou les couches organiques électroluminescentes, fonctionnant par mélanges de couleurs commandés par variation de tensions appliqués aux différents dispositifs composant chaque élément. L'invention sera encore mieux comprise grâce à la description détaillée, qtii va suivre, d'exemples non limitatifs de la réalisation de formes d'exécution du dispositif selon l'invention, en se référant au dessin annexé, dans lequel:
la figure 1 est une vue schématique, en coupe, d'une forme d'exécution du dispositif;
la figure 2 est une représentation d'un mode de liaison du dithiocyanate de bis- (4,4'-dicarboxy-2,2'-bipyridyl)-ruthénium(ll), substance dipolaire conférant au matériau la propriété d'injecter des trous, accompagnée de la représentation de son moment dipolaire électrique ainsi que d'une représentation symbolique des différents niveaux d'énergie;
la figure 3 est un diagramme montrant la courbe caractéristique en trait plein courant - tension obtenue avec, comme substance électroluminescente, la tris- (8-hydroxyquinoline) d'aluminium en liant du dithiocyanate de bis-(4,4'-dicarboxy- 2,2'-bipyridyl)-ruthénium(ll) à une électrode, la courbe en trait pointillé est la courbe témoin obtenue sans avoir lié de composé;
la figure 4 est un diagramme montrant la courbe caractéristique en trait plein intensité lumineuse - tension obtenue avec, comme substance électroluminescente, la tris-(δ-hydroxyquinoline) d'aluminium en liant du dithiocyanate de bis(4,4'-di- carboxy-2,2'-bipyridyl)-ruthénium(ll) à une électrode, la courbe en trait pointillé est la courbe témoin obtenue sans avoir lié de composé;
la figure 5 est représentation d'un mode de liaison de l'acide 4-nitrobenzoïque, substance dipolaire conférant au matériau la propriété d'injecter des trous, accompagnée de la représentation de son moment dipolaire électrique ainsi que d'une représentation symbolique des différents niveaux d'énergie;
la figure 6 est un diagramme montrant la courbe caractéristique en trait plein courant - tension obtenue avec, comme substance électroluminescente, la tris- (8-hydroxyquinoline) d'aluminium en liant l'acide 4-nitrobenzoïque à une électrode, la courbe en trait pointillé est la courbe témoin obtenue sans avoir lié de composé;
la figure 7 est un diagramme montrant la courbe caractéristique en trait plein intensité lumineuse - tension obtenue avec, comme substance électroluminescente, la tris-(δ-hydroxyquinoline) d'aluminium en liant l'acide 4-nitrobenzoïque à une électrode, la courbe en trait pointillé est la courbe témoin obtenue sans avoir lié-de composé;
la figure 8 est un diagramme montrant la courbe caractéristique en trait plein courant - tension obtenue avec, comme substance électroluminescente, le N,N'-di- éthyl-3,3'-bicarbazole en liant l'acide N,N'-dioctyl-3,3'-bicarbazyl-6,6'-dicarboxylique à une électrode, la courbe en trait pointillé est la courbe témoin obtenue sans avoir lié de composé;
la figure 9 est un diagramme montrant la courbe caractéristique en trait plein intensité lumineuse - tension obtenue avec, comme substance électroluminescente, le N,N'-diéthyl-3,3'-bicarbazole en liant l'acide N,N'-dioctyl-3,3'-bicarbazyl-6,6'-di- carboxylique à une électrode, la courbe en trait pointillé est la courbe témoin obtenue sans avoir lié de composé;
la figure 10 est une représentation d'un mode de liaison du [bis(4,4'-diphényl- 1,10-phénantrolène)-(4,4'-dicarbbxy-2,2'-bipyridyl)]ruthénium(ll), substance dipolaire conférant au matériau la propriété d'injecter des électrons, accompagnée de la représentation de son moment dipolaire électrique ainsi que d'une représentation symbolique des différents niveaux d'énergie;
la figure 11 est un diagramme montrant la courbe caractéristique en trait plein courant - tension obtenue avec, comme substance électroluminescente, la tris- (8-hydroxyquinoline) d'aluminium en liant du [bis(4,4'-diphényl-1,10-phénantrolène)- (4,4'-dicarboxy-2,2'-bipyridyl)]-ruthénium(ll) à une électrode, la courbe en trait pointillé est la courbe témoin obtenue sans avoir lié de composé;
la figure 12 est un diagramme montrant la courbe caractéristique en trait plein intensité lumineuse - tension obtenue avec, comme substance électroluminescente, la tris-(δ-hydroxyquinoline) en liant du [bis(4,4'-diphényl-1 ,10-phénantrolène)- (4,4'-dicarboxy-2,2'-bipyridyl)]-ruthénium(ll) à une électrode, la courbe en trait pointillé est la courbe témoin obtenue sans avoir lié de composé.
Exemple 1 : (Préparation d'une première variante d'exécution du dispositif selon l'invention dans laquelle la première électrode a la propriété d'injecter des trous)
a) Préparation du dichlorure de bis(4,4'-dicarboxy-2,2'-bipyridyl)ruthénium(ll) dihydraté, un composé de formule 1a:
La préparation de ce complexe du ruthénium est réalisée selon le mode opératoire décrit dans la demande internationale WO 94/04497.
b) Préparation du dithiocyanate de bis(4,4'-dicarboxy-2,2'-bipyridyl)ruthénium(ll), un composé de formule 1b:
La préparation de ce complexe du ruthénium est réalisée selon le mode opératoire décrit dans la demande internationale WO 94/04497. La valeur absolue évaluée du moment dipolaire électrique de ce complexe est de 10 Debyes.
c) Préparation de la variante du dispositif selon l'invention telle qu'illustrée à la figure 1.
