WO2012131578A1 - Elaboration d'electrodes transparentes en nanotubes de carbone metallises - Google Patents

Elaboration d'electrodes transparentes en nanotubes de carbone metallises Download PDF

Info

Publication number
WO2012131578A1
WO2012131578A1 PCT/IB2012/051453 IB2012051453W WO2012131578A1 WO 2012131578 A1 WO2012131578 A1 WO 2012131578A1 IB 2012051453 W IB2012051453 W IB 2012051453W WO 2012131578 A1 WO2012131578 A1 WO 2012131578A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
inclusive
substrate
layer
metal
Prior art date
Application number
PCT/IB2012/051453
Other languages
English (en)
Inventor
Karell SAINT-AUBIN
Caroline Celle
Jean-Pierre Simonato
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to EP12715189.2A priority Critical patent/EP2691960A1/fr
Publication of WO2012131578A1 publication Critical patent/WO2012131578A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon

Definitions

  • the invention relates to a method of forming an electrically conductive and transparent layer in the visible wavelength domain on the surface of a substrate.
  • Thin films or conductive and transparent films are used in many fields such as the field of photovoltaics, touch screens, in particular liquid crystal displays (LCD), or light emitting diodes (OLED).
  • LCD liquid crystal displays
  • OLED light emitting diodes
  • these layers or films are most often made of indium oxide / tin oxide (ITO) because the latter has a low electrical resistance associated with a high transmittance in the visible wavelength range. .
  • ITO indium oxide / tin oxide
  • films or thin layers made of this type of oxide are rather fragile and have a cracking problem, which restricts their use in applications where the substrates on which they are deposited are non-flexible.
  • is a material that is increasingly rare and more and more expensive.
  • Carbon nanotubes have excellent mechanical, electronic and thermal properties.
  • Carbon nanotubes in the form of a 2D network are therefore widely used in the form of transparent conductive film. Nevertheless, although the electrical performance of carbon nanotubes is greater than the intrinsic performance of the material itself (carbon), the nanotube networks ultimately have lower performance because the contacts between the CNTs induce significant electrical resistances.
  • the density of carbon nanotubes in the network is very high, which results in a low transmittance of visible wavelengths.
  • This solution consists in creating a two-dimensional network of a mixture of carbon nanotubes and metal nanowires, in particular gold nanowires.
  • This solution consists of functionalizing the surface of the carbon nanotubes with palladium by an electroless plating process.
  • This method involves bringing purified carbon nanotubes and a palladium salt together to reduce palladium cations on the surface of the carbon nanotubes.
  • the carbon nanotubes are covered non-continuously with a metal, in this case palladium.
  • the aim of the invention is to overcome the drawbacks of the prior art by proposing a method of forming a thin layer having a very high transmittance in the wavelength range of the visible, which is simple to implement, and which does not require the creation of metal nanofilts.
  • the invention proposes a method for forming an electrically conductive and transparent layer in the visible wavelength range, that is to say having a transmittance greater than or equal to 85% of these waves. on at least one surface of a substrate, characterized in that: the substrate is of electrically nonconductive material,
  • step b) forming, by electroplating, on the outer surface of the carbon nanotubes deposited in step a), a metal layer having a thickness between 0.1, inclusive, and 10 inclusive nm.
  • the substrate is made of a material chosen from glass, silicon, quartz and transparent polymers.
  • Transparent polymers that can be used are polyethylene terephthalate (PET), ethylene polynaphthalate (PEN), polycarbonate (PC), and polymethyl methacrylate (PMMA).
  • step a) comprises the following steps:
  • step a2) is a filtration deposition step
  • the dispersion is filtered through a membrane on which the nanotubes are retained. These nanotubes are then deposited on the surface of the substrate by transfer.
  • the dispersion of carbon nanotubes may further comprise a film-forming agent and / or a surfactant.
  • the deposition step a) is a step of synthesizing the carbon nanotubes directly on the surface of the substrate.
  • step b) is a step of forming a layer of a metal chosen from aluminum (Al), chromium (Cr), cobalt (Co), nickel (Ni ), copper (Cu), zinc (Zn), palladium (Pd), rhodium (Rh), platinum (Pt), silver (Ag), tin (Sn), tungsten (W) ), gold (Au), titanium (Ti), manganese (Mn), cadmium (Cd), ruthenium (Ru), iridium (Ir), praseodymium (Pr), and mixtures of at least two of these, preferably selected from silver or gold.
  • a metal chosen from aluminum (Al), chromium (Cr), cobalt (Co), nickel (Ni ), copper (Cu), zinc (Zn), palladium (Pd), rhodium (Rh), platinum (Pt), silver (Ag), tin (Sn), tungsten (W) ), gold (Au), titanium (Ti
  • the method of the invention may further comprise a step of doping the carbon nanotubes by soaking the substrate obtained in step a) in a solution containing the dopant or a dopant precursor, preferably a precursor of the dopant, preferably SOCl 2 or HNO 3.
  • the invention also proposes a substrate of a non-electrically conductive material covered on at least one of its surfaces with a layer of carbon nanotubes, at a carbon nanotube density of between 0.1, inclusive, and 40, inclusive, carbon nanotubes per ⁇ 2 of surface, preferably between 0.1, inclusive, and 10, inclusive, carbon nanotubes per ⁇ 2 of surface, said carbon nanotubes being metallized at the surface with a a metal layer having a thickness of between 0.1, inclusive, and 10, inclusive, nanometers, and said metal layer being in contact with the surface.
  • the substrate is made of a material chosen from glass, silicon, quartz and transparent polymers.
  • the metal it is preferably chosen from aluminum (Al), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), palladium ( Pd), rhodium (Rh), platinum (Pt), silver (Ag), tin (Sn), tungsten (W), gold (Au), titanium (Ti), manganese (Mn), cadmium (Cd), ruthenium (Ru), iridium (Ir), praseodymium (Pr), and mixtures and alloys of at least two of these.
  • the metal is selected from silver or gold.
  • the layer formed on the substrate advantageously comprises doped carbon nanotubes.
  • the invention also proposes an electrode characterized in that it comprises a device according to the invention.
  • the invention proposes a method of manufacturing an electrode characterized in that it comprises a step of forming an electrically conductive and transparent layer in the visible wavelength range, on at least one surface of a substrate, by the method according to the invention.
  • the carbon nanotubes are single-wall carbon nanotubes and metal type.
  • FIG. 1 schematically represents a perspective view of a substrate coated with a layer, according to the invention, transparent in the visible and near-infrared wavelength range and electrically conductive, consisting of covered carbon nanotubes. selectively of a metal layer, and obtained by the method according to the invention
  • FIG. 2 schematically represents a sectional view of a carbon nanotube coated with a metal and constituting the transparent layer in the wavelength range of the visible and the near infrared and electrically conductive after treatment by the method according to FIG. 'invention.
  • the carbon nanotubes may be single-walled carbon nanotubes (SWCNT) or multi-walled carbon nanotubes (MWCNT), and in particular double-walled carbon nanotubes (DWCNT).
  • SWCNT single-walled carbon nanotubes
  • MWCNT multi-walled carbon nanotubes
  • DWCNT double-walled carbon nanotubes
  • the single-walled carbon nanotubes are said to be either metallic or semiconductors and the multi-wall carbon nanotubes are said to be metallic.
  • single-walled carbon nanotubes are used.
  • These carbon nanotubes are produced, in a manner known per se, by arc discharge (arc discharge), chemical vapor deposition (CVD) or laser ablation (laser ablation).
  • the carbon nanotubes used in the invention have diameters of between 1 and 200 nm and lengths of between 1 and 3000 ⁇ , limits included.
  • the metals used in the invention are all conductive materials which can in particular constitute an electrode, in particular an anode. These materials are preferably materials comprising at least 90% of metal in the chemical sense.
