EP0891686B1 - Dispositif electroluminescent - Google Patents

Dispositif electroluminescent Download PDF

Info

Publication number
EP0891686B1
EP0891686B1 EP97908105A EP97908105A EP0891686B1 EP 0891686 B1 EP0891686 B1 EP 0891686B1 EP 97908105 A EP97908105 A EP 97908105A EP 97908105 A EP97908105 A EP 97908105A EP 0891686 B1 EP0891686 B1 EP 0891686B1
Authority
EP
European Patent Office
Prior art keywords
layer
electroluminescent
gallium nitride
electrode
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97908105A
Other languages
German (de)
English (en)
Other versions
EP0891686A1 (fr
Inventor
Marc Ilegems
Michel SCHÄR
Libero Zuppiroli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecole Polytechnique Federale de Lausanne EPFL
Original Assignee
Ecole Polytechnique Federale de Lausanne EPFL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecole Polytechnique Federale de Lausanne EPFL filed Critical Ecole Polytechnique Federale de Lausanne EPFL
Publication of EP0891686A1 publication Critical patent/EP0891686A1/fr
Application granted granted Critical
Publication of EP0891686B1 publication Critical patent/EP0891686B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes

Definitions

  • the present invention relates to a device electroluminescent comprising a layer of organic matter light emitting semiconductor disposed between a first electrode, constituted by a material having the property of injecting electrons into said layer of electroluminescent material, and a second electrode constituted by a material having the property of injecting holes in this layer.
  • the semiconductor organic matter consists of either a monomeric organic substance, made up of molecules fluorescent, such as anthracene, perylene and coronene, or molecules of an organic dye, either in a conjugated organic polymer such as poly (p-phenylene-vinylene).
  • the electron-emitting electrode is, for example, constituted by a layer of a metal chosen from aluminum, magnesium and calcium, or by a layer of metallic alloy, such as an alloy of magnesium and silver, and the hole-emitting electrode is constituted, for example, by a layer of a metal such as gold or by a layer of tin oxide (SnO 2 ) or mixed oxide d 'indium and tin (ITO).
  • Such electroluminescent devices can in particular be used as light emitting diodes in display elements, as well as for the manufacture of screens dishes for laptop or television.
  • the hole injector electrode was produced in the form of a transparent layer, constituted, by example, mixed oxide of indium and tin, the electrode being an electron injector, it is opaque or reflective. Devices of this type cannot emit light than on one side. According to one of the variants of the device described in application WO 90/13148, it is however mentioned that at least one of the charge injecting contact layers, when these layers are gold or aluminum and do not exceed not a certain thickness, is transparent or semi-transparent. It is however not specified which of these layers is transparent or semi-transparent.
  • the devices currently known have the disadvantage of having too short a lifespan for the industrial applications envisaged. More specifically, the best known devices of this kind, in which the layer of organic matter electroluminescent consists of an organic substance monomer, only allow a maximum duration of use of around a thousand hours, in continuous operation, while the best known devices, in which the layer of electroluminescent organic matter consists of a conjugated polymer, do not generally last continuous use greater than one hundred hours.
  • the invention aims to provide a device of the kind mentioned above which is capable of emitting light on its two faces, i.e. an electroluminescent device in which the two electrodes placed on either side of the layer of electroluminescent material are transparent or translucent.
  • Another object of the invention is to make it possible to improve the life of the device.
  • the device according to the invention is characterized in that said first electrode is in the form a transparent or translucent layer of a material n-type semiconductor chosen from nitrides and mineral oxides.
  • the material constituting the electron-emitting electrode is chosen from gallium nitride GaN, binary alloys of gallium nitride and indium nitride, of general formula Ga x In ( 1-x ) N, the alloys ternaries of gallium nitride, indium nitride and aluminum nitride, of general formula Ga x Al y In ( 1-xy ) N and mixtures of at least two of these compounds and alloys, where x and y each represent a number between 0 and 1, the sum x + y being at most equal to 1, the conductivity character n of said material possibly resulting from a stoichiometry gap or from doping with at least one element chosen from groups 4a and 6a of the periodic table.
  • doping element one can, in particular use one of the following: Si, Sn, S, Se and Te.
  • n-type semiconductor material in particular gallium nitride and its alloys, can be used in any suitable form, in particular in the form monocrystalline, polycrystalline, nanocrystalline or amorphous, or as a superposition of layers of this type having compositions, so values of x or y, or doping, different.
  • the electron injecting nature of such materials can possibly result from the existence of gaps in stoichiometry or doping with at least one element such as, for example H, Li, Ca, Al, Cs.
  • titanium oxides can be used in any suitable form, in particular in the form monocrystalline, polycrystalline, nanocrystalline or amorphous.
  • electroluminescent semiconductor organic matter constituting the electroluminescent layer we can use any appropriate material, especially those made up of substances already used for this purpose in accordance with the prior art, in particular, polymers conjugates, such as poly (p-phenylene-vinylene), commonly designated by the abbreviation PPV or poly p-phenylene, PPP, or still the polythiophene, PT, those in which the nucleus phenyl or thiophene carry one or more substituents such as an alkyl group, an alkoxy group, a halogen or a nitro group, as well as conjugated polymers such as poly (4,4'-diphenylene-diphenylvinylene), commonly known by the abbreviation PDPV; poly (1,4-phenylene-1-phenylinyene); poly (1,4-phenylene-diphenyvinylene); polymers of the poly (3-alkylthiofen) or poly (3-alkylpyrrole) type, polymers of
  • conjugated polymers derived from known polymers such as those which have been mentioned above, by grafting at the ends of the polymer chains group with the property of strengthening the membership of the electroluminescent conjugated polymer layer on the surface electrodes, in particular the electron-emitting electrode and more particularly on a layer of gallium nitride or titanium oxide is particularly advantageous.