Une plaquette de verre 1 , couverte d'une couche mince conductrice d'oxyde mixte d'indium et d'étain (produit commercial désigné par la dénomination ITO) d'une épaisseur de 80 nm et de résistivité électrique de 50 Ω, est nettoyée dans un bain ultrasonique dans de l'éthanol, puis dans de l'acétone avant d'être frottée mécaniquement dans de l'eau distillée contenant un surfactant à l'aide d'une brosse à base de polymères. Une nouvelle opération de nettoyage est réalisée dans un bain ultrasonique contenant un détergent puis dans de l'eau distillée. Le substrat ainsi nettoyé est ensuite introduit dans une boîte à gants, placée sous atmosphère d'argon, reliée à une enceinte à vide. Il est ensuite soumis à un bombardement ionique pendant 6 minutes sous une pression d'argon de 8.10"2 mbar, une tension de 120 V, ainsi qu'une puissance RF de 10 W. Sans quitter l'atmosphère inerte, le substrat conducteur est trempé dans une solution éthanolique, exempte d'eau et d'oxygène, contenant du dithiocyanate de bis(4,4'-dicarboxy-2,2'-bipyridyl)- ruthénium(ll) à une concentration de 10-4 M. Le substrat est ensuite rapidement rincé par une même solution éthanolique, cette fois à une concentration de 10~6 M. La couche 3 de structure monomoléculaire est ainsi constituée. Le substrat est de nouveau placé dans une enceinte à vide, une couche d'une épaisseur de 140 nm constituée de la tris-(8-hydroxyquinoline) d'aluminium est alors déposée par évaporation thermique. Enfin, la deuxième électrode constituée d'aluminium est déposée sous la forme d'une couche 6 d'une épaisseur 50 nm selon une méthode connue en soi. Un courant électrique est appliqué entre la borne positive reliée à la première électrode, constituée d'oxyde d'indium et d'étain sur lequel à été lié chimiquement le composé organique dipolaire, et la borne négative à la deuxième électrode, constituée d'aluminium.
Les caractéristiques obtenues sont présentées sur les figures 3 et 4 et comparées à celles obtenues lorsque le composé organique n'a pas été lié au matériau de l'électrode. On constate très nettement que la première électrode n'injecte des trous, pour des valeurs croissantes de la tension, qu'à partir de +20 V. Ce passage du courant s'accompagne alors d'une remarquable émission de lumière dont l'intensité ne fait alors qu'augmenter. Le dispositif témoin, quant à lui, n'est pas capable d'injecter des trous à une telle tension et évidement ne peut émettre de la lumière.
Exemple 2 : (Préparation d'une deuxième variante d'exécution du dispositif selon l'invention dans laquelle la première électrode a la propriété d'injecter des trous)
Un exemple de dispositif similaire à celui de la variante précédente a été réalisé. Cette fois, le composé organique dipolaire constituant la couche 3 d'une épaisseur monomoléculaire est l'acide 4-nitrobenzoïque. La valeur absolue évaluée de son moment dipolaire électrique est de 5 Debyes. Ainsi une solution de cet acide dans du tétrahydrofurane à une concentration de 10-3 M est déposée sur le substrat conducteur sous une atmosphère inerte. Après plusieurs heures de contact, le substrat est rincé par du tétrahydrofurane puis est séché. La couche 4 constituée de la tris(δ-hydroxyquinoline) d'aluminium a une épaisseur de 140 nm. Un courant électrique est appliqué entre la borne positive reliée à la première électrode, constituée d'oxyde d'indium et d'étain sur lequel à été lié chimiquement le composé organique dipolaire, et la borne négative à la deuxième électrode, constituée d'aluminium.
Les caractéristiques obtenues sont présentées sur les figures 6 et 7 et comparées à celles obtenues lorsque le composé organique n'a pas été lié au matériau de l'électrode. On constate très nettement que la première électrode n'injecte des trous, pour des valeurs croissantes de la tension, qu'à partir de +20 V. Ce passage du courant s'accompagne alors d'une remarquable émission de lumière dont l'intensité ne fait alors qu'augmenter. Le dispositif témoin, quant à lui, n'est pas capable d'injecter des trous à une telle tension et évidement ne peut émettre de la lumière.
Exemple 3 : (Préparation d'une troisième variante d'exécution du dispositif selon l'invention dans laquelle la première électrode a la propriété d'injecter des trous)
a) Préparation de l'acide 2,2':5,,2":5",2",-tetrathiényl-5"'-caboxylique, un composé de formule 3a :
o- - -o- COOH
(3a).
La préparation de ce composé est réalisée selon le mode opératoire décrit par S. Isz et al (AIP Conférence Proceeding, Ed. P.C. Lacaze, AIP Press, New York, Année 1996, Vol 354, pp 394-406). La valeur absolue évaluée de son moment dipolaire électrique est de 2,5 Debyes.
b) Préparation de la variante du dispositif selon l'invention telle qu'illustrée à la figure 1.
Un exemple de dispositif similaire à celui de la variante précédente a été réalisé, mais cette fois, le composé organique dipolaire constituant la couche 3 est l'acide 2,2':5',2":5",2,"-tetrathiényl-5"'-caboxylique. Un courant électrique est ensuite appliqué entre la borne positive reliée à la première électrode, constituée d'oxyde d'indium et d'étain sur lequel à été lié chimiquement le composé organique dipolaire, et la borne négative à la deuxième électrode.
On constate très nettement que la première électrode n'injecte des trous, pour des valeurs croissantes de la tension, qu'à partir de +22 V. Ce passage du courant s'accompagne alors d'une remarquable émission de lumière dont l'intensité ne fait alors qu'augmenter. Le dispositif témoin, quant à lui, n'est pas capable d'injecter des trous à une telle tension et évidement ne peut émettre de la lumière.
Exemple 4 : (Préparation d'une quatrième variante d'exécution du dispositif selon l'invention dans laquelle la première électrode a la propriété d'injecter des trous)
a) Préparation de l'acide N,N'-dioctyl-3,3'-bicarbazyl-6,6'-dicaboxylique, un composé de formule 4a :