  • metal in the invention refers to a material comprising at least 90% of all metals and their alloys, in particular aluminum (Al), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), palladium (Pd), rhodium (Rh), platinum (Pt), silver (Ag), tin (Sn), tungsten (W), gold (Au), titanium (Ti), manganese (Mn), cadmium (Cd), ruthenium (Ru), iridium (Ir), and lead (Pb) and all mixtures of one or more of these metals, optionally doped.
  • the substrate In order to selectively cover the carbon nanotubes with metal, the substrate must be made of an electrically nonconductive material in order to locate the metal deposition on the carbon nanotube conducting paths.
  • the substrate may be glass, silicon, quartz and transparent polymer.
  • the invention provides a method which comprises a step a) of deposition, on the surface, denoted 5 in FIG. 1, of a substrate, denoted 1 in FIG. 1, of an electrically nonconductive material, as defined herein. above, of carbon nanotubes, denoted 4 in FIG. 2, at a density which is between 0.1, inclusive, and 40, inclusive, carbon nanotubes per ⁇ 2 of surface 5.
  • the density of the nanotubes (4) is between 1, inclusive, and 10, inclusive, carbon nanotubes 4 per ⁇ 2 of surface 5.
  • the carbon nanotubes 4 can be either directly synthesized on the surface 5 or deposited, from a suspension of carbon nanotubes 4 in a solvent on the surface 5 by a spin coating process (spin coating). (dip-coating), soaking, filtration or nebulization.
  • spin coating spin coating
  • dip-coating dip-coating
  • soaking filtration or nebulization.
  • the solvent may be any solvent that does not interfere with or deteriorate the carbon nanotubes or their physical and chemical properties or the substrate.
  • the technique for depositing carbon nanotubes on the surface 5 is preferably, in the invention, the technique of nebulization.
  • the carbon nanotubes 4 deposited on the surface 5 form a network.
  • the second step of the process of the invention is then to selectively deposit a metal layer denoted 6 in FIG. 2 on the network of carbon nanotubes forming the layer denoted 2 in FIG.
  • the deposition of the metal layer is by electroplating ('electroplating').
  • the metal deposited on the carbon nanotubes 4 depends on the final application, in the invention, silver or gold will preferably be used.
  • the electroplating deposit apparatus contains a voltage source connected to an anode and to the network of carbon nanotubes deposited on the substrate, and optionally to a reference electrode, and a tray for containing the electroplating solution and a switch.
  • the electroplating bath used will preferably contain 1 g / l of silver cyanide, 45 g / l of potassium cyanide, 30 g / l of potassium carbonate and 10% by weight of potassium hydroxide. hypochlorous acid relative to the total mass of the bath.
  • the electroplating bath will preferably comprise 4 g / l of gold cyanide, 40 g / l of citric acid and 40 g / l of potassium citrate.
  • the process of the invention may also comprise a step of synthesis of carbon nanotubes 4.
  • It may also include a step of manufacturing a dispersion of carbon nanotubes 4.
  • the network of carbon nanotubes formed on the surface 5, and before metallization can be doped to improve the contact between the metal layer and the nanotubes with a dopant or a precursor of a dopant such as SOCl 2 or HNO 3.
  • a dopant or a precursor of a dopant such as SOCl 2 or HNO 3.
  • These doped nanotubes have on the surface electroattracting atoms (for example oxygen, chlorine) which delocalise the electrons of the carbon.
  • the invention also proposes a device which comprises a substrate 1 coated on at least one of its surfaces 5 with a layer 2 transparent to the visible and electrically conductive wavelengths.
  • the wavelengths of the visible are defined in the invention as wavelengths of 380 to 780 nm.
  • electrically conductive corresponds to a resistance per square smaller than 100 ⁇ ⁇ .
  • the layer 2 is formed of a network of carbon nanotubes 7, the carbon nanotubes 7 being each constituted by carbon nanotubes 4 covered with a layer of metal 6.
  • the density of carbon nanotubes 4 in the network formed on the surface 5 is between 0.1, inclusive, and 40, inclusive, carbon nanotubes per ⁇ of surface area 5. Below 0.1 nanotubes of carbon per ⁇ 2 of surface 5, the nanotubes may not touch each other and therefore not form a conductive layer.
  • the layer formed loses transmittance.
  • the density of carbon nanotubes 4 forming the network on the surface 5 of the substrate 1 is between 1, inclusive, and 40, inclusive, carbon nanotubes.
  • the carbon nanotubes 4 are covered with a layer 6 of metal.
  • the metal may be any metal which will occur to those skilled in the art, such as aluminum (Al), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), palladium (Pd), rhodium (Rh), platinum (Pt), silver (Ag), Petain (Sn), tungsten (W), gold (Au), titanium (Ti), manganese (Mn), cadmium (Cd), ruthenium (Ru), iridium (Ir), lead (Pb), or any mixture of one or more of these metals, optionally doped or containing impurities.
  • the metal which covers the carbon nanotubes 4 forming the network on the surface of the substrate of the device of the invention is silver or gold.
  • a dopant may also be present in the network of carbon nanotubes 4 deposited on the surface 5 of the substrate 1.
  • this dopant is oxygen or chlorine.
  • a particularly preferred device according to the invention is an electrode which comprises the device of the invention.
  • the substrate is a soda-lime glass substrate.
  • Single-wall carbon nanotubes are produced by the electric arc method.
  • a dispersion of 0.05 g / l of carbon nanotubes in N-methylpyrrolidone (NMP) is then produced.
  • the dispersion is sonicated for 90 minutes and then centrifuged twice at 14,500 rpm.
  • the carbon nanotubes are then deposited on the surface of a substrate by nebulization for 5 seconds of said dispersion.
  • This time, according to the density of carbon nanotubes can be between 5 and 300 seconds.
  • the initial square resistance of the substrate coated on one of its surfaces of the network of carbon nanotubes at a density of 5 NTC / ⁇ 2 is 1.0 ⁇ 10 3 square ohms and a 97% transmittance measured by spectrophotometry. UV-visible.
  • the substrate on which the carbon nanotubes are deposited is then introduced into an electroplating bath containing 1 g of silver cyanide, 45 g / l of potassium cyanide, 30 g / l of potassium carbonate and 10% by weight. of hypochloric acid relative to the total mass of the bath.
  • the carbon nanotube array is connected to the power supply of the electroplating deposit apparatus to serve as a cathode.
  • the anode of the electroplating apparatus is silver and the reference electrode is Ag / AgCl.
  • a current density of 10 mA / cm 2 is used.
  • the thickness of the silver layer deposited in the nanotubes is
  • the device obtained then has a square resistance of 25 ⁇ ⁇ and a transmittance of 95%.
  • a network of single-walled carbon nanotubes is deposited by nebulization on the surface of a PET substrate by nebulization of a dispersion of single-walled nanotubes, as in Example 1.
  • the density of deposited carbon nanotubes is 5 carbon nanotubes / ⁇ 2 .
  • the substrate obtained is treated for 24 hours with nitric acid to oxidize the carbon nanotubes and modify the contact resistance of the network formed by these nanotubes.
  • the initial square resistance of the substrate obtained is 3.0 ⁇ 10 2 ⁇ ⁇ and the transmittance of this substrate is 97%.
  • Example 2 Then proceed as in Example 1 or deposit on the carbon nanotubes of a silver layer.
  • the thickness of the silver layer deposited on the surface of the carbon nanotubes is 3 nm.
  • the electroplating bath used in this example was the same as that used in Example 1.
  • the device obtained in this example has a square resistance of 20 O D and a transmittance of 95%.
  • the density of carbon nanotubes on the surface of the substrate was 10 carbon nanotubes per ⁇ 2 .
  • the initial square resistance of the substrate obtained at this stage was 200 ⁇ ⁇ and its transmittance was 92%.
  • the substrate obtained was then introduced into an electroplating bath and connected to the supply of the electroplating apparatus to serve as a cathode.
  • the anode of the apparatus was gold and the electroplating bath contained 4 g / L of gold cyanide, 40 g / L of citric acid and 40 g / L of potassium citrate.
  • a current density of 5 mA / cm is applied.
  • the thickness of the gold layer deposited on the carbon nanotubes was 1 nm.
  • the device obtained has a square resistance of 150 ⁇ ⁇ and a transmittance of 92%.
  • the devices obtained in Examples 1 to 3 can be used as electrodes, and more particularly as anodes.