  • polymers derived from poly (phenylene) whose chain ends have one of the following formulas:
  • organic matter electroluminescent constituting the layer electroluminescent a monomeric substance, a dye or organic pigment, this substance or this dye or pigment can in particular be chosen from those who suitable for use in devices prior art light emitting lamps. These dyes can also be functionalized so as to adhere better to the electrode of the invention.
  • the same materials as those used in light-emitting devices according to the prior art can be used, in particular gold, tin oxide SnO 2 or else mixed oxide of indium and tin (in particular the commercial product known by the designation ITO), in the form of a transparent layer.
  • a such material can be, for example, made of a compound of the diphenyl-dimethylphenylamine type, known as TPD designation.
  • any suitable method can be used, in in particular the techniques used for the manufacture of prior art devices.
  • the compound layer is first formed n-type semiconductor mineral constituting the electrode electron emitter, on the surface of the substrate serving support for the electroluminescent device, this substrate being advantageously constituted by a transparent insulating material such as a sapphire or quartz plate.
  • titanium oxide layer as defined above, the methods known per se can be used of titanium oxidation, sol-gel polymerization methods from organic precursors, methods of plasma spraying or bombardment ionic. These latter methods seem particularly indicated.
  • the layer of semiconductor organic matter light-emitting we can also use any appropriate technique, including evaporation processes thermal, soaking in a solution (so-called “dip-coating"), the deposition of a layer of substance, such than a solution of the electroluminescent material, or agents precursors thereof, in a suitable solvent, on the surface of the electron emitting electrode (or, if applicable of the hole emitting electrode), making rotate the substrate (the process known as “spinning” or “spin-coating” so as to obtain a thickness perfectly uniform layer, possibly followed by treatment thermal or chemical to form the film of electroluminescent material proper.
  • the layer of material of the hole-emitting electrode such as gold, tin oxide and mixed oxide of indium and tin
  • a material is used as substrate transparent or translucent and the thicknesses of the layers of material constituting the two electrodes, and those of any auxiliary layers (layers of transport or stop negative or positive charges), so that these layers are all transparent or translucent.
  • auxiliary layers such as reflective layers, forming a mirror, or semi-transparent and / or dielectric layers, in order to direct or reinforce the light emitted by the device certain components, in particular by training microcavities.
  • a second type of multicolored display can be made using elements formed by juxtaposition of a plurality, for example three, of devices according to the invention, these devices comprising layers of material different electroluminescent organic having different light emission wavelengths, operating by mixing colors controlled by variation of voltages applied to the various component devices every element.
  • a third type of multicolored display can be made using elements formed by juxtaposition of a plurality, for example three, of devices according to the invention, these devices comprising layers additional auxiliaries favoring the selection of a narrow wavelength range within the spectrum light emission emitted by the organic layer (s) electroluminescent, working by mixing colors controlled by variation of voltages applied to the different devices making up each element.
  • a thin transparent layer 2 of gallium nitride GaN having a thickness of 10 micrometers is formed on the wafer 1, serving as a substrate, by chemical reaction in the vapor phase between gallium chloride GaCl and ammonia NH 3 at the temperature of 1050 ° C., in the presence helium used as carrier gas, the substrate being maintained at the reaction temperature by means of a susceptor heated by high frequency induction.
  • a carrier gas other than helium, for example nitrogen.
  • gallium chloride instead of gallium chloride, we could also use an organometallic compound of gallium, such as trimethylgallium or triethylgallium.
  • Layer 2 of gallium nitride adheres strongly on the surface of substrate 1. It has a n-type semiconductor character, resulting from vacancies in stoichiometry, in the absence of any doping element.
  • the Layer 2 surface impedance value is approximately 10 ohms.
  • a film 3 of poly [2,5-bis (cholestanoxy) -1,4-phenylenevinylene] (polymer designated by the initials BCHA-PPV) having a thickness of 0.2 micrometer.
  • layer 4 of gold is deposited by vacuum evaporation in a manner known per se, using a classic thermal evaporation device.
  • layer 2 By applying a difference in electrical potential of a few volts between layers 2 and 4 which thus constitute, the negative electrode and the positive electrode respectively device, layer 2 emits electrons which are injected in the polymer film 3 and the layer 4 emits positive charges, generally designated by the term "holes" which are injected, in the opposite direction into film 3.
  • the charges of opposite sign thus injected into the film 3 combine with each other and later decompose into producing an emission of light, in a manner known per se.
  • Current-voltage and current characteristic curves luminous-voltage of the electroluminescent device of FIG. 1 are shown in Figures 4 and 5 respectively.
  • FIG. 2 A second embodiment of the device according to the invention is illustrated in FIG. 2
  • a layer is interposed transparent 6 of material favoring the transport of electrons (this material consisting of 8-hydroxyquinoline aluminum, compound, commonly referred to by the name Alq3) and a transparent layer 7 of material constituting a positive charge barrier layer (this material consisting in 2- (4 biphenyl-5- (tertbutyl-phenyl) 1,3,5-oxadiazole, commonly composed, designated by the name "butyl-PBD”) and, on the other hand, that the hole emitting electrode is consisting of a transparent layer 4a of indium oxide and tin (commercial product designated by ITO name) having a thickness of 0.15 micrometer.
  • Layers 6 and 7 are each 0.02 thick micrometer.
  • a thin and transparent layer 32 of amorphous titanium oxide TiO 2 strongly doped with aluminum is formed on a square glass plate 1 with a side of 1 cm having a thickness of 1 mm.
  • a layer of aluminum 10 nm thick is first evaporated, then a layer of TiO 2 10 nm thick is sprayed with a magnetron, then a new layer of aluminum. 1 nm thick and so on until the total thickness of layer 2 is 50 nm.