La préparation de ce composé est réalisée selon le mode opératoire décrit par T. Bénazzi (Thèse présentée pour l'obtention du grade de docteur de l'Université Paris-Nord, 1997). La valeur absolue évaluée de son moment dipolaire électrique est de 3 Debyes.
b) Préparation de la variante du dispositif selon l'invention telle qu'illustrée à la figure 1.
Un exemple de dispositif similaire à celui de la variante précédente a été réalisé. Cette fois, le composé organique dipolaire constituant la couche 3 d'une épaisseur monomoléculaire est l'acide N,N'-dioctyl-3,3'-bicarbazyl-6,6'-di- caboxylique, la substance électroluminescente est le N.N'-diéthyl-S.S'-bicarbazole et la deuxième électrode est constituée d'un alliage de magnésium et d'argent. Ainsi une solution de cet acide dans du tétrahydrofurane à une concentration de 10"4 M est déposée par trempage sur le substrat conducteur sous une atmosphère inerte. Après 10 heures de contact, le substrat est rincé par du tétrahydrofurane puis est séché. La couche 4 constituée du N,N'-diéthyl-3,3'-bicarbazole a une épaisseur de 100 nm. Un courant électrique est appliqué entre la borne positive reliée à la première électrode, constituée d'oxyde d'indium et d'étain sur lequel à été lié chimiquement le composé organique dipolaire, et la borne négative à la deuxième électrode.
Les caractéristiques obtenues sont présentées sur les figures 8 et 9 et comparées à celles obtenues lorsque le composé organique n'a pas été lié au matériau de l'électrode. On constate très nettement que la première électrode n'injecte des trous, pour des valeurs croissantes de la tension, qu'à partir de +13 V. Ce passage du courant s'accompagne alors d'une remarquable émission de lumière dont l'intensité ne fait alors qu'augmenter. Le dispositif témoin, quant à lui, n'est pas capable d'injecter des trous à une telle tension et évidement ne peut émettre de la lumière.
Exemple 5 : (Préparation d'une cinquième variante d'exécution du dispositif selon l'invention dans laquelle la première électrode a la propriété d'injecter des électrons)
a) Préparation du dichlorure de (4,4'-diphényl-1 ,10-phénantrolène)ruthénium(ll)I un composé de formule 5a :
La préparation de ce composé est réalisée selon le mode opératoire décrit par Y. Athanassov et al (J. Phys. Chem. B, 1997, TOI, 2556)
b) Préparation du [bis(4,4'-diphényl-1,10-phénantrolène)-(4,4'-dicarboxy-2,2'-bi- pyridyl)]ruthénium(ll), un composé de formule 5b :
Dans un mélange de 10 ml d'eau/éthanol (1:1), on ajoute du dichlorure de (4,4'-diphényl-1 ,10-phénantrolène)ruthénium(ll) (167 mg, 0,2 mmol), de l'acide 2,2'-bipyridyl-4,4'-dicarboxylique (49,5 mg, 0,202 mmol) et environ 50 mg de triéthyl- amine. On porte le mélange au reflux pendant 3 heures sous azote. Après refroidissement, la solution est filtrée afin d'éliminer les impuretés insolubles et l'éthanol est évaporé. Le précipité est collecté par filtrations et lavé par de l'eau. Le produit brut est mis dans de l'acétone que l'on porte au reflux pendant 2 à 3 heures. Après refroidissement, le produit est filtré. L'analyse élémentaire pour C60H53N6s2θl1.5Ru donne: C62,δ2(63,04); H4,67(4,67); N7,36(7,35), les valeurs calculées sont entre parenthèses. La valeur absolue évaluée de son moment dipolaire électrique est de 50 Debyes.
c) Préparation de la variante du dispositif selon l'invention telle qu'illustrée à la figure.1. Un dispositif similaire à ceux des variantes précédentes a été réalisé, ^ différant cependant par l'introduction d'une couche d'électro-catalyseurs supplémentaire 5. Cette fois, le composé organique dipolaire constituant la couche 3 d'une épaisseur monomoléculaire est le [bis(4,4'-diphényl-1,10-phénan- trolène)-(4,4'-dicarboxy-2,2'-bipyridyl)]-ruthénium(ll). Le substrat conducteur est trempé dans une solution éthanolique de ce composé à une concentration de 10"4 M sous atmosphère inerte. Après plusieurs heures de contact, le substrat est rincé par une même solution éthanolique, cette fois à une concentration de 10"6 M. Le substrat est ensuite placé dans une enceinte à vide, une couche d'une épaisseur de 90 nm de la tris(δ-hydroxyquinoline) d'aluminium est alors déposée pour évaporation thermique. Une deuxième couche intermédiaire 5 constituée du N,N'-bis(3-méthylphényl)-N,N,-(bisphenyl)benzidine d'une épaisseur de 50 nm. Enfin la deuxième électrode constituée d'or est déposée sous la forme d'une couche 6 d'une épaisseur de 50 nm selon une méthode connue en soi. Un courant électrique est appliqué entre la borne positive reliée à la première électrode, constituée d'oxyde d'indium et d'étain sur lequel à été lié chimiquement le composé organique dipolaire, et la borne négative à la deuxième électrode, constituée d'or.
Les caractéristiques obtenues sont présentées sur les figures 10 et 11 et comparées à celles obtenues lorsque le composé organique n'a pas été lié au matériau de l'électrode. On constate très nettement que la première électrode n'injecte des électrons, pour des valeurs décroissantes de la tension, qu'à partir de -10 V. Ce passage du courant s'accompagne alors d'une remarquable émission de lumière dont l'intensité ne fait alors qu'augmenter. Le dispositif témoin, quant à lui, n'est pas capable d'injecter des électrons et évidement ne peut émettre de la lumière.
Exemple 6 : (Préparation d'une sixième variante d'exécution du dispositif selon l'invention dans laquelle la première électrode a la propriété d'injecter des électrons)
a) Préparation du composé de structure bipyridinium telle que représenté par la formule 6a :