Abstract

L'invention se rapporte à un procédé de formation d'une couche électriquement conductrice et transparente dans le domaine des longueurs d'onde du visible sur la surface d'un substrat. Le substrat est en un matériau non conducteur électriquement, et comprend les étapes suivantes : a) dépôt, sur la surface, de nanotubes de carbone, de préférence monoparoi et de type métallique, à une densité comprise entre 0,1, inclus, et 40, inclus, nanotubes de carbone par μηι2 de surface, de préférence comprise entre 1, inclus, et 10, inclus, nanotubes de carbone par μπι2 surface, et b) formation, par galvanoplastie, sur la surface externe des nanotubes de carbone déposés à l'étape a) d'une couche de métal ayant une épaisseur comprise entre 0,1, inclus, et 10, inclus nm. L'invention trouve application dans le domaine de la fabrication d'électrodes, en particulier.

Description

ELABORATION D'ELECTRODES TRANSPARENTES EN NANOTUBES DE CARBONE METALLISES
L'invention se rapporte à un procédé de formation d'une couche électriquement conductrice et transparente dans le domaine des longueurs d'onde du visible sur la surface d'un substrat.
Elle se rapporte également au dispositif obtenu par ce procédé, en particulier une électrode.
Les couches minces ou films conducteurs et transparents sont utilisés dans de nombreux domaines tels que le domaine du photovoltaïque, des écrans tactiles, en particulier à cristaux liquides (LCD), ou des diodes orgamques émettrices de lumière (OLED).
A l'heure actuelle, ces couches ou films sont le plus souvent en oxyde d'indium/oxyde d'étain (ITO) car ce dernier a une faible résistance électrique associée à une transmittance élevée dans le domaine des longueurs d'onde du visible.
Cependant, les films ou couches minces constitués de ce type d'oxyde sont plutôt fragiles et ont un problème d'apparition de fissures, ce qui restreint leur utilisation dans des applications où les substrats, sur lesquels ils sont déposés, sont non flexibles.
De plus, ΡΙΤΌ est un matériau de plus en plus rare et de plus en plus cher.
Ainsi, il a été proposé d'utiliser des nanotubes de carbone (CNTS).
Les nanotubes de carbone ont d'excellentes propriétés mécaniques, électroniques et thermiques.
Ils peuvent, en théorie, permettre d'obtenir une densité de courant de 4.109 A/cm2, ce qui est 1000 fois plus important que la conductivité du cuivre.
L'utilisation des nanotubes de carbone sous forme de films minces (réseau 2D) permet d'obtenir une conduction uniforme sur tout le réseau des nanotubes et les procédés de fabrication utilisés à l'heure actuelle permettent d'envisager de réaliser des dépôts de nanotubes de carbone sur de grandes surfaces.
Les nanotubes de carbone sous forme de réseau 2D sont donc très utilisés sous forme de film transparent conducteur. Néanmoins, bien que les performances électriques des nanotubes de carbone soient supérieures aux performances intrinsèques du matériau lui-même (carbone), les réseaux de nanotubes présentent au final des performances plus faibles car les contacts, entre les CNTs, induisent des résistances électriques significatives.
Le contrôle de leur densité surfacique permet de maîtriser la transparence du réséau ainsi déposé, mais au détriment de leur conductivité électrique.
A contrario, lorsque l'on augmente la densité en nanotubes du réseau de nanotubes de carbone, la conductivité électrique est augmentée, mais la transmittance dans le visible du film formé diminue.
Pour résoudre ce problème, différentes solutions ont été proposées.
Une première solution a été proposée dans la demande de brevet US 2010/0038251 Al, qui consiste à créer un réseau bidimensionnel de nanotubes de carbone dont seules les jonctions entre les nanotubes de carbone sont recouvertes d'un métal.
Dans ce document, la densité de nanotubes de carbone dans le réseau est très élevée, ce qui résulte en une transmittance faible des longueurs d'onde du visible.
En effet, la transmittance atteinte avec ce réseau de nanotubes de carbone est de 85%.
Une deuxième solution a été proposée dans la demande de brevet US 2010/0266838 Al.
Cette solution consiste à créer un réseau bidimensionnel d'un mélange de nanotubes de carbone et de nanofils métalliques, en particulier de nanofils d'or.
Cependant, cette solution présente l'inconvénient de nécessiter la synthèse de nanofils d'or, ce qui implique l'utilisation d'une grande quantité de métal et est coûteux.
Une troisième solution a été proposée par Feng et al, Appl. Phys. Lett., 97, 083101 (2010).
Cette solution consiste à fonctionnaliser la surface des nanotubes de carbone avec du palladium par un procédé de dépôt sans courant ("electroless plating"). Cette méthode consiste à mettre en présence les nanotubes de carbone purifiés et un sel de palladium afin de réduire les cations de palladium à la surface des nanotubes de carbone.
Mais, ici les nanotubes de carbone sont recouverts de manière non- continue avec un métal, dans le cas présent, du palladium.
De plus, il faut au préalable créer à la surface des nanotubes de carbone des groupements chimiques pouvant réagir avec les cations du palladium.
De plus, Feng et al. observent que l'ajout de palladium, à partir de certaines quantités, n'améliore pas la conductivité des nanotubes de carbone recouverts de Pd. Il semblerait que cela provienne du fait qu'à partir d'un certain point un équilibre s'établit entre la solution contenant les cations de palladium, ce qui fait que le dépôt de palladium sur la surface des nanotubes s'arrête.
L'invention vise à pallier les inconvénients de l'art antérieur en proposant un procédé de formation d'une couche mince ayant une transmittance très élevée dans le domaine des longueurs d'onde du visible, qui est simple à mettre en œuvre, et qui ne nécessite pas la création de nanofîls métalliques.