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Led Devices (AREA)

Description

La présente invention concerne un dispositif électroluminescent comprenant une couche de matière organique semiconductrice électroluminescente disposée entre une première électrode, constituée par un matériau ayant la propriété d'injecter des électrons dans ladite couche de matière électroluminescente, et une deuxième électrode constituée par un matériau ayant la propriété d'injecter des trous dans cette couche.
On connaít déjà des dispositifs de ce genre, dans lesquels la matière organique semiconductrice consiste soit en une substance organique monomère, constituée de molécules fluorescentes, telle que l'anthracène, le pérylène et le coronène, ou de molécules d'un colorant organique, soit en un polymère organique conjugué tel que le poly(p-phénylène-vinylène).
Dans ces dispositifs, l'électrode émettrice d'électrons est, par exemple, constituée par une couche d'un métal choisi parmi l'aluminium, le magnésium et le calcium, ou par une couche d'alliage métallique, tel qu'un alliage de magnésium et d'argent, et l'électrode émettrice de trous est constituée, par exemple, par une couche d'un métal tel que l'or ou par une couche d'oxyde d'étain (SnO2) ou oxyde mixte d'indium et d'étain (ITO).
Un tel dispositif est décrit dans la demande internationale de brevet publiée sous le numéro WO 90/13148.
De tels dispositifs électroluminescents peuvent notamment être utilisés comme diodes électroluminescentes dans des éléments d'affichage, ainsi que pour la fabrication d'écrans plats pour ordinateur portable ou appareil de télévision.
Ces dispositifs présentent l'avantage de permettre aisément la réalisation de grandes surfaces d'affichage ainsi que de se prêter à un ajustement de la longueur d'onde de la lumière émise donc de la couleur d'émission, en choisissant de manière appropriée la matière organique semiconductrice qui constitue la couche électroluminescente parmi le grand nombre de matières connues, qui conviennent à cette fin, ainsi que les multiples combinaisons ou modifications de ces matières à la disposition des spécialistes.
D'autre part, ces dispositifs ont, en général, un rendement d'émission lumineuse déjà tout à fait acceptable, dans l'état actuel de la technique, et qui semble susceptible d'améliorations futures à la portée des hommes de métier.
Selon l'état antérieur de la technique relative aux dispositifs de ce genre, l'électrode injectrice de trous a été réalisée sous forme d'une couche transparente, constituée, par exemple, d'oxyde mixte d'indium et d'étain, l'électrode injectrice d'électrons étant, elle, opaque ou réfléchissante. Des dispositifs de ce type ne peuvent émettre de la lumière que sur une face. Selon l'une des variantes du dispositif décrit dans la demande WO 90/13148, il est cependant mentionné qu'au moins une des couches de contact injectrices de charges, lorsque ces couches sont en or ou en aluminium et n'excédent pas une certaine épaisseur, est transparente ou semi-transparente. Il n'est toutefois pas précisé laquelle de ces couches est transparente ou semi-transparente.
D'autre part, les dispositifs actuellement connus présentent l'inconvénient d'avoir une durée de vie trop courte pour les applications, industrielles envisagées. Plus précisément, les meilleurs dispositifs connus de ce genre, dans lesquels la couche de matière organique électroluminescente est constituée par une substance organique monomère, ne permettent qu'une durée d'utilisation maximale de l'ordre d'un millier d'heures, en fonctionnement continu, alors que les meilleurs dispositifs connus, dans lesquels la couche de matière organique électroluminescente consiste en un polymère conjugué, ne résistent généralement pas à une durée d'utilisation continue supérieure à une centaine d'heures.
L'invention a pour but de fournir un dispositif du genre susmentionné qui soit capable d'émettre de la lumière sur ses deux faces, c'est-à-dire un dispositif électroluminescent dans lequel les deux électrodes placées de part et d'autre de la couche de matière électroluminescente sont transparentes ou translucides.
Un autre but de l'invention est de permettre d'améliorer la durée de vie du dispositif.
A cet effet, le dispositif selon l'invention est caractérisé en ce que ladite première électrode est sous forme d'une couche transparente ou translucide en un matériau semiconducteur de type n choisi parmi les nitrures et les oxydes minéraux.
Avantageusement, le matériau constitutif de l'électrode émettrice d'électrons est choisi parmi le nitrure de gallium GaN, les alliages binaires de nitrure de gallium et nitrure d'indium, de formule générale GaxIn(1-x)N, les alliages ternaires de nitrure de gallium, nitrure d'indium et nitrure d'aluminium, de formule générale GaxAlyIn(1-x-y)N et les mélanges d'au moins deux de ces composés et alliages, où x et y représentent chacun un nombre compris entre 0 et 1, la somme x + y étant au plus égale à 1, le caractère de conductivité n dudit matériau résultant éventuellement d'une lacune de stoechiométrie ou d'un dopage par au moins un élément choisi dans les groupes 4a et 6a de la classification périodique.
Comme élément dopant, on peut, notamment utiliser l'un des élément suivants: Si, Sn, S, Se et Te.
Le matériau semiconducteur de type n susmentionné, notamment le nitrure de gallium et ses alliages, peut être utilisé sous toute forme appropriée, en particulier sous forme monocristalline, polycristalline, nanocristaline ou amorphe, ou encore sous forme d'une superposition de couches de ce type ayant des compositions, donc des valeurs de x ou y, ou des dopages, différents.