La préparation de ce composé est réalisée selon le mode opératoire déαπt par J. Emon (Anal. Chem., 1966, 58, 1866). La valeur absolue évaluée de son moment dipolaire électrique est de 30 Debyes.
b) Préparation de la variante du dispositif selon l'invention telle qu'illustrée à la figure 1.
Un exemple de dispositif similaire à celui de la variante précédente a été réalisé, mais cette fois, le composé organique dipolaire constituant la couche 3 est le composé de structure bipyridinium telle que représenté par la formule 6a.
Un courant électrique est appliqué entre la borne positive reliée à la première électrode, constituée d'oxyde d'indium et d'étain sur lequel à été lié chimiquement le composé organique dipolaire, et la borne négative à la deuxième électrode, constituée d'or. La première électrode n'injecte des électrons, pour des valeurs décroissantes de la tension, qu'à partir de -13 V. Le dispositif témoin, quant à lui, n'est pas capable d'injecter des électrons et évidement ne peut émettre de la lumière.
Exemple 7 : (Préparation d'une septième variante d'exécution du dispositif selon l'invention dans laquelle la première électrode a la propriété d'injecter des électrons)
a) Préparation de la 4-carboxy-tri-N-méthylanilium bétaïne, un composé de formule 7a :
La préparation de ce composé est réalisée selon le mode opératoire décrit par K. Willstaetten et al (Chem. Ber., 1904, 37, 415). La valeur absolue évaluée de son moment dipolaire électrique est de 20 Debyes.
b) Préparation de la variante du dispositif selon l'invention telle qu'illustrée à la figure 1. Un exemple de dispositif similaire à celui de la variante précédente a été_ réalisé, mais cette fois, le composé organique dipolaire constituant la couche 3 est la 4-carboxy-tri-N-méthylanilium bétaïne.
Un courant électrique est appliqué entre la borne positive reliée à la première électrode, constituée d'oxyde d'indium et d'étain sur lequel à été lié chimiquement le composé organique dipolaire, et la borne négative à la deuxième électrode, constituée d'or. La première électrode n'injecte des électrons, pour des valeurs décroissantes de la tension, qu'à partir de -13 V. Ce passage du courant s'accompagne alors d'une remarquable émission de lumière dont l'intensité ne fait alors qu'augmenter. Le dispositif témoin, quant à lui, n'est pas capable d'injecter des électrons et évidement ne peut émettre de la lumière.
Exemple δ : (Préparation d'une huitième variante d'exécution du dispositif selon l'invention dans laquelle la première électrode a la propriété d'injecter des électrons)
a) Préparation de la 4-carboxy-1-méthylpyridinium bétaïne, un composé de formule δa :
La préparation de ce composé est réalisée selon le mode opératoire décrit par Black (J. Phys. Chem., 1955, 59, 670). La valeur absolue évaluée de son moment dipolaire électrique est de 15 Debyes.
b) Préparation de la variante du dispositif selon l'invention telle qu'illustrée à la figure 1.
Un exemple de dispositif similaire à celui de la variante précédente a été réalisé, mais cette fois, le composé organique dipolaire constituant la couche 3 est la 4-carboxy-1-méthylpyridinium bétaïne.
Un courant électrique est appliqué entre la borne positive reliée à la première électrode, constituée d'oxyde d'indium et d'étain sur lequel à été lié chimiquement le composé organique dipolaire, et la borne négative à la deuxième électrode, constituée d'or. La première électrode n'injecte des électrons, pour des valeurs décroissantes de la tension, qu'à partir de -15 V. Ce passage du courant s'accompagne alors d'une remarquable émission de lumière dont l'intensité ne fait alors qu'augmenter. Le dispositif témoin, quant à lui, n'est pas capable d'injecter des électrons et évidement ne peut émettre de la lumière.
Exemple 9 : (Préparation d'un dispositif témoin dans lequel une électrode constituée d'oxyde d'indium et d'étain n'est pas capable d'injecter ni suffisamment de trous ni suffisamment d'électrons.)
Une plaquette de verre 1 , couverte d'une couche mince conductrice d'oxyde mixte d'indium et d'étain est nettoyée comme dans l'exemple 1. Le substrat est ensuite introduit dans une boîte à gants placée sous atmosphère d'argon, reliée à une enceinte à vide. Il est ensuite soumis à un bombardement ionique pendant 6 minutes sous une pression d'argon de 8.10"2 mbar, une tension de 120 V, ainsi qu'une puissance RF de 10 W. Sans quitter l'atmosphère inerte, le substrat conducteur est trempé dans de l'éthanol exempt d'eau et d'oxygène et est ensuite séché. Le substrat est de nouveau placé dans une enceinte à vide une couche d'une épaisseur de 140 nm constituée de la tris-(δ-hydroxyquinoline) d'aluminium est alors déposée par évaporation thermique. Enfin, la deuxième électrode constituée d'aluminium est déposée sous la forme d'une couche 6 d'une épaisseur de 50 nm selon une méthode connue en soi. Un courant électrique est appliqué entre la borne positive reliée à la première électrode, constituée d'oxyde d'indium et d'étain, et la borne négative à la deuxième électrode, constituée d'aluminium.
Exemple 10 : (Préparation d'un dispositif témoin dans lequel une électrode constituée d'oxyde d'indium et d'étain n'est pas capable d'injecter ni suffisamment de trous ni suffisamment d'électrons.)
Un exemple de dispositif témoin similaire au précédent a été réalisé. Cette fois, la substance organique solide, semi-conductrice et électroluminescente, est le N,N'-diéthyl-3,3'-bicarbazole, remplaçant la tris-(δ-hydroxyquinoline) d'aluminium et la deuxième électrode est constituée d'un alliage de magnésium et d'argent.