A cet effet, l'invention propose un procédé de formation d'une couche électriquement conductrice et transparente dans le domaine des longueurs d'onde du visible, c'est-à-dire ayant une transmittance supérieure ou égale à 85 % de ces ondes, sur au moins une surface d'un substrat, caractérisé en ce que : le substrat est en un matériau non conducteur électriquement,
et en ce qu'il comprend les étapes suivantes :
a) dépôt, sur au moins une surface du substrat, de nanotubes de carbone à une densité comprise entre 0,1, inclus, et 40, inclus, nanotubes de carbone par μιη2 de surface, de préférence comprise entre 1, inclus, et 10, inclus, nanotubes de carbone par μιη surface, et
b) formation, par galvanoplastie, sur la surface externe des nanotubes de carbone déposés à l'étape a), d'une couche de métal ayant une épaisseur comprise entre 0,1, inclus, et 10 inclus nm.
De préférence, le substrat est en un matériau choisi parmi le verre, le silicium, le quartz, les polymères transparents. Les polymères transparents utilisables sont le polyéthylène théréphtalate (PET), le polynaphtalate d'éthylène (PEN), le polycarbonate (PC), et le polymethacrylate de méthyle (PMMA).
Dans un premier mode de mise en œuvre du procédé de l'invention, l'étape a) comprend les étapes suivantes :
al) préparation d'une suspension de nanotubes de carbone dans un solvant,
a2) dépôt à la tournette, par tirage, par fïltration, par trempage, ou par nébulisation, de préférence par nébulisation, de ladite dispersion sur la surface du substrat, et
a3) élimination du solvant.
Lorsque l'étape a2) est une étape de dépôt par fïltration, la dispersion est filtrée à travers une membrane sur laquelle les nanotubes sont retenus. Ces nanotubes sont alors déposés sur la surface du substrat par transfert.
La dispersion de nanotubes de carbone peut, de plus, comprendre un agent fïlmogène et/ou un agent tensio actif.
Dans un second mode de mise en œuvre du procédé de l'invention, l'étape de dépôt a) est une étape de synthèse des nanotubes de carbone directement sur la surface du substrat.
Dans tous les cas, de préférence, l'étape b) est une étape de formation d'une couche en un métal choisi parmi l'aluminium (Al), le chrome (Cr), le cobalt (Co), le nickel (Ni), le cuivre (Cu), le zinc (Zn), le palladium (Pd), le rhodium (Rh), le platine (Pt), l'argent (Ag), l'étain (Sn), le tungstène (W), l'or (Au), le titane (Ti), le manganèse (Mn), le cadmium (Cd), le ruthénium (Ru), l'iridium (Ir), le praséodyme (Pr), et les mélanges de deux au moins de ceux-ci, de préférence choisi parmi l'argent ou l'or.
Egalement dans tous les cas, le procédé de l'invention peut, de plus, comprendre une étape de dopage des nanotubes de carbone par trempage du substrat obtenu à l'étape a) dans une solution contenant le dopant ou un précurseur du dopant, de préférence un précurseur du dopant, de préférence SOCl2 ou HNO3.
L'invention propose également un substrat en un matériau non électriquement conducteur recouvert sur au moins une de ses surfaces d'une couche de nanotubes de carbone, à une densité de nanotubes de carbone comprise entre 0,1, inclus, et 40, inclus, nanotubes de carbone par μηι2 de surface, de préférence comprise entre 0,1, inclus, et 10, inclus, nanotubes de carbone par μηι2 de surface, lesdits nanotubes de carbone étant métallisés en surface avec une couche en un métal ayant une épaisseur comprise entre 0,1, inclus, et 10, inclus, nanomètres, et ladite couche en un métal étant en contact avec la surface.
De préférence, dans le dispositif de l'invention, le substrat est en un matériau choisi parmi le verre, le silicium, le quartz et les polymères transparents.
Quant au métal, il est de préférence choisi parmi l'aluminium (Al), le chrome (Cr), le cobalt (Co), le nickel (Ni), le cuivre (Cu), le zinc (Zn), le palladium (Pd), le rhodium (Rh), le platine (Pt), l'argent (Ag), l'étain (Sn), le tungstène (W), l'or (Au), le titane (Ti), le manganèse (Mn), le cadmium (Cd), le ruthénium (Ru), l'iridium (Ir), le praséodyme (Pr), et les mélanges et alliages de deux au moins de ceux-ci. De préférence, le métal est choisi parmi l'argent ou l'or.
Dans le dispositif de l'invention la couche formée sur le substrat comprend avantageusement des nanotubes de carbone dopés.
L'invention propose encore une électrode caractérisée en ce qu'elle comprend un dispositif selon l'invention.
Enfin, l'invention propose un procédé de fabrication d'une électrode caractérisé en ce qu'il comprend une étape de formation d'une couche électriquement conductrice et transparente dans le domaine des longueurs d'onde du visible, sur au moins une surface d'un substrat, par le procédé selon l'invention.
Dans tous les modes de mise en œuvre et de réalisation de l'invention, de préférence, les nanotubes de carbone sont des nanotubes de carbone monoparoi et de type métallique.
L'invention sera mieux comprise et d'autres avantages et caractéristiques de celle-ci apparaîtront plus clairement à la lecture de la description explicative qui suit qui est faite aux figures annexées dans lesquelles :
- la figure 1 représente schématiquement une vue en perspective d'un substrat revêtu d'une couche, selon l'invention, transparente dans le domaine des longueurs d'onde du visible et du proche infrarouge et électriquement conductrice, constituée de nanotubes de carbone recouverts sélectivement d'une couche de métal, et obtenue par le procédé selon l'invention, et - la figure 2 représente schématiquement une vue en coupe d'un nanotube de carbone revêtu d'un métal et constituant la couche transparente dans le domaine des longueurs d'onde du visible et du proche infrarouge et électriquement conductrice après traitement par le procédé selon l'invention.