On peut aussi utiliser comme matériau constitutif de l'électrode émettrice d'électrons un matériau choisi parmi les oxydes de titane TiOx, quelle que soit leur stoechiométrie en oxygène et notamment les phases anatase et rutile sous-stoechiométriques TiO2-y, ainsi que les mélanges d'au moins un oxyde de titane avec au moins un autre oxyde minéral, notamment les matériaux multiphasés tels que les phases de Maneli ou les mélanges multiphasés de plusieurs oxydes accompagnant l'oxyde de titane.
Le caractère injecteur d'électrons de tels matériaux peut éventuellement résulter de l'existence de lacunes de stoechiométrie ou d'un dopage par au moins un élément tel que, par exemple H, Li, Ca, Al, Cs.
Les oxydes de titane susmentionnés peuvent être utilisés sous toute forme appropriée en particulier sous forme monocristalline, polycristalline, nanocristalline ou amorphe.
Comme matière organique semiconductrice électroluminescente constitutive de la couche électroluminescente, on peut utiliser toute matière appropriée, notamment celles constituées par les substances déjà utilisées à cette fin conformément à l'art antérieur, en particulier, des polymères conjugués, tel que le poly(p-phénylène-vinylène), couramment désigné par l'abréviation PPV ou le poly p-phénylene, PPP, ou encore le polythiophène, PT, ceux dans lesquels le noyau phényl ou thiophène portent un ou plusieurs substituants tels qu'un groupe alkyle, un groupe alkoxy, un halogène ou un groupe nitro, ainsi que des polymères conjugués tels que le poly(4,4'-diphénylène-diphénylvinylène), couramment désigné par l'abréviation PDPV; le poly (1,4-phénylène-1-phényliny-ène); le poly(1,4- phénylène-diphényvinylène); des polymères du type poly (3-alkylthiofène) ou poly(3-alkylpyrrole), des polymères du type poly (2,5-dialkoxy-p-phénylènevinylène), ou encore des copolymères ou des mélanges de tels polymères conjugués.
L'utilisation de polymères conjugués dérivés des polymères connus, tels que ceux qui ont été mentionnés ci-dessus, par greffage aux extrémités des chaínes de polymères de groupement ayant la propriété de renforcer l'adhésion de la couche de polymère conjugué électroluminescent sur la surface des électrodes, notamment l'électrode émettrice d'électrons et plus particulièrement sur une couche de nitrure de gallium ou d'oxyde de titane est particulièrement avantageuse.
Par exemple, on peut utiliser des polymères dérivés de poly(phénylène) dont les extrémités de chaíne ont l'une des formules suivantes:
Figure 00060001
Figure 00060002
Figure 00060003
Figure 00060004
On peut également, utiliser, comme matière organique électroluminescente constitutive de la couche électroluminescente, une substance monomère, un colorant ou pigment organique, cette substance ou ce colorant ou pigment pouvant notamment être choisi parmi celles ou ceux qui conviennent à l'utilisation dans les dispositifs électroluminescents de l'art antérieur. Ces colorants peuvent être aussi fonctionnalisés de façon à adhérer mieux à l'électrode de l'invention.
Comme matériau constitutif de l'électrode émettrice de trous, on peut utiliser les mêmes matériaux que ceux qui sont utilisés dans les dispositifs électroluminescents conformes à la technique antérieure, en particulier de l'or, de l'oxyde d'étain SnO2 ou encore de l'oxyde mixte d'indium et d'étain (en particulier le produit commercial connu sous la désignation de ITO), sous forme d'une couche transparente.
On peut éventuellement intercaler, entre l'électrode émettrice d'électrons et la couche organique semiconductrice électroluminescente, une ou plusieurs couches de matière facilitant le transport des charges négatives, cette matière consistant, par exemple, dans le composé 8-hydroxyquinoline aluminium (désigné habituellement par le terme Alq3), ainsi qu'une ou plusieurs couches de matière ayant la propriété de bloquer le passage de charges positives (couche d'arrêt de trous), une telle matière étant, par exemple, constituée du composé 2-(4-biphényl-5-tertbutyl-phényl)-1,3,5-oxadiazole (composé connu sous la dénomination "Butyl-PBD").
D'autre part, on peut aussi, éventuellement, intercaler, entre l'électrode émettrice de trous et la couche organique semiconductrice électroluminescente, une ou plusieurs couches de matière facilitant le transport des charges positives. Une telle matière peut être, par exemple, constituée d'un composé du type diphényl-diméthylphénylamine, connus sous la désignation TPD.
Pour la fabrication du dispositif électroluminescent selon l'invention, on peut utiliser tout procédé approprié, en particulier les techniques employées pour la fabrication des dispositifs de l'art antérieur.
Ainsi, pour former la couche de nitrure telle que définie ci-dessus, notamment le nitrure de gallium, constituant l'électrode émettrice d'électrons, on peut employer les méthodes, connues en soi, de dépôt par pulvérisation thermique, en particulier au moyen d'une torche à plasma, ou encore les techniques de dépôt à partir de la phase liquide ainsi que les procédés de dépôt par réaction chimique en phase vapeur. Ces derniers procédés semblent donner les meilleurs résultats.
Plus particulièrement, on peut avantageusement mettre en oeuvre pour former une couche mince de nitrure de gallium, un procédé de dépôt par réaction chimique en phase vapeur dans des conditions opératoires identiques ou similaires à celles qui ont été décrites dans la publication de M. Ilegems, Journal of Crystal Growth, 13/14, p. 360 (1972).
De préférence, on forme d'abord la couche de composé minéral semiconducteur de type n constitutive de l'électrode émettrice d'électrons, sur la surface du substrat servant de support au dispositif électroluminescent, ce substrat étant avantageusement constitué par un matériau isolant transparent tel qu'une plaquette de saphir ou de quartz.