Claims

Revendications _«-
1. Dispositif électroluminescent de structure multicouche comprenant :
i) une première électrode comprenant une couche (2), constituée d'un matériau conducteur de l'électricité, transparent ou translucide, choisi parmi les oxydes métalliques et les nitrures métalliques, ladite couche (2) étant déposée sur un support (1) transparent, constitué d'une plaque en verre, en silice, en alumine, ou d'une feuille de polymère;
ii) une deuxième électrode (6);
iii) une couche (4), disposée entre les deux électrodes, comprenant une substance organique solide, semi-conductrice et électroluminescente, éventuellement conductrice d'ions, ladite couche (4) étant éventuellement bordée d'une ou de plusieurs couches intermédiaires (5), constituées d'électro-catalyseurs; et
iv) une couche (3) de structure monomoléculaire, disposée entre la couche (2) constituée du matériau conducteur et la couche (4) constituée de la substance électroluminescente;
dispositif, caractérisé en ce que ladite couche (3) est constituée d'un composé organique dipolaire dont la structure possède un système électronique π, un groupement fonctionnel, vicinal ou non du système électronique π, ledit composé organique dipolaire, d'une part, étant lié chimiquement par l'intermédiaire dudit groupement fonctionnel audit matériau conducteur et, d'autre part, ayant une affinité chimique pour ladite substance organique électroluminescente.
2. Dispositif électroluminescent selon la revendication 1 , caractérisé en ce que le composé organique dipolaire constituant la couche (3) possède un moment dipolaire électrique représenté par un vecteur dont la valeur absolue est comprise entre 1 Debye et 50 Debyes et dont l'orientation est telle que le pôle positif dudit composé se trouve au voisinage du matériau conducteur auquel il est lié chimiquement alors que le pôle négatif dudit composé s'éloigne dudit matériau, d'où il résulte que la première électrode a la propriété d'injecter des trous vers la couche (4) constituée de la substance électroluminescente.
3. Dispositif électroluminescent selon la revendication 1 , caractérisé en ce- que le composé organique dipolaire constituant la couche (3) possède un moment dipolaire électrique représenté par un vecteur dont la valeur absolue est comprise entre 1 Debye et 50 Debyes et dont l'orientation est telle que le pôle négatif dudit composé se trouve au voisinage du matériau conducteur auquel il est lié chimiquement alors que le pôle positif dudit composé s'éloigne dudit matériau, d'où il résulte que la première électrode a la propriété d'injecter des électrons vers la couche (4) constituée de la substance électroluminescente.
4. Dispositif électroluminescent selon la revendication 1 , caractérisé en ce que le composé organique dipolaire constituant la couche (3) est lié audit matériau conducteur par un groupement fonctionnel choisi parmi le groupe comprenant les acide carboxylique, carboxylate, acide phosphorique, phosphonate et les groupements chélatants α-céto-énolate, oxime, hydroxyquinoline.
5. Dispositif électroluminescent selon la revendication 1, caractérisé en ce que le composé organique dipolaire se trouve sous la forme d'un complexe organo- métallique de formules générales (I) à (VI) suivantes :
ML1(L)4 formule (I),
dans laquelle,
M est choisi parmi Ru(ll), Os(ll), Cr(ll), Al(lll), Ga(lll) et ln(lll),
L"1 est un ligand de formule générale a), et
L est un ligand de formule générale b);
ML1(L)2L' formule (II),
dans laquelle,
M et L^ sont tels que définis ci-dessus,
L est un ligand de formule générale b), et
L' est un ligand de formule générale a), c), d) ou e);
ML1LL' formule (III),
dans laquelle,
M et L1 sont tels que définis ci-dessus, L et L' sont, indépendamment l'un de l'autre, un ligand de formule générale a), c), d) ou e); ""
ML1LL' formule (IV),
dans laquelle,
M et i sont tels que définis ci-dessus, L est un ligand de formule générale b), et L' est un ligand de formule générale f);
ML L(X)2 formule (V),
M et L"1 sont tels que définis ci-dessus,
L est un ligand de formule générale a), c), d) ou e),
X est sélectionné parmi le groupe de co-ligands comprenant CI", Br, I", NCS", CN",
NCO"; et
ML LX formule (VI),
dans laquelle,
M, et X sont tels que définis ci-dessus,
L est un ligand de formule générale f);
les formules générales a), b), c), d) et f) étant
formule a),
dans laquelle G^ et G2 sont identiques ou différents et sont choisis parmi le groupe comprenant les -COOH, -COO", -PO3H2, -PO3H-;
formule b), dans laquelle R est choisi parmi le groupe comprenant les hydrogène, phényle, vinyle, amine primaire, secondaire, tertiaire ou quaternaire, hydroxyle, alkyle de 1 à 30 atomes de carbone;
formule c),