Dans l'invention, les nanotubes de carbone peuvent être des nanotubes de carbone monoparoi (SWCNT) ou multi-parois (MWCNT), et en particulier double-parois (DWCNT).
De façon connue, selon le procédé de synthèse, les nanotubes de carbone monoparoi sont dits soit métalliques, soit semi-conducteurs et les nanotubes de carbone multi-parois sont dits métalliques. De préférence, on utilise des nanotubes de carbone monoparoi.
Ces nanotubes de carbone sont produits, de manière connue en soi, par arc électrique ('arc discharge'), dépôt chimique en phase vapeur ('chemical vapour déposition' CVD) ou ablation laser ('laser ablation').
Les nanotubes de carbone utilisés dans l'invention ont des diamètres compris entre 1 et 200 nm et des longueurs comprises entre 1 et 3000 μηι, bornes incluses.
Les métaux utilisés dans l'invention, sont tous les matériaux conducteurs pouvant, en particulier constituer une électrode, en particulier une anode. Ces matériaux sont de façon préférentielle des matériaux comprenant au moins 90% de métal au sens chimique.
Ainsi, le terme "métal" dans l'invention désigne un matériau comprenant au moins 90% de tous les métaux et leurs alliages, en particulier l'aluminium (Al), le chrome (Cr), le cobalt (Co), le nickel (Ni), le cuivre (Cu), le zinc (Zn), le palladium (Pd), le rhodium (Rh), le platine (Pt), l'argent (Ag), l'étain (Sn), le tungstène (W), l'or (Au), le titane (Ti), le manganèse (Mn), le cadmium (Cd), le ruthénium (Ru), l'iridium (Ir), et le plomb (Pb) et tous les mélanges d'un ou plusieurs de ces métaux, éventuellement dopés.
Afin de recouvrir sélectivement de métal les nanotubes de carbone, le substrat doit être en un matériau non conducteur électriquement afin de localiser le dépôt de métal sur les chemins conducteurs en nanotubes de carbone. Ainsi, le substrat pourra être en verre, en silicium, en quartz et en polymère transparent.
L'invention va être décrite en référence aux figures 1 et 2.
Pour obtenir un substrat, recouvert d'un réseau de nanotubes de carbone, eux-mêmes sélectivement recouverts d'une couche de métal, pour améliorer la conductivité du réseau de nanotubes formés, sans que cela soit au détriment de la transmittance du réseau de nanotubes de carbone, l'invention propose un procédé qui comprend une étape a) de dépôt, sur la surface, notée 5 en figure 1, d'un substrat, noté 1 en figure 1, en un matériau non conducteur électriquement, tel que défini ci-dessus, de nanotubes de carbone, notés 4 en figure 2, à une densité qui est comprise entre 0,1, inclus, et 40, inclus, nanotubes de carbone par μτη2 de surface 5.
De préférence, la densité des nanotubes (4) est comprise entre 1, inclus, et 10, inclus, nanotubes de carbone 4 par μιη2 de surface 5.
Les nanotubes de carbone 4 peuvent être soit directement synthétisés sur la surface 5, soit déposés, à partir d'une suspension de nanotubes de carbone 4 dans un solvant sur la surface 5 par un procédé à la tournette ('spin coating'), tirage (dip-coating), trempage, filtration ou nébulisation.
Le solvant peut être tout solvant n'interférant ou ne détériorant ni les nanotubes de carbone ni leurs propriétés physiques et chimiques ni le substrat.
La technique de dépôt des nanotubes de carbone sur la surface 5 est de préférence, dans l'invention, la technique de la nébulisation.
Après le dépôt, les nanotubes de carbone 4 déposés sur la surface 5 forment un réseau.
La seconde étape du procédé de l'invention est alors de déposer sélectivement une couche de métal notée 6 en figure 2 sur le réseau de nanotubes de carbone formant la couche notée 2 en figure 1.
Dans l'invention, le dépôt de la couche de métal se fait par galvanoplastie ('electro-plating').
Bien que le métal déposé sur les nanotubes de carbone 4 dépende de l'application finale, dans l'invention, on utilisera préférentiellement l'argent ou l'or.
L'appareil de dépôt par galvanoplastie contient une source de tension reliée à une anode et au réseau de nanotubes de carbone déposés sur le substrat, et éventuellement à une électrode de référence, et un bac servant à contenir la solution de galvanoplastie et un interrupteur.
Lorsque le métal choisi est l'argent, le bain de galvanoplastie utilisé contiendra de préférence lg/L de cyanure d'argent, 45 g/L de cyanure de potassium, 30 g/L de carbonate de potassium et 10% en masse d'acide hypochlorique par rapport à la masse totale du bain.
Lorsque le métal choisi est l'or, le bain de galvanoplastie comprendra de préférence 4 g/L de cyanure d'or, 40 g/L d'acide citrique et de 40 g/L de citrate de potassium.
Le procédé de l'invention peut également comprendre une étape de synthèse des nanotubes de carbone 4.
Il pourra également comprendre une étape de fabrication d'une dispersion de nanotubes de carbone 4.
De plus, dans le procédé de l'invention, le réseau de nanotubes de carbone formé sur la surface 5, et avant métallisation peut être dopé pour améliorer le contact entre la couche de métal et les nanotubes avec un dopant ou un précurseur d'un dopant tel que SOCl2 ou HNO3. Ces nanotubes dopés présentent en surface des atomes électroattracteurs (par exemple l'oxygène, le chlore) qui délocalisent les électrons du carbone.
L'invention propose également un dispositif qui comprend un substrat 1 revêtu sur au moins une de ses surfaces 5 d'une couche 2 transparente aux longueurs d'onde du visible et électriquement conductrice.
Les longueurs d'onde du visible sont définies dans l'invention, comme des longueurs d'onde de 380 à 780 nni.
Dans l'invention, électriquement conducteur correspond à une résistance par carré inférieure à 100 Ωπ.
