EP0994896A1 - Composes dipeptidiques sulfonyles inhibiteurs de l'adhesion des leucocytes induite par vla-4 - Google Patents

Composes dipeptidiques sulfonyles inhibiteurs de l'adhesion des leucocytes induite par vla-4

Info

Publication number
EP0994896A1
EP0994896A1 EP98939871A EP98939871A EP0994896A1 EP 0994896 A1 EP0994896 A1 EP 0994896A1 EP 98939871 A EP98939871 A EP 98939871A EP 98939871 A EP98939871 A EP 98939871A EP 0994896 A1 EP0994896 A1 EP 0994896A1
Authority
EP
European Patent Office
Prior art keywords
substituted
alkyl
heterocyclic
sulfonyl
toluene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98939871A
Other languages
German (de)
English (en)
Inventor
Eugene D. Thorsett
Christopher M. Semko
Michael A. Pleiss
Anthony Kreft
Andrei W. Konradi
Francine S. Grant
Reinhardt Bernhard Baudy
Dimitrios Sarantakis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth LLC
Elan Pharmaceuticals LLC
Original Assignee
Elan Pharmaceuticals LLC
American Home Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elan Pharmaceuticals LLC, American Home Products Corp filed Critical Elan Pharmaceuticals LLC
Publication of EP0994896A1 publication Critical patent/EP0994896A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06139Dipeptides with the first amino acid being heterocyclic
    • C07K5/06165Dipeptides with the first amino acid being heterocyclic and Pro-amino acid; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06139Dipeptides with the first amino acid being heterocyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06191Dipeptides containing heteroatoms different from O, S, or N
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • This invention relates to compounds which inhibit leukocyte adhesion and, in particular, leukocyte adhesion mediated by VLA-4.
  • VLA-4 (also referred to as ⁇ 4 ⁇ , integrin and CD49d/CD29), first identified by Hemler and Takada 1 is a member of the ⁇ l integrin family of cell surface receptors, each of which comprises two subunits, an ⁇ chain and a ⁇ chain.
  • VLA-4 contains an 4 chain and a ⁇ l chain.
  • VLA-4 for example, binds to fibronectin.
  • VLA-4 also binds non-matrix molecules that are expressed by endothelial and other cells. These non-matrix molecules include VCAM-1, which is expressed on cytokine-activated human umbilical vein endothelial cells in culture. Distinct epitopes of VLA- 4 are responsible for the fibronectin and VCAM-1 binding activities and each activity has been shown to be inhibited independently. 2
  • Intercellular adhesion mediated by VLA-4 and other cell surface receptors is associated with a number of inflammatory responses.
  • activated vascular endothelial cells express molecules that are adhesive for leukocytes.
  • the mechanics of leukocyte adhesion to endothelial cells involves, in part, the recognition and binding of cell surface receptors on leukocytes to the corresponding cell surface molecules on endothelial cells. Once bound, the leukocytes migrate across the blood vessel wall to enter the injured site and release chemical mediators to combat infection.
  • adhesion receptors of the immune system see, for example, Springer 3 and Osborn 4 .
  • Inflammatory brain disorders such as experimental autoimmune encephalomyelitis (EAE), multiple sclerosis (MS) and meningitis, are examples of central nervous system disorders in which the endothelium/leukocyte adhesion mechanism results in destruction to otherwise healthy brain tissue.
  • EAE experimental autoimmune encephalomyelitis
  • MS multiple sclerosis
  • M multiple sclerosis
  • meningitis are examples of central nervous system disorders in which the endothelium/leukocyte adhesion mechanism results in destruction to otherwise healthy brain tissue.
  • BBB blood brain barrier
  • the leukocytes release toxic mediators that cause extensive tissue damage resulting in impaired nerve conduction and paralysis.
  • tissue damage also occurs via an adhesion mechanism resulting in migration or activation of leukocytes.
  • tissue damage also occurs via an adhesion mechanism resulting in migration or activation of leukocytes.
  • the initial insult following myocardial ischemia to heart tissue can be further complicated by leukocyte entry to the injured tissue causing still further insult (Vedder et al. 5 ).
  • inflammatory conditions mediated by an adhesion mechanism include, by way of example, asthma 6"8 , Alzheimer's disease, atherosclerosis 9"10 , AIDS dementia", diabetes 12"14 (including acute juvenile onset diabetis), inflammatory bowel disease 15 (including ulcerative colitis and Crohn's disease), multiple sclerosis 16'17 , rheumatoid arthritis 18"21 , tissue transplantation 22 , tumor metastasis 23"28 , meningitis, encephalitis, stroke, and other cerebral traumas, nephritis, retinitis, atopic dermatitis, psoriasis, myocardial ischemia and acute leukocyte-mediated lung injury such as that which occurs in adult respiratory distress syndrome.
  • This invention provides compounds which bind to VLA-4.
  • Such compounds can be used, for example, to assay for the presence of VLA-4 in a sample and, in pharmaceutical compositions, to inhibit cellular adhesion mediated by VLA-4, for example, binding of VCAM-1 to VLA-4.
  • the compounds of this invention have a binding affinity to VLA-4 as expressed by an IC 50 of about 15 ⁇ M or less (as measured using the procedure shown in Example 203 below) which compounds are defined by formula I below:
  • R 1 is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocylic, heteroaryl and substituted heteroaryl;
  • R 2 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, and R 1 and R 2 together with the nitrogen atom bound to R 2 and the SO 2 group bound to R 1 can form a heterocyclic or a substituted heterocyclic group;
  • R 3 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic and where R 2 and R 3 together with the nitrogen atom bound to R 2 and the carbon atom bound to R 3 can form a saturated heterocyclic group or a saturated substituted heterocyclic group with the proviso that when monosubstituted, the substituent on said saturated substituted heterocyclic group is not carboxyl; Ar is aryl, heteroaryl, substituted aryl or substituted heteroaryl; x is an integer of from 1 to 4;
  • Q is -C(X)NR 7 - wherein R 7 is selected from the group consisting of hydrogen and alkyl; X is selected from the group consisting of oxygen and sulfur;
  • R 5 is -CH 2 X where X is selected from the group consisting of hydrogen, hydroxyl, acylamino, alkyl, alkoxy, aryloxy, aryl, aryloxyaryl, carboxyl, carboxylalkyl, carboxyl-substituted alkyl, carboxyl-cycloalkyl, carboxyl-substituted cycloalkyl, carboxylaryl, carboxyl-substituted aryl, carboxy lheteroaryl, carboxyl-substituted heteroaryl, carboxy lheterocyclic, carboxyl-substituted heterocyclic, cycloalkyl, substituted alkyl, substituted alkoxy, substituted aryl, substituted aryloxy, substituted aryloxyaryl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic; with the further provisos that:
  • R 5 is not selected from the group consisting of -(CH 2 ) n -aryl and -(CH 2 ) n -heteroaryl where n is an integer equal to 1 to 4 when R 2 and R 3 together with the nitrogen atom bound to R 2 and the carbon atom bound to R 3 form a saturated heterocyclic group or a saturated substituted heterocyclic group;
  • R 5 is not - (CH 2 ) X -Ar-R 5 where R 5 is selected from the group consisting of -O-Z-NR 8 R 8 and -O-Z-R 12 wherein Ar is aryl, heteroaryl, substituted aryl or substituted heteroaryl, x is an integer of from 1 to 4, R 8 and R 8' are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocyclic, and substituted heterocyclic, and where R 8 and R 8' are joined to form a heterocycle or a substituted heterocycle, R 12 is selected from the group consisting of heterocycles and substituted heterocycles, and Z is selected from the group consisting of -C(O)- and -SO 2 -; C.
  • R 5 is not -(CH 2 ) X -Ar-R 5' where Ar is aryl, substituted aryl, heteroaryl or substituted heteroaryl, x is an integer of from 1 to 4, R 5' is selected from the group consisting of -NR 24 C(Z')NR 8 R 8' and -NR 24 C(Z')R 13 wherein Z' is selected from the group consisting of oxygen, sulfur and NR 24 , R 24 is selected from the group consisting of hydrogen, alkyl and aryl, R 8 and R 8 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, heteroaryl and substituted heteroaryl provided that when Z' is oxygen, at least one of R 8 and R 8' is sustituted alkyl, cycloalkyl, substituted cycloalkyl, saturated heterocyclic other than
  • X is selected from the group consisting of substituted alkylcarbonylamino, substituted alkenylcarbonylamino, substituted alkynylcarbonylamino, heterocyclylcarbonylamino, substituted heterocyclylcarbonylamino, acyl, acyloxy, aminocarbonyloxy, acylamino, oxycarbonylamino, alkoxycarbonyl, substituted alkoxycarbonyl, aryloxycarbonyl, substituted aryloxycarbonyl, cycloalkoxycarbonyl, substituted cycloalkoxycarbonyl, heteroaryloxycarbonyl, substituted heteroaryloxycarbonyl, substituted heteroaryloxycarbonyl, heterocyclyloxycarbonyl, substituted heterocyclyloxycarbonyl, substituted heterocyclyloxycarbonyl, substituted heterocyclyloxycarbonyl, cycloalkyl, saturated heterocyclic, substituted saturated heterocyclic, substituted alkoxy,
  • R is hydrogen or alkyl, -S(O) 2 - alkyl, -S(O) 2 -substituted alkyl, -S(O) 2 -aryl, -S(O) 2 -substituted aryl, -S(O) 2 - substituted heteroaryl, -S(O) 2 -substituted heteroaryl, -S(O) 2 -heterocyclic, -S(O) 2 -substituted heterocyclic, mono- and di-(substituted alkyl)amino, N,N- (alkyl, substituted alkyl)amino, N,N-(aryl, substituted alkyl)amino, N,N-
  • R 5 is not - (CH 2 ) X -Ar-R 5" where R 5' is a substituent selected from the group consisting of:
  • alkyl/substituted alkyl groups substituted with -SO 2 -alkyl, -SO 2 -substituted alkyl, -SO 2 -alkenyl, -SO 2 -substituted alkenyl, -SO 2 -cycloalkyl, -SO 2 -substituted cycloalkyl, -SO 2 -aryl, -SO 2 -substituted aryl, -SO 2 -heteroaryl, -SO 2 -substituted heteroaryl, -SO 2 -heterocyclic, -SO 2 - substituted heterocyclic or -SO 2 NRR, where R is hydrogen or alkyl;
  • each R' is independently selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, cycloalkyl, substituted cycloalkyl, heterocyclic and substituted heterocyclic with the proviso that at least one of R' is substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocyclic and substituted heterocyclic and with the further proviso that when R' is substituted alkyl at least one of the substituents on the substituted alkyl moiety is selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, thiocarbonylamino, acyloxy, alkenyl, amino, amidino, alkyl amidino, thioamidino, aminoacyl, aminocarbonylamino, aminothiocarbonylamino, amino
  • substituents are selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, substituted alkyl groups having amino groups blocked by conventional blocking groups (such as Boc, Cbz, formyl, and the like), and alkyl/substituted alkyl groups substituted with -SO 2 -alkyl, -SO 2 -substituted alkyl, -SO 2 -alkenyl, -SO 2 - substituted alkenyl, -SO 2 -cycloalky
  • each R" is independently selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic with the proviso that when each R" is substituted alkyl then at least one of the substituents on the substituted alkyl moiety is selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, thiocarbonylamino, acyloxy, alkenyl, amino, amidino, alkyl amidino, thioamidino, aminoacyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aryloxy, substituted aryloxy, cyano, nitro, halogen, hydroxyl, carboxyl, carboxylalkyl, carboxyl- substituted al
  • -NRS(O) 2 -NR-substituted heterocyclic, mono- and di-alkylamino, mono- and di-(substituted alkyl)amino, mono- and di-arylamino, mono- and di- (substituted aryl)amino, mono- and di-heteroarylamino, mono- and di- (substituted heteroaryl)amino, mono- and di-heterocyclic amino, mono- and di-(substituted heterocyclic) amino, unsymmetric di-substituted amines having different substituents selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, substituted alkyl groups having amino groups blocked by conventional blocking groups (such as Boc, Cbz, formyl, and the like), and alkyl/substituted alkyl groups substituted with
  • substituted alkenyl or substituted alkynyl with the proviso that at least one of the substituents on the substituted alkenyl/alkynyl moiety is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic with the proviso that when substituted with substituted alkyl, then at least one of the substituents on the substituted alkyl moiety is selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, thiocarbonylamino, acyloxy, alkenyl, amino, amidino, alkyl amidino, thioamidino, aminoacyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aryloxy, substituted aryloxy, cyano,
  • substituted aryloxy and substituted heteroaryloxy with the proviso that at least one substituent on the substituted aryloxy/heteroaryloxy is other than halogen, hydroxyl, amino, nitro, trifluoromethyl, trifluoromethoxy, alkyl, alkenyl, alkynyl, 1 ,2-dioxymethylene, 1 ,2-dioxyethylene, alkoxy, alkenoxy, alkynoxy, alkylamino, alkenylamino, alkynylamino, alkylcarbonyloxy, acyl, alkylcarbonylamino, alkoxycarbonylamino, alkylsulfonylamino, N-alkyl or N,N-dialkylurea;
  • R is hydrogen, alkyl or aryl, with the proviso that at least one substituent on the alkyl moiety of the substituted alkylsulfonylamino is other than halogen, hydroxyl, amino, nitro, trifluoromethyl, trifluoromethoxy, alkyl, alkenyl, alkynyl, 1 ,2- dioxymethylene, 1 ,2-dioxyethylene, alkoxy, alkenoxy, alkynoxy, alkylamino, alkenylamino, alkynylamino, alkylcarbonyloxy, acyl, alkylcarbonylamino, alkoxycarbonylamino, alkylsulfonylamino, N-alkyl or N,N-dialkylurea; (1) alkenylsulfonylamino, alkynylsulfonylamino, substituted alkenyls
  • R'" is alkyl, substituted alkyl (other than unsaturated heterocyclyl substituted-alkyl), cycloalkyl, substituted cycloalkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heterocyclic or substituted heterocyclic;
  • R 18 is selected from the group consisting of alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R 22 is alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic or substituted heterocyclic;
  • R 19 is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl. cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic and each R 19 is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic:
  • R' is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl. substituted cycloalkyl. heteroaryl, substituted heteroaryl. heterocyclic and substituted heterocyclic and R 19 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl.
  • R 5 is not -CH 2 COOH or -CH 2 CH 2 COOH
  • R 1 is /7-methylphenyl
  • R 2 and R 3 together with their pendent nitrogen and carbon atoms form a pyrrolidinyl ring and Q is -C(O)NH-, then R 5 is not 2,4,6-trimethylbenzyl.
  • the compounds of this invention can also be provided as prodrugs which convert (e.g., hydrolyze, metabolize, etc.) in vivo to a compound of formula I above.