dans laquelle les R sont définis, indépendamment l'un de l'autre, tels que ci-dessus;
formule d),
dans laquelle les R sont définis, indépendamment l'un de l'autre, tels que ci-dessus;
formule e),
dans laquelle les R sont définis, indépendamment l'un de l'autre, tels que ci-dessus;
formule f).
dans laquelle les R sont définis, indépendamment l'un de l'autre, tels que ci-dessus.
6. Dispositif électroluminescent selon la revendication 5, caractérisé en ce que le composé organique dipolaire est le dithiocyanate de bis(4,4'-dicarboxy- 2,2'-bipyridyl)-ruthénium(ll) sous la forme de tétra-acide.
7. Dispositif électroluminescent selon la revendication 5, caractérisé en ce que le composé organique dipolaire est le [bis(4,4'-diphényl-1,10-phénantrolène)- (4,4,-dicarboxy-2,2'-bipyridyl)]ruthénium(ll) sous la forme de sels internes.
8. Dispositif électroluminescent selon la revendication 1 , caractérisé en ce que le composé organique dipolaire est de formules générales (VII) ou (VIII) suivantes:
formule (VII),
dans laquelle,
G3 est le groupement acide carboxylique ou acide phosphorique,
A est choisi parmi le groupe comprenant -HC=CH-, -O-, -S-, et
- lorsque A est -HC=CH- ou -S-, alors B et C sont tous deux -CH-;
- lorsque A est -O-, alors B et C sont tous deux -N-, m va de 0 à 6, < n va de 0 à 20,
R est choisi parmi le groupe comprenant les hydrogène, alkyle linéaire ou ramifié de 1 à 20 atomes de carbone, hydroxyle, éther, amine primaire, secondaire, tertiaire ou quaternaire, nitro, cyano, ester;
formule (VIII), dans laquelle,
G^ est le groupement carboxylate ou phosphonate, m va de 0 à 6, n vaut 0 ou 1 , et
R est un alkyle linéaire ou ramifié de 1 à 6 atomes de carbone.
9. Dispositif électroluminescent selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau conducteur est choisi parmi l'oxyde de titane, l'oxyde de zinc, l'oxyde d'étain, le nitrure de gallium et l'oxyde mixte d'indium et d'étain.
10. Composé organique dipolaire pour le dispositif électroluminescent se+on la revendication 1 , caractérisé en ce qu'il se trouve sous la forme d'un complexe organo-métallique de formules générales (I) à (V) suivantes :
ML"I(L)4 formule (I),
dans laquelle,
M est choisi parmi Ru(ll), Os(ll), Cr(ll), Al(lll), Ga(lll) et ln(lll), est un ligand de formule générale a), et
L est un ligand de formule générale b);
ML1(L)2L' formule (II),
dans laquelle,
M et L"! sont tels que définis ci-dessus,
L est un ligand de formule générale b), et
L' est un ligand de formule générale a), c), d) ou e);
ML1LL' formule (III),
dans laquelle,
M et L"! sont tels que définis ci-dessus,
L et L' sont, indépendamment l'un de l'autre, un ligand de formule générale a), c), d) ou e);
ML1 LU formule (IV),
dans laquelle,
M et sont tels que définis ci-dessus, L est un ligand de formule générale b), et U est un ligand de formule générale f); et
ML1L(X)2 formule (V),
M et sont tels que définis ci-dessus,
L est un ligand de formule générale d) ou e),
X est sélectionné parmi le groupe de co-ligands comprenant CI", Br, I", NCS", CN",
NCO"; les formules générales a), b), c), d) et f) étant
formule a),
dans laquelle G^ et G2 sont identiques ou différents et sont choisis parmi le groupe comprenant les -COOH, -COO", -PO3H2, -PO3H-,
formule b),
dans laquelle R est choisi parmi le groupe comprenant les hydrogène, phényle, vinyle, amine primaire, secondaire, tertiaire ou quaternaire, hydroxyle, alkyle de 1 à 30 atomes de carbone;
R R
# __ A
\=N N — ' formule c),
dans laquelle les R sont définis, indépendamment l'un de l'autre, tels que ci-dessus;
formule d),
dans laquelle les R sont définis, indépendamment l'un de l'autre, tels que ci-dessus;
formule e), dans laquelle les R sont définis, indépendamment l'un de l'autre, tels que ci-dessus;
formule f),
dans laquelle les R sont définis, indépendamment l'un de l'autre, tels que ci-dessus.
11. Composé organique dipolaire pour le dispositif électroluminescent selon la revendication 1 , caractérisé en ce qu'il est de formule générale (VII) suivante :
formule (VII),
dans laquelle,
G3 est le groupement acide carboxylique ou acide phosphorique,
A est choisi parmi le groupe comprenant -HC=CH-, -O-, et
- lorsque A est -HC≈CH-, alors B et C sont tous deux -CH-;
- lorsque A est -O-, alors B et C sont tous deux -N-, m va de 0 à 6, n va de 0 à 20,
R est choisi parmi le groupe comprenant les hydrogène, alkyle linéaire ou ramifié de 1 à 20 atomes de carbone, hydroxyle, éther, amine primaire, secondaire, tertiaire ou quaternaire, nitro, cyano, ester.
EP98934728A 1997-07-31 1998-07-31 Dispositif electroluminescent Withdrawn EP1012892A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH184497 1997-07-31
CH184497 1997-07-31
PCT/CH1998/000324 WO1999007028A1 (fr) 1997-07-31 1998-07-31 Dispositif electroluminescent