Dans le dispositif de l'invention, la couche 2 est formée d'un réseau de nanotubes de carbone 7, les nanotubes de carbone 7 étant chacun constitués de nanotubes de carbone 4 recouverts d'une couche de métal 6.
La densité de nanotubes de carbone 4 dans le réseau formé à la surface 5 est comprise entre 0,1, inclus, et 40, inclus, nanotubes de carbone par μπι de surface 5. En dessous de entre 0,1 nanotubes de carbone par μηι2 de surface 5, les nanotubes risquent de ne pas se toucher entre eux et donc de ne pas former une couche conductrice.
Au-delà de 40 nanotubes de carbone par μιη2 de surface 5, la couche formée perd en transmittance.
De préférence, la densité de nanotubes de carbone 4 formant le réseau sur la surface 5 du substrat 1 est comprise entre 1, inclus, et 40, inclus, nanotubes de carbone.
En effet, à une densité de 1 nanotube de carbone par μπι2 de surface 5, on obtient une résistance par carré inférieure à 20 Ωα.
Dans le dispositif de l'invention, les nanotubes de carbone 4 sont recouverts d'une couche 6 de métal.
Le métal peut être tout métal qui apparaîtra à l'homme de l'art, tel que l'aluminium (Al), le chrome (Cr), le cobalt (Co), le nickel (Ni), le cuivre (Cu), le zinc (Zn), le palladium (Pd), le rhodium (Rh), le platine (Pt), l'argent (Ag), Pétain (Sn), le tungstène (W), l'or (Au), le titane (Ti), le manganèse (Mn), le cadmium (Cd), le ruthénium (Ru), l'iridium (Ir), le plomb (Pb), ou tout mélange d'un ou plus de ces métaux, éventuellement dopés ou contenant des impuretés.
De préférence, le métal dont sont recouverts les nanotubes de carbone 4 formant le réseau à la surface du substrat du dispositif de l'invention est l'argent ou l'or.
Un dopant peut également être présent dans le réseau de nanotubes de carbone 4 déposés à la surface 5 du substrat 1.
De préférence ce dopant est l'oxygène ou le chlore.
Un dispositif particulièrement préféré selon l'invention est une électrode qui comprend le dispositif de l'invention.
Afin de mieux faire comprendre l'invention, on va en décrire plusieurs exemples de mise en œuvre, à titre purement illustratif et non limitatif.
Exemple 1 :
Dans cet exemple, le substrat est un substrat en verre sodocalcique. On procède à la fabrication de nanotubes de carbone monoparoi par la méthode par arc électrique. On fabrique ensuite une dispersion de 0,05 g/L de nanotubes de carbone dans de la N-méthylpyrrolidone (NMP).
La dispersion est passée aux ultra-sons pendant 90 min puis centrifugée 2 fois à 14 500 rpm.
Les nanotubes de carbone sont ensuite déposés sur la surface d'un substrat par nébulisation pendant 5 secondes de ladite dispersion.
Ce temps, selon la densité de nanotubes de carbone peut être compris entre 5 et 300 secondes.
A cet exemple, on obtient une densité de nanotubes de carbone de 5 nanotubes de carbone /μπι2.
A cette étape, la résistance par carré initiale du substrat revêtu sur une de ses surfaces du réseau de nanotubes de carbone à une densité de 5 NTC/μιη2 est de 1,0.103 ohms.carré et une transmittance de 97% mesurée par spectrophotométrie UV-visible.
Le substrat sur lequel sont déposés les nanotubes de carbone est ensuite introduit dans un bain de galvanoplastie contenant} g L de cyanure d'argent, 45 g/L de cyanure de potassium, 30 g/L de carbonate de potassium et 10% en masse d'acide hypochlorique par rapport à la masse totale du bain.
Le réseau de nanotubes de carbone est connecté à l'alimentation de l'appareil de dépôt par galvanoplastie pour servir de cathode.
L'anode de l'appareil de galvanoplastie est en argent et l'électrode de référence est en Ag/AgCl.
Une densité de courant de 10 mA/cm2 est utilisée.
L'épaisseur de la couche d'argent déposée dans les nanotubes est de
3 nm.
Le dispositif obtenu a alors une résistance carrée de 25 Ωπ et une transmittance de 95%.
Exemple 2 :
Un réseau de nanotubes de carbone monoparoi métallique est déposé par nébulisation sur la surface d'un substrat en PET par nébulisation d'une dispersion des nanotubes monoparoi, comme à l'exemple 1. La densité de nanotubes de carbone déposés est de 5 nanotubes de carbone /μπι2.
Le substrat obtenu est traité pendant 24 heures à l'acide nitrique pour oxyder les nanotubes de carbone et modifier la résistance de contact du réseau formé par ces nanotubes.
Après ce traitement, la résistance carrée initiale du substrat obtenu est de 3,0.102 Ωα et la transmittance de ce substrat est de 97%.
On procède ensuite, comme à l'exemple 1 ou dépôt sur les nanotubes de carbone d'une couche d'argent.
L'épaisseur de la couche d'argent déposée à la surface des nanotubes de carbone est de 3 nm.
Le bain de galvanoplastie utilisé à cet exemple était le même que celui utilisé à l'exemple 1.
Le dispositif obtenu à cet exemple a une résistance carrée de 20 OD et une transmittance de 95%.
Exemple 3 :
On a utilisé une procédure équivalente aux exemples 1 et 2 pour former un réseau de nanotubes de carbone double parois sur un substrat en verre sodocalcique.
La densité de nanotubes de carbone à la surface du substrat était de 10 nanotubes de carbone par μπι2.
La résistance par carré initiale du substrat obtenu à cette étape était de 200 Ωα et sa transmittance était de 92%.
Le substrat obtenu a été alors introduit dans un bain de galvanoplastie et connecté à l'alimentation de l'appareil de galvanoplastie pour servir de cathode.
L'anode de l'appareil était en or et le bain de galvanoplastie contenait 4 g/L de cyanure d'or, 40 g/L d'acide citrique et 40 g/L de citrate de potassium.
Une densité de courant de 5 mA/cm est appliquée.
L'épaisseur de la couche d'or déposée sur les nanotubes de carbone était de 1 nm. Le dispositif obtenu a une résistance carrée de 150 Ωπ et une transmittance de 92%.
Les dispositifs obtenus aux exemples 1 à 3 peuvent être utilisés en tant qu'électrodes, et plus particulièrement en tant qu'anodes.