Toutefois, il est également possible de former d'abord sur le substrat la couche de matériau constitutif de l'électrode émettrice de trous.
Pour former la couche d'oxyde de titane telle que définie ci-dessus, on peut utiliser les méthodes connues en soi d'oxydation du titane, des méthodes de polymérisation sol-gel à partir de précurseurs organiques, des méthodes de pulvérisation à l'aide d'un plasma ou d'un bombardement ionique. Ces dernières méthodes semblent particulièrement indiquées.
Pour former la couche de matière organique semiconductrice électroluminescente, on peut également utiliser toute technique appropriée, notamment les procédés d'évaporation thermique, le trempage dans une solution (procédés dits de "dip-coating"), le dépôt d'une couche de substance, telle qu'une solution de la matière électroluminescente, ou d'agents précurseurs de celle-ci, dans un solvant approprié, sur la surface de l'électrode émettrice d'électrons (ou, le cas échéant, de l'électrode émettrice de trous), en faisant tourner le substrat (procédé dit de la "tournette" ou "spin-coating" de façon à obtenir une épaisseur parfaitement uniforme de cette couche, suivi éventuellement d'un traitement thermique ou chimique permettant de former la pellicule de matière électroluminescente proprement dite.
Pour former la couche de matériau constitutif de l'électrode émettrice de trous, tel que l'or, l'oxyde d'étain et l'oxyde mixte d'indium et d'étain, on peut également procéder de manière connue en soi, par exemple, évaporation sous pression réduite ou par pulvérisation thermique, évaporation sous vide par bombardement au moyen d'un faisceau d'électrons, d'ions, etc.
Avantageusement, on utilise comme substrat une matière transparente ou translucide et on règle les épaisseurs des couches de matière constitutrices des deux électrodes, et celles des couches auxiliaires éventuelles (couches de transport ou d'arrêt des charges négatives ou positives), de façon que ces couches soient toutes transparentes ou translucides.
De cette façon, on peut réaliser un dispositif électroluminescent émettant de la lumière sur ses deux faces.
On peut également de manière connue en soi éventuellement former, sur les faces externes du dispositif selon l'invention, une ou plusieurs couches auxiliaires supplémentaires telles que des couches réfléchissantes, formant miroir, ou des couches semi-transparentes et/ou diélectriques, afin de diriger la lumière émise par le dispositif ou d'en renforcer certaines composantes, notamment par formation de microcavités.
On peut, en outre, en superposant une pluralité, par exemple trois, de dispositifs selon l'invention, émettant chacun de la lumière sur ses deux faces, ces dispositifs comportant des couches de matières organiques électroluminescentes différentes ayant des longueurs d'ondes d'émission lumineuse différentes, fabriquer un dispositif d'affichage multicolore, fonctionnant par mélanges de couleurs commandés par variation des tensions appliquées aux différentes couches de ce dispositif.
Un deuxième type d'affichage multicolore peut être réalisé à l'aide d'éléments formés par juxtaposition d'une pluralité, par exemple trois, de dispositifs selon l'invention, ces dispositifs comportant des couches de matière organiques électroluminescentes différentes ayant des longueurs d'onde d'émission lumineuse différentes, fonctionnant par mélanges de couleurs commandés par variation de tensions appliqués aux différents dispositifs composant chaque élément.
Un troisième type d'affichage multicolore peut être réalisé à l'aide d'éléments formés par juxtaposition d'une pluralité, par exemple trois, de dispositifs selon l'invention, ces dispositifs comportant des couches auxiliaires supplémentaires favorisant la sélection d'un domaine de longueurs d'ondes étroit à l'intérieur du spectre d'émission lumineux émis par la ou les couches organiques électroluminescentes, fonctionnant par mélanges de couleurs commandés par variation de tensions appliqués aux différents dispositifs composant chaque élément.
L'invention sera encore mieux comprise grâce à la description détaillée, qui va suivre, d'exemples non limitatifs de la réalisation de formes d'exécution du dispositif selon l'invention, en se référant au dessin annexé, dans lequel:
  • La figure 1 est une vue schématique, en coupe, d'une première forme d'exécution du dispositif à base de GaN;
  • La figure 2 est une vue schématique, en coupe, similaire à celle de la Figure 1, d'une deuxième forme d'exécution du dispositif à base de GaN;
  • La figure 3 est une vue schématique, en coupe, d'une forme d'exécution du dispositif à base de TiO2.
  • Les figures 4 et 5 sont des diagrammes montrant, respectivement, la courbe caractéristique courant-tension et la courbe caractéristique intensité lumineuse-tension du dispositif électroluminescent illustré à la figure 1.
  • Les figures 6 et 7 sont des diagrammes montrant respectivement la courbe caractéristique courant-tension et la courbe caractéristique intensité lumineuse-tension du dispositif illustré à la figure 3.
  • Exemple 1 (Fabrication d'une première forme d'exécution du dispositif selon l'invention, telle qu'illustrée à la Fig. 1)
    Sur une plaquette 1 de saphir carrée de 1 cm de côté, ayant une épaisseur de 0,5 mm, on forme une couche 2 mince transparente de nitrure de gallium GaN ayant une épaisseur de 10 micromètres. A cet effet, on dépose la couche 2 de nitrure de gallium sur la plaquette 1, servant de substrat, par réaction chimique en phase vapeur entre le chlorure de gallium GaCl et l'ammoniac NH3 à la température de 1050°C, en présence d'hélium utilisé comme gaz porteur, le substrat étant maintenu à la température de réaction au moyen d'un suscepteur chauffé par induction à haute fréquence. On pourrait également effectuer le chauffage par radiation thermique et utiliser un autre gaz porteur que l'hélium, par exemple l'azote.