Publications (1)

Publication Number Publication Date
EP1012892A1 true EP1012892A1 (fr) 2000-06-28

Family

ID=4219939

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98934728A Withdrawn EP1012892A1 (fr) 1997-07-31 1998-07-31 Dispositif electroluminescent

Country Status (4)

Country Link
US (1) US6569544B1 (fr)
EP (1) EP1012892A1 (fr)
JP (1) JP2001512145A (fr)
WO (1) WO1999007028A1 (fr)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO312867B1 (no) * 1999-06-30 2002-07-08 Penn State Res Found Anordning til elektrisk kontaktering eller isolering av organiske eller uorganiske halvledere, samt fremgangsmåte til densfremstilling
US7019457B2 (en) * 2000-08-03 2006-03-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having both electrodes formed on the insulating layer
JP4090743B2 (ja) * 2001-01-18 2008-05-28 株式会社半導体エネルギー研究所 発光装置の作製方法
JP3812730B2 (ja) * 2001-02-01 2006-08-23 富士写真フイルム株式会社 遷移金属錯体及び発光素子
JP4223218B2 (ja) * 2001-02-19 2009-02-12 株式会社半導体エネルギー研究所 発光装置
US6720198B2 (en) 2001-02-19 2004-04-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
SG102681A1 (en) 2001-02-19 2004-03-26 Semiconductor Energy Lab Light emitting device and method of manufacturing the same
JP3650082B2 (ja) * 2001-06-04 2005-05-18 三洋電機株式会社 有機エレクトロルミネッセンス素子、発光材料および有機化合物
KR100438888B1 (ko) 2001-09-07 2004-07-02 한국전자통신연구원 정공 수송/주입 능력이 있는 화합물과 이를 포함하는분자자기조립막을 갖춘 유기 전기발광 소자
US7112916B2 (en) * 2002-10-09 2006-09-26 Kee Siang Goh Light emitting diode based light source emitting collimated light
JP4446697B2 (ja) * 2003-07-29 2010-04-07 大日本印刷株式会社 有機エレクトロルミネッセンス素子及びその製造方法
WO2005065192A2 (fr) 2003-12-29 2005-07-21 The Trustees Of Columbia University In The City Of New York Composes photolabiles
DE102004010954A1 (de) * 2004-03-03 2005-10-06 Novaled Gmbh Verwendung eines Metallkomplexes als n-Dotand für ein organisches halbleitendes Matrixmaterial, organisches Halbleitermaterial und elektronisches Bauteil
JP4774679B2 (ja) * 2004-03-31 2011-09-14 大日本印刷株式会社 有機半導体装置
JP4892814B2 (ja) * 2004-05-27 2012-03-07 凸版印刷株式会社 有機薄膜トランジスタの製造方法
JP4504105B2 (ja) * 2004-06-10 2010-07-14 大日本印刷株式会社 有機デバイスの製造方法
US7550769B2 (en) * 2004-06-11 2009-06-23 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device and semiconductor device
JP4727978B2 (ja) * 2004-07-20 2011-07-20 シャープ株式会社 有機デバイス及び有機エレクトロルミネッセンスデバイス
JP5050312B2 (ja) * 2004-07-23 2012-10-17 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US7887876B2 (en) * 2004-12-29 2011-02-15 Dupont Displays Inc. Organic electronic device and method to manufacture same
WO2006138626A2 (fr) * 2005-06-17 2006-12-28 The Regents Of The University Of California Structure obtenue par collage direct de plaquettes de (al,ga,in)n et de zno pour application opto-electronique et son procede de fabrication
KR101369864B1 (ko) * 2005-08-12 2014-03-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치 및 그 제조방법
JP2009515344A (ja) * 2005-11-04 2009-04-09 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 高い光抽出効率の発光ダイオード(led)
JP2009518874A (ja) * 2005-12-08 2009-05-07 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 高効率発光ダイオード(led)
WO2008060615A1 (fr) * 2006-11-15 2008-05-22 The Regents Of The University Of California Diode électroluminescente transparente sans miroir
EP2843716A3 (fr) 2006-11-15 2015-04-29 The Regents of The University of California Diode électroluminescente à couche de conversion de phosphore texturée
TWI460881B (zh) 2006-12-11 2014-11-11 Univ California 透明發光二極體
US8283724B2 (en) * 2007-02-26 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Memory element and semiconductor device, and method for manufacturing the same
KR101379616B1 (ko) * 2007-07-31 2014-03-31 삼성전자주식회사 계면특성이 향상된 유기박막트랜지스터 및 그의 제조방법
KR20110055563A (ko) * 2008-07-30 2011-05-25 스미또모 가가꾸 가부시키가이샤 적층 구조체, 그의 제조 방법 및 그것을 포함하는 전자 소자
WO2010108978A1 (fr) * 2009-03-26 2010-09-30 Basf Se Diode de redressement
US9744236B2 (en) 2009-06-26 2017-08-29 The Trustees Of Columbia University In The City Of New York Photolabile compounds
WO2011135901A1 (fr) * 2010-04-30 2011-11-03 シャープ株式会社 Procédé de fabrication d'élément d'électrode, calculateur et dispositif de fabrication d'élément d'électrode
KR101181227B1 (ko) * 2010-10-11 2012-09-10 포항공과대학교 산학협력단 유기 태양 전지 및 이의 제조 방법
KR101181228B1 (ko) * 2010-10-11 2012-09-10 포항공과대학교 산학협력단 유기 태양 전지 및 이의 제조 방법
US9508840B2 (en) 2010-11-23 2016-11-29 Acreo Swedich Ict Ab Diode, use thereof, and a method for producing the same
US8654806B2 (en) * 2011-10-27 2014-02-18 The Regents Of The University Of Michigan Organic semiconductor lasers by triplet managers
KR102078435B1 (ko) * 2016-07-14 2020-02-17 주식회사 엘지화학 유기 전계 발광 소자 및 이의 제조 방법
US20220285645A1 (en) * 2019-08-13 2022-09-08 Sharp Kabushiki Kaisha Light-emitting element
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0074807A1 (fr) * 1981-09-10 1983-03-23 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Dispositifs concentrateurs optiques fluorescents
GB9217811D0 (en) * 1992-08-21 1992-10-07 Graetzel Michael Organic compounds
JPH06330034A (ja) * 1993-03-24 1994-11-29 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9907028A1 *

Also Published As

Publication number Publication date
JP2001512145A (ja) 2001-08-21
US6569544B1 (en) 2003-05-27
WO1999007028A1 (fr) 1999-02-11

Similar Documents

Publication Publication Date Title
EP1012892A1 (fr) Dispositif electroluminescent
FR2745955A1 (fr) Dispositif electroluminescent et son procede de fabrication, et procede pour former un contact conducteur transparent
FR2728082A1 (fr) Structures et afficheurs organiques lumineux en couleurs et leurs procedes de fabrication
JP2012519930A (ja) 金属酸化物表面又は酸化物含有金属表面上の有機化合物単分子層、及びこれを用いて製造された有機エレクトロニクス素子
EP1065179A1 (fr) Procédé de dépôt d&#39;une couche à base de tungstène et/ou molybdène sur un substrat verrier, céramique ou vitrocéramique, et substrat ainsi revêtu
FR2972297A1 (fr) Materiau semi-conducteur organique et composant organique
EP0165111B1 (fr) Films conducteurs de l&#39;électricité comprenant au moins une couche monomoléculaire d&#39;un complexe organique à transfert de charge et leur procédé de fabrication
TW200835676A (en) Dithiolene transition metal complexes and compounds analogous to selenium, their use as doping agent, organic semiconductive material containing the complexes, as well as electronic or optoelectronic structural element containing a comple
EP2734310A1 (fr) Procede de fonctionnalisation de nanofils metalliques et de fabrication d&#39;electrodes
KR20110039810A (ko) 유기 발광 소자
FR2797999A1 (fr) Procede de fabrication d&#39;une capacite integree sur un substrat de silicium
EP0891686B1 (fr) Dispositif electroluminescent
EP2842179B1 (fr) Procédé de dépôt de nanoparticules sur un substrat d&#39;oxyde métallique nanostructuré
CA2546204C (fr) Materiau hybride inorganique-organique semi-conducteur p-n, son procede de fabrication et cellule photovoltaique comprenant ledit materiau
EP0382632B1 (fr) Substrat transparent électroconducteur à deux couches d&#39;oxydes métalliques, utile notamment dans des dispositifs opto-électroniques
EP3621124B1 (fr) Structure multicouche notamment pour cellules photovoltaïques, integrant une monocouche moleculaire autoassemblee, sam
EP2609639B1 (fr) Utilisation de molecules a caractere zwitterionique pour la formation d&#39;une couche de transport de trous ou d&#39;electrons
FR2581794A1 (fr) Procede de fabrication de dispositif electroniques a l&#39;etat solide, notamment de cellules solaires au silicium polycristallin
FR2702870A1 (fr) Ecran électroluminescent.
EP0290345B1 (fr) Film électroconducteur pour élément photovoltaique
WO2024023437A1 (fr) Procédé de formation d&#39;une couche de matériau semi-conducteur dopé sur un substrat
FR2919428A1 (fr) Electrode de composant optoelectronique,comprenant au moins une couche d&#39;un oxyde transparent revetue d&#39;une couche metallique,et composant optoelectronique correspondant.
WO2012131578A1 (fr) Elaboration d&#39;electrodes transparentes en nanotubes de carbone metallises
JP5605123B2 (ja) 光電変換素子及び太陽電池
FR3050994A1 (fr) Colorant organique a efficacite amelioree et ses utilisations dans les cellules photovoltaiques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI NL

17Q First examination report despatched

Effective date: 20020205

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080304