Claims

REVENDICATIONS
1. Procédé de formation d'une couche (2) électriquement conductrice et transparente dans le domaine des longueurs d'onde du visible, sur au moins une surface (5) d'un substrat (1), caractérisé en ce que :
le substrat (1) est en un matériau non conducteur électriquement, et en ce qu'il comprend les étapes suivantes :
a) dépôt, sur la surface (5), de nanotubes de carbone (4), de préférence monoparoi et de type métallique, à une densité comprise entre 0,1, inclus, et 40, inclus, nanotubes de carbone (4) par μπι2 de surface (5), de préférence comprise entre 1, inclus, et 10, inclus, nanotubes de carbone (4) par μηι surface (5), et
b) formation, par galvanoplastie, sur la surface externe des nanotubes de carbone (4) déposés à l'étape a) d'une couche (6) de métal ayant une épaisseur comprise entre 0,1, inclus, et 10, inclus nm.
2. Procédé selon la revendication 1, caractérisé en ce que le substrat (1) est en un matériau choisi parmi le verre, le silicium, le quartz, les polymères transparents.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'étape a) comprend les étapes suivantes :
al) préparation d'une suspension de nanotubes de carbone (4) dans un solvant,
a2) dépôt à la tournette, par tirage, par filtration, par trempage, ou par nébulisation, de préférence par nébulisation, de ladite dispersion sur la surface (5) du substrat (1), et
a3) élimination du solvant.
4. Procédé selon la revendication 3, caractérisé en ce que la dispersion de nanotubes de carbone comprend de plus un agent filmogène et/ou un agent tensio actif.
5. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'étape de dépôt a) est une étape de synthèse des nanotubes de carbone directement sur la surface (5).
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape b) est une étape de formation d'une couche (6) en un métal choisi parmi l'aluminium (Al), le chrome (Cr), le cobalt (Co), le nickel (Ni), le cuivre (Cu), le zinc (Zn), le palladium (Pd), le rhodium (Rh), le platine (Pt), l'argent (Ag), l'étain (Sn), le tungstène (W), l'or (Au), le titane (Ti), le manganèse (Mn), le cadmium (Cd), le ruthénium (Ru), l'iridium (Ir), le praséodyme (Pr), et les mélanges et alliages de deux au moins de ceux-ci, de préférence choisi parmi l'argent ou l'or.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend de plus une étape de dopage des nanotubes (4) de carbone par trempage du substrat obtenu à l'étape a) dans une solution contenant le dopant ou un précurseur du dopant, de préférence un précurseur du dopant, de préférence SOCl2 ou HNO3.
8. Dispositif caractérisé en ce qu'il comprend un substrat (1) en un matériau non électriquement conducteur recouvert sur au moins une de ses surfaces (5) de nanotubes de carbone (4), à une densité de nanotubes de carbone comprise entre 0,1, inclus, et 40, inclus, nanotubes de carbone par μιη2 de surface (5), de préférence comprise entre 0,1, inclus, et 10, inclus, nanotubes de carbone (4), de préférence monoparoi et de type métallique, par μηι2 de surface (5), lesdits nanotubes de carbone étant métallisés en surface avec une couche (6) en métal et ayant une épaisseur comprise entre 0,1, inclus, et 10, inclus, nanomètres, et en ce que la couche (6) est en contact avec la surface (5) du substrat (1).
9. Dispositif selon la revendication 8, caractérisé en ce que le substrat (1) est en un matériau choisi parmi le verre, le silicium, le quartz, les polymères transparents.
10. Dispositif selon la revendication 8 ou 9, caractérisé en ce que le métal est choisi parmi l'aluminium (Al), le chrome (Cr), le cobalt (Co), le nickel (Ni), le cuivre (Cu), le zinc (Zn), le palladium (Pd), le rhodium (Rh), le platine (Pt), l'argent (Ag), l'étain (Sn), le tungstène (W), l'or (Au), le titane (Ti), le manganèse (Mn), le cadmium (Cd), le ruthénium (Ru), l'iridium (Ir), le praséodyme (Pr), et les mélanges de deux au moins de ceux-ci, de préférence choisi parmi l'argent ou l'or.
11. Dispositif selon l'une quelconque des revendications 8 à 10, caractérisé en ce que les nanotubes sont dopés.
12. Electrode caractérisée en ce qu'elle comprend un dispositif selon l'une quelconque des revendications 8 à 11.
13. Procédé de fabrication d'une électrode caractérisé en ce qu'il comprend une étape de formation d'une couche (2) électriquement conductrice et transparente dans le domaine des longueurs d'onde du visible et du proche infrarouge, sur au moins une surface du substrat par le procédé selon l'une quelconque des revendications 1 à 7.
PCT/IB2012/051453 2011-03-28 2012-03-27 Elaboration d'electrodes transparentes en nanotubes de carbone metallises WO2012131578A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12715189.2A EP2691960A1 (fr) 2011-03-28 2012-03-27 Elaboration d'electrodes transparentes en nanotubes de carbone metallises