  • the carboxylic acid in the compound of formula I is modified into a group which, in vivo, will convert to the carboxylic acid (including salts thereof).
  • prodrugs are represented by compounds of formula IA:
  • R 1 is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocylic, heteroaryl and substituted heteroaryl;
  • R 2 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, and substituted heteroaryl, and R 1 and R 2 together with the nitrogen atom bound to R 2 and the SO 2 group bound to R 1 can form a heterocyclic or a substituted heterocyclic group;
  • R 3 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic, and R 2 and R 3 together with the nitrogen atom bound to R 2 and the carbon atom bound to R 3 can form a saturated heterocyclic group or a saturated substituted heterocyclic group with the proviso that when monosubstituted, the substituent on said saturated substituted heterocyclic group is not carboxyl;
  • Ar is aryl, heteroaryl, substituted aryl or substituted heteroaryl; x is an integer of from 1 to 4;
  • R 6 is selected from the group consisting of 2,4-dioxo-tetrahydrofuran- 3-yl (3,4-enol), amino, alkoxy, substituted alkoxy, cycloalkoxy, substituted cycloalkoxy, -O-(N-succinimidyl), -NH-adamantyl, -O-cholest-5-en-3- ⁇ -yl,
  • Y is hydrogen, alkyl, substituted alkyl, aryl. and substituted aryl, -NH(CH 2 ) p COOY where p is an integer of from 1 to 8 and Y is as defined above, -OCH 2 NR 9 R 10 where R 9 is selected from the group consisting of -C(O)-aryl and -C(O)-substituted aryl and R 10 is selected from the group consisting of hydrogen and -CH 2 COOR u where R 11 is alkyl, and -NHSO 2 Z" where Z" is alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic or substituted heterocyclic;
  • Q is -C(X)NR 7 - wherein R 7 is selected from the group consisting of hydrogen and alkyl;
  • X is selected from the group consisting of oxygen and sulfur;
  • R 5 is -CH 2 X where X is selected from the group consisting of hydrogen, hydroxyl, acylamino, alkyl, alkoxy, aryloxy, aryl, aryloxyaryl, carboxyl, carboxylalkyl, carboxyl-substituted alkyl, carboxyl-cycloalkyl, carboxyl-substituted cycloalkyl, carboxylaryl, carboxyl-substituted aryl, carboxylheteroaryl, carboxyl-substituted heteroaryl, carboxylheterocyclic, carboxyl-substituted heterocyclic, cycloalkyl, substituted alkyl, substituted alkoxy, substituted aryl, substituted aryloxy, substituted aryloxyaryl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic;
  • R 5 is not selected from the group consisting of -(CH 2 ) n -aryl and -(CH 2 ) n -heteroaryl where n is an integer equal to 1 to 4 when R 2 and R 3 together with the nitrogen atom bound to R 2 and the carbon atom bound to R 3 form a saturated heterocyclic group or a saturated substituted heterocyclic group;
  • R 5 is not -(CH 2 ) -Ar-R 5' where R 5' is selected from the group consisting of -O-Z-NR 8 R 8' and -O-Z-R 12 wherein R 8 and R 8' are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocyclic, and substituted heterocyclic, and where R 8 and R 8 are joined to form a heterocycle or a substituted heterocycle; R 12 is selected from the group consisting of heterocycles and substituted heterocycles, and Z is selected from the group consisting of -C(O)- and -SO 2 -,
  • Ar is aryl, heteroaryl, substituted aryl or substituted heteroaryl, x is an integer of from 1 to 4;
  • R 5 is not -(CH 2 ) X -Ar-R 5' where R 5' is selected from the group consisting of -NR 24 C(Z')NR 8 R 8' and -NR 24 C(Z')R' 3 wherein Z' is selected from the group consisting of oxygen, sulfur and NR 24 , R 24 is selected from the group consisting of hydrogen, alkyl and aryl, R 8 and R 8 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, heteroaryl and substituted heteroaryl provided that when Z' is oxygen, at least one of R 8 and R 8 is substituted alkyl, cycloalkyl, substituted cycloalkyl, saturated heterocyclic other than mo ⁇ holino and thiomo ⁇ holino, and substituted heterocyclic, or R 8 and R 8' can be joined to form
  • Ar is aryl, substituted aryl, heteroaryl or substituted heteroaryl, x is an integer of from 1 to 4; D.
  • R 5 is not -ALK-X where ALK is an alkyl group of from 1 to
  • X is selected from the group consisting of substituted alkylcarbonylamino, substituted alkenylcarbonylamino, substituted alkynylcarbonylamino, heterocyclylcarbonylamino, substituted heterocyclylcarbonylamino, acyl, acyloxy, aminocarbonyloxy, acylamino, oxycarbonylamino, alkoxycarbonyl, substituted alkoxycarbonyl, aryloxycarbonyl, substituted aryloxycarbonyl, cycloalkoxycarbonyl, substituted cycloalkoxycarbonyl, heteroaryloxycarbonyl, substituted heteroaryloxycarbonyl, substituted heteroaryloxycarbonyl, heterocyclyloxycarbonyl, substituted heterocyclyloxycarbonyl, substituted heterocyclyloxycarbonyl, substituted heterocyclyloxycarbonyl, cycloalkyl, saturated heterocyclic, substituted saturated heterocyclic, substituted alkoxy,
  • R 5 is not -(CH 2 ) X -Ar-R 5" where R 5' is a substituent selected from the group consisting of: (a) substituted alkylcarbonylamino with the proviso that at least one of the substituents on the substituted alkyl moiety is selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, thiocarbonylamino, acyloxy, alkenyl, amino, amidino, alkyl amidino, thioamidino, aminoacyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aryloxy, substituted aryloxy, cyano, nitro, halogen, hydroxyl.
  • R 5' is a substituent selected from the group consisting of: (a) substituted alkylcarbonylamino with the proviso that at least one of the substituents on the substituted alkyl moiety is selected from the group consist
  • alkoxyaryl substituted on the alkoxy moiety with a substituent selected from the group consisting of carboxyl and -COOR 23 where R 23 is alkyl, substituted alkyl, cycloalkyl, aryl, heteroaryl or heterocyclic;
  • each R' is independently selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, cycloalkyl, substituted cycloalkyl, heterocyclic and substituted heterocyclic with the proviso that at least one of R' is substituted alkyl, cycloalkyl, substituted cycloalkyl, heterocyclic or substituted heterocyclic and with the further proviso that when R' is substituted alkyl at least one of the substituents on the substituted alkyl moiety is selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, thiocarbonylamino, acyloxy, alkenyl, amino, amidino, alkyl amidino, thioamidino, aminoacyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aryloxy, substitute
  • thioalkyl substituted thioalkyl, thioaryl, substituted thioaryl, thiocycloalkyl, substituted thiocycloalkyl, thioheteroaryl, substituted thioheteroaryl, thioheterocyclic, substituted thioheterocyclic, heterocyclic.
  • substituted heterocyclic cycloalkoxy, substituted cycloalkyoxy, heteroaryloxy, substituted heteroaryloxy, heterocyclyloxy, substituted heterocyclyloxy, oxycarbonylamino, oxythiocarbonylamino, -OS(O) 2 -alkyl, -OS(O) 2 - substituted alkyl, -OS(O) 2 -aryl, -OS(O) 2 -substituted aryl, -OS(O) 2 -heteroaryl, -OS(O) 2 -substituted heteroaryl, -OS(O) 2 -heterocyclic, -OS(0) 2 -substituted heterocyclic, -OSO 2 -NRR, -NRS(0) 2 -alkyl, -NRS(O) 2 -substituted alkyl, -NRS(O) 2 -aryl, -NRS(O) 2 -substit
  • -NRS(O) 2 -NR-substituted heterocyclic, mono- and di-alkylamino, mono- and di-(substituted alkyl)amino, mono- and di-arylamino, mono- and di- (substituted aryl)amino, mono- and di-heteroarylamino, mono- and di- (substituted heteroaryl)amino, mono- and di-heterocyclic amino, mono- and di-(substituted heterocyclic) amino, unsymmetric di-substituted amines having different substituents selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, substituted alkyl groups having amino groups blocked by conventional blocking groups (such as Boc, Cbz, formyl, and the like) and alkyl/substituted alkyl groups substituted with
  • substituted heteroaryl, heterocyclic and substituted heterocyclic substituted alkyl groups having amino groups blocked by conventional blocking groups (such as Boc, Cbz, formyl, and the like) and alkyl/substituted alkyl groups substituted with - SO 2 -alkyl, -SO 2 -substituted alkyl, -SO 2 -alkenyl, -SO,-substituted alkenyl, - SO 2 -cycloalkyl, -SO 2 -substituted cycloalkyl, -S0 2 -aryl, -S0 2 -substituted aryl, -SO 2 -heteroaryl, -SO 2 -substituted heteroaryl, -S0 2 -heterocyclic, -SO 2 - substituted heterocyclic or -SO 2 NRR, where R is hydrogen or alkyl; (f) substituted alkenyl or substituted alkyny
  • each R'" is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl. alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic with the proviso that when one R'" is unsaturated heterocyclic, aryl, heteroaryl or aryl/heteroaryl substituted with halogen, hydroxyl, amino, nitro, trifluoromethyl, trifluoromethoxy, alkyl, alkenyl, alkynyl, 1 ,2-dioxymethylene, 1 ,2-dioxyethylene.
  • R' is alkyl, substituted alkyl (other than unsaturated heterocyclyl substituted-alkyl), cycloalkyl, substituted cycloalkyl, alkenyl, substituted alkenyl.
  • R 18 is selected from the group consisting of alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R 22 is alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic or substituted heterocyclic;
  • R 19 is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic and each R 19 is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic:
  • R' is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic and R 19 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl.
  • aryl substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic; (t) -aminocarbonyl-(N-formylheterocylcyl); and (u) -alkyl-C(O)NH-heterocyclyl and -alkyl-C(O)NH-substituted heterocyclyl; and pharmaceutically acceptable salts thereof; with the following additional proviso: when R 1 is/ methylphenyl, R 2 and R 3 together with their pendent nitrogen and carbon atoms form a pyrrolidinyl ring, R 5 is/?-[-OCH 2 CH 2 -(4,5- dihydroimidizol-2-yl), Q is -C(O)NH-, then R 6 is not -O-methyl.
  • Preferred compounds within the scope of formulas I and IA above include by way of example the following: ⁇ -(Toluene-4-sulfonyl)-L-prolyl-4-( ⁇ -methylbenzyloxy)-L-phenylalanine
  • R 1 is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heterocyclic, substituted heterocylic, heteroaryl and substituted heteroaryl.
  • R 1 is selected from the group consisting of 4-methylphenyl, methyl, benzyl, «-butyl, 4-chlorophenyl, 1- naphthyl, 2-naphthyl, 4-methoxyphenyl, phenyl, 2,4,6-trimethylphenyl, 2-(methoxycarbonyl)phenyl, 2-carboxyphenyl, 3,5-dichlorophenyl, 4-trifluoromethylphenyl, 3,4-dichlorophenyl, 3,4-dimethoxyphenyl, 4-(CH 3 C(O)NH-)phenyl, 4-trifluoromethoxyphenyl, 4-cyanophenyl, isopropyl, 3,5-di-(trifluoromethyl)phenyl, 4-t-butylphenyl, 4-t-butoxyphenyl, 4-nitrophenyl, 2-thienyl, l-N-methyl-3-methyl-5-chloropyrazol-4-yl, phen
  • R 2 is hydrogen, methyl, phenyl, benzyl, -(CH 2 ) 2 -2-thienyl, and -(CH 2 ) 2 - ⁇ .
  • R 1 and R 2 together with the nitrogen atom bound to R 2 and the SO 2 group bound to R 1 are joined to form a heterocyclic group or substituted heterocyclic group.
  • Preferred heterocyclic and substituted heterocyclic groups include those having from 5 to 7 ring atoms and having 2 to 3 heteroatoms in the ring selected from the group consisting of nitrogen, oxygen and sulfur, which ring is optionally fused to another ring such as a phenyl or cyclohexyl ring to provide for a fused ring heterocycle of from 10 to 14 ring atoms and having 2 to 4 heteroatoms in the ring selected from the group consisting of nitrogen, oxygen and sulfur.
  • Specifically preferred R'/R 2 joined groups include, by way of example, benzisothiazolinyl (saccharin-2- yl).
  • R 3 includes all of the isomers arising by substitution with methyl, phenyl, benzyl, diphenylmethyl, -CH 2 CH 2 -COOH, -CH 2 -COOH, 2-amidoethyl, w ⁇ -butyl, t-butyl, -CH 2 O-benzyl and hydroxymethyl.
  • Q is preferably -C(O)NH- or -C(S)NH-.
  • R 5 is preferably selected from the group consisting of all possible isomers arising by substitution with the following groups: t [-OCH(CH 3 ) ⁇ ]- benzyl, 4-hydroxybenzyl, 2-carboxybenzyl, 3-carboxybenzyl, 4-carboxybenzyl, 4-(2-carboxyphenoxy)benzyl, 4-(benzyloxy)benzyl, 4-iodobenzyl, 4-methoxybenzyl, 4-nitrobenzyl, 4-(tert-butoxy)benzyl, 3,5- diiodo-4-hydroxybenzyl, 4-(benzamido)benzyl, benzyl, 4-hydroxy-3- iodobenzyl, 4-chlorobenzyl, isobutyl, methyl, 4-(acetamido)benzyl, n-butyl, carboxymethyl, 4-aminobutyl, 2-carboxyethyl, 4-(_V,N-dibenzylamino)- benzyl
  • R 6 is preferably 2,4-dioxo- tetrahydrofuran-3-yl (3,4-enol), methoxy, ethoxy, w -propoxy, n-butoxy, t-butoxy, cyclopentoxy, /le ⁇ -pentoxy, 2- ⁇ -wo-propyl-4- ⁇ - methylcyclohexoxy, 2- ⁇ -isopropyl-4- ⁇ -methylcyclohexoxy, -NH 2 , benzyloxy, -NHCH 2 COOH, -NHCH 2 CH 2 COOH, -NH-adamantyl, -
  • Certain of the compounds of formula I and I A above are also useful in reducing VLA-4 mediated inflammation in vivo.
  • compositions comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of one or more of the compounds of formula I or IA above with the exception that R 3 and R 5 are derived from L-amino acids or other similarly configured starting materials. Alternatively, racemic mixtures can be used.
  • the pharmaceutical compositions may be used to treat VLA-4 mediated disease conditions.
  • disease conditions include, by way of example, asthma, Alzheimer's disease, atherosclerosis, AIDS dementia, diabetes (including acute juvenile onset diabetis), inflammatory bowel disease (including ulcerative colitis and Crohn's disease), multiple sclerosis, rheumatoid arthritis, tissue transplantation, tumor metastasis, meningitis, encephalitis, stroke, and other cerebral traumas, nephritis, retinitis, atopic dermatitis, psoriasis, myocardial ischemia and acute leukocyte-mediated lung injury such as that which occurs in adult respiratory distress syndrome.
  • this invention also provides methods for the treatment of an inflammatory disease in a patient mediated by VL A-4 which methods comprise administering to the patient the pharmaceutical compositions described above.
  • Preferred compounds of formula I and IA above include those set forth in Tables IA and IB below.
  • R 2 R 3 R 5 R 6 Q -C(0)NR 7 - R 7
  • R 2 /R 3 cyclic benzyl-C(0)NH-(CH 2 ) 4 - -OH H methylphenyl 3 carbon atoms (L-pyrrolidinyl) p-CHy ⁇ - H -(CH ⁇ COOH />-hydroxybenzyl- -OH H (L isomer)
  • p-CH ⁇ - R /R 3 cyclic 1 -N-methyIimidazol-5-yl-CH 2 -OH H 3 carbon atoms
  • R 2 /R 3 cyclic 2-hydroxyethyl -OCH 3 H 3 carbon atoms (L-pyrrolidinyl) p-CYly ⁇ -
  • R 2 /R 3 cyclic / -nitrobenzyl- -OH H 3 carbon atoms (L-pyrrolidinyl) p-CHy ⁇ - I
  • R 2 /R 3 cyclic p-hydroxybenzyl -OH H -CH 2 -S-C(CH 3 ) 2 - (L-5,5- dimethylthiazolidin-
  • R 3 R 5 Q -C(O)NR 7 - R 7 p-CHy ⁇ -
  • R 2 /R 3 cyclic / -( ⁇ NHC(S)NH)be ⁇ zyl- -OCH
  • R 2 /R 3 cyclic -(pyridin-3-yl-NHC(S)NH)benzyl- -OCH
  • R 2 /R 3 cyclic />-(pyridin-4-yl-CH 2 NH)benzyl- -OH
  • R /R 3 cyclic /?-(pyridin-4-yI-CH 2 NH)benzyl- -OCH
  • R 2 /R 3 cyclic p-( ⁇ ,2,3,4-tetrahydroisoquino_in-3-yl- 3 carbon atoms -OCHjCHj C(O)NH-)benzyl- H (L-pyrrolidinyl) p-CHy ⁇ -