    Au lieu de chlorure de gallium, on pourrait également utiliser un composé organométallique du gallium, tel que le triméthylgallium ou le triéthylgallium.
    La couche 2 de nitrure de gallium, ainsi obtenue, adhère fortement sur la surface du substrat 1. Elle présente un caractère de semiconducteur de type n, résultant de lacunes de stoechiométrie, en l'absence de tout élément de dopage. La valeur de l'impédance de surface de la couche 2 est d'environ 10 ohms.
    On forme ensuite, sur la surface libre de la couche de nitrure de gallium 2, une pellicule 3 de poly[2,5-bis(cholestanoxy)-1,4-phénylènevinylène] (polymère désigné par les initiales BCHA-PPV) ayant une épaisseur de 0.2 micromètre. A cet effet, on fait tomber sur la surface de la couche 2 de nitrure de gallium, une goutte de solution de BCHA-PPV dans du xylène (concentration de cette solution 10 g/litre) et l'on répartit la couche de solution sur cette surface de manière à lui conférer une épaisseur uniforme en faisant tourner la plaquette 1 autour d'un axe vertical, en maintenant la surface libre de la couche 2 orientée vers le haut dans un plan horizontal, avec une vitesse de 2000 tours par minute environ (procédé dit de "dépôt à la tournette" également désigné par le terme anglais de "spin-coating"). On chauffe ensuite pendant 1 heure à une température de 100°C la plaquette 1, ainsi revêtue de la couche 2 et de la solution de BCHA-PPV, dans une étuve sous pression réduite de gaz neutre (argon). Ce traitement provoque l'évaporation du xylène et la formation d'une pellicule 3 de BCHA-PPV dure et adhérant bien sur la surface libre de la couche 2 de nitrure de gallium; cette pellicule ayant une épaisseur de 0,2 micromètre.
    Finalement, on recouvre la surface libre de la couche 3 d'une couche mince 4 d'or ayant une épaisseur de 0,3 micromètre. A cet effet, on dépose la couche 4 d'or par évaporation sous vide de manière connue en soi, en utilisant un dispositif classique d'évaporation thermique.
    Pour constituer un dispositif électroluminescent, il suffit de relier les couches 2 et 4 recouvrant la plaquette 1 et disposées comme illustré à la Fig. 1 de part et d'autre de la pellicule de polymère électroluminescent 3, à la borne négative et à la borne positive d'une source de tension électrique 5.
    En appliquant une différence de potentiel électrique de quelques volts entre les couches 2 et 4 qui constituent ainsi, respectivement l'électrode négative et l'électrode positive du dispositif, la couche 2 émet des électrons qui sont injectés dans la pellicule de polymère 3 et la couche 4 émet des charges positives, désignées généralement par le terme "trous" qui sont injectés, en sens inverse dans la pellicule 3. Les charges de signe opposé ainsi injectées dans la pellicule 3 se combinent entre elles et se décomposent ultérieurement en produisant une émission de lumière, de manière connue en soi. Les courbes caractéristiques courant-tension et intensité lumineuse-tension du dispositif électroluminescent de la Fig. 1 sont indiquées respectivement aux Figures 4 et 5.
    Exemple 2
    Une deuxième forme d'exécution du dispositif selon l'invention est illustrée à la Fig. 2
    Cette forme d'exécution est en tout point similaire à celle de la Fig. 1 et en diffère uniquement, d'une part, en ce que, entre la couche 2 de nitrure de gallium et la couche 3 de matière électroluminescente, sont intercalées une couche transparente 6 de matière favorisant le transport des électrons (cette matière consistant en 8-hydroxyquinoline aluminium, composé, couramment désigné par la dénomination Alq3) et une couche transparente 7 de matière constituant une couche d'arrêt de charges positives (cette matière consistant en 2-(4 biphényl-5-(tertbutyl-phényl) 1,3,5-oxadiazole, composé couramment, désigné par la dénomination "butyl-PBD") et, d'autre part, en ce que l'électrode émettrice de trous est constituée par une couche transparente 4a d'oxyde d'indium et d'étain (produit commercial désigné par la dénomination ITO) ayant une épaisseur de 0,15 micromètre.
    Les couches 6 et 7 ont chacune une épaisseur de 0,02 micromètre.
    Exemple 3 (Fabrication d'une troisième forme d'exécution du dispositif selon l'invention, telle qu'illustrée à la figure 3).
    Sur une plaquette 1 de verre carrée de 1 cm de côté ayant une épaisseur de 1 mm, on forme une couche 32 mince et transparente d'oxyde de titane amorphe TiO2 fortement dopé d'aluminium. A cet effet, on évapore d'abord une couche d'aluminium de 10 nm d'épaisseur, puis on pulvérise à l'aide d'un magnetron une couche de TiO2 de 10 nm d'épaisseur puis une nouvelle couche d'aluminium de 1 nm d'épaisseur et ainsi de suite jusqu'à ce que l'épaisseur totale de la couche 2 soit de 50 nm. Une fois l'opération finie et après un traitement thermique d'homogénéisation à 300°C pendant une heure, sous atmosphère d'oxygène, on constate que l'aluminium s'est allié à l'oxyde de titane de telle sorte que la couche finale de TiO2 allié soit transparente et présente une résistance de l'ordre de 100 ohms, pour un élément de surface carré.
    On forme ensuite à la tournette, tout comme dans l'exemple 1 une couche 3 de polymère électroluminescent BCHA-PPV.
    Finalement, on dispose sur la surface libre de la couche 3 une mince couche 4a d'ITO obtenue de manière connue en soi par pulvérisation d'une cible d'ITO par bombardement ionique.
    L'utilisation de ce dispositif électroluminescent est en tout point similaire à celle du dispositif de l'exemple 1. Les courbes caractéristiques courant-tension et intensité lumineuse-tension du dispositif électroluminescent illustré à la figure 3 sont indiquées, respectivement, aux figures 6 et 7.