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1100907 2011-03-28
FR1100907A FR2973263B1 (fr) 2011-03-28 2011-03-28 Elaboration d'electrodes transparentes en nanotubes de carbone metallises

Publications (1)

Publication Number Publication Date
WO2012131578A1 true WO2012131578A1 (fr) 2012-10-04

Family

ID=45976451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/051453 WO2012131578A1 (fr) 2011-03-28 2012-03-27 Elaboration d'electrodes transparentes en nanotubes de carbone metallises

Country Status (3)

Country Link
EP (1) EP2691960A1 (fr)
FR (1) FR2973263B1 (fr)
WO (1) WO2012131578A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116230294A (zh) * 2023-02-27 2023-06-06 宁波碳源新材料科技有限公司 一种二次掺杂碳纳米管透明导电薄膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061428A2 (fr) * 2004-12-27 2007-05-31 The Regents Of The University Of California Composants et dispositifs formes a l'aide de materiaux a l'echelle nanometrique et procedes de production
US20100038251A1 (en) 2008-08-14 2010-02-18 Snu R&Db Foundation Carbon nanotube network-based nano-composites
US20100266838A1 (en) 2009-04-15 2010-10-21 Hyun-Jung Lee Method for fabrication of conductive film using metal wire and conductive film
WO2010151244A1 (fr) * 2009-06-22 2010-12-29 Hewlett-Packard Development Company, L.P. Matériau conducteur transparent
US20110032196A1 (en) * 2009-08-07 2011-02-10 Tsinghua University Touch panel and display device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061428A2 (fr) * 2004-12-27 2007-05-31 The Regents Of The University Of California Composants et dispositifs formes a l'aide de materiaux a l'echelle nanometrique et procedes de production
US20100038251A1 (en) 2008-08-14 2010-02-18 Snu R&Db Foundation Carbon nanotube network-based nano-composites
US20100266838A1 (en) 2009-04-15 2010-10-21 Hyun-Jung Lee Method for fabrication of conductive film using metal wire and conductive film
WO2010151244A1 (fr) * 2009-06-22 2010-12-29 Hewlett-Packard Development Company, L.P. Matériau conducteur transparent
US20110032196A1 (en) * 2009-08-07 2011-02-10 Tsinghua University Touch panel and display device using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FENG ET AL., APPL. PHYS. LETT., vol. 97, 2010, pages 083101
SCHINDLER A. ET AL: "Suspension-deposited carbon-nanotube networks for flexible active-matrix displays", JOURNAL OF THE SID, vol. 16, no. 5, May 2008 (2008-05-01), pages 651 - 658, XP040469863 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116230294A (zh) * 2023-02-27 2023-06-06 宁波碳源新材料科技有限公司 一种二次掺杂碳纳米管透明导电薄膜及其制备方法
CN116230294B (zh) * 2023-02-27 2023-12-01 宁波碳源新材料科技有限公司 一种二次掺杂碳纳米管透明导电薄膜及其制备方法

Also Published As

Publication number Publication date
FR2973263B1 (fr) 2013-08-02
EP2691960A1 (fr) 2014-02-05
FR2973263A1 (fr) 2012-10-05

Similar Documents

Publication Publication Date Title
EP3251468B1 (fr) Dispositif chauffant, en particulier semi-transparent
KR102430267B1 (ko) 그래핀 기반의 투명 전도성 전극 생성을 위한 프로세스 및 이를 이용한 생성물
JP2013522813A (ja) 透明導電性酸化物、金属、及び酸化物の組み合わせに基づく透明電極
WO2013076164A1 (fr) Procede de fabrication de film de graphene
KR101905646B1 (ko) 그래핀 저온 전사방법
Xu et al. Metal‐microstructure based flexible transparent electrodes and their applications in electronic devices
WO2011099594A1 (fr) Procédé et dispositif permettant de fabriquer des dispositifs à semi-conducteur, dispositif à semi-conducteur et élément de transfert
FR2978066A1 (fr) Procede de fonctionnalisation de nanofils metalliques et de fabrication d'electrodes
WO2011161632A1 (fr) Substrat comprenant une couche d'oxyde transparent conducteur et son procede de fabrication
CN107635918A (zh) 石墨烯掺杂方法、石墨烯复合电极制造方法和包含其的石墨烯结构
EP0533575A1 (fr) Feuillards métalliques supportés sur plastique obtenu par métallisation-placage
EP2691960A1 (fr) Elaboration d'electrodes transparentes en nanotubes de carbone metallises
TW201428775A (zh) 用於透明導體之銅基奈米線的加工方法
EP2834848A1 (fr) Procédé pour réaliser un module photovoltaïque avec une étape de gravure p3 et une éventuelle étape p1.
WO2014140297A1 (fr) Électrode transparente et substrat pour applications optoélectroniques ou plasmoniques comprenant de l'argent
EP3631044B1 (fr) Procede de preparation d'une membrane conductrice, transparente et flexible
Durhuus et al. Selective electroless silver deposition on graphene edges
FR3009436A1 (fr) Fabrication d'une electrode grille par demouillage d'argent
FR2519168A1 (fr) Dispositif afficheur electro-optique et procede de fabrication d'un tel dispositif
Rasheed et al. The effect of the annealing on the properties of ZnO/Cu/ZnO multilayer structures
Sethuraman et al. Controlling the electrical, optical, and morphological properties of sol–gel spin-coated indium tin oxide films
KR101006456B1 (ko) 금속 스퍼터링을 이용한 전도성필름 제조방법 및 전도성필름
US20100055562A1 (en) Nanowire layer adhesion on a substrate
EP3621124B1 (fr) Structure multicouche notamment pour cellules photovoltaïques, integrant une monocouche moleculaire autoassemblee, sam
EP3232481A1 (fr) Procédé de modification d'une surface en oxyde conducteur de l'électricité, utilisation pour l'électrodéposition de cuivre sur cette dernière

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12715189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012715189

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012715189

Country of ref document: EP