  • R 2 /R 3 cyclic p-( 1 ,2, 3 ,4-tetrahydroquinolin-2-yl- -CH 2 CH 2 -SO 2 -CH 2 - -OH C(O)NH-)b nzyl- H
  • ⁇ -CH 2 R /R 3 cyclic p-( ⁇ ,2,3,4-tetrahydroquinolin-2-yl- 3 carbon atoms -OH C(O)NH-)benzyl- H (L-pyrrolidinyl)
  • R 2 /R 3 cyclic p-[(2-trifluoromethylphenyl)- OCHjCHj 3 carbon atoms H C(O)NH-]benzyl- (L-pyrrolidinyl) ⁇ -CH 2 -
  • R 2 /R 3 cyclic -hydroxybenzyl- -OCHjCHj
  • R ⁇ Q -C(0)NR 7 - R 7 p-CU 3 - ⁇
  • R 1 R 2 R 6 Q -C(0)NR 7 - R 7 p-CH 3 - ⁇
  • R 2 /R 3 cyclic p-[(CH 3 ) 2 NS(O) 2 -]benzyl- -OCH, H 3 carbon atoms (L-pyrrolidinyl) p-CHy ⁇
  • R /R 3 cyclic p-[(CH,)iNC(0)NH-]benzyl- -OCHj H 3 carbon atoms (L-pyrrolidinyl) p-CH 3 - ⁇
  • P CHy ⁇ - R'/R 1 cyclic P ICH ⁇ CH ⁇ NH ] benzyl- 3 carbon atoms -OH (L-pyrrolidinyl)
  • p-CU ⁇ - R'/R 1 cyclic / -t-NHCH 2 -(p-chlorophenyl)] benzyl- 3 carbon atoms OCH, H ( pyrrolidinyl)
  • R'/R 1 cyclic p (pyridin 4 yl C(0)NH)benzyl OH 5 cart ⁇ )n atoms (I pyrrolidinyl)
  • this invention relates to compounds which inhibit leukocyte adhesion and, in particular, leukocyte adhesion mediated by VLA- 4.
  • VLA- 4 leukocyte adhesion mediated by VLA- 4.
  • alkyl refers to alkyl groups preferably having from 1 to 10 carbon atoms and more preferably 1 to 6 carbon atoms. This term is exemplified by groups such as methyl, t-butyl, n-heptyl, octyl and the like.
  • Substituted alkyl refers to an alkyl group, preferably of from 1 to 10 carbon atoms, having from 1 to 5 substituents selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, thiocarbonylamino, acyloxy, amino, amidino, alkyl amidino,thioamidino, aminoacyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aryl, substituted aryl, aryloxy, substituted aryloxy, aryloxylaryl, substituted aryloxyaryl, cyano, halogen, hydroxyl, nitro, carboxyl, carboxylalkyl, carboxyl-substituted alkyl, carboxyl-cycloalkyl, carboxyl-substituted cycloalkyl, carboxylaryl, carboxyl-substituted aryl, carboxylheteroaryl,
  • Alkoxy refers to the group “alkyl-O-" which includes, by way of example, methoxy, ethoxy, «-propoxy, w ⁇ -propoxy, w-butoxy, tert-butoxy, sec-butoxy, rc-pentoxy, n-hexoxy, 1.2-dimethylbutoxy, and the like.
  • Substituted alkoxy refers to the group "substituted alkyl-O- "Acyl” refers to the groups H-C(O)-, alkyl-C(O)-, substituted alkyl- C(O)-, alkenyl-C(O)-, substituted alkenyl-C(O)-, alkynyl-C(O)-, substituted alkynyl-C(O)- cycloalkyl-C(O)-, substituted cycloalkyl-C(O)-, aryl-C(O)-, substituted aryl-C(O)-, heteroaryl-C(O)-, substituted heteroaryl-C(O), heterocyclic-C(O)-, and substituted heterocyclic-C(O)- wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted
  • Acylamino refers to the group -C(O)NRR where each R is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic; and where each R can be joined to form, together with the nitrogen atom, a heterocyclic or substituted heterocyclic ring wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.
  • Thiocarbonylamino refers to the group -C(S)NRR where each R is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic, and where each R can be joined to form, together with the nitrogen atom, a heterocyclic or substituted heterocyclic ring wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.
  • Acyloxy refers to the groups alkyl-C(O)O-, substituted alkyl- C(O)O-, alkenyl-C(O)O-, substituted alkenyl-C(O)O-, alkynyl-C(O)O-, substituted alkynyl-C(O)O-, aryl-C(O)O-, substituted aryl-C(O)O-, cycloalkyl-C(O)O-, substituted cycloalkyl-C(O)O-, heteroaryl-C(O)O-, substituted heteroaryl-C(O)O-, heterocyclic-C(O)O-, and substituted heterocyclic-C(O)O- wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl
  • Alkenyl refers to alkenyl group preferably having from 2 to 10 carbon atoms and more preferably 2 to 6 carbon atoms and having at least 1 and preferably from 1-2 sites of alkenyl unsaturation.
  • Substituted alkenyl refers to alkenyl groups having from 1 to 5 substituents selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, thiocarbonylamino, acyloxy, amino.
  • alkynyl refers to alkynyl group preferably having from 2 to 10 carbon atoms and more preferably 3 to 6 carbon atoms and having at least 1 and preferably from 1-2 sites of alkynyl unsaturation.
  • Substituted alkynyl refers to alkynyl groups having from 1 to 5 substituents selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, thiocarbonylamino, acyloxy, amino, amidino, alkylamidino, thioamidino, aminoacyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aryl, substituted aryl, aryloxy, substituted aryloxy, aryloxyaryl, substituted aryloxyaryl, halogen, hydroxyl, cyano, nitro, carboxyl, carboxylalkyl, carboxyl-substituted alkyl, carboxy 1-cycloalkyl, carboxyl-substituted cycloalkyl, carboxylaryl, carboxyl-substituted aryl, carboxylheteroaryl, carboxyl-substituted hetero
  • alkylHNC- refers to compounds having 1 to 3 alkyl groups (e.g., alkylHNC-).
  • aminoacyl refers to the groups -NRC(O)alkyl, -NRC(O)substituted alkyl, -NRC(O)cycloalkyl, -NRC(O)substituted cycloalkyl, -NRC(O)alkenyl, -NRC(O)substituted alkenyl,
  • R is hydrogen or alkyl and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.
  • Aminocarbonyloxy refers to the groups -NRC(O)O-alkyl, -NRC(O)O-substituted alkyl, -NRC(O)O-alkenyl, -NRC(O)O-substituted alkenyl, -NRC(O)O-alkynyl, -NRC(O)O-substituted alkynyl, -NRC(O)O- cycloalkyl, -NRC(O)O-substituted cycloalkyl, -NRC(O)O-aryl, -NRC(O)O- substituted aryl, -NRC(O)O-heteroaryl, -NRC(O)O-substituted heteroaryl, -NRC(O)O-heterocyclic, and -NRC(O)O-substituted heterocyclic where R is hydrogen or alkyl and wherein alky
  • Oxycarbonylamino refers to the groups -OC(O)NRR, -OC(O)NR-alkyl, -OC(O)NR-substituted alkyl, -OC(O)NR-alkenyl, -OC(O)NR-substituted alkenyl, -OC(O)NR-alkynyl, -OC(O)NR-substituted alkynyl, -OC(O)NR-cycloalkyl, -OC(O)NR-substituted cycloalkyl, -OC(O)NR-aryl, -OC(O)NR-substituted aryl, -OC(0)NR-heteroaryl, -OC(O)NR-substituted heteroaryl,- OC(O)NR-heterocyclic, and -OC(O)NR-substituted heterocyclic where R is hydrogen or alkyl, and where each R can be joined
  • Oxythiocarbonylamino refers to the groups -OC(S)NRR, -OC(S)NR-alkyl, -OC(S)NR-substituted alkyl, -OC(S)NR-alkenyl, -OC(S)NR-substituted alkenyl, -OC(S)NR-alkynyl, -OC(S)NR-substituted alkynyl, -OC(S)NR-cycloalkyl, -OC(S)NR-substituted cycloalkyl, -OC(S)NR-aryl, -OC(S)NR-substituted aryl, -OC(S)NR-heteroaryl, -OC(S)NR-substituted heteroaryl, -OC(S)NR-heterocyclic, and -OC(S)NR- substituted heterocyclic where R is hydrogen or alkyl, or where each R can be
  • Aminocarbonylamino refers to the groups -NRC(O)NRR, -NRC(O)NR-alkyl, -NRC(O)NR-substituted alkyl, -NRC(O)NR-alkenyl, -NRC(O)NR-substituted alkenyl, -NRC(O)NR-alkynyl, -NRC(O)NR- substituted alkynyl, -NRC(O)NR-aryl, -NRC(O)NR-substituted aryl, -NRC(O)NR-cycloalkyl, -NRC(0)NR-substituted cycloalkyl, -NRC(O)NR- heteroaryl, -NRC(O)NR-substituted heteroaryl, -NRC(O)NR-heterocyclic, and -NRC(O)NR-substituted heterocyclic where each R is independently hydrogen
  • Aminothiocarbonylamino refers to the groups -NRC(S)NRR, -NRC(S)NR-alkyl, -NRC(S)NR-substituted alkyl, -NRC(S)NR-alkenyl, -NRC(S)NR-substituted alkenyl, -NRC(S)NR-alkynyl, -NRC(S)NR- substituted alkynyl, -NRC(S)NR-aryl, -NRC(S)NR-substituted aryl, -NRC(S)NR-cycloalkyl, -NRC(S)NR-substituted cycloalkyl, -NRC(S)NR- heteroaryl, and -NRC(S)NR-substituted heteroaryl, -NRC(S)NR- heterocyclic, and -NRC(S)NR-substituted heteroaryl where each R
  • Aryl or “Ar” refers to an unsaturated aromatic carbocyclic group of from 6 to 14 carbon atoms having a single ring (e.g., phenyl) or multiple condensed rings (e.g., naphthyl or anthryl) which condensed rings may or may not be aromatic (e.g., 2-benzoxazolinone, 2H-l,4-benzoxazin-3(4H)- one-7-yl, and the like).
  • Preferred aryls include phenyl and naphthyl.
  • Substituted aryl refers to aryl groups which are substituted with from 1 to 3 substituents selected from the group consisting of hydroxy, acyl, acylamino, thiocarbonylamino, acyloxy, alkyl, substituted alkyl, alkoxy, substituted alkoxy, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amidino, alkylamidino, thioamidino, amino, aminoacyl, aminocarbonyloxy, aminocarbonylamino, aminothiocarbonylamino, aryl, substituted aryl, aryloxy, substituted aryloxy, cycloalkoxy, substituted cycloalkoxy, heteroaryloxy, substituted heteroaryloxy, heterocyclyloxy, substituted heterocyclyloxy, carboxyl, carboxylalkyl, carboxyl-substituted alkyl, carboxyl-cycloalkyl, carboxyl
  • Aryloxy refers to the group aryl-O- which includes, by way of example, phenoxy, naphthoxy, and the like.
  • Substituted aryloxy refers to substituted aryl-O- groups.
  • Aryloxyaryl refers to the group -aryl-O-aryl.
  • Substituted aryloxyaryl refers to aryloxyaryl groups substituted with from 1 to 3 substituents on either or both aryl rings selected from the group consisting of hydroxy, acyl, acylamino, thiocarbonylamino, acyloxy, alkyl, substituted alkyl, alkoxy, substituted alkoxy, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amidino, alkylamidino, thioamidino, amino, aminoacyl, aminocarbonyloxy, aminocarbonylamino, aminothiocarbonylamino, aryl, substituted aryl, aryloxy, substituted aryloxy, cycloalkoxy, substituted cycloalkoxy, heteroaryloxy.
  • conventional blocking groups such as Boc, Cbz, formyl, and the like
  • Cycloalkyl refers to cyclic alkyl groups of from 3 to 8 carbon atoms having a single cyclic ring including, by way of example, cyclopropyl, cyclobutyl, cyclopentyl, cyclooctyl and the like. Excluded from this definition are multi-ring alkyl groups such as adamantanyl, etc.
  • Cycloalkenyl refers to cyclic alkenyl groups of from 3 to 8 carbon atoms having single or multiple unsaturation but which are not aromatic.
  • Cycloalkoxy refers to -O-cycloalkyl groups.
  • Substituted cycloalkoxy refers to -O-substituted cycloalkyl groups.
  • each R is independently hydrogen and alkyl as well as where one of the amino groups is blocked by conventional blocking groups (such as Boc, Cbz, formyl, and the like) and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.
  • conventional blocking groups such as Boc, Cbz, formyl, and the like
  • each R is independently hydrogen or alkyl and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.
  • Halo or halogen refers to fluoro, chloro, bromo and iodo and preferably is either chloro or bromo.
  • Heteroaryl refers to an aromatic carbocyclic group of from 2 to 10 carbon atoms and 1 to 4 heteroatoms selected from the group consisting of oxygen, nitrogen and sulfur within the ring.
  • Such heteroaryl groups can have a single ring (e.g., pyridyl or furyl) or multiple condensed rings (e.g., indolizinyl or benzothienyl).
  • Preferred heteroaryls include pyridyl, pyrrolyl, indolyl and furyl.
  • Substituted heteroaryl refers to heteroaryl groups which are substituted with from 1 to 3 substituents selected from the group consisting of hydroxy, acyl, acylamino, thiocarbonylamino, acyloxy, alkyl, substituted alkyl, alkoxy, substituted alkoxy, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amidino, alkylamidino, thioamidino, amino, aminoacyl, aminocarbonyloxy, aminocarbonylamino, aminothiocarbonylamino, aryl, substituted aryl, aryloxy, substituted aryloxy, cycloalkoxy, substituted cycloalkoxy, heteroaryloxy, substituted heteroaryloxy, heterocyclyloxy, substituted heterocyclyloxy, substituted heterocyclyloxy, carboxyl, carboxylalkyl, carboxyl-substituted alkyl, carboxyl-cycl
  • Heteroaryloxy refers to the group -O-heteroaryl and "substituted heteroaryloxy” refers to the group -O-substituted heteroaryl.
  • Heterocycle or “heterocyclic” refers to a saturated or unsaturated group having a single ring or multiple condensed rings, from 1 to 10 carbon atoms and from 1 to 4 hetero atoms selected from the group consisting of nitrogen, sulfur or oxygen within the ring wherein, in fused ring systems, one or more the rings can be aryl or heteroaryl.
  • “Saturated heterocyclic” refers to heterocycles of single or multiple condensed rings lacking unsaturation in any ring (e.g., carbon to carbon unsaturation, carbon to nitrogen unsaturation, nitrogen to nitrogen unsaturation, and the like).
  • Unsaturated heterocyclic refers to non-aromatic heterocycles of single or multiple condensed rings having unsaturation in any ring (e.g., carbon to carbon unsaturation, carbon to nitrogen unsaturation, nitrogen to nitrogen unsaturation, and the like).
  • heterocycles and heteroaryls include, but are not limited to, azetidine, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, dihydroindole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthylpyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, isothiazole, phenazine, isoxazole, phenoxazine, phenothiazine, imidazolidine, imidazoline, piperidine, piperazine, indoline, phthalimide, 1,2,3,4-tetrahydroisoquinoline, 4,5,6,
  • “Saturated substituted heterocyclic” refers to substituted heterocycles of single or multiple condensed rings lacking unsaturation in any ring (e.g., carbon to carbon unsaturation, carbon to nitrogen unsaturation, nitrogen to nitrogen unsaturation, and the like).
  • Unsaturated substituted heterocyclic refers to non-aromatic substituted heterocycles of single or multiple condensed rings having unsaturation in any ring (e.g., carbon to carbon unsaturation, carbon to nitrogen unsaturation, nitrogen to nitrogen unsaturation, and the like).
  • Heterocyclyloxy refers to the group -O-heterocyclic and “substituted heterocyclyloxy” refers to the group -O-substituted heterocyclic.
  • Thiol refers to the group -SH.
  • Thioalkyl refers to the groups -S-alkyl.
  • Substituted thioalkyl refers to the group -S-substituted alkyl.
  • Thiocycloalkyl refers to the groups -S-cycloalkyl.
  • Substituted thiocycloalkyl refers to the group -S-substituted cycloalkyl.
  • Thioaryl refers to the group -S-aryl and "substituted thioaryl” refers to the group -S-substituted aryl.
  • Thioheteroaryl refers to the group -S-heteroaryl and "substituted thioheteroaryl” refers to the group -S-substituted heteroaryl.
  • Thioheterocyclic refers to the group -S-heterocyclic and "substituted thioheterocyclic” refers to the group -S-substituted heterocyclic.
  • “Pharmaceutically acceptable salt” refers to pharmaceutically acceptable salts of a compound of Formula I or Formula IA, which salts are derived from a variety of organic and inorganic counter ions well known in the art and include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium, and the like; and when the compound (of Formula I or I A) contains a basic functionality, salts of organic or inorganic acids, such as hydrochloride, hydrobromide, tartrate, mesylate. acetate, maleate, oxalate and the like.
  • the compounds of this invention can be prepared from readily available starting materials using the following general methods and procedures. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are given, other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.
  • protecting groups may be necessary to prevent certain functional groups from undergoing undesired reactions.
  • Suitable protecting groups for various functional groups as well as suitable conditions for protecting and deprotecting particular functional groups are well known in the art. For example, numerous protecting groups are described in T. W. Greene and G. M. Wuts, Protecting Groups in Organic Synthesis, Second Edition, Wiley, New York, 1991, and references cited therein.
  • the compounds of this invention will typically contain one or more chiral centers. Accordingly, if desired, such compounds can be prepared or isolated as pure stereoisomers, i.e., as individual enantiomers or diastereomers, or as stereoisomer-enriched mixtures. All such stereoisomers (and enriched mixtures) are included within the scope of this invention, unless otherwise indicated. Pure stereoisomers (or enriched mixtures) may be prepared using, for example, optically active starting materials or stereoselective reagents well-known in the art. Alternatively, racemic mixtures of such compounds can be separated using, for example, chiral column chromatography, chiral resolving agents and the like. In a preferred method of synthesis, the compounds of formula I and IA wherein Q is -C(O)NR 7 - are prepared by first coupling an amino acid of formula II:
  • R 1 is as defined above, to provide an N-sulfonyl amino acid of formula IV:
  • R'-R 3 are as defined above.
  • This reaction is typically conducted by contacting the amino acid of formula II with at least one equivalent, preferably about 1.1 to about 2 equivalents, of sulfonyl chloride III in an inert diluent such as dichloromethane and the like. Generally, the reaction is conducted at a temperature ranging from about -70 °C to about 40 °C for about 1 to about 24 hours. Preferably, this reaction is conducted in the presence of a suitable base to scavenge the acid generated during the reaction. Suitable bases include, by way of example, tertiary amines, such as triethylamine, diisopropylethylamine, N-methylmorpholine and the like.
  • reaction can be conducted under Schotten-Baumann-type conditions using aqueous alkali, such as sodium hydroxide and the like, as the base.
  • aqueous alkali such as sodium hydroxide and the like
  • the resulting N-sulfonyl amino acid IV is recovered by conventional methods including neutralization, extraction, precipitation, chromatography, filtration, and the like.
  • amino acids of formula II employed in the above reaction are either known compounds or compounds that can be prepared from known compounds by conventional synthetic procedures.
  • suitable amino acids for use in this reaction include, but are not limited to, L-proline, tr ⁇ «5-4-hydroxyl-L-proline, cw-4-hydroxyl-L -proline, trans-3 -p enyl-L- proline, c/_y-3-phenyl-L-proline, L-(2-methyl)proline, L-pipecolinic acid, L- azetidine-2-carboxylic acid,glycine, 2-tert-butylglycine, D,L-phenylglycine, L-alanine, -methylalanine, N-methyl-L-phenylalanine, L-diphenylalanine, sarcosine, D,L-phenylsarcosine, L-aspartic acid ⁇ -tert-butyl ester, L-glutamic acid ⁇ -tert-
  • the corresponding carboxylic acid esters of the amino acids of formula II can be employed in the above reaction with the sulfonyl chloride III.
  • the sulfonyl chlorides of formula III employed in the above reaction are either known compounds or compounds that can be prepared from known compounds by conventional synthetic procedures.
  • Such compounds are typically prepared from the corresponding sulfonic acid, i.e., from compounds of the formula R'-SO 3 H where R 1 is as defined above, using phosphorous trichloride and phosphorous pentachloride.
  • This reaction is generally conducted by contacting the sulfonic acid with about 2 to 5 molar equivalents of phosphorous trichloride and phosphorous pentachloride, either neat or in an inert solvent, such as dichloromethane, at temperature in the range of about 0 °C to about 80 °C for about 1 to about 48 hours to afford the sulfonyl chloride.
  • the sulfonyl chlorides of formula III can be prepared from the corresponding thiol compound, i.e., from compounds of the formula R'-SH where R 1 is as defined above, by treating the thiol with chlorine (Cl 2 ) and water under conventional reaction conditions.
  • sulfonyl chlorides suitable for use in this invention include, but are not limited to, methanesulfonyl chloride, 2-propanesulfonyl chloride, 1 -butanesulfonyl chloride, benzenesulfonyl chloride, 1 -naphthalenesulfonyl chloride, 2-naphthalenesulfonyl chloride, / toluenesulfonyl chloride, -toluenesulfonyl chloride,
  • a sulfonyl fluoride, sulfonyl bromide or sulfonic acid anhydride may be used in place of the sulfonyl chloride in the above reaction to form the N-sulfonyl amino acids of formula IV.
  • R 1 and R 2 are as defined above, with a carboxylic acid derivative of the formula L(R 3 )CHCOOR where L is a leaving group, such as chloro, bromo, iodo, mesylate, tosylate and the like, R 3 is as defined above and R is hydrogen or an alkyl group.
  • This reaction is typically conducted by contacting the sulfonamide V with at least one equivalent, preferably 1.1 to 2 equivalents, of the carboxylic acid derivative in the presence of a suitable base, such as triethylamine, in an inert diluent, such as DMF, at a temperature ranging from about 24 °C to about 37 °C for about 0.5 to about 4 hours.
  • carboxylic acid derivatives for use in this reaction are ⁇ -chloro and ⁇ -bromocarboxylic acid esters such as tert- butyl bromoacetate, and the like.
  • carboxylic acid ester is employed in this reaction, the ester group is subsequently hydrolyzed using conventional procedures to afford an N-sulfonyl amino acid of formula IV.
  • the compounds of formula I and IA are then prepared by coupling the intermediate N-sulfonyl amino acid of formula IV with an amino acid derivative of formula VI:
  • R 5 -R 7 are as defined above.
  • This coupling reaction is typically conducted using well-known coupling reagents such as carbodiimides, BOP reagent (benzotriazol-1 -yloxy-tris(dimethylamino)phosphonium hexafluorophosphonate) and the like.
  • Suitable carbodiimides include, by way of example, dicyclohexylcarbodiimide (DCC), l-(3- dimethylaminopropyl)-3-ethylcarbodiimide (EDC) and the like.
  • polymer supported forms of carbodiimide coupling reagents may also be used including, for example, those described in Tetrahedron Letters, 34(48), 7685 (1993). Additionally, well-known coupling promoters, such as N- hydroxysuccinimide, 1-hydroxybenzotriazole and the like, may be used to facilitate the coupling reaction.
  • This coupling reaction is typically conducted by contacting the N- sulfonylamino acid IV with about 1 to about 2 equivalents of the coupling reagent and at least one equivalent, preferably about 1 to about 1.2 equivalents, of amino acid derivative VI in an inert diluent, such as dichloromethane, chloroform, acetonitrile, tetrahydrofuran, N,N- dimethylformamide and the like. Generally, this reaction is conducted at a temperature ranging from about 0°C to about 37°C for about 12 to about 24 hours. Upon completion of the reaction, the compound of formula I is recovered by conventional methods including neutralization, extraction, precipitation, chromatography, filtration, and the like.
  • an inert diluent such as dichloromethane, chloroform, acetonitrile, tetrahydrofuran, N,N- dimethylformamide and the like.
  • the N-sulfonyl amino acid IV can be converted into an acid halide and the acid halide coupled with amino acid derivative VI to provide compounds of formula I.
  • the acid halide of VI can be prepared by contacting VI with an inorganic acid halide, such as thionyl chloride, phosphorous trichloride, phosphorous tribromide or phosphorous pentachloride, or preferably, with oxalyl chloride under conventional conditions.
  • this reaction is conducted using about 1 to 5 molar equivalents of the inorganic acid halide or oxalyl chloride, either neat or in an inert solvent, such as dichloromethane or carbon tetrachloride, at a temperature in the range of about 0°C to about 80 °C for about 1 to about 48 hours.
  • a catalyst such as N,N-dimethylformamide, may also be used in this reaction.
  • the acid halide of N-sulfonyl amino acid IV is then contacted with at least one equivalent, preferably about 1.1 to about 1.5 equivalents, of amino acid derivative VI in an inert diluent, such as dichloromethane, at a temperature ranging from about -70 °C to about 40 °C for about 1 to about 24 hours.
  • this reaction is conducted in the presence of a suitable base to scavenge the acid generated during the reaction.
  • Suitable bases include, by way of example, tertiary amines, such as triethylamine, diisopropylethylamine, N-methylmorpholine and the like.
  • the reaction can be conducted under Schotten-Baumann-type conditions using aqueous alkali, such as sodium hydroxide and the like.
  • aqueous alkali such as sodium hydroxide and the like.
  • the compound of formula I is recovered by conventional methods including neutralization, extraction, precipitation, chromatography, filtration, and the like.
  • the compounds of formula I can be prepared by first forming a diamino acid derivative of formula VII:
  • diamino acid derivatives of formula VII can be readily prepared by coupling an amino acid of formula II with an amino acid derivative of formula VI using conventional amino acid coupling techniques and reagents, such carbodiimides, BOP reagent and the like, as described above. Diamino acid VII can then be sulfonated using a sulfonyl chloride of formula III and using the synthetic procedures described above to provide a compound of formula I.
  • amino acid derivatives of formula VI employed in the above reactions are either known compounds or compounds that can be prepared from known compounds by conventional synthetic procedures.
  • amino acid derivatives of formula VI can be prepared by C-alkylating commercially available diethyl 2-acetamidomalonate (Aldrich, Milwaukee, Wisconsin, USA) with an alkyl or substituted alkyl halide. This reaction is typically conducted by treating the diethyl 2-acetamidomalonate with at least one equivalent of sodium ethoxide and at least one equivalent of an alkyl or substituted alkyl halide in refluxing ethanol for about 6 to about 12 hours.
  • the resulting C-alkylated malonate is then deacetylated, hydrolyzed and decarboxylated by heating in aqueous hydrochloric acid at reflux for about 6 to about 12 hours to provide the amino acid, typically as the hydrochloride salt.
  • amino acid derivatives of formula VI suitable for use in the above reactions include, but are not limited to, L-alanine methyl ester, L- isoleucine methyl ester, L-leucine methyl ester, L-valine methyl ester, ⁇ -tert- butyl-L-aspartic acid methyl ester, L-asparagine tert-butyl ester, e-Boc-L- lysine methyl ester, e-Cbz-L-lysine methyl ester, ⁇ -tert-butyl-L-glutamic acid methyl ester, L-glutamine tert-butyl ester, L-(N-methyl)histidine methyl ester, L-(N-benzyl)histidine methyl ester, L-methionine methyl ester, L-(0- benzyl)serine methyl ester, L-tryptophan methyl ester, L-phenylalanine methyl este
  • the compounds of formula I are typically prepared as an ester, i.e., where R 6 is an alkoxy or substituted alkoxy group and the like.
  • the ester group can be hydrolysed using conventional conditions and reagents to provide the corresponding carboxylic acid.
  • this reaction is conducted by treating the ester with at least one equivalent of an alkali metal hydroxide, such as lithium, sodium or potassium hydroxide, in an inert diluent, such as methanol or mixtures of methanol and water, at a temperature ranging about 0°C to about 24 °C for about 1 to about 12 hours.
  • benzyl esters may be removed by hydrogenolysis using a palladium catalyst, such as palladium on carbon.
  • the resulting carboxylic acids may be coupled, if desired, to amines such as ⁇ -alanine ethyl ester, hydroxyamines such as hydroxylamine and N-hydroxysuccinimide, alkoxyamines and substituted alkoxyamines such as O-methylhydroxylamine and O-benzylhydroxylamine, and the like, using conventional coupling reagents and conditions as described above.
  • a nitro group present on a substituent of a compound of formula I or an intermediate thereof may be readily reduced by hydrogenation in the presence of a palladium catalyst, such as palladium on carbon, to provide the corresponding amino group.
  • a palladium catalyst such as palladium on carbon
  • This reaction is typically conducted at a temperature of from about 20 °C to about 50 °C for about 6 to about 24 hours in an inert diluent, such as methanol.
  • Compounds having a nitro group on the R 5 substituent can be prepared, for example, by using a 4- nitrophenylalanine derivative and the like in the above-described coupling reactions.
  • a pyridyl group can be hydrogenated in the presence of a platinum catalyst, such as platinum oxide, in an acidic diluent to provide the corresponding piperidinyl analogue.
  • a platinum catalyst such as platinum oxide
  • this reaction is conducted by treating the pyridine compound with hydrogen at a pressure ranging from about 20 psi to about 60 psi, preferably about 40 psi, in the presence of the catalyst at a temperature of about 20°C to about 50°C for about 2 to about 24 hours in an acidic diluent, such as a mixture of methanol and aqueous hydrochloric acid.
  • R 5 substituent of a compound of formula I or an intermediate thereof contains a primary or secondary amino group
  • such amino groups can be further derivatized either before or after the above coupling reactions to provide, by way of example, amides, sulfonamides, ureas, thioureas, carbamates, secondary or tertiary amines and the like.
  • Compounds having a primary amino group on the R 5 substituent may be prepared, for example, by reduction of the corresponding nitro compound as described above.
  • such compounds can be prepared by using an amino acid derivative of formula VI derived from lysine, 4-aminophenylalanine and the like in the above-described coupling reactions.
  • a compound of formula I or an intermediate thereof having a substituent containing a primary or secondary amino group such as where R 5 is a (4-aminophenyl)methyl group
  • R 5 is a (4-aminophenyl)methyl group
  • This acylation reaction is typically conducted by treating the amino compound with at least one equivalent, preferably about 1.1 to about 1.2 equivalents, of a carboxylic acid in the presence of a coupling reagent such as a carbodiimide, BOP reagent (benzotriazol-1-yl- oxy-tris(dimethylamino)phosphonium hexafluorophosphonate) and the like, in an inert diluent, such as dichloromethane, chloroform, acetonitrile, tetrahydrofuran, N,N-dimethylformamide and the like, at a temperature ranging from about 0°C to about 37°C for about 4 to about 24 hours.
  • a coupling reagent such as a carbodiimide, BOP reagent (benzotriazol-1-yl- oxy-tris(dimethylamino)phosphonium hexafluorophosphonate) and the like
  • a promoter such as N-hydroxysuccinimide, 1-hydroxy- benzotriazole and the like, is used to facilitate the acylation reaction.
  • carboxylic acids suitable for use in this reaction include, but are not limited to, N-tert-butyloxycarbonylglycine, N-tert-butyloxycarbonyl-L- phenylalanine, N-tert-butyloxycarbonyl-L-aspartic acid benzyl ester, benzoic acid, N-tert-butyloxycarbonylisonipecotic acid, N-methylisonipecotic acid, N-tert-butyloxycarbonylnipecotic acid, N-tert-butyloxycarbonyl-L- tetrahydroisoquinoline-3-carboxylic acid, N-(toluene-4-sulfonyl)-L-proline and the like.
  • a compound of formula I or an intermediate thereof containing a primary or secondary amino group can be N-acylated using an acyl halide or a carboxylic acid anhydride to form the corresponding amide.
  • This reaction is typically conducted by contacting the amino compound with at least one equivalent, preferably about 1.1 to about 1.2 equivalents, of the acyl halide or carboxylic acid anhydride in an inert diluent, such as dichloromethane, at a temperature ranging from about of about -70 °C to about 40°C for about 1 to about 24 hours.
  • an acylation catalyst such as 4-(N,N-dimethylamino)pyridine may be used to promote the acylation reaction.
  • the acylation reaction is preferably conducted in the presence of a suitable base to scavenge the acid generated during the reaction.
  • suitable bases include, by way of example, tertiary amines, such as triethylamine, diisopropylethylamine, N-methylmorpholine and the like.
  • the reaction can be conducted under Schotten-Baumann-type conditions using aqueous alkali, such as sodium hydroxide and the like.
  • acyl halides and carboxylic acid anhydrides suitable for use in this reaction include, but are not limited to, 2-methylpropionyl chloride, trimethylacetyl chloride, phenylacetyl chloride, benzoyl chloride, 2- bromobenzoyl chloride, 2-methylbenzoyl chloride, 2-trifluoro- methylbenzoyl chloride, isonicotinoyl chloride, nicotinoyl chloride, picolinoyl chloride, acetic anhydride, succinic anhydride, and the like.
  • Carbamyl chlorides such as N,N-dimethylcarbamyl chloride, NN- diethylcarbamyl chloride and the like, can also be used in this reaction to provide ureas.
  • dicarbonates such as di-tert-butyl dicarbonate, may be employed to provide carbamates.
  • a compound of formula I or an intermediate thereof containing a primary or secondary amino group may be N-sulfonated to form a sulfonamide using a sulfonyl halide or a sulfonic acid anhydride.
  • Sulfonyl halides and sulfonic acid anhydrides suitable for use in this reaction include, but are not limited to, methanesulfonyl chloride, chloromethanesulfonyl chloride, / toluenesulfonyl chloride, trifluoromethanesulfonic anhydride, and the like.
  • sulfamoyl chlorides such as dimethylsulfamoyl chloride, can be used to provide sulfamides (e.g., > ⁇ -SO 2 - ⁇ ).
  • a primary and secondary amino group present on a substituent of a compound of formula I or an intermediate thereof can be reacted with an isocyanate or a thioisocyanate to give a urea or thiourea, respectively.
  • This reaction is typically conducted by contacting the amino compound with at least one equivalent, preferably about 1.1 to about 1.2 equivalents, of the isocyanate or thioisocyanate in an inert diluent, such as toluene and the like, at a temperature ranging from about 24 °C to about 37°C for about 12 to about 24 hours.
  • the isocyanates and thioisocyanates used in this reaction are commercially available or can be prepared from commercially available compounds using well-known synthetic procedures.
  • isocyanates and thioisocyanates are readily prepared by reacting the appropriate amine with phosgene or thiophosgene.
  • isocyanates and thioisocyanates suitable for use in this reaction include, but are not limited to, ethyl isocyanate, «-propyl isocyanate, 4-cyanophenyl isocyanate, 3-methoxyphenyl isocyanate, 2-phenylethyl isocyanate, methyl thioisocyanate, ethyl thioisocyanate, 2-phenylethyl thioisocyanate, 3- phenylpropyl thioisocyanate, 3-(N,N-diethylamino)propyl thioisocyanate, phenyl thioisocyanate, benzyl thioisocyanate, 3 -pyridyl thioisocyanate, fluorescein isothiocyanate (isomer)
  • a compound of formula I or IA, or an intermediate thereof contains a primary or secondary amino group
  • the amino group can be reductively alkylated using aldehydes or ketones to form a secondary or tertiary amino group.
  • This reaction is typically conducted by contacting the amino compound with at least one equivalent, preferably about 1.1 to about 1.5 equivalents, of an aldehyde or ketone and at least one equivalent based on the amino compound of a metal hydride reducing agent, such as sodium cyanoborohydride, in an inert diluent, such as methanol, tetrahydrofuran, mixtures thereof and the like, at a temperature ranging from about 0°C to about 50 °C for about 1 to about 72 hours.
  • Aldehydes and ketones suitable for use in this reaction include, by way of example, benzaldehyde, 4-chlorobenzaldehyde, valeraldehyde and the like.
  • a compound of formula I or an intermediate thereof when a compound of formula I or an intermediate thereof has a substituent containing a hydroxyl group, the hydroxyl group can be further modified or derivatized either before or after the above coupling reactions to provide, by way of example, ethers, carbamates and the like.
  • Compounds having a hydroxyl group on the R 5 substituent for example, can be prepared using an amino acid derivative of formula VI derived from tyrosine and the like in the above-described reactions.
  • a compound of formula I or an intermediate thereof having a substituent containing a hydroxyl group such as where R 5 is a (4-hydroxyphenyl)methyl group, can be readily O-alkylated to form ethers.
  • This O-alkylation reaction is typically conducted by contacting the hydroxy compound with a suitable alkali or alkaline earth metal base, such as potassium carbonate, in an inert diluent, such as acetone, 2-butanone and the like, to form the alkali or alkaline earth metal salt of the hydroxyl group.
  • a suitable alkali or alkaline earth metal base such as potassium carbonate
  • an inert diluent such as acetone, 2-butanone and the like
  • This salt is generally not isolated, but is reacted in situ with at least one equivalent of an alkyl or substituted alkyl halide or sulfonate, such as an alkyl chloride, bromide, iodide, mesylate or tosylate, to afford the ether.
  • this reaction is conducted at a temperature ranging from about 60°C to about 150°C for about 24 to about 72 hours.
  • a catalytic amount of sodium or potassium iodide is added
  • alkyl or substituted alkyl halides and sulfonates suitable for use in this reaction include, but are not limited to, tert-butyl bromoacetate, N-tert-butyl chloroacetamide, 1 -bromoethylbenzene, ethyl - bromophenylacetate, 2-(N-ethyl-N-phenylamino)ethyl chloride, 2-(NN- ethylamino)ethyl chloride, 2-(N,N-diisopropylamino)ethyl chloride, 2-(N,N- dibenzylamino)ethyl chloride, 3-(N,N-ethylamino)propyl chloride, 3-(N- benzyl-N-methylamino)propyl chloride, N-(2-chloroethyl)morpholine, 2- (hexamethyleneimino)ethyl chloride, 3-(N-(
  • a hydroxyl group present on a substituent of a compound of formula I or an intermediate thereof can be O-alkylating using the Mitsunobu reaction.
  • an alcohol such as 3-(NN- dimethylamino)-l-propanol and the like, is reacted with about 1.0 to about 1.3 equivalents of triphenylphosphine and about 1.0 to about 1.3 equivalents of diethyl azodicarboxylate in an inert diluent, such as tetrahydrofuran, at a temperature ranging from about -10°C to about 5°C for about 0.25 to about 1 hour.
  • an inert diluent such as tetrahydrofuran
  • a compound of formula I or an intermediate thereof containing a aryl hydroxy group can be reacted with an aryl iodide to provide a diaryl ether.
  • this reaction is conducted by forming the alkali metal salt of the hydroxyl group using a suitable base, such as sodium hydride, in an inert diluent such as xylenes at a temperature of about -25 °C to about 10°C.
  • the salt is then treated with about 1.1 to about 1.5 equivalents of cuprous bromide dimethyl sulfide complex at a temperature ranging from about 10°C to about 30 °C for about 0.5 to about 2.0 hours, followed by about 1.1 to about 1.5 equivalents of an aryl iodide, such as sodium 2-iodobenzoate and the like.
  • the reaction is then heated to about 70 ° C to about 150 ° C for about 2 to about 24 hours to provide the diaryl ether.
  • a hydroxy-containing compound can also be readily derivatized to form a carbamate.
  • a hydroxy compound of formula I or an intermediate thereof is contacted with about 1.0 to about 1.2 equivalents of 4-nitrophenyl chloroformate in an inert diluent, such as dichloromethane, at a temperature ranging from about -25°C to about 0°C for about 0.5 to about 2.0 hours.
  • Treatment of the resulting carbonate with an excess, preferably about 2 to about 5 equivalents, of a trialkylamine, such as triethylamine, for about 0.5 to 2 hours, followed by about 1.0 to about 1.5 equivalents of a primary or secondary amine provides the carbamate.
  • amines suitable for using in this reaction include, but are not limited to, piperazine, 1- methylpiperazine, 1-acetylpiperazine, morpholine, thiomorpholine, pyrrolidine, piperidine and the like.
  • a hydroxy-containing compound is contacted with about 1.0 to about 1.5 equivalents of a carbamyl chloride in an inert diluent, such as dichloromethane, at a temperature ranging from about 25 °C to about 70°C for about 2 to about 72 hours.
  • this reaction is conducted in the presence of a suitable base to scavenge the acid generated during the reaction.
  • suitable bases include, by way of example, tertiary amines, such as triethylamine, diisopropylethylamine, N-methylmorpholine and the like.
  • At least one equivalent (based on the hydroxy compound) of 4- (NN-dimethylamino)pyridine is preferably added to the reaction mixture to facilitate the reaction.
  • carbamyl chlorides suitable for use in this reaction include, by way of example, dimethylcarbamyl chloride, diethylcarbamyl chloride and the like.
  • hydroxyl groups can be readily converted into a leaving group and displaced to form, for example, amines, sulfides and fluorides.
  • derivatives of 4-hydroxy-L- proline can be converted into the corresponding 4-amino, 4-thio or 4-fluoro- L-proline derivatives via nucleophilic displacement of the derivatized hydroxyl group.
  • a chiral compound is employed in these reactions, the stereochemistry at the carbon atom attached to the derivatized hydroxyl group is inverted.
  • These reactions are typically conducted by first converting the hydroxyl group into a leaving group, such as a tosylate, by treatment of the hydroxy compound with at least one equivalent of a sulfonyl halide, such as 7-toluenesulfonyl chloride and the like, in pyridine. This reaction is generally conducted at a temperature of from about 0°C to about 70 °C for about 1 to about 48 hours.
  • a leaving group such as a tosylate
  • a sulfonyl halide such as 7-toluenesulfonyl chloride and the like
  • the resulting tosylate can then be readily displaced with sodium azide, for example, by contacting the tosylate with at least one equivalent of sodium azide in an inert diluent, such as a mixture of N,N-dimethylformamide and water, at a temperature ranging from about 0°C to about 37 °C for about 1 to about 12 hours to provide the corresponding azido compound.
  • an inert diluent such as a mixture of N,N-dimethylformamide and water
  • the azido group can then be reduced by, for example, hydrogenation using a palladium on carbon catalyst to provide the amino (- ⁇ H 2 ) compound.
  • a tosylate group can be readily displaced by a thiol to form a sulfide.
  • This reaction is typically conducted by contacting the tosylate with at least one equivalent of a thiol, such as thiophenol, in the presence of a suitable base, such as l,8-diazabicyclo[5.4.0]undec-7-ene (DBU), in an inert diluent, such as N,N-dimethylformamide, at a temperature of from about 0°C to about 37 °C for about 1 to about 12 hours to provide the sulfide.
  • a suitable base such as l,8-diazabicyclo[5.4.0]undec-7-ene (DBU)
  • DBU l,8-diazabicyclo[5.4.0]undec-7-ene
  • a compound of formula I or I A or an intermediate thereof having a substituent containing an iodoaryl group for example, when R 5 is a (4-iodophenyl)methyl group, can be readily converted either before or after the above coupling reactions into a biaryl compound.
  • this reaction is conducted by treating the iodoaryl compound with about 1.1 to about 2 equivalents of an arylzinc iodide, such as 2-(methoxycarbonyl)- phenylzinc iodide, in the presence of a palladium catalyst, such as palladium tetra(triphenylphosphine), in an inert diluent, such as tetrahydrofuran, at a temperature ranging from about 24 °C to about 30 °C until reaction completion.
  • a palladium catalyst such as palladium tetra(triphenylphosphine
  • an inert diluent such as tetrahydrofuran
  • the compounds of formula I or I A or intermediates thereof may contain substituents having one or more sulfur atoms.
  • sulfur atoms will be present, for example, when the amino acid of formula II employed in the above reactions is derived from L-thiazolidine-4-carboxylic acid, L-(5,5-dimethyl)thiazolidine-4-carboxylic acid, L-thiamorpholine-3- carboxylic acid and the like.
  • sulfur atoms can be oxidized either before or after the above coupling reactions to provide a sulfoxide or sulfone compound using conventional reagents and reaction conditions.
  • Suitable reagents for oxidizing a sulfide compound to a sulfoxide include, by way of example, hydrogen peroxide, 3-chloroperoxybenzoic acid (MCPBA), sodium periodate and the like.
  • MCPBA 3-chloroperoxybenzoic acid
  • the oxidation reaction is typically conducted by contacting the sulfide compound with about 0.95 to about 1.1 equivalents of the oxidizing reagent in an inert diluent, such as dichloromethane, at a temperature ranging from about -50 °C to about 75 °C for about 1 to about 24 hours.
  • the resulting sulfoxide can then be further oxidized to the corresponding sulfone by contacting the sulfoxide with at least one additional equivalent of an oxidizing reagent, such as hydrogen peroxide, MCPBA, potassium permanganate and the like.
  • an oxidizing reagent such as hydrogen peroxide, MCPBA, potassium permanganate and the like.
  • the sulfone can be prepared directly by contacting the sulfide with at least two equivalents, and preferably an excess, of the oxidizing reagent. Such reactions are described further in March, "Advanced Organic Chemistry", 4th Ed., pp. 1201-1202, Wiley Publisher, 1992.
  • the compounds of formula I having an R 2 substituent other an hydrogen can be prepared using an N-substituted amino acid of formula II, such as sarcosine, N-methyl-L-phenylalanine and the like, in the above-described coupling reactions.
  • such compounds can be prepared by N-alkylation of a sulfonamide of formula I or IV (where R 2 is hydrogen) using conventional synthetic procedures.
  • this N- alkylation reaction is conducted by contacting the sulfonamide with at least one equivalent, preferably 1.1 to 2 equivalents, of an alkyl or substituted alkyl halide in the presence of a suitable base, such as potassium carbonate, in an inert diluent, such as acetone, 2-butanone and the like, at a temperature ranging from about 25 °C to about 70 °C for about 2 to about 48 hours.
  • a suitable base such as potassium carbonate
  • an inert diluent such as acetone, 2-butanone and the like
  • the sulfonamides of formula I or IV wherein R 2 is hydrogen and R 1 is a 2-alkoxycarbonylaryl group can be intramolecularly cyclized to form l,2-benzisothiazol-3-one derivatives or analogues thereof.
  • This reaction is typically conducted by treating a sulfonamide, such as N-(2- methoxycarbonylphenylsulfonyl)glycine-L-phenylalanine benzyl ester, with about 1.0 to 1.5 equivalents of a suitable base, such as an alkali metal hydride, in a inert diluent, such as tetrahydrofuran, at a temperature ranging from about 0°C to about 30 °C for about 2 to about 48 hours to afford the cyclized l,2-benzisothiazol-3-one derivative.
  • a sulfonamide such as N-(2- methoxycarbonylphenylsulfonyl)glycine-L-phenylalanine benzyl ester
  • a suitable base such as an alkali metal hydride
  • a inert diluent such as tetrahydrofuran
  • the compounds of formula I where Q is -C(S) ⁇ R 7 - can be prepared by using an amino thionoacid derivative in place of amino acid II in the above described synthetic procedures.
  • amino thionoacid derivatives can be prepared by the procedures described in Shalaky, et al., J. Org. Chem., 61:9045-9048 (1996) and Brain, et al., J. Org. Chem., 62:3808-3809 (1997) and references cited therein.
  • the compounds of formula I and IA are usually administered in the form of pharmaceutical compositions. These compounds can be administered by a variety of routes including oral, rectal, transdermal, subcutaneous, intravenous, intramuscular, and intranasal. These compounds are effective as both injectable and oral compositions. Such compositions are prepared in a manner well known in the pharmaceutical art and include at least one active compound.
  • compositions which contain, as the active ingredient, one or more of the compounds of formula I and IA above associated with pharmaceutically acceptable carriers.
  • the active ingredient is usually mixed with an excipient, diluted by an excipient or enclosed within such a carrier which can be in the form of a capsule, sachet, paper or other container.
  • the excipient serves as a diluent, it can be a solid, semi- solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient.
  • compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, suppositories, sterile injectable solutions, and sterile packaged powders.
  • the active compound In preparing a formulation, it may be necessary to mill the active compound to provide the appropriate particle size prior to combining with the other ingredients. If the active compound is substantially insoluble, it ordinarily is milled to a particle size of less than 200 mesh. If the active compound is substantially water soluble, the particle size is normally adjusted by milling to provide a substantially uniform distribution in the formulation, e.g. about 40 mesh.
  • excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, and methyl cellulose.
  • the formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy- benzoates; sweetening agents; and flavoring agents.
  • the compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
  • compositions are preferably formulated in a unit dosage form, each dosage containing from about 5 to about 100 mg. more usually about 10 to about 30 mg, of the active ingredient.
  • unit dosage forms refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient.
  • the active compound is effective over a wide dosage range and is generally administered in a pharmaceutically effective amount. It, will be understood, however, that the amount of the compound actually administered will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
  • the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention.
  • preformulation compositions as homogeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules. This solid preformulation is then subdivided into unit dosage forms of the type described above containing from, for example, 0.1 to about 500 mg of the active ingredient of the present invention.
  • the tablets or pills of the present invention may be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action.
  • the tablet or pill can include an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former.
  • the two components can separated by an enteric layer which serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release.
  • enteric layers or coatings such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
  • Compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders.
  • the liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra.
  • the compositions are administered by the oral or nasal respiratory route for local or systemic effect.
  • compositions in preferably pharmaceutically acceptable solvents may be nebulized by use of inert gases. Nebulized solutions may be breathed directly from the nebulizing device or the nebulizing device may be attached to a face mask tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions may be administered, preferably orally or nasally, from devices which deliver the formulation in an appropriate manner.
  • a tablet formula is prepared using the ingredients below:
  • the components are blended and compressed to form tablets, each weighing 240 mg.
  • a dry powder inhaler formulation is prepared containing the following components:
  • the active mixture is mixed with the lactose and the mixture is added to a dry powder inhaling appliance.
  • Tablets each containing 30 mg of active ingredient, are prepared as follows:
  • the active ingredient, starch and cellulose are passed through a No. 20 mesh U.S. sieve and mixed thoroughly.
  • the solution of polyvinyl- pyrrolidone is mixed with the resultant powders, which are then passed through a 16 mesh U.S. sieve.
  • the granules so produced are dried at 50° to 60 °C and passed through a 16 mesh U.S. sieve.
  • the sodium carboxymethyl starch, magnesium stearate, and talc previously passed through a No. 30 mesh U.S. sieve, are then added to the granules which, after mixing, are compressed on a tablet machine to yield tablets each weighing 150 mg.
  • Capsules each containing 40 mg of medicament are made as follows:
  • Quantity Ingredient (mg/capsule)
  • the active ingredient, cellulose, starch, an magnesium stearate are blended, passed through a No. 20 mesh U.S. sieve, and filled into hard gelatin capsules in 150 mg quantities.
  • Suppositories each containing 25 mg of active ingredient are made as follows:
  • Microcrystalline cellulose (89%) 50.00mg Sucrose 1.75 g
  • the medicament, sucrose and xanthan gum are blended, passed through a No. 10 mesh U.S. sieve, and then mixed with a previously made solution of the microcrystalline cellulose and sodium carboxymethyl cellulose in water.
  • the sodium benzoate, flavor, and color are diluted with some of the water and added with stirring. Sufficient water is then added to produce the required volume.
  • Quantity Ingredient (mg/capsule.)
  • composition Example 9 An intravenous formulation may be prepared as follows: Ingredient Quantity
  • a topical formulation may be prepared as follows: Ingredient Quantity
  • the white soft paraffin is heated until molten.
  • the liquid paraffin and emulsifying wax are incorporated and stirred until dissolved.
  • the active ingredient is added and stirring is continued until dispersed.
  • the mixture is then cooled until solid.
  • transdermal delivery devices Such transdermal patches may be used to provide continuous or discontinuous infusion of the compounds of the present invention in controlled amounts.
  • transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g.. U.S. Patent 5,023,252, issued June 11, 1991, herein incorporated by reference.
  • patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.
  • Indirect techniques usually involve formulating the compositions to provide for drug latentiation by the conversion of hydrophilic drugs into lipid-soluble drugs.
  • Latentiation is generally achieved through blocking of the hydroxy, carbonyl, sulfate, and primary amine groups present on the drug to render the drug more lipid soluble and amenable to transportation across the blood-brain barrier.
  • the delivery of hydrophilic drugs may be enhanced by intra-arterial infusion of hypertonic solutions which can transiently open the blood-brain barrier.
  • the compounds of this invention can be employed to bind VLA-4 ( 4 ⁇ , integrin) in biological samples and, accordingly have utility in, for example, assaying such samples for VLA-4.
  • the compounds can be bound to a solid support and the VLA-4 sample added thereto.
  • the amount of VLA-4 in the sample can be determined by conventional methods such as use of a sandwich ELISA assay.
  • labeled VLA-4 can be used in a competitive assay to measure for the presence of VLA-4 in the sample.
  • Other suitable assays are well known in the art.
  • certain of the compounds of this invention inhibit, in vivo, adhesion of leukocytes to endothelial cells mediated by VLA-4 and, accordingly, can be used in the treatment of diseases mediated by VLA-4.
  • diseases include inflammatory diseases in mammalian patients such as asthma, Alzheimer's disease, atherosclerosis, AIDS dementia, diabetes (including acute juvenile onset diabetes), inflammatory bowel disease (including ulcerative colitis and Crohn's disease), multiple sclerosis, rheumatoid arthritis, tissue transplantation, tumor metastasis, meningitis, encephalitis, stroke, and other cerebral traumas, nephritis, retinitis, atopic dermatitis, psoriasis, myocardial ischemia and acute leukocyte-mediated lung injury such as that which occurs in adult respiratory distress syndrome.
  • the biological activity of the compounds identified above may be assayed in a variety of systems.
  • a compound can be immobilized on a solid surface and adhesion of cells expressing VLA-4 can be measured. Using such formats, large numbers of compounds can be screened.
  • Cells suitable for this assay include any leukocytes known to express VLA-4 such as T cells, B cells, monocytes, eosinophils, and basophils.
  • a number of leukocyte cell lines can also be used, examples include Jurkat and U937.
  • test compounds can also be tested for the ability to competitively inhibit binding between VLA-4 and VCAM-1 , or between VLA-4 and a labeled compound known to bind VLA-4 such as a compound of this invention or antibodies to VLA-4.
  • the VCAM-1 can be immobilized on a solid surface.
  • VCAM-1 may also be expressed as a recombinant fusion protein having an Ig tail (e.g., IgG) so that binding to VLA-4 may be detected in an immunoassay.
  • VCAM-19 expressing cells such as activated endothelial cells or VCAM-1 transfected fibroblasts can be used.
  • the assays described in International Patent Application Publication No. WO 91/05038 are particularly preferred. This application is inco ⁇ orated herein by reference in its entirety.
  • the labelling systems can be in a variety of forms.
  • the label may be coupled directly or indirectly to the desired component of the assay according to methods well known in the art.
  • a wide variety of labels may be used.
  • the component may be labelled by any one of several methods. The most common method of detection is the use of autoradiography with 3 H, 125 1, 35 S, ,4 C, or 32 P labelled compounds and the like.
  • Non-radioactive labels include ligands which bind to labelled antibodies, fluorophores, chemiluminescent agents, enzymes and antibodies which can serve as specific binding pair members for a labelled ligand.
  • the choice of label depends on sensitivity required, ease of conjugation with the compound, stability requirements, and available instrumentation.
  • EAE experimental autoimmune encephalomyelitis
  • Compounds having the desired biological activity may be modified as necessary to provide desired properties such as improved pharmacological properties (e.g., in vivo stability, bio-availability), or the ability to be detected in diagnostic applications.
  • desired properties such as improved pharmacological properties (e.g., in vivo stability, bio-availability), or the ability to be detected in diagnostic applications.
  • inclusion of one or more D-amino acids in the sulfonamides of this invention typically increases in vivo stability. Stability can be assayed in a variety of ways such as by measuring the half-life of the proteins during incubation with peptidases or human plasma or serum. A number of such protein stability assays have been described (see, e.g., Verhoef et al., Eur. J. Drug Metab. Pharmacokinet., 1990, j_5(2):83-93).
  • the compounds of the subject invention may be modified in a variety of ways for a variety of end pu ⁇ oses while still retaining biological activity.
  • various reactive sites may be introduced at the terminus for linking to particles, solid substrates, macromolecules, and the like.
  • Labeled compounds can be used in a variety of in vivo or in vitro applications.
  • a wide variety of labels may be employed, such as radionuclides (e.g., gamma-emitting radioisotopes such as technetium-99 or indium- 11 1), fluorescers (e.g., fluorescent), enzymes, enzyme substrates, enzyme cofactors, enzyme inhibitors, chemiluminescent compounds, bioluminescent compounds, and the like.
  • radionuclides e.g., gamma-emitting radioisotopes such as technetium-99 or indium- 11
  • fluorescers e.g., fluorescent
  • enzymes enzyme substrates
  • enzyme cofactors enzyme inhibitors
  • chemiluminescent compounds chemiluminescent compounds
  • bioluminescent compounds bioluminescent compounds
  • In vitro uses include diagnostic applications such as monitoring inflammatory responses by detecting the presence of leukocytes expressing VLA-4.
  • the compounds of this invention can also be used for isolating or labeling such cells.
  • the compounds of the invention can be used to assay for potential inhibitors of VLA-4/VC AM-1 interactions.
  • radioisotopes are typically used in accordance with well known techniques.
  • the radioisotopes may be bound to the peptide either directly or indirectly using intermediate functional groups.
  • chelating agents such as diethylenetriaminepentacetic acid (DTP A) and ethylenediaminetetraacetic acid (EDTA) and similar molecules have been used to bind proteins to metallic ion radioisotopes.
  • the complexes can also be labeled with a paramagnetic isotope for pu ⁇ oses of in vivo diagnosis, as in magnetic resonance imaging (MRl) or electron spin resonance (ESR), both of which are well known.
  • MRl magnetic resonance imaging
  • ESR electron spin resonance
  • any conventional method for visualizing diagnostic images can be used.
  • gamma- and positron-emitting radioisotopes are used for camera imaging and paramagnetic isotopes are used for MRl.
  • the compounds can be used to monitor the course of amelioration of an inflammatory response in an individual. By measuring the increase or decrease in lymphocytes expressing VLA-4 it is possible to determine whether a particular therapeutic regimen aimed at ameliorating the disease is effective.
  • compositions of the present invention can be used to block or inhibit cellular adhesion associated with a number of diseases and disorders, or to treat diseases in a mammalian patient which are mediated by ⁇ 9 ⁇ ,.
  • diseases and disorders for instance, a number of inflammatory disorders are associated with integrins or leukocytes.
  • Treatable disorders include, e.g., transplantation rejection (e.g., allograft rejection), Alzheimer's disease, atherosclerosis, AIDS dementia, diabetes (including acute juvenile onset diabetes), retinitis, cancer metastases, rheumatoid arthritis, acute leukocyte-mediated lung injury (e.g., adult respiratory distress syndrome), asthma, nephritis, and acute and chronic inflammation, including atopic dermatitis, psoriasis, myocardial ischemia, and inflammatory bowel disease (including Crohn's disease and ulcerative colitis).
  • the pharmaceutical compositions are used to treat inflammatory brain disorders, such as multiple sclerosis (MS), viral meningitis and encephalitis.
  • Inflammatory bowel disease is a collective term for two similar diseases referred to as Crohn's disease and ulcerative colitis.
  • Crohn's disease is an idiopathic, chronic ulceroconstrictive inflammatory disease characterized by sha ⁇ ly delimited and typically transmural involvement of all layers of the bowel wall by a granulomatous inflammatory reaction. Any segment of the gastrointestinal tract, from the mouth to the anus, may be involved, although the disease most commonly affects the terminal ileum and/or colon. Ulcerative colitis is an inflammatory response limited largely to the colonic mucosa and submucosa. Lymphocytes and macrophages are numerous in lesions of inflammatory bowel disease and may contribute to inflammatory injury.
  • Asthma is a disease characterized by increased responsiveness of the tracheobronchial tree to various stimuli potentiating paroxysmal constriction of the bronchial airways.
  • the stimuli cause release of various mediators of inflammation from IgE-coated mast cells including histamine, eosinophilic and neutrophilic chemotactic factors, leukotrines, prostaglandin and platelet activating factor. Release of these factors recruits basophils, eosinophils and neutrophils, which cause inflammatory injury.
  • Atherosclerosis is a disease of arteries (e.g., coronary, carotid, aorta and iliac).
  • the basic lesion, the atheroma consists of a raised focal plaque within the intima, having a core of lipid and a covering fibrous cap.
  • Atheromas compromise arterial blood flow and weaken affected arteries.
  • Rheumatoid arthritis is a chronic, relapsing inflammatory disease that primarily causes impairment and destruction of joints. Rheumatoid arthritis usually first affects the small joints of the hands and feet but then may involve the wrists, elbows, ankles and knees. The arthritis results from interaction of synovial cells with leukocytes that infiltrate from the circulation into the synovial lining of the joints. See e.g., Paul, Immunology (3d ed., Raven Press, 1993).
  • Another indication for the compounds of this invention is in treatment of organ or graft rejection mediated by VLA-4.
  • organs such as skin, kidney, liver, heart, lung, pancreas and bone marrow.
  • the principal outstanding problem is the lack of satisfactory agents for inducing immunotolerance in the recipient to the transplanted allograft or organ.
  • the host immune system is likely to mount an immune response to foreign antigens in the transplant (host-versus- graft disease) leading to destruction of the transplanted tissue.
  • CD8 + cells, CD4 cells and monocytes are all involved in the rejection of transplant tissues.
  • Compounds of this invention which bind to alpha-4 integrin are useful, wter alia, to block alloantigen-induced immune responses in the donee thereby preventing such cells from participating in the destruction of the transplanted tissue or organ. See, e.g., Paul et al., Transplant International 9, 420-425 (1996); Georczynski et al., Immunology 87, 573-
  • GVHD graft versus host disease
  • Tissues of the skin, gut epithelia and liver are frequent targets and may be destroyed during the course of GVHD.
  • the disease presents an especially severe problem when immune tissue is being transplanted, such as in bone marrow transplantation; but less severe GVHD has also been reported in other cases as well, including heart and liver transplants.
  • the therapeutic agents of the present invention are used, inter alia, to block activation of the donor T-cells thereby interfering with their ability to lyse target cells in the host.
  • a further use of the compounds of this invention is inhibiting tumor metastasis.
  • Several tumor cells have been reported to express VLA-4 and compounds which bind VLA-4 block adhesion of such cells to endothelial cells. Steinback et al., Urol Res. 23, 175-83 (1995); Orosz et al., Int. J. Cancer 60, 867-71 (1995); Freedman et al., Leuk. Lymphoma 13, 47-52 (1994); Okahara et al., Cancer Res. 54, 3233-6 (1994).
  • a further use of the compounds of this invention is in treating multiple sclerosis.
  • Multiple sclerosis is a progressive neurological autoimmune disease that affects an estimated 250,000 to 350,000 people in the United States. Multiple sclerosis is thought to be the result of a specific autoimmune reaction in which certain leukocytes attack and initiate the destruction of myelin, the insulating sheath covering nerve fibers.
  • murine monoclonal antibodies directed against VLA-4 have been shown to block the adhesion of leukocytes to the endothelium, and thus prevent inflammation of the central nervous system and subsequent paralysis in the animals 16 .
  • compositions of the invention are suitable for use in a variety of drug delivery systems. Suitable formulations for use in the present invention are found in Remington's Pharmaceutical Sciences, Mace Publishing Company, Philadelphia, PA, 17th ed. (1985).
  • the compounds may be encapsulated, introduced into the lumen of liposomes, prepared as a colloid, or other conventional techniques may be employed which provide an extended serum half-life of the compounds.
  • a variety of methods are available for preparing liposomes, as described in, e.g., Szoka, et al., U.S. Patent Nos. 4,235,871, 4,501,728 and 4,837,028 each of which is inco ⁇ orated herein by reference.
  • compositions are administered to a patient already suffering from a disease in an amount sufficient to cure or at least partially arrest the symptoms of the disease and its complications.
  • An amount adequate to accomplish this is defined as "therapeutically effective dose.” Amounts effective for this use will depend on the disease condition being treated as well as by the judgment of the attending clinician depending upon factors such as the severity of the inflammation, the age, weight and general condition of the patient, and the like.
  • compositions administered to a patient are in the form of pharmaceutical compositions described above. These compositions may be sterilized by conventional sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile aqueous carrier prior to administration.
  • the pH of the compound preparations typically will be between 3 and 11 , more preferably from 5 to 9 and most preferably from 7 to 8. It will be understood that use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of pharmaceutical salts.
  • the therapeutic dosage of the compounds of the present invention will vary according to, for example, the particular use for which the treatment is made, the manner of administration of the compound, the health and condition of the patient, and the judgment of the prescribing physician.
  • the dose will typically be in the range of about 20 ⁇ g to about 500 ⁇ g per kilogram body weight, preferably about 100 ⁇ g to about 300 ⁇ g per kilogram body weight.
  • Suitable dosage ranges for intranasal administration are generally about 0.1 pg to 1 mg per kilogram body weight.
  • Effective doses can be extrapolated from dose-response curves derived from in vitro or animal model test systems.
  • Boc 2 0 di-tert-butyl dicarbonate
  • BOP benzotriazol- 1 -yloxy- tris(dimethylamino)phosphonium hexafluorophosphate
  • EDC 1 -(3 -dimethy laminopropy l)-3 - ethylcarbodiimide hydrochloride
  • the desired dipeptide esters were prepared by the reaction of a suitable ⁇ -protected amino acid (1 equivalent) with the appropriate amino acid ester or amino acid ester hydrochloride (1 equivalent), benzotriazol-1- yloxy-tris(dimethylamino)phosphonium hexafluorophosphate [BOP] (2.0 equivalent), triethylamine (1.1 equivalent), and DMF. The reaction mixture was stirred at room temperature overnight. The crude product was purified flash chromatography to afford the dipeptide ester.
  • Method 4 Hydrogenation Procedure I Hydrogenation was performed using 10% palladium on carbon (10% by weight) in methanol at 30 psi overnight. The reaction mixtures were filtered through a pad of Celite and the filtrate concentrated to yield the desired amino compounds.
  • Method 5 Hydrolysis Procedure I To a chilled (0°C) THF/H 2 0 solution (2:1, 5 - 10 mL) of the appropriate ester was added LiOH (or NaOH) (0.95 equivalents). The temperature was maintained at 0°C and the reaction was complete in 1 to 3 hours. The reaction mixture was extracted with ethyl acetate and the aqueous phase was lyophilized resulting in the desired carboxylate salt.
  • the aqueous phase was made acidic with 0.2 N HCl and the product was extracted with EtOAc.
  • the combined organic phase was washed with brine (1 x 5 mL), dried (MgS0 4 or Na 2 S0 4 ), filtered and concentrated to yield the acid as approximately a 1 : 1 mixture of diastereomers.
  • the tert-butyl ester was dissolved in CH 2 C1 2 (5 mL) and treated with TFA (5 mL). The reaction was complete in 1-3 hours at which time the reaction mixture was concentrated and the residue dissolved in H 2 0 and concentrated. The residue was redissolved in H 2 0 and lyophilized to yield the desired product.
  • Example 2 (3) (785 mg, 1.89 mmol) was dissolved in DMF (20 mL) at room temperature. To this was added K 2 C0 3 (1.1 eq, 281 mg) and 1-bromoethyl benzene (1.1 eq, 284 ⁇ L). The reaction was stirred for 12 hours at room temperature. Ethyl acetate (100 mL) was added, and the organic layer washed several times with brine (5 x 50 mL). The organic layer was dried over MgS0 4 . Upon filtration and evaporation of the solvents under reduced pressure, an oil was isolated. The crude material was purified by elution on silica gel (EtOAc/hexanes (1 :4)).
  • the desired material was isolated in 32% yield (330 mg, 0.6 mmol).
  • the methyl ester (330 mg. 0.6 mmol) was then converted to the corresponding acid upon treatment with ⁇ aOH (1.1 eq, 27 mg), in MeOH:H 2 0 (1 :1) (15 mL), for 4 hours at room temperature.
  • EtOAc was added as well as water.
  • the aqueous layer was collected and acidified with IN HCl to pH 2.5, and reextracted with EtOAc.
  • the organic layer was dried over MgS0 4 . Upon filtration and evaporation of the solvents under reduced pressure, a foam was isolated in quantitative yields.
  • N-toluene-4-sulfonyl)-L-proline (1.56 g, 6.93 mmol) was dissolved in
  • Diethyl 2-acetamidomalonate was treated with 4-cyanobenzyl bromide and NaOEt in EtOH, to give after dilution with H 2 0, and isolation of the resulting precipitate, diethyl 2-acetamido-2-(4-cyanobenzyl)malonate.
  • This product was treated with L-Tyr(Bn)-OH and ⁇ aOH in THF and H 2 0, to give, after acidification, extraction, drying with MgS0 4 , and evaporation the title compound as a clear oil.
  • Example 8 Following the experimental procedure described for the synthesis of Example 8, affords the title compound as a foam.
  • N- (toluene-4-sulfonyl)-L-proline 861 mg, 3.2 mmol was dissolved in 20 mL of DMF, with Et 3 ⁇ (2.0 eq, 981 ⁇ L), BOP (1.1 eq, 1.55 g), and O-methyl-L- tyrosine methyl esterHCl salt (1.1 eq).
  • the methyl ester was isolated in 25% yield (370 mg, 0.80 mmol). It was then hydrolyzed in a 1 :1 solution of
  • N-(toluene-4-sulfonyl)-L-proline 955 mg, 3.4 mmol was dissolved in dry DMF (50 mL) with L-(4-nitro)-phenylalanine methyl ester (1.1 eq,
  • Boc-D-Pro-OH and D-Phe-OBnHCl were treated with BOP and NMM in DMF, to give after aqueous workup and flash chromatography,
  • Boc-D-Pro-D-Phe-OBn This product was treated with TFA and anisole, and the mixture was evaporated. The residue was dissolved in Et 2 0 and washed with saturated aqueuos NaHC0 3 and saturated aqueous NaCI. The Et 2 0 layers were dried with MgS0 4 , filtered, and evaporated to give D-Pro-D-Phe- OBn. This product was treated with CH 3 S0 2 C1 and Et 3 N in CH 2 C1 2 , to give after aqueous workup and flash chromatography, N-(CH 3 S0 2 )-D-Pro-D-Phe-
  • N-(Toluene-4-sulfonyl)-L-proline hydrate was coupled to L-leucine methyl ester hydrochloride using the procedure described in Method 3.
  • the title compound was prepared via hydrolysis of the methyl ester using LiOH in THF/water.
  • N-(Toluene-4-sulfonyl)-L-proline hydrate was coupled to L-alanine methyl ester hydrochloride using the procedure described in Method 3.
  • the resulting methyl ester was deesterified via hydrolysis using LiOH in
  • N-(Toluene-4-sulfonyl)-L-proline hydrate was coupled to L- isoleucine methyl ester hydrochloride using the procedure described in
  • N-(Toluene-4-sulfonyl)-L-proline hydrate was coupled to L-e-Cbz- lysine methyl ester hydrochloride using the procedure described in Method 3.
  • the methyl ester was hydrolyzed using LiOH in THF/water.
  • N-(Toluene-4-sulfonyl)-L-proline hydrate was coupled to L-5-(l,l- dimethylethyl)-glutamic acid methyl ester hydrochloride using the procedure described in Method 3.
  • the title compound was prepared, via cleavage of the t-butyl ester using trifluoroacetic acid in
  • N-(Toluene-4-sulfonyl)-L-proline hydrate was coupled to L-(N- benzyl)-histidine methyl ester dihydrochloride using the procedure described in Method 3.
  • the title compound was prepared via hydrolysis of the methyl ester using LiOH in THF/water.
  • N-(Toluene-4-sulfonyl)-L-proline hydrate was coupled to methionine methyl ester using the procedure described in Method 3.
  • the title compound was prepared via hydrolysis of the methyl ester using LiOH in THF/water.
  • ⁇ MR data was as follows:

Abstract

Cette invention concerne des composés qui se lient à l'intégrine VLA-4. Certains de ces composés inhibent également l'adhésion des leucocytes et, en particulier, l'adhésion des leucocytes induite par la VLA-4. Ces composés sont utilisés pour traiter des maladies inflammatoires chez un patient mammifère, par exemple, un être humain. Parmi ces maladies, on trouve l'asthme, la maladie d'Alzheimer, l'athérosclérose, le complexe démentiel du SIDA, le diabète, l'affection intestinale inflammatoire, la polyarthrite rhumatoïde, la transplantation de tissus, la métastase tumorale et l'ischémie myocardique. Ces composés peuvent également être administrés pour traiter des maladies cérébrales inflammatoires telles que la sclérose en plaques.
EP98939871A 1997-07-31 1998-07-31 Composes dipeptidiques sulfonyles inhibiteurs de l'adhesion des leucocytes induite par vla-4 Withdrawn EP0994896A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US904423 1992-06-26
US90442397A 1997-07-31 1997-07-31
PCT/US1998/016070 WO1999006437A1 (fr) 1997-07-31 1998-07-31 Composes dipeptidiques sulfonyles inhibiteurs de l'adhesion des leucocytes induite par vla-4

Publications (1)

Publication Number Publication Date
EP0994896A1 true EP0994896A1 (fr) 2000-04-26

Family

ID=25419137

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98939871A Withdrawn EP0994896A1 (fr) 1997-07-31 1998-07-31 Composes dipeptidiques sulfonyles inhibiteurs de l'adhesion des leucocytes induite par vla-4

Country Status (12)

Country Link
EP (1) EP0994896A1 (fr)
JP (1) JP2001512139A (fr)
KR (1) KR20010022405A (fr)
CN (1) CN1265672A (fr)
AU (1) AU8823498A (fr)
BR (1) BR9811594A (fr)
CA (1) CA2290748A1 (fr)
HU (1) HUP0003921A3 (fr)
IL (1) IL133637A0 (fr)
NO (1) NO20000452L (fr)
PL (1) PL338457A1 (fr)
WO (1) WO1999006437A1 (fr)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903075B1 (en) 1997-05-29 2005-06-07 Merck & Co., Inc. Heterocyclic amide compounds as cell adhesion inhibitors
WO1998054207A1 (fr) * 1997-05-30 1998-12-03 Celltech Therapeutics Limited Derives anti-inflammatoires de tyrosine
JP2001517246A (ja) 1997-06-23 2001-10-02 田辺製薬株式会社 α▲下4▼β▲下1▼媒介細胞接着の阻止剤
DE69824037T2 (de) * 1997-11-24 2005-06-02 Merck & Co., Inc. Beta-alanin-derivate als zell-adhäsions-inhibitoren
US6645939B1 (en) 1997-11-24 2003-11-11 Merck & Co., Inc. Substituted β-alanine derivatives as cell adhesion inhibitors
US6197794B1 (en) * 1998-01-08 2001-03-06 Celltech Therapeutics Limited Phenylalanine derivatives
MY153569A (en) 1998-01-20 2015-02-27 Mitsubishi Tanabe Pharma Corp Inhibitors of ?4 mediated cell adhesion
US6329372B1 (en) 1998-01-27 2001-12-11 Celltech Therapeutics Limited Phenylalanine derivatives
ES2226413T3 (es) 1998-02-26 2005-03-16 Celltech Therapeutics Limited Derivados de fenilalanina como inhibidores de alfa-4 integrinas.
US6521626B1 (en) 1998-03-24 2003-02-18 Celltech R&D Limited Thiocarboxamide derivatives
GB9811159D0 (en) 1998-05-22 1998-07-22 Celltech Therapeutics Ltd Chemical compounds
GB9811969D0 (en) 1998-06-03 1998-07-29 Celltech Therapeutics Ltd Chemical compounds
US6685617B1 (en) 1998-06-23 2004-02-03 Pharmacia & Upjohn Company Inhibitors of α4β1 mediated cell adhesion
GB9814414D0 (en) 1998-07-03 1998-09-02 Celltech Therapeutics Ltd Chemical compounds
US6333340B1 (en) * 1998-08-14 2001-12-25 Gpi Nil Holdings, Inc. Small molecule sulfonamides for vision and memory disorders
US6339101B1 (en) * 1998-08-14 2002-01-15 Gpi Nil Holdings, Inc. N-linked sulfonamides of N-heterocyclic carboxylic acids or isosteres for vision and memory disorders
GB9821061D0 (en) 1998-09-28 1998-11-18 Celltech Therapeutics Ltd Chemical compounds
GB9821222D0 (en) 1998-09-30 1998-11-25 Celltech Therapeutics Ltd Chemical compounds
US7396526B1 (en) 1998-11-12 2008-07-08 Johnson & Johnson Consumer Companies, Inc. Skin care composition
GB9825652D0 (en) 1998-11-23 1999-01-13 Celltech Therapeutics Ltd Chemical compounds
GB9826174D0 (en) 1998-11-30 1999-01-20 Celltech Therapeutics Ltd Chemical compounds
NZ513254A (en) * 1999-02-18 2003-10-31 F Thioamide derivatives
US6518283B1 (en) 1999-05-28 2003-02-11 Celltech R&D Limited Squaric acid derivatives
GEP20063956B (en) * 1999-08-13 2006-11-10 Biogen Idec Inc Cell adhesion inhibitors
US6534513B1 (en) 1999-09-29 2003-03-18 Celltech R&D Limited Phenylalkanoic acid derivatives
US6455539B2 (en) 1999-12-23 2002-09-24 Celltech R&D Limited Squaric acid derivates
AP2002002565A0 (en) 1999-12-28 2002-06-30 Pfizer Prod Inc Non-peptidyl inhibitors of VLA-4 dependent cell binding useful in treating inflammatory, autoimmune, and respiratory diseases.
AU2001262089A1 (en) * 2000-03-14 2001-09-24 Novartis Ag Alpha4beta1 and alpha4beta7 integrin inhibitors
WO2001079173A2 (fr) 2000-04-17 2001-10-25 Celltech R & D Limited Derives de l'enamine
US6545013B2 (en) 2000-05-30 2003-04-08 Celltech R&D Limited 2,7-naphthyridine derivatives
US6403608B1 (en) 2000-05-30 2002-06-11 Celltech R&D, Ltd. 3-Substituted isoquinolin-1-yl derivatives
WO2002004426A1 (fr) 2000-07-07 2002-01-17 Celltech R & D Limited Derives d'acide squarique contenant un noyau heteroaromatique bicyclique comme antagonistes d'integrine
EP1305291A1 (fr) 2000-08-02 2003-05-02 Celltech R&D Limited Derives d'isoquinoline-1-yl substitues en 3
WO2002016329A1 (fr) * 2000-08-18 2002-02-28 Ajinomoto Co., Inc. Nouveaux derives de phenylalanine
MY129000A (en) 2000-08-31 2007-03-30 Tanabe Seiyaku Co INHIBITORS OF a4 MEDIATED CELL ADHESION
US6607735B2 (en) 2000-12-21 2003-08-19 Johnson & Johnson Consumer Companies, Inc. Method for reducing the appearance of dark circles under the eyes
US6559174B2 (en) 2001-03-20 2003-05-06 Merck & Co., Inc. N-arylsulfonyl aryl aza-bicyclic derivatives as potent cell adhesion inhibitors
US6855708B2 (en) 2001-03-20 2005-02-15 Merck & Co., Inc. N-arylsulfonyl aza-bicyclic derivatives as potent cell adhesion inhibitors
JP2004526733A (ja) 2001-03-20 2004-09-02 メルク エンド カムパニー インコーポレーテッド 強力な細胞接着阻害剤としての置換n−アリールスルホニル−プロリン誘導体
ATE464299T1 (de) * 2002-02-20 2010-04-15 Ajinomoto Kk Neues phenylalaninderivat
EP1592387A4 (fr) 2003-01-24 2009-05-06 Elan Pharm Inc Composition permettant de traiter des maladies dues a la demyelinisation et a la paralysie par administration d'agents de remyelinisation
JP2007526230A (ja) * 2003-06-25 2007-09-13 エラン ファーマシューティカルズ,インコーポレイテッド 関節リウマチを治療する方法および組成物
PL1683524T3 (pl) * 2003-11-14 2011-06-30 Ea Pharma Co Ltd Stała dyspersja lub preparat farmaceutyczny stałej dyspersji pochodnej fenyloalaniny
WO2005046697A1 (fr) * 2003-11-14 2005-05-26 Ajinomoto Co., Inc. Preparation de derives de phenylalanine a liberation soutenue pour une administration orale
DK1968635T3 (en) * 2005-12-14 2014-12-15 Ambrx Inc Compositions and Methods of, and uses of non-natural amino acids and polypeptides
EP2124996A4 (fr) 2007-02-20 2010-03-24 Merrimack Pharmaceuticals Inc Méthodes de traitement de la sclérose en plaques par administration d'une alpha-foetoprotéine combinée à un antagoniste de l'intégrine
EP2288715B1 (fr) 2008-04-11 2014-09-24 Merrimack Pharmaceuticals, Inc. Lieurs d'albumine de sérum humain, et ses conjugués
DK2713722T3 (en) 2011-05-31 2017-07-03 Celgene Int Ii Sarl Newly known GLP-1 receptor stabilizers and modulators
MX365923B (es) * 2011-12-12 2019-06-20 Celgene Int Ii Sarl Derivados de acido carboxilico que comprenden cuatro ciclos, que actuan como moduladores del receptor del peptido 1 similar al glucagon (glp-1) para terapia de enfermedades como la diabetes.
EA030857B1 (ru) 2013-06-11 2018-10-31 Селджин Интернэшнл Ii Сарл Новые модуляторы рецептора glp-1
CN107074820B (zh) 2014-07-25 2021-05-18 赛尔基因第二国际有限公司 Glp-1受体调节剂
ES2844573T3 (es) 2014-12-10 2021-07-22 Receptos Llc Moduladores del receptor de GLP-1
US10308677B2 (en) 2014-12-19 2019-06-04 Cem Corporation Coupling method for peptide synthesis at elevated temperatures
US9969769B2 (en) 2014-12-19 2018-05-15 Cem Corporation Coupling method for peptide synthesis at elevated temperatures
CN112969687A (zh) 2018-10-30 2021-06-15 吉利德科学公司 作为α4β7整合素抑制剂的喹啉衍生物
KR102652797B1 (ko) 2018-10-30 2024-04-02 길리애드 사이언시즈, 인코포레이티드 알파4베타7 인테그린의 억제를 위한 화합물
EP3873605A1 (fr) 2018-10-30 2021-09-08 Gilead Sciences, Inc. Composés pour inhibition de l'intégrine alpha4beta7
AU2019373244B2 (en) 2018-10-30 2022-05-26 Gilead Sciences, Inc. Imidazopyridine derivatives as alpha4beta7 integrin inhibitors
EP4013499A1 (fr) 2019-08-14 2022-06-22 Gilead Sciences, Inc. Composés pour l'inhibition de l'intégrine alpha 4 bêta 7

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2679903B1 (fr) * 1991-08-02 1993-12-03 Elf Sanofi Derives de la n-sulfonyl indoline portant une fonction amidique, leur preparation, les compositions pharmaceutiques en contenant.
JPH04154732A (ja) * 1990-10-18 1992-05-27 Nippon Kayaku Co Ltd 光学分割法
WO1994007815A2 (fr) * 1992-09-25 1994-04-14 Abbott Laboratories Ligands du recepteur du petit peptide anaphylatoxine
WO1994012181A1 (fr) * 1992-12-01 1994-06-09 Merck & Co., Inc. Antagonistes des recepteurs du fibrinogene
AU693143B2 (en) * 1993-12-06 1998-06-25 Cytel Corporation CS-1 peptidomimetics, compositions and methods of using the same
JPH0873422A (ja) * 1994-09-07 1996-03-19 Kdk Corp 新規アミノ酸エステルおよび白血球、エステラーゼ又はプロテアーゼの検出方法
US6306840B1 (en) * 1995-01-23 2001-10-23 Biogen, Inc. Cell adhesion inhibitors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9906437A1 *

Also Published As

Publication number Publication date
KR20010022405A (ko) 2001-03-15
WO1999006437A1 (fr) 1999-02-11
CN1265672A (zh) 2000-09-06
BR9811594A (pt) 2000-09-05
CA2290748A1 (fr) 1999-02-11
NO20000452D0 (no) 2000-01-28
JP2001512139A (ja) 2001-08-21
AU8823498A (en) 1999-02-22
HUP0003921A2 (hu) 2001-02-28
IL133637A0 (en) 2001-04-30
PL338457A1 (en) 2000-11-06
HUP0003921A3 (en) 2001-03-28
NO20000452L (no) 2000-03-27

Similar Documents

Publication Publication Date Title
WO1999006437A1 (fr) Composes dipeptidiques sulfonyles inhibiteurs de l'adhesion des leucocytes induite par vla-4
AU756696B2 (en) Substituted phenylalanine type compounds which inhibit leukocyte adhesion mediated by VLA-4
EP1001974B1 (fr) Composes de type 4-amino-phenylalanine inhibant une adhesion de leucocytes regulee par vla-4
US7229970B2 (en) Carbamyloxy compounds which inhibit leukocyte adhesion mediated by VLA-4
EP0994895A1 (fr) Composes de dipeptides inhibant une adhesion de leucocytes regulee par vla-4
WO1999006432A1 (fr) Composes de dipeptides et associes inhibant une adhesion de leucocytes regulee par vla-4
US6583139B1 (en) Compounds which inhibit leukocyte adhesion mediated by VLA-4
WO1999006390A1 (fr) Composes de carbamyloxy inhibant une adhesion de leucocytes regulee par vla-4
EP1001973A1 (fr) Composes inhibant l'adhesion leucocytaire induite par vla-4
WO1999006436A1 (fr) Composes de benzyle inhibant une adhesion de leucocytes regulee par vla-4
US6436904B1 (en) Compounds which inhibit leukocyte adhesion mediated by VLA-4
US6492421B1 (en) Substituted phenylalanine type compounds which inhibit leukocyte adhesion mediated by VLA-4
US7288526B2 (en) Dipeptide and related compounds which inhibit leukocyte adhesion mediated by VLA-4
US6362341B1 (en) Benzyl compounds which inhibit leukocyte adhesion mediated by VLA-4
US6291453B1 (en) 4-amino-phenylalanine type compounds which inhibit leukocyte adhesion mediated by VLA-4
US7030114B1 (en) Compounds which inhibit leukocyte adhesion mediated by VLA-4
US7166580B2 (en) Compounds which inhibit leukocyte adhesion mediated by VLA-4
WO2000043415A1 (fr) Composes inhibant l'adhesion des leucocytaire provoquee par vla-4
US20040006093A1 (en) Compounds which inhibit leukocyte adhesion mediated by VLA-4
MXPA00000678A (en) Sulfonylated dipeptide compounds which inhibit leukocyte adhesion mediated by vla-4

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000225

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 20000225;LT PAYMENT 20000225;LV PAYMENT 20000225;MK PAYMENT 20000225;RO PAYMENT 20000225;SI PAYMENT 20000225

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SARANTAKIS, DIMITRIOS

Inventor name: BAUDY, REINHARDT, BERNHARD

Inventor name: GRANT, FRANCINE, S.

Inventor name: KONRADI, ANDREI, W.

Inventor name: KREFT, ANTHONY

Inventor name: PLEISS, MICHAEL, A.

Inventor name: SEMKO, CHRISTOPHER, M.

Inventor name: THORSETT, EUGENE, D.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030201

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1026434

Country of ref document: HK