    Claims (3)

    1. Dispositif électroluminescent, comprenant une couche de matière organique semiconductrice électroluminescente disposée entre une première électrode, constituée par un matériau ayant la propriété d'injecter des électrons dans ladite couche de matière électroluminescente, et une deuxième électrode, constituée par une couche de matériau conducteur électrique ayant la propriété d'injecter des trous dans la couche de matière électroluminescente, caractérisé en ce que ladite première électrode est sous forme d'une couche transparente ou translucide en un matériau semiconducteur de type n choisi parmi les nitrures minéraux.
    2. Dispositif selon la revendication 1, caractérisé en ce que ledit matériau semiconducteur est choisi parmi le nitrure de gallium GaN, les alliages binaires de nitrure de gallium et nitrure d'indium, de formule générale GaxIn(1-x)N, les alliages binaires de nitrure de gallium et nitrure d'aluminium et les alliages ternaires de nitrure de gallium, nitrure d'indium et nitrure d'aluminium, de formule générale GaxAlyIn(1-x-y)N, et les mélanges d'au moins deux de ces composé et alliages, où x et y représentent chacun un nombre compris entre 0 et 1, la somme x + y étant au plus égale à 1.
    3. Dispositif selon la revendication 2, caractérisé en ce que le nitrure de gallium est à l'état sous-stoectiométrique ou à l'état dopé par au moins un élément choisi dans les groupes 4a et 6a de la classification périodique.
    EP97908105A 1996-04-03 1997-04-02 Dispositif electroluminescent Expired - Lifetime EP0891686B1 (fr)

    Applications Claiming Priority (4)

    Application Number Priority Date Filing Date Title
    CH86396 1996-04-03
    CH86396 1996-04-03
    CH863/96 1996-04-03
    PCT/CH1997/000133 WO1997038558A1 (fr) 1996-04-03 1997-04-02 Dispositif électroluminescent

    Publications (2)

    Publication Number Publication Date
    EP0891686A1 EP0891686A1 (fr) 1999-01-20
    EP0891686B1 true EP0891686B1 (fr) 1999-10-06

    Family

    ID=4196942

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97908105A Expired - Lifetime EP0891686B1 (fr) 1996-04-03 1997-04-02 Dispositif electroluminescent

    Country Status (5)

    Country Link
    US (1) US6208074B1 (fr)
    EP (1) EP0891686B1 (fr)
    JP (1) JP2000508112A (fr)
    DE (1) DE69700602T2 (fr)
    WO (1) WO1997038558A1 (fr)

    Families Citing this family (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FI109944B (fi) * 1998-08-11 2002-10-31 Valtion Teknillinen Optoelektroninen komponentti ja valmistusmenetelmä
    US6468676B1 (en) * 1999-01-02 2002-10-22 Minolta Co., Ltd. Organic electroluminescent display element, finder screen display device, finder and optical device
    US7102280B1 (en) * 1999-11-29 2006-09-05 Paulus Cornelis Duineveld Organic electroluminescent device and a method of manufacturing thereof
    TW484238B (en) * 2000-03-27 2002-04-21 Semiconductor Energy Lab Light emitting device and a method of manufacturing the same
    US20040109560A1 (en) * 2000-12-29 2004-06-10 Frank Nuovo Method of producing a telephone device
    WO2004091261A1 (fr) * 2003-04-08 2004-10-21 Koninklijke Philips Electronics N.V. Dispositif electroluminescent a deux cotes

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO1990005998A1 (fr) * 1988-11-21 1990-05-31 Mitsui Toatsu Chemicals, Inc. Element photo-emetteur
    JP2764591B2 (ja) * 1988-12-16 1998-06-11 株式会社小松製作所 薄膜el素子とその製造方法
    GB8909011D0 (en) 1989-04-20 1989-06-07 Friend Richard H Electroluminescent devices
    JP2717454B2 (ja) * 1990-07-16 1998-02-18 日本石油株式会社 有機薄膜エレクトロルミネッセンス素子
    JP3205036B2 (ja) * 1991-03-27 2001-09-04 グンゼ株式会社 透明導電膜
    JP2666228B2 (ja) * 1991-10-30 1997-10-22 豊田合成株式会社 窒化ガリウム系化合物半導体発光素子
    US5608287A (en) * 1995-02-23 1997-03-04 Eastman Kodak Company Conductive electron injector for light-emitting diodes

    Also Published As

    Publication number Publication date
    DE69700602T2 (de) 2000-05-18
    EP0891686A1 (fr) 1999-01-20
    US6208074B1 (en) 2001-03-27
    JP2000508112A (ja) 2000-06-27
    WO1997038558A1 (fr) 1997-10-16
    DE69700602D1 (de) 1999-11-11

    Similar Documents

    Publication Publication Date Title
    EP1205092B1 (fr) Dispositif electroluminescent et son procede de fabrication
    FR2728082A1 (fr) Structures et afficheurs organiques lumineux en couleurs et leurs procedes de fabrication
    FR2745955A1 (fr) Dispositif electroluminescent et son procede de fabrication, et procede pour former un contact conducteur transparent
    JP2000150171A (ja) エレクトロルミネセンス素子
    KR102039390B1 (ko) 유기 전자 소자 및 유기 전자 소자의 제조 방법
    CN108611591B (zh) 用于在表面上沉积导电覆层的方法
    WO1999007028A1 (fr) Dispositif electroluminescent
    US20040224182A1 (en) Backlight polar organic light-emitting device
    WO1995031515A1 (fr) Source chromatique et procede pour sa fabrication
    FR2926677A1 (fr) Diode et procede de realisation d'une diode electroluminescente organique a microcavite incluant des couches organiques dopees
    JPH06283271A (ja) 有機電界発光素子
    WO2010094775A1 (fr) Susbstrat transparent pour dispositifs photoniques
    Tokito et al. Strongly directed single mode emission from organic electroluminescent diode with a microcavity
    EP0891686B1 (fr) Dispositif electroluminescent
    FR2887684A1 (fr) Diode electroluminescente dont l'une des electrodes est multicouche en carbone amorphe
    KR100507463B1 (ko) 평판 디스플레이 소자 및 평판 디스플레이 소자의 보호막형성 방법
    US11476433B2 (en) Light emitting device including a quantum dot light emitting layer having a first and second ligand on a surface of a quantum dot
    Tokito et al. Strongly modified emission from organic electroluminescent device with a microcavity
    JPH11219790A (ja) エレクトロルミネセンスデバイス用多層電極
    FR2758431A1 (fr) Dispositif d'affichage electroluminescent en couche mince et a excitation alternative et son procede de realisation
    JP2009088419A (ja) 電界発光素子及びその製造方法、並びに表示装置
    FR2702870A1 (fr) Ecran électroluminescent.
    WO2018167177A1 (fr) Diode electroluminescente organique a rendement optimise par confinement de plasmons et dispositif d'affichage comprenant une pluralite de telles diodes
    EP2047534A1 (fr) Diodes organiques électroluminescentes blanches à base de molécules dérivées du phosphole.
    Fujii et al. Novel characteristics of electroluminescent diode with organic superlattice structure utilizing 8-hydroxyquinoline aluminum and aromatic diamine

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19981006

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): BE CH DE ES FI FR GB IT LI NL SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19990201

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE CH DE ES FI FR GB IT LI NL SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19991006

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 19991006

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19991006

    Ref country code: ES

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19991006

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: ABREMA AGENCE BREVETS ET MARQUES GANGUILLET & HUMP

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19991006

    REF Corresponds to:

    Ref document number: 69700602

    Country of ref document: DE

    Date of ref document: 19991111

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000430

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    BERE Be: lapsed

    Owner name: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE EPFL

    Effective date: 20000430

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20030227

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20030429

    Year of fee payment: 7

    Ref country code: FR

    Payment date: 20030429

    Year of fee payment: 7

    Ref country code: CH

    Payment date: 20030429

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20030616

    Year of fee payment: 7

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040402

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040430

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041103

    GBPC Gb: european patent ceased through non-payment of renewal fee
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041231

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20041101

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST