EP0891686A1 - Dispositif lectroluminescent - Google Patents

Dispositif lectroluminescent

Info

Publication number
EP0891686A1
EP0891686A1 EP97908105A EP97908105A EP0891686A1 EP 0891686 A1 EP0891686 A1 EP 0891686A1 EP 97908105 A EP97908105 A EP 97908105A EP 97908105 A EP97908105 A EP 97908105A EP 0891686 A1 EP0891686 A1 EP 0891686A1
Authority
EP
European Patent Office
Prior art keywords
layer
gallium nitride
electroluminescent
electrode
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97908105A
Other languages
German (de)
English (en)
Other versions
EP0891686B1 (fr
Inventor
Marc Ilegems
Michel SCHÄR
Libero Zuppiroli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecole Polytechnique Federale de Lausanne EPFL
Original Assignee
Ecole Polytechnique Federale de Lausanne EPFL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecole Polytechnique Federale de Lausanne EPFL filed Critical Ecole Polytechnique Federale de Lausanne EPFL
Publication of EP0891686A1 publication Critical patent/EP0891686A1/fr
Application granted granted Critical
Publication of EP0891686B1 publication Critical patent/EP0891686B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes

Definitions

  • the present invention relates to an electroluminescent device comprising a layer of organic semiconductor electroluminescent material disposed between a first electrode, constituted by a material having the property of injecting electrons into said layer of electroluminescent material, and a second electrode constituted by a material having the property of injecting holes in this layer.
  • the organic semiconductor material consists either of a monomeric organic substance, consisting of fluorescent molecules, such as anthracene, perylene and coronene, or of molecules of an organic dye, or into a conjugated organic polymer such as poly (p-phenylene-vinylene).
  • the electron-emitting electrode is, for example, constituted by a layer of a metal chosen from aluminum, magnesium and calcium, or by a layer of metallic alloy, such as an alloy of magnesium and silver, and the hole-emitting electrode is constituted, for example, by a layer of a metal such as gold or by a layer of tin oxide (SnC> 2) or mixed oxide indium and tin (ITO).
  • Such light-emitting devices can in particular be used as light-emitting diodes in display elements, as well as for the manufacture of flat screens for laptop or television set.
  • the hole injecting electrode was produced in the form of a transparent layer, consisting, for example, of mixed oxide of indium and tin, the electron injecting electrode being opaque or reflective.
  • the currently known devices have the drawback of having a life that is too short for the industrial applications envisaged. More specifically, the best known devices of this kind, in which the layer of electroluminescent organic material consists of a monomeric organic substance, only allow a maximum duration of use of the order of a thousand hours, in continuous operation, while the best known devices, in which the layer of organic light-emitting material consists of a conjugated polymer, generally do not withstand a period of continuous use greater than one hundred hours.
  • the object of the invention is to provide a device of the aforementioned type which is capable of emitting light on its two faces, that is to say an electroluminescent device in which the two electrodes placed on either side of the layer of electroluminescent material are transparent or translucent.
  • Another object of the invention is to make it possible to improve the life of the device.
  • the device according to the invention is characterized in that said first electrode is in the form of a transparent or translucent layer of an n-type semiconductor material chosen from nitrides and mineral oxides.
  • the material constituting the electron-emitting electrode is chosen from gallium nitride GaN, binary alloys of gallium nitride and indium nitride, of general formula Ga x In ( i_ x) N, ternary alloys of gallium nitride, indium nitride and aluminum nitride, of general formula Ga x AlyIn ( i_ x _ v ) N and mixtures of at least two of these compounds and alloys, where x and y each represent a number between 0 and 1, the sum x + y being at most equal to 1, the conductivity character n of said material possibly resulting from a stoichiometry gap or from doping with at least one element chosen from groups 4a and 6a of the periodic table.
  • doping element it is possible, in particular, to use one of the following elements: Si, Sn, S, Se and Te.
  • n-type semiconductor material in particular gallium nitride and its alloys, can be used in any suitable form, in particular in monocrystalline, polycrystalline, nanocrystalline or amorphous form, or in the form of a superposition of layers of this type. having different compositions, therefore values of x or y, or dopings.
  • the electron injecting nature of such materials may possibly result from the existence of stoichiometric gaps or of doping with at least one element such as, for example H, Li, Ca, Al, Cs.
  • titanium oxides can be used in any suitable form, in particular in monocrystalline, polycrystalline, nanocrystalline or amorphous form.
  • any suitable material can be used, in particular those constituted by the substances already used for this purpose in accordance with the prior art, in particular, conjugated polymers, such as poly ( p-phenylene-vinylene), commonly designated by the abbreviation PPV or poly p-phenylene, PPP, or also polythiophene, PT, those in which the phenyl or thiophene nucleus carry one or more substituents such as an alkyl group, an alkoxy group, a halogen or a nitro group, as well as conjugated polymers such as poly (4,4'-diphenylene-diphenylvinylene), commonly designated by the abbreviation PDPV; poly (1,4-phenylene-1-phenylinyene); poly (1,4-phenylene-diphenyvinylene); polymers of the poly (3-alkylthiofen) or poly (3-alkylpyrrole) type, poly
  • conjugated polymers derived from known polymers such as those which have been mentioned above, by grafting at the ends of the chains of group polymers having the property of reinforcing the adhesion of the layer of electroluminescent conjugated polymer to the surface electrodes, in particular the electrode emitting electrons and more particularly on a layer of gallium nitride or titanium oxide is particularly advantageous.
  • electroluminescent organic material constituting the electroluminescent layer a monomeric substance, an organic dye or pigment, this substance or this dye or pigment which can in particular be chosen from those or those which are suitable for use in the devices prior art light emitting lamps. These dyes can also be functionalized so as to adhere better to the electrode of the invention.
  • the same materials as those used in light-emitting devices according to the prior art can be used, in particular gold, tin oxide Sn ⁇ 2 or else mixed indium and tin oxide (in particular the commercial product known by the designation ITO), in the form of a transparent layer.
  • the electron-emitting electrode and the organic electroluminescent semiconductor layer there is optionally possible to interpose, between the electron-emitting electrode and the organic electroluminescent semiconductor layer, one or more layers of material facilitating the transport of negative charges, this material consisting, for example, in the compound 8-hydroxyquinoline aluminum (usually designated by the term Alq3), as well as one or more layers of material having the property of blocking the passage of positive charges (hole stop layer), such material being, for example, made up of compound 2- (4- biphenyl-5-tertbutyl-phenyl) -1, 3, 5-oxadiazole (compound known under the name "Butyl-PBD").
  • the hole-emitting electrode it is also possible, if necessary, to interpose, between the hole-emitting electrode and the organic electroluminescent semiconductor layer, one or more layers of material facilitating the transport of positive charges.
  • a material can, for example, consist of a compound of the diphenyl-dimethylphenylamine type, known under the designation TPD.
  • TPD diphenyl-dimethylphenylamine type
  • nitride layer as defined above in particular gallium nitride, constituting the electron-emitting electrode
  • thermal spray deposition in particular by means a plasma torch
  • deposition techniques from the liquid phase as well as the chemical vapor deposition methods.
  • the layer of n-type semiconductor mineral compound constituting the electron-emitting electrode is first formed on the surface of the substrate serving as support for the electroluminescent device, this substrate advantageously consisting of a transparent insulating material such as than a sapphire or quartz plate.
  • titanium oxide layer as defined above, it is possible to use the methods known per se for the oxidation of titanium, methods of sol-gel polymerization from organic precursors, methods of spraying with using plasma or bombardment ionic. These latter methods seem particularly suitable.
  • the layer of light-emitting semiconducting organic material it is also possible to use any suitable technique, in particular thermal evaporation processes, soaking in a solution (so-called “dip-coating” processes), the deposition of a layer of substance, such as a solution of the electroluminescent material, or of precursor agents thereof, in a suitable solvent, on the surface of the electron-emitting electrode (or, where appropriate, of the electrode emitting holes), by rotating the substrate (the process known as “spinning” or “spin-coating” so as to obtain a perfectly uniform thickness of this layer, possibly followed by a thermal or chemical treatment making it possible to form the film of light emitting material proper.
  • a suitable technique in particular thermal evaporation processes, soaking in a solution (so-called “dip-coating” processes), the deposition of a layer of substance, such as a solution of the electroluminescent material, or of precursor agents thereof, in a suitable solvent, on the surface of the electron-emitting electrode (or, where appropriate
  • the layer of material constituting the hole-emitting electrode such as gold, tin oxide and mixed indium-tin oxide
  • a transparent or translucent material is used as the substrate and the thicknesses of the layers of material constituting the two electrodes are adjusted, and those of any auxiliary layers (layers for transporting or stopping negative or positive charges), so that these layers are all transparent or translucent.
  • an electroluminescent device can emit light emitting on its two faces. It is also possible, in a manner known per se, to form, on the external faces of the device according to the invention, one or more additional auxiliary layers such as reflective layers, forming a mirror, or semi-transparent and / or dielectric layers, in order to direct the light emitted by the device or to reinforce certain components, in particular by the formation of microcavities.
  • additional auxiliary layers such as reflective layers, forming a mirror, or semi-transparent and / or dielectric layers, in order to direct the light emitted by the device or to reinforce certain components, in particular by the formation of microcavities.
  • a second type of multicolored display can be produced using elements formed by juxtaposition of a plurality, for example three, of devices according to the invention, these devices comprising layers of different electroluminescent organic matter having lengths d 'different light emission wave, operating by mixing colors controlled by variation of voltages applied to the different devices composing each element.
  • a third type of multicolored display can be produced using elements formed by juxtaposing a plurality, for example three, of devices according to the invention, these devices comprising additional auxiliary layers favoring the selection of a domain narrow wavelengths within the light emission spectrum emitted by the organic electroluminescent layer or layers, operating by mixing colors controlled by variation of voltages applied to the different devices composing each element.
  • Figure 1 is a schematic sectional view of a first embodiment of the GaN-based device
  • Figure 2 is a schematic sectional view, similar to that of Figure 1, of a second embodiment of the device based on GaN;
  • FIG. 3 is a schematic view, in section, of an embodiment of the device based on TiO2 •
  • FIGS. 4 and 5 are diagrams showing, respectively, the current-voltage characteristic curve and the light intensity-voltage characteristic curve of the electroluminescent device illustrated in FIG. 1.
  • FIGS. 6 and 7 are diagrams respectively showing the current-voltage characteristic curve and the light intensity-voltage characteristic curve of the device illustrated in FIG. 3.
  • Example 1 Manufacture of a first embodiment of the device according to the invention, as illustrated in FIG. 1
  • a thin transparent layer 2 of gallium nitride GaN having a thickness of 10 micrometers is formed on the wafer 1, serving as a substrate, by chemical reaction in the vapor phase between the gallium chloride.
  • helium used as carrier gas
  • gallium chloride instead of gallium chloride, one could also use an organometallic compound of gallium, such as trimethylgallium or triethylgallium.
  • the layer 2 of gallium nitride thus obtained, strongly adheres to the surface of the substrate 1. It has an n-type semiconductor character, resulting from stoichiometric vacancies, in the absence of any doping element.
  • the value of the surface impedance of layer 2 is approximately 10 ohms.
  • a film 3 of poly [2,5-bis (cholestanoxy) -1,4-phenylenevinylene] (polymer designated by the initials BCHA-PPV) having a 0.2 micrometer thickness.
  • a drop of solution of BCHA-PPV in xylene is dropped onto the surface of layer 2 of gallium nitride (concentration of this solution 10 g / liter) and the layer of solution is distributed over this surface so as to give it a uniform thickness by rotating the wafer 1 about a vertical axis, keeping the free surface of the layer 2 oriented upwards in a horizontal plane, with a speed of 2,000 revolutions per about a minute (process called "spinning deposit” also known by the English term “spin-coating”). Then heated for 1 hour at a temperature of 100 ° C the wafer 1, thus coated with layer 2 and the BCHA-PPV solution, in an oven under reduced pressure of neutral gas (argon). This treatment causes the xylene to evaporate and the formation of a hard film 3 of BCHA-PPV which adheres well to the free surface of layer 2 of gallium nitride; this film having a thickness of 0.2 micrometer.
  • neutral gas argon
  • the free surface of layer 3 is covered with a thin layer 4 of gold having a thickness of 0.3 micrometers.
  • the layer 4 of gold is deposited by vacuum evaporation in a manner known per se, using a conventional thermal evaporation device.
  • layer 2 By applying a difference in electrical potential of a few volts between layers 2 and 4 which thus constitute, respectively, the negative electrode and the positive electrode of the device, layer 2 emits electrons which are injected into the polymer film 3 and the layer 4 emits positive charges, generally designated by the term "holes" which are injected in the opposite direction into the film 3.
  • the charges of opposite sign thus injected into the film 3 combine with each other and subsequently decompose producing an emission of light, in a manner known per se.
  • the characteristic curves current-voltage and light intensity-voltage of the electroluminescent device of FIG. 1 are shown in Figures 4 and 5 respectively.
  • FIG. 2 A second embodiment of the device according to the invention is illustrated in FIG. 2
  • This embodiment is in all respects similar to that of FIG. 1 and only differs therefrom, on the one hand, in that, between layer 2 of gallium nitride and layer 3 of an electroluminescent material, a transparent layer 6 of material promoting the transport of electrons is interposed therein (this material consisting of aluminum 8-hydroxyquinoline, compound, commonly designated by the name Alq3) and a transparent layer 7 of material constituting a charge stop layer positive (this material consisting of 2- (4 biphenyl-5- (tertbutyl-phenyl) 1, 3, 5-oxadiazole, commonly composed, designated by the name "butyl-PBD”) and, on the other hand, that the hole-emitting electrode consists of a transparent layer 4a of indium tin oxide (commercial product designated by the name ITO) having a thickness of 0.15 micrometers.
  • a transparent layer 6 of material promoting the transport of electrons is interposed therein (this material consisting of aluminum 8-hydroxyquinoline, compound, commonly designated by the name Alq3)
  • Layers 6 and 7 are each 0.02 micrometer thick.
  • Example 3 Manufacture of a third embodiment of the device according to the invention, as illustrated in Figure 3).
  • a thin and transparent layer 32 of amorphous titanium oxide Ti ⁇ 2 strongly doped with aluminum is formed on a square glass plate 1 with a side of 1 cm having a thickness of 1 mm.
  • a layer of aluminum 10 nm thick is first evaporated, then a layer of Ti ⁇ 2 10 nm thick is sprayed with a magnetron, then a new layer of aluminum of 1 nm thick and so on until the total thickness of layer 2 is 50 nm.
  • a layer 3 of BCHA-PPV electroluminescent polymer is then formed using a spinner, as in Example 1. Finally, a thin layer 4a of ITO obtained in a manner known per se by spraying an ITO target by ion bombardment is placed on the free surface of layer 3.
  • this electroluminescent device is in all respects similar to that of the device of example 1.
  • the characteristic curves current-voltage and light intensity-voltage of the electroluminescent device illustrated in FIG. 3 are indicated, respectively, in FIGS. 6 and 7.

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Led Devices (AREA)

Abstract

Dispositif électroluminescent comprenant une couche de matière organique semiconductricé électroluminescente entre une première électrode transparente en un matériau semiconducteur de type n choisi parmi les nitrures et les oxydes minéraux, et une deuxième électrode.

Description

Dispositif électroluminescent
La présente invention concerne un dispositif électroluminescent comprenant une couche de matière organique semiconductrice électroluminescente disposée entre une première électrode, constituée par un matériau ayant la propriété d'injecter des électrons dans ladite couche de matière électroluminescente, et une deuxième électrode constituée par un matériau ayant la propriété d'injecter des trous dans cette couche.
On connaît déjà des dispositifs de ce genre, dans lesquels la matière organique semiconductrice consiste soit en une substance organique monomère, constituée de molécules fluorescentes, telle que l'anthracène, le pérylène et le coronène, ou de molécules d'un colorant organique, soit en un polymère organique conjugué tel que le poly(p-phénylène- vinylène) .
Dans ces dispositifs, l'électrode émettrice d'électrons est, par exemple, constituée par une couche d'un métal choisi parmi l'aluminium, le magnésium et le calcium, ou par une couche d'alliage métallique, tel qu'un alliage de magnésium et d'argent, et l'électrode émettrice de trous est constituée, par exemple, par une couche d'un métal tel que l'or ou par une couche d'oxyde d'étain (SnC>2) ou oxyde mixte d'indium et d'étain (ITO) .
Un tel dispositif est décrit dans la demande internationale de brevet publiée sous le numéro WO 90/13148.
De tels dispositifs électroluminescents peuvent notamment être utilisés comme diodes électroluminescentes dans des éléments d'affichage, ainsi que pour la fabrication d'écrans plats pour ordinateur portable ou appareil de télévision.
Ces dispositifs présentent l'avantage de permettre aisément la réalisation de grandes surfaces d'affichage ainsi que de se prêter à un ajustement de la longueur d'onde de la lumière émise donc de la couleur d'émission, en choisissant de manière appropriée la matière organique semiconductrice qui constitue la couche électroluminescente parmi le grand nombre de matières connues, qui conviennent à cette fin, ainsi que les multiples combinaisons ou modifications de ces matières à la disposition des spécialistes.
D'autre part, ces dispositifs ont, en général, un rendement d'émission lumineuse déjà tout à fait acceptable, dans l'état actuel de la technique, et qui semble susceptible d'améliorations futures à la portée des hommes de métier.
Cependant, selon l'état antérieur de la technique relative aux dispositifs de ce genre, seule l'électrode injectrice de trous a été réalisée sous forme d'une couche transparente, constituée, par exemple, d'oxyde mixte d'indium et d'étain, l'électrode injectrice d'électrons étant, elle, opaque ou réfléchissante.
Par conséquent, les dispositifs du genre susmentionné, actuellement connus, ne peuvent émettre de la lumière que sur une seule face, ce qui limite leur domaine d'application.
D'autre part, les dispositifs actuellement connus présentent l'inconvénient d'avoir une durée de vie trop courte pour les applications industrielles envisagées. Plus précisément, les meilleurs dispositifs connus de ce genre, dans lesquels la couche de matière organique électroluminescente est constituée par une substance organique monomère, ne permettent qu'une durée d'utilisation maximale de l'ordre d'un millier d'heures, en fonctionnement continu, alors que les meilleurs dispositifs connus, dans lesquels la couche de matière organique électroluminescente consiste en un polymère conjugué, ne résistent généralement pas à une durée d'utilisation continue supérieure à une centaine d'heures. L'invention a pour but de fournir un dispositif du genre susmentionné qui soit capable d'émettre de la lumière sur ses deux faces, c'est-à-dire un dispositif électroluminescent dans lequel les deux électrodes placées de part et d'autre de la couche de matière électroluminescente sont transparentes ou translucides.
Un autre but de l'invention est de permettre d'améliorer la durée de vie du dispositif.
A cet effet, le dispositif selon l'invention est caractérisé en ce que ladite première électrode est sous forme d'une couche transparente ou translucide en un matériau semiconducteur de type n choisi parmi les nitrures et les oxydes minéraux.
Avantageusement, le matériau constitutif de l'électrode émettrice d'électrons est choisi parmi le nitrure de gallium GaN, les alliages binaires de nitrure de gallium et nitrure d'indium, de formule générale GaxIn (i_x)N, les alliages ternaires de nitrure de gallium, nitrure d'indium et nitrure d'aluminium, de formule générale GaxAlyIn (i_x_v)N et les mélanges d'au moins deux de ces composés et alliages, où x et y représentent chacun un nombre compris entre 0 et 1, la somme x + y étant au plus égale à 1, le caractère de conductivité n dudit matériau résultant éventuellement d'une lacune de stoechiométrie ou d'un dopage par au moins un élément choisi dans les groupes 4a et 6a de la classification périodique.
Comme élément dopant, on peut, notamment utiliser l'un des élément suivants: Si, Sn, S, Se et Te.
Le matériau semiconducteur de type n susmentionné, notamment le nitrure de gallium et ses alliages, peut être utilisé sous toute forme appropriée, en particulier sous forme monocristalline, polycristalline, nanocristaline ou amorphe, ou encore sous forme d'une superposition de couches de ce type ayant des compositions, donc des valeurs de x ou y, ou des dopages, différents.
On peut aussi utiliser comme matériau constitutif de l'électrode émettrice d'électrons un matériau choisi parmi les oxydes de titane TiOx, quelle que soit leur stoechiométrie en oxygène et notamment les phases anatase et rutile sous- stoechiométriques Tiθ2-y, ainsi que les mélanges d'au moins un oxyde de titane avec au moins un autre oxyde minéral, notamment les matériaux multiphasés tels que les phases de Maneli ou les mélanges multiphasés de plusieurs oxydes accompagnant l'oxyde de titane.
Le caractère injecteur d'électrons de tels matériaux peut éventuellement résulter de l'existence de lacunes de stoechiométrie ou d'un dopage par au moins un élément tel que, par exemple H, Li, Ca, Al, Cs.
Les oxydes de titane susmentionnés peuvent être utilisés sous toute forme appropriée en particulier sous forme monocristalline, polycristalline, nanocristalline ou amorphe.
Comme matière organique semiconductrice électrolumines¬ cente constitutive de la couche électroluminescente, on peut utiliser toute matière appropriée, notamment celles constituées par les substances déjà utilisées à cette fin conformément à l'art antérieur, en particulier, des polymères conjugués, tel que le poly(p-phénylène-vinylène) , couramment désigné par l'abréviation PPV ou le poly p-phénylene, PPP, ou encore le polythiophène, PT, ceux dans lesquels le noyau phényl ou thiophène portent un ou plusieurs substituants tels qu'un groupe alkyle, un groupe alkoxy, un halogène ou un groupe nitro, ainsi que des polymères conjugués tels que le poly(4,4'-diphénylène-diphénylvinylène) , couramment désigné par l'abréviation PDPV; le poly (1,4-phénylène-l-phényliny- ène) ; le poly(l,4- phénylène-diphényvinylène) ; des polymères du type poly (3-alkylthiofène) ou poly(3-alkylpyrrole) , des polymères du type poly (2,5-dialkoxy-p-phénylènevinylène) , ou encore des copolymères ou des mélanges de tels polymères conjugués.
L'utilisation de polymères conjugués dérivés des polymères connus, tels que ceux qui ont été mentionnés ci- dessus, par greffage aux extrémités des chaînes de polymères de groupement ayant la propriété de renforcer l'adhésion de la couche de polymère conjugué électroluminescent sur la surface des électrodes, notamment l'électrode émettrice d'électrons et plus particulièrement sur une couche de nitrure de gallium ou d'oxyde de titane est particulièrement avantageuse.
Par exemple, on peut utiliser des polymères dérivés de poly(phénylène) dont les extrémités de chaîne ont l'une des formules suivantes:
On peut également, utiliser, comme matière organique électroluminescente constitutive de la couche électroluminescente, une substance monomère, un colorant ou pigment organique, cette substance ou ce colorant ou pigment pouvant notamment être choisi parmi celles ou ceux qui conviennent à l'utilisation dans les dispositifs électroluminescents de l'art antérieur. Ces colorants peuvent être aussi fonctionnalisés de façon à adhérer mieux à l'électrode de l'invention.
Comme matériau constitutif de l'électrode émettrice de trous, on peut utiliser les mêmes matériaux que ceux qui sont utilisés dans les dispositifs électroluminescents conformes à la technique antérieure, en particulier de l'or, de l'oxyde d'étain Snθ2 ou encore de l'oxyde mixte d'indium et d'étain (en particulier le produit commercial connu sous la désignation de ITO) , sous forme d'une couche transparente.
On peut éventuellement intercaler, entre l'électrode émettrice d'électrons et la couche organique semiconductrice électroluminescente, une ou plusieurs couches de matière facilitant le transport des charges négatives, cette matière consistant, par exemple, dans le composé 8-hydroxyquinoline aluminium (désigné habituellement par le terme Alq3), ainsi qu'une ou plusieurs couches de matière ayant la propriété de bloquer le passage de charges positives (couche d'arrêt de trous), une telle matière étant, par exemple, constituée du composé 2-(4-biphényl-5-tertbutyl-phényl)-1, 3, 5-oxadiazole (composé connu sous la dénomination "Butyl-PBD") .
D'autre part, on peut aussi, éventuellement, intercaler, entre l'électrode émettrice de trous et la couche organique semiconductrice électroluminescente, une ou plusieurs couches de matière facilitant le transport des charges positives. Une telle matière peut être, par exemple, constituée d'un composé du type diphényl-diméthylphénylamine, connus sous la désignation TPD. Pour la fabrication du dispositif électroluminescent selon l'invention, on peut utiliser tout procédé approprié, en particulier les techniques employées pour la fabrication des dispositifs de l'art antérieur.
Ainsi, pour former la couche de nitrure telle que définie ci-dessus, notamment le nitrure de gallium, constituant l'électrode émettrice d'électrons, on peut employer les méthodes, connues en soi, de dépôt par pulvérisation thermique, en particulier au moyen d'une torche à plasma, ou encore les techniques de dépôt à partir de la phase liquide ainsi que les procédés de dépôt par réaction chimique en phase vapeur. Ces derniers procédés semblent donner les meilleurs résultats.
Plus particulièrement, on peut avantageusement mettre en oeuvre pour former une couche mince de nitrure de gallium, un procédé de dépôt par réaction chimique en phase vapeur dans des conditions opératoires identiques ou similaires à celles qui ont été décrites dans la publication de M. Ilegems, Journal of Crystal Growth, 13/14, p. 360 (1972) .
De préférence, on forme d'abord la couche de composé minéral semiconducteur de type n constitutive de l'électrode émettrice d'électrons, sur la surface du substrat servant de support au dispositif électroluminescent, ce substrat étant avantageusement constitué par un matériau isolant transparent tel qu'une plaquette de saphir ou de quartz.
Toutefois, il est également possible de former d'abord sur le substrat la couche de matériau constitutif de l'électrode émettrice de trous.
Pour former la couche d'oxyde de titane telle que définie ci-dessus, on peut utiliser les méthodes connues en soi d'oxydation du titane, des méthodes de polymérisation sol-gel à partir de précurseurs organiques, des méthodes de pulvérisation à l'aide d'un plasma ou d'un bombardement ionique. Ces dernières méthodes semblent particulièrement indiquées.
Pour former la couche de matière organique semiconduc¬ trice électroluminescente, on peut également utiliser toute technique appropriée, notamment les procédés d'évaporation thermique, le trempage dans une solution (procédés dits de "dip-coating") , le dépôt d'une couche de substance, telle qu'une solution de la matière électroluminescente, ou d'agents précurseurs de celle-ci, dans un solvant approprié, sur la surface de l'électrode émettrice d'électrons (ou, le cas échéant, de l'électrode émettrice de trous), en faisant tourner le substrat (procédé dit de la "tournette" ou "spin- coating" de façon à obtenir une épaisseur parfaitement uniforme de cette couche, suivi éventuellement d'un traitement thermique ou chimique permettant de former la pellicule de matière électroluminescente proprement dite.
Pour former la couche de matériau constitutif de l'électrode émettrice de trous, tel que l'or, l'oxyde d'étain et l'oxyde mixte d'indium et d'étain, on peut également procéder de manière connue en soi, par exemple, évaporation sous pression réduite ou par pulvérisation thermique, évaporation sous vide par bombardement au moyen d'un faisceau d'électrons, d'ions, etc.
Avantageusement, on utilise comme substrat une matière transparente ou translucide et on règle les épaisseurs des couches de matière constitutrices des deux électrodes, et celles des couches auxiliaires éventuelles (couches de transport ou d'arrêt des charges négatives ou positives), de façon que ces couches soient toutes transparentes ou translucides.
De cette façon, on peut réaliser un dispositif électroluminescent émettant de la lumière sur ses deux faces. On peut également de manière connue en soi éventuellement former, sur les faces externes du dispositif selon l'inven¬ tion, une ou plusieurs couches auxiliaires supplémentaires telles que des couches réfléchissantes, formant miroir, ou des couches semi-transparentes et/ou diélectriques, afin de diriger la lumière émise par le dispositif ou d'en renforcer certaines composantes, notamment par formation de microcavités.
On peut, en outre, en superposant une pluralité, par exemple trois, de dispositifs selon l'invention, émettant chacun de la lumière sur ses deux faces, ces dispositifs comportant des couches de matières organiques électroluminescentes différentes ayant des longueurs d'ondes d'émission lumineuse différentes, fabriquer un dispositif d'affichage multicolore, fonctionnant par mélanges de couleurs commandés par variation des tensions appliquées aux différentes couches de ce dispositif.
Un deuxième type d'affichage multicolore peut être réalisé à l'aide d'éléments formés par juxtaposition d'une pluralité, par exemple trois, de dispositifs selon l'invention, ces dispositifs comportant des couches de matière organiques électroluminescentes différentes ayant des longueurs d'onde d'émission lumineuse différentes, fonctionnant par mélanges de couleurs commandés par variation de tensions appliqués aux différents dispositifs composant chaque élément.
Un troisième type d'affichage multicolore peut être réalisé à l'aide d'éléments formés par juxtaposition d'une pluralité, par exemple trois, de dispositifs selon l'invention, ces dispositifs comportant des couches auxiliaires supplémentaires favorisant la sélection d'un domaine de longueurs d'ondes étroit à l'intérieur du spectre d'émission lumineux émis par la ou les couches organiques électroluminescentes, fonctionnant par mélanges de couleurs commandés par variation de tensions appliqués aux différents dispositifs composant chaque élément.
L'invention sera encore mieux comprise grâce à la description détaillée, qui va suivre, d'exemples non limitatifs de la réalisation de formes d'exécution du dispositif selon l'invention, en se référant au dessin annexé, dans lequel:
La figure 1 est une vue schématique, en coupe, d'une première forme d'exécution du dispositif à base de GaN;
La figure 2 est une vue schématique, en coupe, similaire à celle de la Figure 1, d'une deuxième forme d'exécution du dispositif à base de GaN;
La figure 3 est une vue schématique, en coupe, d'une forme d'exécution du dispositif à base de TiÛ2•
Les figures 4 et 5 sont des diagrammes montrant, respectivement, la courbe caractéristique courant-tension et la courbe caractéristique intensité lumineuse-tension du dispositif électroluminescent illustré à la figure 1.
Les figures 6 et 7 sont des diagrammes montrant respectivement la courbe caractéristique courant-tension et la courbe caractéristique intensité lumineuse-tension du dispositif illustré à la figure 3.
Exemple 1 (Fabrication d'une première forme d'exécution du dispositif selon l'invention, telle qu'illustrée à la Fig. 1)
Sur une plaquette 1 de saphir carrée de 1 cm de côté, ayant une épaisseur de 0,5 mm, on forme une couche 2 mince transparente de nitrure de gallium GaN ayant une épaisseur de 10 micromètres. A cet effet, on dépose la couche 2 de nitrure de gallium sur la plaquette 1, servant de substrat, par réaction chimique en phase vapeur entre le chlorure de gallium GaCl et l'ammoniac NH3 à la température de l'050°C, en présence d'hélium utilisé comme gaz porteur, le substrat étant maintenu à la température de réaction au moyen d'un suscepteur chauffé par induction à haute fréquence. On pourrait également effectuer le chauffage par radiation thermique et utiliser un autre gaz porteur que l'hélium, par exemple l'azote.
Au lieu de chlorure de gallium, on pourrait également utiliser un composé organométallique du gallium, tel que le triméthylgallium ou le triéthylgallium.
La couche 2 de nitrure de gallium, ainsi obtenue, adhère fortement sur la surface du substrat 1. Elle présente un caractère de semiconducteur de type n, résultant de lacunes de stoechiométrie, en l'absence de tout élément de dopage. La valeur de l'impédance de surface de la couche 2 est d'environ 10 ohms.
On forme ensuite, sur la surface libre de la couche de nitrure de gallium 2, une pellicule 3 de poly[2, 5- bis (cholestanoxy) -1, 4-phénylènevinylène] (polymère désigné par les initiales BCHA-PPV) ayant une épaisseur de 0.2 micromètre. A cet effet, on fait tomber sur la surface de la couche 2 de nitrure de gallium, une goutte de solution de BCHA-PPV dans du xylène (concentration de cette solution 10 g/litre) et l'on répartit la couche de solution sur cette surface de manière à lui conférer une épaisseur uniforme en faisant tourner la plaquette 1 autour d'un axe vertical, en maintenant la surface libre de la couche 2 orientée vers le haut dans un plan horizontal, avec une vitesse de 2 '000 tours par minute environ (procédé dit de "dépôt à la tournette" également désigné par le terme anglais de "spin-coating") . On chauffe ensuite pendant 1 heure à une température de 100°C la plaquette 1, ainsi revêtue de la couche 2 et de la solution de BCHA-PPV, dans une étuve sous pression réduite de gaz neutre (argon) . Ce traitement provoque l'évaporation du xylène et la formation d'une pellicule 3 de BCHA-PPV dure et adhérant bien sur la surface libre de la couche 2 de nitrure de gallium; cette pellicule ayant une épaisseur de 0,2 micromètre.
Finalement, on recouvre la surface libre de la couche 3 d'une couche mince 4 d'or ayant une épaisseur de 0,3 micromètre. A cet effet, on dépose la couche 4 d'or par évaporation sous vide de manière connue en soi, en utilisant un dispositif classique d'évaporation thermique.
Pour constituer un dispositif électroluminescent, il suffit de relier les couches 2 et 4 recouvrant la plaquette 1 et disposées comme illustré à la Fig. 1 de part et d'autre de la pellicule de polymère électroluminescent 3, à la borne négative et à la borne positive d'une source de tension électrique 5.
En appliquant une différence de potentiel électrique de quelques volts entre les couches 2 et 4 qui constituent ainsi, respectivement l'électrode négative et l'électrode positive du dispositif, la couche 2 émet des électrons qui sont injectés dans la pellicule de polymère 3 et la couche 4 émet des charges positives, désignées généralement par le terme "trous" qui sont injectés, en sens inverse dans la pellicule 3. Les charges de signe opposé ainsi injectées dans la pellicule 3 se combinent entre elles et se décomposent ultérieurement en produisant une émission de lumière, de manière connue en soi. Les courbes caractéristiques courant-tension et intensité lumineuse-tension du dispositif électroluminescent de la Fig. 1 sont indiquées respectivement aux Figures 4 et 5.
Exemple 2
Une deuxième forme d'exécution du dispositif selon l'invention est illustrée à la Fig. 2
Cette forme d'exécution est en tout point similaire à celle de la Fig. 1 et en diffère uniquement, d'une part, en ce que, entre la couche 2 de nitrure de gallium et la couche 3 de matière électroluminescente, sont intercalées une couche transparente 6 de matière favorisant le transport des électrons (cette matière consistant en 8-hydroxyquinoline aluminium, composé, couramment désigné par la dénomination Alq3) et une couche transparente 7 de matière constituant une couche d'arrêt de charges positives (cette matière consistant en 2- (4 biphényl-5- (tertbutyl-phényl) 1, 3, 5-oxadiazole, composé couramment, désigné par la dénomination "butyl-PBD") et, d'autre part, en ce que l'électrode émettrice de trous est constituée par une couche transparente 4a d'oxyde d'indium et d'étain (produit commercial désigné par la dénomination ITO) ayant une épaisseur de 0,15 micromètre.
Les couches 6 et 7 ont chacune une épaisseur de 0,02 micromètre.
Exemple 3 (Fabrication d'une troisième forme d'exécution du dispositif selon l'invention, telle qu'illustrée à la figure 3) .
Sur une plaquette 1 de verre carrée de 1 cm de côté ayant une épaisseur de 1 mm, on forme une couche 32 mince et transparente d'oxyde de titane amorphe Tiθ2 fortement dopé d'aluminium. A cet effet, on évapore d'abord une couche d'aluminium de 10 nm d'épaisseur, puis on pulvérise à l'aide d'un magnetron une couche de Tiθ2 de 10 nm d'épaisseur puis une nouvelle couche d'aluminium de 1 nm d'épaisseur et ainsi de suite jusqu'à ce que l'épaisseur totale de la couche 2 soit de 50 nm. Une fois l'opération finie et après un traitement thermique d'homogénéisation à 300°C pendant une heure, sous atmosphère d'oxygène, on constate que l'aluminium s'est allié à l'oxyde de titane de telle sorte que la couche finale de Tiθ2 allié soit transparente et présente une résistance de l'ordre de 100 ohms, pour un élément de surface carré.
On forme ensuite à la tournette, tout comme dans l'exemple 1 une couche 3 de polymère électroluminescent BCHA- PPV. Finalement, on dispose sur la surface libre de la couche 3 une mince couche 4a d'ITO obtenue de manière connue en soi par pulvérisation d'une cible d'ITO par bombardement ionique.
L'utilisation de ce dispositif électroluminescent est en tout point similaire à celle du dispositif de l'exemple 1. Les courbes caractéristiques courant-tension et intensité lumineuse-tension du dispositif électroluminescent illustré à la figure 3 sont indiquées, respectivement, aux figures 6 et 7.

Claims

Revendications
1. Dispositif électroluminescent, comprenant une couche de matière organique semiconductrice électroluminescente disposée entre une première électrode, constituée par un matériau ayant la propriété d'injecter des électrons dans ladite couche de matière électroluminescente, et une deuxième électrode, constituée par une couche de matériau conducteur électrique ayant la propriété d'injecter des trous dans la couche de matière électroluminescente, caractérisé en ce que ladite première électrode est sous forme d'une couche transparente ou translucide en un matériau semiconducteur de type n choisi parmi les nitrures et les oxydes minéraux.
2. Dispositif selon la revendication 1, caractérisé en ce que ledit matériau semiconducteur est choisi parmi le nitrure de gallium GaN, les alliages binaires de nitrure de gallium et nitrure d'indium, de formule générale GaxIn/ι_x)N, les alliages binaires de nitrure de gallium et nitrure d'aluminium et les alliages ternaires de nitrure de gallium, nitrure d'indium et nitrure d'aluminium, de formule générale GaxAlyIn (2-x-y)N, et les mélanges d'au moins deux de ces composé et alliages, où x et y représentent chacun un nombre compris entre 0 et 1, la somme x + y étant au plus égale à 1.
3. Dispositif selon la revendication 2, caractérisé en ce que le nitrure de gallium est à l'état sous-stoechiométrique ou à l'état dopé par au moins un élément choisi dans les groupes 4a et 6a de la classification périodique.
4. Dispositif suivant les revendication 1, caractérisé en ce que ledit matériau semiconducteur est choisi parmi les oxydes de titane et les mélanges d'au moins un oxyde de titane avec au moins un autre oxyde.
5. Dispositif selon la revendication 4, caractérisé en ce que ledit oxyde de titane est à l'état sous-stoechiométrique ou à l'état dopé par au moins l'un des éléments suivants : H, Li, Ca, Al et Cs.
EP97908105A 1996-04-03 1997-04-02 Dispositif electroluminescent Expired - Lifetime EP0891686B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH863/96 1996-04-03
CH86396 1996-04-03
CH86396 1996-04-03
PCT/CH1997/000133 WO1997038558A1 (fr) 1996-04-03 1997-04-02 Dispositif électroluminescent

Publications (2)

Publication Number Publication Date
EP0891686A1 true EP0891686A1 (fr) 1999-01-20
EP0891686B1 EP0891686B1 (fr) 1999-10-06

Family

ID=4196942

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97908105A Expired - Lifetime EP0891686B1 (fr) 1996-04-03 1997-04-02 Dispositif electroluminescent

Country Status (5)

Country Link
US (1) US6208074B1 (fr)
EP (1) EP0891686B1 (fr)
JP (1) JP2000508112A (fr)
DE (1) DE69700602T2 (fr)
WO (1) WO1997038558A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI109944B (fi) * 1998-08-11 2002-10-31 Valtion Teknillinen Optoelektroninen komponentti ja valmistusmenetelmä
US6468676B1 (en) * 1999-01-02 2002-10-22 Minolta Co., Ltd. Organic electroluminescent display element, finder screen display device, finder and optical device
JP2003515909A (ja) * 1999-11-29 2003-05-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 有機エレクトロルミネッセント装置とその製造方法
TW484238B (en) * 2000-03-27 2002-04-21 Semiconductor Energy Lab Light emitting device and a method of manufacturing the same
US20040109560A1 (en) * 2000-12-29 2004-06-10 Frank Nuovo Method of producing a telephone device
KR20050119685A (ko) * 2003-04-08 2005-12-21 코닌클리케 필립스 일렉트로닉스 엔.브이. 양면 발광 디바이스

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200668A (en) * 1988-11-21 1993-04-06 Mitsui Toatsu Chemicals, Inc. Luminescence element
JP2764591B2 (ja) * 1988-12-16 1998-06-11 株式会社小松製作所 薄膜el素子とその製造方法
GB8909011D0 (en) 1989-04-20 1989-06-07 Friend Richard H Electroluminescent devices
JP2717454B2 (ja) * 1990-07-16 1998-02-18 日本石油株式会社 有機薄膜エレクトロルミネッセンス素子
JP3205036B2 (ja) * 1991-03-27 2001-09-04 グンゼ株式会社 透明導電膜
JP2666228B2 (ja) * 1991-10-30 1997-10-22 豊田合成株式会社 窒化ガリウム系化合物半導体発光素子
US5608287A (en) * 1995-02-23 1997-03-04 Eastman Kodak Company Conductive electron injector for light-emitting diodes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9738558A1 *

Also Published As

Publication number Publication date
JP2000508112A (ja) 2000-06-27
WO1997038558A1 (fr) 1997-10-16
DE69700602D1 (de) 1999-11-11
DE69700602T2 (de) 2000-05-18
US6208074B1 (en) 2001-03-27
EP0891686B1 (fr) 1999-10-06

Similar Documents

Publication Publication Date Title
EP1205092B1 (fr) Dispositif electroluminescent et son procede de fabrication
FR2745955A1 (fr) Dispositif electroluminescent et son procede de fabrication, et procede pour former un contact conducteur transparent
CN108611591B (zh) 用于在表面上沉积导电覆层的方法
KR102039390B1 (ko) 유기 전자 소자 및 유기 전자 소자의 제조 방법
FR2728082A1 (fr) Structures et afficheurs organiques lumineux en couleurs et leurs procedes de fabrication
US5714838A (en) Optically transparent diffusion barrier and top electrode in organic light emitting diode structures
EP1806791B1 (fr) Diode électroluminescente inorganique et son procédé de fabrication
JP2000150171A (ja) エレクトロルミネセンス素子
WO1999007028A1 (fr) Dispositif electroluminescent
KR100508990B1 (ko) 보호막 형성 방법
JP2004527093A (ja) エレクトロルミネセンス装置
US20110036971A1 (en) Photovoltaic devices
WO1995031515A1 (fr) Source chromatique et procede pour sa fabrication
Chen et al. Vacuum‐assisted preparation of high‐quality quasi‐2D perovskite thin films for large‐area light‐emitting diodes
JPH06283271A (ja) 有機電界発光素子
EP0891686B1 (fr) Dispositif electroluminescent
FR2887684A1 (fr) Diode electroluminescente dont l'une des electrodes est multicouche en carbone amorphe
US11476433B2 (en) Light emitting device including a quantum dot light emitting layer having a first and second ligand on a surface of a quantum dot
Tokito et al. Strongly modified emission from organic electroluminescent device with a microcavity
FR2758431A1 (fr) Dispositif d'affichage electroluminescent en couche mince et a excitation alternative et son procede de realisation
FR2702870A1 (fr) Ecran électroluminescent.
Zhang et al. Microcavity of organic semiconductor
EP3596760A1 (fr) Diode electroluminescente organique a rendement optimise par confinement de plasmons et dispositif d'affichage comprenant une pluralite de telles diodes
EP2047534A1 (fr) Diodes organiques électroluminescentes blanches à base de molécules dérivées du phosphole.
Fujii et al. Novel characteristics of electroluminescent diode with organic superlattice structure utilizing 8-hydroxyquinoline aluminum and aromatic diamine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FI FR GB IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990201

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FI FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19991006

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19991006

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991006

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19991006

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABREMA AGENCE BREVETS ET MARQUES GANGUILLET & HUMP

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991006

REF Corresponds to:

Ref document number: 69700602

Country of ref document: DE

Date of ref document: 19991111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE EPFL

Effective date: 20000430

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030227

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030429

Year of fee payment: 7

Ref country code: FR

Payment date: 20030429

Year of fee payment: 7

Ref country code: CH

Payment date: 20030429

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030616

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20041101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST