EP0969112B2 - Procede de preparation des toles d'acier biphasees a haute resistance mécanique et a haute capacité d'absorption d'energie de chock - Google Patents
Procede de preparation des toles d'acier biphasees a haute resistance mécanique et a haute capacité d'absorption d'energie de chock Download PDFInfo
- Publication number
- EP0969112B2 EP0969112B2 EP98907247.5A EP98907247A EP0969112B2 EP 0969112 B2 EP0969112 B2 EP 0969112B2 EP 98907247 A EP98907247 A EP 98907247A EP 0969112 B2 EP0969112 B2 EP 0969112B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- deformation
- strength
- ferrite
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 119
- 239000010959 steel Substances 0.000 title claims description 119
- 238000010521 absorption reaction Methods 0.000 title claims description 60
- 238000000034 method Methods 0.000 title claims description 16
- 229910000734 martensite Inorganic materials 0.000 claims description 52
- 238000001816 cooling Methods 0.000 claims description 42
- 239000011572 manganese Substances 0.000 claims description 25
- 238000000137 annealing Methods 0.000 claims description 24
- 238000005098 hot rolling Methods 0.000 claims description 22
- 230000003068 static effect Effects 0.000 claims description 21
- 238000005096 rolling process Methods 0.000 claims description 13
- 238000005496 tempering Methods 0.000 claims description 11
- 238000009864 tensile test Methods 0.000 claims description 11
- 229910001566 austenite Inorganic materials 0.000 claims description 10
- 230000000717 retained effect Effects 0.000 claims description 10
- 238000013459 approach Methods 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 238000005272 metallurgy Methods 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010960 cold rolled steel Substances 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 238000005266 casting Methods 0.000 claims description 3
- 238000003303 reheating Methods 0.000 claims description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- 238000005554 pickling Methods 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims 2
- 229910052757 nitrogen Inorganic materials 0.000 claims 2
- 239000012467 final product Substances 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 229910000859 α-Fe Inorganic materials 0.000 description 72
- 230000009102 absorption Effects 0.000 description 57
- 238000005482 strain hardening Methods 0.000 description 30
- 239000000463 material Substances 0.000 description 23
- 230000000694 effects Effects 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000000126 substance Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 9
- 239000006104 solid solution Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 6
- 230000002411 adverse Effects 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- 229910001563 bainite Inorganic materials 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 235000019589 hardness Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a method of producing dual-phase type high-strength steel sheets, for automobiles use, which have excellent dynamic deformation properties and exhibit excellent impact absorption properties, and are intended to be used as structural members and reinforcing materials primarily for automobiles them.
- high-strength steels have been increasing for the purpose of achieving lighter weight vehicle bodies in consideration of fuel consumption restrictions on automobiles and even more applications for high-strength steel are expected as domestic and foreign restrictions, relating to estimated impact absorption properties in automobile accidents, become rapidly more broad and strict.
- front side members can allow impact energy to be absorbed through collapse of the member, thus lessening the impact experienced by passengers.
- the present inventors have reported on the high strain rate properties and impact energy absorption properties of high-strength thin steel sheets in CAMP-ISIJ Vol.9 (1966), pp.1112-1115 , wherein they explain that the dynamic strength at a high strain rate of 10 3 (s -1 ) increases dramatically compared to the static strength at a low strain rate speed of 10 -3 (s -1 ), that absorption energy during crashes is increased by greater steel material strengths, that the strain rate dependency of materials depends on the structure of the steel, and that TRIP type steel (Transformation induced plasticity type steel) and dual-phase (hereunder, "DP”) type steel exhibit both excellent press formability and high impact absorption properties.
- TRIP type steel Transformation induced plasticity type steel
- DP dual-phase
- JP-A-07-90482 discloses a cold-rolled thin steel sheet excellent in impact resistance and its production, in which a steel sheet is hot rolled preferably with a finishing hot rolling temperature of 850°C or higher, then the hot-rolled steel sheet is coiled at a temperature of 650°C or higher, and the hot-rolled steel sheet is cold-rolled, annealed at a temperature in the temperature range of 780 to 900°C, cooled to 500°C with a cooling rate of 15 to 50°C/sec and further cooled to 300°C with a cooling rate of 5 to 35°C/sec.
- EP-A-0 719 868 discloses a steel sheet for automobiles having excellent impact resistance and method of manufacturing the steel sheet, in which a hot-rolled steel sheet is produced by the steps: hot rolling with a finishing temperature of 780 to 850°C, starting to cool the hot-rolled steel sheet within 0.5 seconds with a cooling rate of 30°C/sec or more to a temperature range of 750 to 650°C, subsequently holding the hot-rolled steel sheet in the temperature range of 750 to 600°C for 4 to 60 seconds, further cooling the hot-rolled steel sheet with a cooling rate of 30°C/sec or more and coiling in the temperature range of 500 to 100°C, and a cold-rolled steel sheet is produced by the steps: annealing a hot-rolled and cold-rolled steel sheet in the temperature range of 780 to 950°C, cooling the annealed steel sheet to 400°C at a cooling rate of 15 to 60°C/sec and further cooling the steel sheet to 150°C with a cooling rate of 3 to 15°C/sec.
- the present invention has been proposed as a means of overcoming the problems described above, and provides a method of producing dual-phase type high-strength steel sheets for automobiles use, which have excellent impact absorption properties and excellent dynamic deformation properties.
- the invention further provides a method of producing dual-phase type high-strength steel sheets, for automobiles, with excellent dynamic deformation properties, which are high-strength steel sheets used for automotive parts, such as front side members, and which are selected based on exact properties and standards for impact energy absorption during collisions and can reliably provide guaranteed safety.
- the invention still further provides a method of producing dual-phase type high-strength steel sheets for automobiles with excellent dynamic deformation properties, which exhibit all the properties suitable for press forming of members, including excellent shape fixability, excellent stretchability and excellent flangeability.
- the object above can be achieved by the features specified in the claims.
- Impact absorbing members such as front side members of automobiles are produced by bending and press forming of steel sheets. Because impacts during automobile collisions are absorbed by such members which have undergone press forming, they must have high impact absorption properties even after having undergone the pre-deformation corresponding to the press forming. At the current time, however, no attempt has been made to obtain high-strength steel sheets with excellent impact absorption properties as actual members, with consideration of both the increase in the deformation stress by press forming and the increase in deformation stress due to a higher strain rate, as was mentioned above.
- steel sheets with a dual-phase (DP) structure are ideal as high-strength steel sheets with excellent impact absorption properties for actual members which are press formed as described above. It was demonstrated that such steel sheets with a dual-phase microstructure, which is a composite microstructure wherein the dominating phase is a ferrite phase responsible for the increase in deformation resistance by an increased strain rate, and the second phase includes a hard martensite phase, have excellent dynamic deformation properties.
- the microstructure of the final steel sheets is a composite structure wherein the dominating phase is ferrite and another low temperature product phase includes a hard martensite phase at a volume fraction of 3 ⁇ 50% after deformation at 5% equivalent strain of the steel sheet.
- the volume fraction of the martensite phase since high-strength steel sheets and even steel sheets with high dynamic deformation properties cannot be obtained if the martensite phase is less than 3%, the volume fraction of the martensite phase must be at least 3%. Also, if the martensite phase exceeds 50%, this results in a smaller volume fraction of the ferrite phase responsible for greater deformation resistance due to increased deformation speed, making it impossible to obtain steel sheets with excellent dynamic deformation properties compared to static deformation strength while also hindering press formability, and therefore it was found that the volume fraction of the martensite phase must be 3 ⁇ 50%.
- the present inventors then pursued experimentation and research based on these findings and, as a result, found that although the degree of pre-deformation corresponding to press forming of impact absorbing members such as front side members sometimes reaches a maximum of over 20%, depending on the location, the majority are locations with 0% ⁇ 10% of equivalent strain, and that by understanding the effect of pre-deformation in this range, it is possible to estimate the behavior of the member as a whole after pre-deformation. Consequently, according to the invention, a deformation of from 0% to 10% of equivalent strain was selected as the amount of pre-deformation applied to members during press forming.
- Fig. 1 is a graph showing the relationship between the absorption energy (Eab) of a press formed member during collision and the material strength (S), for the different steel types shown in Table 5, according to an example to be described later.
- the material strength S is the tensile strength (TS) according to the common tensile test.
- the member absorption energy (Eab) is the absorption energy in the lengthwise direction (direction of the arrow) along a press formed member such as shown in Fig. 2 , upon collision with a 400 kg mass weight at a speed of 15 m/sec, to a crushing degree of 100 mm.
- hat-shaped section 1 consists of a 2.0 mm-thick steel sheet formed into a hat-shaped section 1 with a steel sheet 2 of the same thickness and the same type of steel, joined together by spot welding, the hat-shaped section 1 having a corner radius of 2 mm, and with spot welding points indicated by 3.
- Fig. 1 From Fig. 1 it is seen that the member absorption energy (Eab) tends to increase with the strength of materials under normal tensile testing, though with considerable variation.
- the materials in Fig. 1 were subjected to pre-deformation of more than 0% and less than or equal to 10% of equivalent strain, and then the static deformation strength ⁇ swhen deformed in a strain rate range of 5 x 10 -4 - 5 x 10 -3 (s -1 ) and the dynamic deformation strength ⁇ d when deformed in a strain rate range of 5 x 10 2 - 5 x 10 3 (s -1 ) after the pre-deformation, were measured.
- a classification was possible based on ( ⁇ d - ⁇ s).
- the symbols plotted in Fig. 1 were as follows:
- Fig. 3 shows the relationship between the work hardening coefficient of a steel sheet and the dynamic energy absorption which indicates the member impact absorption properties, for a class of materials with the same yield strength.
- increased work hardening coefficients of the steel sheets result in improved member impact absorption properties (dynamic energy absorption)
- the work hardening coefficient of a steel sheet can properly indicate the member impact absorption properties so long as the yield strength class is the same.
- the yield strength x work hardening coefficient can be an indicator of the member impact absorption properties.
- work hardening coefficient was expressed in terms of an n value of 5% ⁇ 10% strain in consideration of the strain undergone by members during press forming, from the viewpoint of improving the dynamic energy absorption, work hardening coefficients of under 5% strain or work hardening coefficients of even more than 10% strain may be preferred.
- a schematic illustration of this test method is shown in Fig. 7 .
- Fig. 5 , 4 is a worktop
- 5 is a test piece
- 6 is a spot welding section.
- Fig. 6 7 is a hat-shaped test piece and 8 is a spot welding section.
- Fig. 7 9 is a worktop
- 10 is a test piece
- 11 is a falling weight (150 kg)
- 12 is a frame
- 13 is a shock absorber.
- the work hardening coefficient and yield strength of each steel sheet was determined in the following manner.
- the steel sheet was shaped into a JIS-#5 test piece (gauge length: 50 mm, parallel width: 25 mm), subjected to tensile test at a strain rate of 0.001 (s -1 ) to determine the yield strength and work hardening coefficient (n value at 5% ⁇ 10% strain).
- the steel sheet used had a sheet thickness of 1.2 mm and the steel sheet composition contained C at 0.02-0.25 wt%, either or both Mn and Cr at a total of 0.15 ⁇ 3.5 wt% and one or more of Si, Al and P at a total of 0.02-4.0 wt%, with the remainder Fe as the main component.
- Fig. 8 is a graph showing the relationship between the average value ⁇ dyn of the deformation stress in the range of 3 ⁇ 10% of equivalent strain when deformed in a strain rate range of 5 x 10 2 - 5 x 10 3 (s -1 ) and the static material strength (TS), as an index of the impact energy absorption property upon collision, according to the invention, where the static material strength (TS) is the tensile strength (TS: MPa) in the static tensile test as measured in a strain rate range of 5 x 10 -4 - 5 x 10 -3 (s -1 ).
- impact absorbing members such as front side members have a hat-shaped cross-sectional shape
- the present inventors have found that despite deformation proceeding up to a high maximum strain of over 40%, at least 70% of the total absorption energy is absorbed in a strain range of 10% or lower in a high-speed stress-strain diagram. Therefore, the dynamic deformation resistance with high-speed deformation at 10% or lower was used as the index of the high-speed collision energy absorption property.
- the index used for the impact energy absorption property was the average stress: ⁇ dyn in the range of 3 ⁇ 10% of equivalent strain when deformed in a strain rate range of 5 x 10 2 - 5 x 10 3 (s -1 ) high-speed tensile deformation.
- the average stress: ⁇ dyn of 3 ⁇ 10% upon high-speed deformation generally increases with increasing static tensile strength ⁇ maximum stress (TS: MPa) in a static tensile test measured in a stress rate range of 5 x 10 -4 - 5 x 10 -3 (s -1 ) ⁇ of the steel material prior to pre-deformation or baking treatment. Consequently, increasing the static tensile strength (which is synonymous with the static material strength) of the steel material directly contributes to an improved impact energy absorption property of the member. However, increased strength of the steel results in poorer press formability into members, making it difficult to obtain members with the necessary shapes. Consequently, steels having a high ⁇ dyn with the same tensile strength TS are preferred.
- steel sheets wherein the average value ⁇ dyn (MPa) of the deformation stress in the range of 3 ⁇ 10% of equivalent strain when deformed in a strain rate range of 5 x 10 2 - 5 x 10 -3 (s -1 ), after pre-deformation of more than 0% and less than or equal to 10% of equivalent strain satisfies the inequality: ⁇ dyn ⁇ 0.766 x TS + 250 as expressed in terms of the tensile strength (TS: MPa) in the static tensile test as measured in a strain rate range of 5 x 10 -4 - 5 x 10 -3 (s -1 ) prior to pre-deformation, have higher impact energy absorption properties as actual members compared to other steels, and that the impact energy absorption property is improved without increasing the overall weight of the member, making it possible to provide high-strength steel sheets with high dynamic deformation resistance.
- TS tensile strength
- YS(0)/TS'(5) is no greater than 0.7, which amount is dependent on the initial microstructure, the amount of solid solution elements in the low temperature product phase other than the martensite phase and the main ferrite phase, and the deposited state of carbides, nitrides and carbonitrides.
- YS(0) is the yield strength
- TS' (5) is the tensile strength (TS') in the static tensile test with pre-deformation at 5% of equivalent strain or after further bake hardening treatment (BH treatment). It was also demonstrated that steel sheets with even more excellent dynamic deformation properties can be obtained when the yield strength: YS(0) x work hardening coefficient is at least 70.
- the martensite is at a volume fraction of 3-50%, and preferably 3 ⁇ 30%.
- the average grain size of the martensite is preferably no greater than 5 ⁇ m, and the average grain size of the ferrite is preferably no greater than 10 ⁇ m. That is, the martensite is hard, and contributes to a decrease in the yield ratio and an improvement in the work hardening coefficient, by producing a mobile dislocations primarily in adjacent ferrite grains; however, by satisfying the restrictions mentioned above it is possible to disperse fine martensite in the steel, so that the improvement in the properties spreads throughout the entire steel sheet.
- this dispersion of fine martensite in the steel can help to avoid deterioration in the hole expansion ratio and tensile strength x total elongation, which is an adverse effect of the hard martensite. Also, because it is possible to reliably achieve work hardening coefficient ⁇ 0.130, tensile strength x total elongation ⁇ 18,000 and hole expansion ratio ⁇ 1.2, it is thereby possible to improve the impact absorption properties and press formability.
- the yield ratio With a martensite volume fraction of less than 3%, the yield ratio becomes larger while the press formed member cannot exhibit an excellent work hardening property (work hardening coefficient ⁇ 0.130) after it has undergone collision deformation, and since the deformation resistance (load) stays at a low level, and the dynamic energy absorption is low preventing improvement in the impact absorption properties.
- the volume fraction of the martensite is preferred to be no greater than 30%.
- the ferrite is present at a volume fraction of preferably at least 50%, and more preferably at least 70%, and its average grain size (mean circle equivalent diameter) is preferably no greater than 10 ⁇ m, and more preferably no greater than 5 ⁇ m, with the martensite preferably adjacent to the ferrite. This aids the fine dispersion of the martensite in the ferrite matrix, while effectively extending the property-improving effect, beyond simply a local effect, to the entire steel sheet, favorably acting to prevent the adverse effects of the martensite.
- the structure of the remainder present with the martensite and ferrite may be a mixed structure comprising a combination of one or more from among pearlite, bainite, retained ⁇ , etc., and although primarily bainite is preferred in cases which require hole expansion properties, since retained ⁇ undergoes work-induced transformation into martensite by press forming, experimental results have shown that including retained austenite prior to press forming has an effect even in preferred small amounts (5% or less).
- the ratio of the martensite and ferrite particle sizes is no greater than 0.6, and the ratio of the hardnesses to be at least 1.5.
- Dual-phase type high-strength steel sheets with excellent dynamic deformation properties which are used according to the invention are steel sheets containing the following chemical compositions, in terms of weight percentage: C at 0.02 ⁇ 0.25%, either or both Mn and Cr at a total of 0.15 ⁇ 3.5%, one or more from among Si, Al and P at a total of 0.02 ⁇ 4.0%, if necessary also one or more from among Ni, Cu and Mo at a total of no more than 3.5%, one or more from among Nb, Ti and V at no more than 0.30%, and either or both Ca and REM at 0.0005 ⁇ 0.01% for Ca and 0.005 ⁇ 0.05% for REM, with the remainder Fe as the primary component.
- C is the element which most strongly affects the microstructure of the steel sheet, and if its content is too low it will become difficult to obtain martensite with the desired amount and strength. Addition in too great an amount leads to unwanted carbide precipitation, inhibited increase in deformation resistance at higher strain rates and overly high strength, as well as poor press formability and weldability; the content is therefore 0.02-0.25 wt%.
- Mn, Cr: Mn and Cr have an effect of stabilizing austenite and guaranteeing sufficient martensite, and are also solid solution hardening elements; they must therefore be added in a minimum amount of 0.15 wt%, but if added in too much the aforementioned effect becomes saturated thus producing adverse effects such as preventing ferrite transformation, and thus they are added in the maximum amount of 3.5 wt%.
- Si, Al, P are useful elements for producing martensite, and they promote production of ferrite and suppress precipitation of carbides, thus having the effect of guaranteeing sufficient martensite, as well as a solid solution hardening effect and a deoxidization effect.
- P can also promote martensite formation and solid solution hardening, similar to Al and Si. From this standpoint, the minimum amount of Si + Al + P added must be at least 0.02 wt%. On the other hand, excessive addition will saturate this effect and result instead in brittleness, and therefore the maximum amount of addition is no more than 4.0 wt%.
- Si scales can be avoided by adding Si at no greater than 0.1 wt%, and conversely by adding it at 1.0 wt% or greater Si scales can be produced over the entire surface so that they are not conspicuous.
- the P content may be kept at no greater than 0.05%, and preferably no greater than 0.02%.
- Ni, Cu, Mo are added when necessary, and are austenite-stabilizing elements similar to Mn, which increase the hardenability of the steel, and are effective for adjustment of the strength. From the standpoint of weldability and chemical treatment, they can be used when the amounts of C, Si, Al and Mn are restricted, but if the total amount of these elements added exceeds 3.5 wt% the dominant ferrite phase will tend to be hardened, thus inhibiting the increase in deformation resistance by a greater strain rate, as well as raising the cost of the steel sheet; the amount of these elements added is therefore 3.50 wt% or lower.
- Nb, Ti, V These elements are added when necessary, and are effective for strengthening the steel sheet through formation of carbides, nitrides and carbonitrides. However, when added at greater than 0.3 wt% they are deposited in large amounts in the dominant ferrite phase or at the grain boundaries as carbides, nitrides and carbonitrides, becoming a source of the mobile dislocation during high speed deformation, and inhibiting the increase in deformation resistance by greater strain rates. In addition, the deformation resistance of the dominant phase becomes higher than necessary, thus wasting the C and leading to higher costs; the maximum amount to be added is therefore 0.3 wt%.
- B is an element which is effective for strengthening since it improves the hardenability of the steel by suppressing production of ferrite, but if it is added at greater than 0.01 wt% its effect will be saturated, and therefore B is added at a maximum of 0.01 wt%.
- Ca is added to at least 0.0005 wt% for improved press formability (especially hole expansion ratio) by shape control (spheroidization) of sulfide-based inclusions, and the maximum amount thereof to be added is 0.01 wt% in consideration of effect saturation and the adverse effect due to increase in the aforementioned inclusions (reduced hole expansion ratio).
- REM is added in an amount of from 0.005% to 0.05 wt%.
- the amount of S is no greater than 0.01 wt%, and preferably no greater than 0.003 wt%, from the standpoint of press formability (especially hole expansion ratio) by sulfide-based inclusions, and reduced spot weldability.
- the pre-deformation is working with a tempering rolling or tension leveler which is applied to the steel sheet material prior to its press forming.
- a tempering roller and tension leveler may be used. That is, the means used may include a tempering rolling, a tension leveler, or a tempering roller and tension leveler.
- the steel sheet material may also be subjected to press forming after being worked with a tempering rolling or tension leveler.
- the amount of pre-deformation applied with the tempering rolling and/or tension leveler i.e. the degree of plastic deformation (T) will differ depending on the initial dislocation density, and T should be small if the initial density is large.
- the plastic deformation (T) is determined based on the ratio between the yield strength YS(0) and the tensile strength TS'(5) in the static tensile test with pre-deformation at 5% of equivalent strain or after further bake hardening treatment (BH treatment), or YS(0)/TS'(5). That is, YS(0)/TS'(5) is an indicator of the sum of the initial dislocation density and the dislocation density introduced by 5% deformation, and the amount of the solid solution elements; it may be concluded that a smaller YS(0)/TS'(5) means a higher initial dislocation density and more of the solid solution elements.
- YS(0)/TS'(5) is therefore no greater than 0.7, and is preferably provided according to the following equation: 23.5 YS 0 / TS ′ 5 ⁇ 0.5 + 15 ⁇ T ⁇ 2.5 YS 0 / TS ′ 5 ⁇ 0.5 + 0.5 wherein the upper limit for T is determined from the standpoint of press formability including impact absorption property and flexibility.
- a continuous cast slab is fed directly from casting to a hot rolling step, or is hot rolled upon reheating after momentary cooling.
- Thin gauge continuous casting and continuous hot rolling techniques may be applied for the hot rolling in addition to normal continuous casting, but in order to avoid a lower ferrite volume fraction and a coarser average grain size of the thin steel sheet microstructure, the bar (cast strip) thickness at the hot rolling approach side (the initial steel bar thickness) is preferred to be at least 25 mm.
- the mean circle equivalent size of ferrite of the steel sheet is made coarser, while it is also a disadvantage against obtaining the desired martensite.
- the final pass rolling speed for the hot rolling is preferred to be at least 500 mpm and more preferably at least 600 mpm, in light of the problems described above.
- the mean circle equivalent diameter of ferrite of the steel sheet is made coarser, while it is also a disadvantage against obtaining the desired martensite.
- the finishing temperature for the hot rolling is from Ar 3 - 50°C to Ar 3 + 120°C.
- Ar 3 - 50°C deformed ferrite is produced, with inferior work hardening property and press formability.
- Ar 3 + 120°C and the mean circle equivalent size of ferrite of the steel sheet is made coarser, while it is also becomes difficult to obtain the desired martensite.
- the average cooling rate for cooling in the run-out table is least 5°C/sec. At less than 5°C/sec it becomes difficult to obtain the desired martensite.
- the coiling temperature is no higher than 350°C. At higher than 350°C it becomes difficult to obtain the desired martensite.
- the hot rolling is carried out so that when the finishing temperature for hot rolling is in the range of Ar 3 - 50°C to Ar 3 + 120°C, the metallurgy parameter A satisfies inequalities (1) and (2).
- the average cooling rate on the run-out table is at least 5°C/sec, and the coiling to be carried out under conditions such that the relationship between the metallurgy parameter A and the coiling temperature (CT) satisfies inequality (3).
- the cold rolled sheet according to the invention is then subjected to the different steps following hot-rolling and coiling and is cold rolled and subjected to annealing.
- the annealing is ideally continuous annealing through an annealing cycle such as shown in Fig. 12 , and during the annealing of the continuous annealing step, it must be kept for at least 10 seconds in the temperature range of Ac 1 - Ac 3 . At less than Ac 1 austenite will not be produced and it will therefore be impossible to obtain martensite thereafter, while at greater than Ac 3 the austenite monophase structure will be coarse, and it will therefore be impossible to obtain the desired average grain size for the martensite.
- the maximum residence time is preferably no greater than 200 seconds, from the standpoint of avoiding addition to the equipment and coarsening of the microstructure.
- the cooling after this annealing must be at an average cooling rate of at least 5°C/sec. At less than 5°C/sec the desired space factor for the martensite cannot be achieved. Although there is no particular upper limit here, it is preferably 300°C/sec when considering temperature control during the cooling.
- the cooled steel sheet is heated to a temperature To from Ac 1 - Ac 3 in the continuous annealing cycle shown in Fig. 12 , and cooled under cooling conditions provided by a method wherein cooling to a secondary cooling start temperature Tq in the range of 550°C-To at the primary cooling rate of 1 ⁇ 10°C/sec is followed by cooling to a secondary cooling end temperature Te which is no higher than a temperature Tem which is determined by the chemical compositions of the steel and annealing temperature To, at a secondary cooling rate of 10 ⁇ 200°C/sec.
- T2 or the difference between the value excluding the effect of the C concentration in the austenite (T1) and the value indicating the effect of the C concentration (T2).
- T1 is the temperature calculated from the solid solution element concentration excluding C
- T2 is the temperature calculated from the C concentration in the retained austenite at Ac 1 and Ac 3 determined by the chemical compositions of the steel and Tq determined by the annealing temperature To.
- Ceq represents the carbon equivalents in the retained austenite at the annealing temperature To.
- T1 561 ⁇ 33 ⁇ Mn % + Ni + Cr + Cu + Mo / 2
- Ac 3 910 ⁇ 203 ⁇ C % 1 / 2 ⁇ 15.2 ⁇ Ni % + 44.7 ⁇ Si % ⁇ 104 ⁇ V % + 31.5 ⁇ Mo % ⁇ 30 ⁇ Mn % ⁇ 11 ⁇ Cr % ⁇ 20 ⁇ Cu % + 70 ⁇ P % + 40 ⁇ Al % + 400 ⁇ Ti %
- Te when Te is equal to or greater than Tem, the desired martensite cannot be obtained. Also, if Toa is 400°C or higher, the martensite obtained by cooling is tempered, making it impossible to achieve satisfactory dynamic properties and press formability. On the other hand, if Toa is less than Te - 50°C, additional cooling equipment is necessary, and greater variation will result in the material due to the difference between the temperature of the continuous annealing furnace and the temperature of the steel sheet; this temperature was therefore determined as the lower limit. Also, the upper limit for the holding time was determined to be 20 minutes, because when it is longer than 20 minutes it becomes necessary to expand the equipment.
- the microstructure of the steel sheet is a composite microstructure wherein the dominating phase is ferrite, and the second phase is another low temperature product phase containing martensite at a volume fraction from 3% ⁇ 50% after shaping and working at 5% equivalent strain, and wherein the difference between the quasi-static deformation strength ⁇ s when deformed in a strain rate range of 5 x 10 -4 - 5 x 10 -3 (1/s) after pre-deformation of more than 0% and less than or equal to 10% of equivalent strain, and the dynamic deformation strength ⁇ d measured in a strain rate range of 5 x 10 2 - 5 x 10 3 (1/s) after the aforementioned pre-deformation, i.e.
- the steel sheets according to the invention may be made into any desired product by annealing, tempering rolling, electronic coating or hot-dip coating.
- the 26 steel materials listed in Table 1 were heated to 1050 ⁇ 1250°C and subjected to hot rolling, cooling and coiling under the production conditions listed in Table 2, to produce hot rolled steel sheets.
- the steel sheets satisfying the chemical composition conditions and production conditions according to the invention have a dual-phase structure with a martensite volume fraction of at least 3% and no greater than 50%, and as shown in Fig.
- the mechanical properties of the hot rolled steel sheets indicated excellent impact absorption properties as represented by a work hardening coefficient of at least 0.13 at 5 ⁇ 10% strain, ⁇ d - ⁇ s ⁇ 60 MPa, and ⁇ dyn ⁇ 0.766 x TS + 250, while also having suitable press formability and weldability.
- Table 2 Production conditions Steel No. Hot rolling conditions Cooling conditions Coiling conditions Finishing temp. °C Initial steel strip thickness (mm) Final pass rolling speed (mpm) Final sheet thickness (mm) Strain rate (/sec) log A calculated ⁇ T °C Inequality (2) Aver. cooling rate (°C/sec) Note Coiling temp.
- the 22 steel materials listed in Table 5 were heated to 1050 ⁇ 1250°C and subjected to hot rolling, cooling and coiling, followed by acid pickling and then cold rolling under the conditions listed in Table 6 to produce cold rolled steel sheets.
- Temperatures Ac 1 and Ac 3 were then calculated from the chemical compositions for each steel, and the sheets were subjected to heating, cooling and holding under the annealing conditions listed in Table 6, prior to cooling to room temperature.
- the steel sheets satisfying the chemical composition conditions and production conditions according to the invention have a dual-phase structure with a martensite volume fraction of at least 3% and no greater than 50% and, as shown in Fig.
- the mechanical properties of the hot-rolled steel sheets indicated excellent impact absorption properties as represented by a work hardening coefficient of at least 0.13 at 5 ⁇ 10% strain, ⁇ d - ⁇ s ⁇ 60 MPa, and ⁇ dyn ⁇ 0.766 x TS + 250, while also having suitable press formability and weldability.
- Table 7 Microstructure of steels Steel No.
- the microstructure was evaluated by the following method.
- a tensile test was conducted according to JIS5 (gauge mark distance: 50 mm, parallel part width: 25 mm) with a strain rate of 0.001/s and, upon determining the tensile strength (TS), yield strength (YS), total elongation (T. El) and work hardening coefficient (n value for 1% ⁇ 5% strain), the YS x work hardening coefficient and TS x T. El. were calculated.
- the stretch flanging property was measured by expanding a 20 mm punched hole from the burrless side with a 30° cone punch, and determining the hole expansion ratio (d/d 0 ) between the hole diameter (d) at the moment at which the crack penetrated the plate thickness and the original hollow diameter (do, 20 mm).
- the spot weldability was judged to be unsuitable if a spot welding test piece bonded at a current of 0.9 times the expulsion current using an electrode with a tip radius of 5 times the square root of the steel sheet thickness underwent peel fracture when ruptured with a chisel.
- the present invention makes it possible to provide, in an economical and stable manner, high-strength hot rolled steel sheets and cold rolled steel sheets for automobiles which provide previously unobtainable excellent impact absorption properties and press formability and thus offers a markedly wider range of objects and conditions for uses of high-strength steel sheets.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Claims (2)
- Procédé pour produire une tôle d'acier laminé à chaud haute résistance biphasique ayant des propriétés de forte absorption de l'énergie d'impact, caractérisé en ce que
un lingot coulé en continu contenant, en pourcentages en poids, C : 0,02 à 0,25 %, l'un ou l'autre ou les deux de Mn et Cr en une quantité totale de 0,15 à 3,5 %, un ou plusieurs choisi(s) parmi Si, Al et P en une quantité totale de 0,02 à 4,0 %, éventuellement un ou plusieurs choisi(s) parmi Ni, Cu et Mo en une quantité totale ne dépassant pas 3,5 %, éventuellement un ou plusieurs choisi(s) parmi Nb, Ti et V en une quantité ne dépassant pas 0,30 %, et éventuellement l'un ou l'autre ou les deux de Ca et REM en une quantité de 0,0005 à 0,01 % pour Ca et de 0,005 à 0,05 % pour REM, en outre éventuellement un ou plusieurs choisi(s) parmi B à raison d'au plus 0,01 %, S à raison d'au plus 0,01 % et N à raison d'au plus 0,02 %, le reste étant Fe et des impuretés inévitables, est introduit directement depuis la coulée vers une étape de laminage à chaud, ou est laminé à chaud lors du réchauffage après refroidissement momentané,
est soumis à un laminage à chaud à une température de finissage d'Ar3 - 50°C à Ar3 + 120°C,
le laminage à chaud est effectué de façon que le paramètre métallurgique A satisfasse aux inégalités (1) et (2) ci-dessous, la vitesse de refroidissement moyenne subséquente dans la table de sortie est d'au moins 5°C/s, et le bobinage est accompli de façon que la relation entre ledit paramètre métallurgique A et la température de bobinage (CT) satisfasse à l'inégalité (3) ci-dessous :FT : température de finissage (°C)Ceq : équivalents carbone = C + Mneq/6 (%)Mneq : équivalents manganèse = Mn + (Ni + Cr + Cu + Mo)/2 (%)ε* : vitesse de déformation au passage final (s-1)h1 : épaisseur de tôle à l'approche du passage finalh2 : épaisseur de tôle à la sortie du passage finalr : (h1 - h2)/h1R : rayon du cylindrev : vitesse à la sortie du passage finalΔ·T : température de finissage (température à la sortie du passage final de finissage) - température à l'approche du finissage (température à l'approche du premier passage de finissage)Ar3 : 901 - 325 C% + 33 Si% - 92 Mneq, etl'usinage avec un laminage de revenu et/ou un niveleur de tension est réalisé de sorte que le degré de déformation plastique (T) appliquée au laminage de revenu et/ou au niveleur de tension satisfait à l'inégalité (4) ci-dessous :YS(0) : limite élastiqueTS'(5) : résistance à la traction dans un test de traction statique avec une pré-déformation à 5 % de déformation équivalente ou après de plus un traitement BH et YS(0)/TS'(5) n'est pas supérieur à 0,7. - Procédé pour produire une tôle d'acier laminé à froid haute résistance biphasique ayant des propriétés de forte absorption de l'énergie d'impact, caractérisé en ce que
un lingot coulé en continu contenant, en pourcentage en poids, C : 0,02 à 0,25 %, l'un ou l'autre ou les deux de Mn et Cr en une quantité totale de 0,15 à 3,5 %, un ou plusieurs choisi(s) parmi Si, Al et P en une quantité totale de 0,02 à 4,0 %, éventuellement un ou plusieurs choisi(s) parmi Ni, Cu et Mo en une quantité totale ne dépassant pas 3,5 %, éventuellement un ou plusieurs choisi(s) parmi Nb, Ti et V en une quantité ne dépassant pas 0,30 %, et éventuellement l'un ou l'autre ou les deux de Ca et REM en une quantité de 0,0005 à 0,01 % pour Ca et de 0,005 à 0,05 % pour REM, en outre éventuellement un ou plusieurs choisi(s) parmi B à raison d'au plus 0,01 %, S à raison d'au plus 0,01 % et N à raison d'au plus 0,02 %, le reste étant Fe et des impuretés inévitables, est introduit directement depuis la coulée vers une étape de laminage à chaud, ou est laminé à chaud lors du réchauffage après refroidissement momentané,
est laminé à chaud, la tôle d'acier laminée à chaud et ensuite bobinée est laminée à froid après décapage acide et,
durant le recuit dans une étape de recuit en continu pour la préparation du produit final, la tôle d'acier laminé à froid est chauffée à une température de recuit (To) comprise entre Ac1 et Ac3 et soumise au recuit tout en étant maintenue dans cette plage de température pendant au moins 10 secondes, et
ensuite est refroidie à une vitesse de refroidissement primaire de 1 à 10°C/s jusqu'à une température de début de refroidissement secondaire (Tq) située dans la plage allant de 550 à 720°C et puis refroidie à une vitesse de refroidissement secondaire de 10 à 200°C/s jusqu'à une température de fin de refroidissement secondaire (Te) qui n'est pas supérieure à une température (Tem),
où Tem est la température de début de transformation en martensite pour l'austénite résiduelle à la température de début de refroidissement secondaire Tq et est définie par Tem = T1 - T2, où :T1 = 561 - 33 x {Mn% + (Ni + Cr + Cu + Mo) / 2},T2 = 474 x (Ac3 - Ac1) x C / (To - Ac1) quand Ceq* = (Ac3 - Ac1) x C / (To - Ac1) + (Mn + Si/4 + Ni/7 + Cr + Cu + 1,5Mo) / 6 est supérieur à 0,6, et T2 = 474 x (Ac3 - Ac1) x C /{3 x (Ac3 - Ac1) x C + [(Mn + Si/4 + Ni/7 + Cr + Cu + 1,5Mo) / 2 - 0,85] x (To - Ac1)} quand Ceq* vaut 0,6 ou moins,où :Ac1 = 723 x 0,7 x Mn% - 16,9 x Ni% + 29,1 x Si% + 16,9 x Cr%,Ac3 = 910 - 203 x (C%)1/2 - 15,2 x Ni% + 44,7 x Si% + 104 x V% + 31,5 x Mo% + 30 x Mn% - 11 x Cr% - 20 x Cu% + 70 x P% + 40 x Al% + 400 x Ti%,et l'usinage avec un laminage de revenu et/ou un niveleur de tension est réalisé de sorte que le degré de déformation plastique (T) appliquée au laminage de revenu et/ou au niveleur de tension satisfait à l'inégalité (4) ci-dessous :YS(0) : limite élastiqueTS'(5) : résistance à la traction dans un test de traction statique avec une pré-déformation à 5 % de déformation équivalente ou après de plus un traitement BH et YS(0)/TS'(5) n'est pas supérieur à 0,7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10181225.3A EP2314729B2 (fr) | 1997-03-17 | 1998-03-16 | Feuilles d'acier biphase à haute résistance ayant d'excellentes propriétés de déformation dynamique |
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8243497 | 1997-03-17 | ||
JP8243497 | 1997-03-17 | ||
JP19029997 | 1997-07-15 | ||
JP19029797 | 1997-07-15 | ||
JP19029997 | 1997-07-15 | ||
JP19029797A JP3530347B2 (ja) | 1997-07-15 | 1997-07-15 | 動的変形特性に優れた高強度鋼板の選定方法 |
JP22300897 | 1997-08-06 | ||
JP22300897A JP3936440B2 (ja) | 1997-08-06 | 1997-08-06 | 耐衝突安全性と成形性に優れた自動車用高強度鋼板とその製造方法 |
JP25893897A JP3839928B2 (ja) | 1997-07-15 | 1997-09-24 | 動的変形特性に優れたデュアルフェーズ型高強度鋼板 |
JP25893897 | 1997-09-24 | ||
PCT/JP1998/001101 WO1998041664A1 (fr) | 1997-03-17 | 1998-03-16 | Tole d'acier biphase a haute resistance ayant d'excellentes proprietes de deformation dynamique et son procede de preparation |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10181225.3A Division EP2314729B2 (fr) | 1997-03-17 | 1998-03-16 | Feuilles d'acier biphase à haute résistance ayant d'excellentes propriétés de déformation dynamique |
EP10181225.3A Division-Into EP2314729B2 (fr) | 1997-03-17 | 1998-03-16 | Feuilles d'acier biphase à haute résistance ayant d'excellentes propriétés de déformation dynamique |
EP10181225.3 Division-Into | 2010-09-28 |
Publications (4)
Publication Number | Publication Date |
---|---|
EP0969112A1 EP0969112A1 (fr) | 2000-01-05 |
EP0969112A4 EP0969112A4 (fr) | 2003-05-21 |
EP0969112B1 EP0969112B1 (fr) | 2011-08-17 |
EP0969112B2 true EP0969112B2 (fr) | 2017-03-08 |
Family
ID=27524972
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98907247.5A Expired - Lifetime EP0969112B2 (fr) | 1997-03-17 | 1998-03-16 | Procede de preparation des toles d'acier biphasees a haute resistance mécanique et a haute capacité d'absorption d'energie de chock |
EP10181225.3A Expired - Lifetime EP2314729B2 (fr) | 1997-03-17 | 1998-03-16 | Feuilles d'acier biphase à haute résistance ayant d'excellentes propriétés de déformation dynamique |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10181225.3A Expired - Lifetime EP2314729B2 (fr) | 1997-03-17 | 1998-03-16 | Feuilles d'acier biphase à haute résistance ayant d'excellentes propriétés de déformation dynamique |
Country Status (7)
Country | Link |
---|---|
EP (2) | EP0969112B2 (fr) |
KR (1) | KR100334949B1 (fr) |
CN (1) | CN1080321C (fr) |
AU (1) | AU717294B2 (fr) |
CA (1) | CA2283924C (fr) |
TW (1) | TW426742B (fr) |
WO (1) | WO1998041664A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2704049C1 (ru) * | 2018-10-03 | 2019-10-23 | Общество с ограниченной ответственностью Научно-производственное предприятие "БУРИНТЕХ" (ООО НПП "БУРИНТЕХ") | Долотная сталь |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3039862B1 (ja) * | 1998-11-10 | 2000-05-08 | 川崎製鉄株式会社 | 超微細粒を有する加工用熱延鋼板 |
JP4369545B2 (ja) * | 1998-11-30 | 2009-11-25 | 新日本製鐵株式会社 | ひずみ速度依存性に優れたフェライト系薄鋼板およびそれを用いた自動車 |
CA2323952A1 (fr) * | 1999-01-28 | 2000-08-03 | Yasutaka Okada | Produit en acier destine a des pieces structurelles de machines |
CA2297291C (fr) * | 1999-02-09 | 2008-08-05 | Kawasaki Steel Corporation | Feuille d'acier laminee a chaud de forte resistance a la traction et methodes pour sa production |
DE19936151A1 (de) | 1999-07-31 | 2001-02-08 | Thyssenkrupp Stahl Ag | Höherfestes Stahlband oder -blech und Verfahren zu seiner Herstellung |
DE60116765T2 (de) * | 2000-01-24 | 2006-11-02 | Jfe Steel Corp. | Feuerverzinktes stahlblech und herstellungsverfahren dafür |
TW558569B (en) | 2000-02-23 | 2003-10-21 | Kawasaki Steel Co | High tensile hot-rolled steel sheet having excellent strain aging hardening properties and method for producing the same |
EP1195447B1 (fr) * | 2000-04-07 | 2006-01-04 | JFE Steel Corporation | Tole d'acier laminee a chaud, tole d'acier laminee a froid et tole d'acier galvanisee par immersion a chaud ayant d'excellentes caracteristiques de durcissement au vieillissement par ecrouissage, et procede pour leur production |
WO2001081640A1 (fr) * | 2000-04-21 | 2001-11-01 | Nippon Steel Corporation | Plaque d'acier presentant une excellente aptitude a l'ebarbage et une resistance elevee a la fatigue, et son procede de production |
US7591917B2 (en) * | 2000-10-02 | 2009-09-22 | Nucor Corporation | Method of producing steel strip |
US20030129444A1 (en) * | 2000-11-28 | 2003-07-10 | Saiji Matsuoka | Composite structure type high tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production |
JP3927384B2 (ja) * | 2001-02-23 | 2007-06-06 | 新日本製鐵株式会社 | 切り欠き疲労強度に優れる自動車用薄鋼板およびその製造方法 |
FR2833617B1 (fr) * | 2001-12-14 | 2004-08-20 | Usinor | Procede de fabrication de toles laminees a froid a tres haute resistance d'aciers dual phase micro-allies |
FR2834722B1 (fr) * | 2002-01-14 | 2004-12-24 | Usinor | Procede de fabrication d'un produit siderurgique en acier au carbone riche en cuivre, et produit siderurgique ainsi obtenu |
EP1398390B1 (fr) * | 2002-09-11 | 2006-01-18 | ThyssenKrupp Steel AG | Acier ferritique-martensitique possédant une resistance élevée ayant une fine microstructure |
JP4180909B2 (ja) * | 2002-12-26 | 2008-11-12 | 新日本製鐵株式会社 | 穴拡げ性、延性及び化成処理性に優れた高強度熱延鋼板及びその製造方法 |
WO2004059024A1 (fr) | 2002-12-26 | 2004-07-15 | Nippon Steel Corporation | Feuille d'acier mince a haute resistance presentant d'excellentes caracteristiques d'expansibilite de trou, d'endurance et de traitement chimique et procede de production correspondant |
FR2850671B1 (fr) * | 2003-02-05 | 2006-05-19 | Usinor | Procede de fabrication d'une bande d'acier dual-phase a structure ferrito-martensitique, laminee a froid et bande obtenue |
FR2855184B1 (fr) * | 2003-05-19 | 2006-05-19 | Usinor | Tole laminee a froid et aluminiee en acier dual phase a tres haute resistance pour ceinture anti-implosion de televiseur, et procede de fabrication de cette tole |
DE10327383C5 (de) * | 2003-06-18 | 2013-10-17 | Aceria Compacta De Bizkaia S.A. | Anlage zur Herstellung von Warmband mit Dualphasengefüge |
US7959747B2 (en) | 2004-11-24 | 2011-06-14 | Nucor Corporation | Method of making cold rolled dual phase steel sheet |
US7442268B2 (en) | 2004-11-24 | 2008-10-28 | Nucor Corporation | Method of manufacturing cold rolled dual-phase steel sheet |
US8337643B2 (en) | 2004-11-24 | 2012-12-25 | Nucor Corporation | Hot rolled dual phase steel sheet |
US11155902B2 (en) | 2006-09-27 | 2021-10-26 | Nucor Corporation | High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same |
US7608155B2 (en) | 2006-09-27 | 2009-10-27 | Nucor Corporation | High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same |
US20080178972A1 (en) * | 2006-10-18 | 2008-07-31 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd) | High strength steel sheet and method for producing the same |
ATE432375T1 (de) * | 2006-10-30 | 2009-06-15 | Thyssenkrupp Steel Ag | Verfahren zum herstellen von stahl-flachprodukten aus einem mit silizium legierten mehrphasenstahl |
JP5165236B2 (ja) * | 2006-12-27 | 2013-03-21 | 新日鐵住金ステンレス株式会社 | 衝撃吸収特性に優れた構造部材用ステンレス鋼板 |
BRPI0818530A2 (pt) | 2007-10-10 | 2015-06-16 | Nucor Corp | Aço laminado a frio de estrutura metalográfica complexa e método de fabricar uma chapa de aço de estrutura metalográfica complexa |
WO2009115877A1 (fr) | 2008-03-19 | 2009-09-24 | Nucor Corporation | Appareil de coulée en bande à positionnement du rouleau lamineur |
US20090236068A1 (en) | 2008-03-19 | 2009-09-24 | Nucor Corporation | Strip casting apparatus for rapid set and change of casting rolls |
US8882938B2 (en) | 2009-12-21 | 2014-11-11 | Tata Steel Ijmuiden B.V. | High strength hot dip galvanised steel strip |
PL2553132T3 (pl) * | 2010-03-29 | 2015-10-30 | Arcelormittal Investigacion Y Desarrollo Sl | Produkt stalowy z ulepszoną charakterystyką nierdzewienia w warunkach zasolonych |
EP2374910A1 (fr) * | 2010-04-01 | 2011-10-12 | ThyssenKrupp Steel Europe AG | Acier, produit plat en acier, composant en acier et procédé de fabrication d'un composant en acier |
WO2012064129A2 (fr) * | 2010-11-10 | 2012-05-18 | (주)포스코 | Procédé pour fabriquer un acier à plasticité induite par transformation laminé à froid/laminé à chaud de haute résistance ayant une résistance à la traction d'une valeur de 590 mpa, une excellente usinabilité, et un faible écart de propriété mécanique |
JP5856002B2 (ja) * | 2011-05-12 | 2016-02-09 | Jfeスチール株式会社 | 衝突エネルギー吸収能に優れた自動車用衝突エネルギー吸収部材およびその製造方法 |
JP5370620B1 (ja) * | 2011-11-15 | 2013-12-18 | Jfeスチール株式会社 | 薄鋼板およびその製造方法 |
DE102012013113A1 (de) * | 2012-06-22 | 2013-12-24 | Salzgitter Flachstahl Gmbh | Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl mit einer Mindestzugfestigkleit von 580MPa |
TWI465586B (zh) * | 2013-02-07 | 2014-12-21 | China Steel Corp | 低降伏比鋼材及其製造方法 |
CN104018067B (zh) * | 2014-04-28 | 2016-04-20 | 莱芜钢铁集团有限公司 | 一种高强塑性钒微合金化双相钢无缝管及其制备方法 |
JP6191769B2 (ja) | 2014-05-28 | 2017-09-06 | 新日鐵住金株式会社 | 熱延鋼板及びその製造方法 |
CN104281774B (zh) * | 2014-09-02 | 2017-06-13 | 上海交通大学 | Q&p钢在不同应变率单拉后残余奥氏体含量的预测方法 |
CN106715742B (zh) | 2014-09-17 | 2019-07-23 | 日本制铁株式会社 | 热轧钢板 |
RU2578618C1 (ru) * | 2014-11-18 | 2016-03-27 | Публичное акционерное общество "Северсталь" (ПАО "Северсталь") | Способ производства полос из низколегированной свариваемой стали |
MX2017008027A (es) | 2014-12-19 | 2017-10-20 | Nucor Corp | Hoja de acero martensitico de calibre liviano laminada en caliente y metodo para fabricarla. |
DE102015106780A1 (de) * | 2015-04-30 | 2016-11-03 | Salzgitter Flachstahl Gmbh | Verfahren zur Erzeugung eines Warm- oder Kaltbandes aus einem Stahl mit erhöhtem Kupfergehalt |
CN105483530A (zh) * | 2015-11-30 | 2016-04-13 | 丹阳市宸兴环保设备有限公司 | 一种石油天然气输送管用热轧宽钢板材料 |
CN105568145B (zh) * | 2015-12-24 | 2017-07-18 | 北京科技大学 | 一种具有耐腐蚀性能的汽车用冷轧超高强双相钢板及其制备方法 |
RU2617075C1 (ru) * | 2016-02-11 | 2017-04-19 | Иван Анатольевич Симбухов | Способ производства экономно-легированного высокопрочного проката для труб магистральных газопроводов высокого давления, а также для отраслей машиностроения и оффшорного судостроения |
RU2638479C1 (ru) * | 2016-12-20 | 2017-12-13 | Публичное акционерное общество "Северсталь" | Горячекатаный лист из низколегированной стали толщиной от 15 до 165 мм и способ его получения |
CN111363901B (zh) * | 2018-12-26 | 2022-06-24 | 宝山钢铁股份有限公司 | 一种高表面质量的铁素体马氏体热轧双相钢及其制造方法 |
JP7235621B2 (ja) * | 2019-08-27 | 2023-03-08 | 株式会社神戸製鋼所 | 低強度ホットスタンプ用鋼板、ホットスタンプ部品およびホットスタンプ部品の製造方法 |
CN110669913B (zh) * | 2019-09-30 | 2021-05-28 | 鞍钢股份有限公司 | 一种高强汽车车轮用热轧酸洗双相钢及其生产方法 |
CN113106345B (zh) * | 2021-04-07 | 2022-06-10 | 宝武集团鄂城钢铁有限公司 | 一种高塑性双相钢及其生产方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5123969A (en) † | 1991-02-01 | 1992-06-23 | China Steel Corp. Ltd. | Bake-hardening cold-rolled steel sheet having dual-phase structure and process for manufacturing it |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4196025A (en) † | 1978-11-02 | 1980-04-01 | Ford Motor Company | High strength dual-phase steel |
JPS59219473A (ja) | 1983-05-26 | 1984-12-10 | Nippon Steel Corp | カラ−エツチング液及びエツチング方法 |
JP3169293B2 (ja) | 1993-06-30 | 2001-05-21 | 川崎製鉄株式会社 | 耐衝撃性に優れた自動車用薄鋼板およびその製造方法 |
JP3458416B2 (ja) * | 1993-09-21 | 2003-10-20 | Jfeスチール株式会社 | 耐衝撃性に優れた冷延薄鋼板およびその製造方法 |
JP3370436B2 (ja) * | 1994-06-21 | 2003-01-27 | 川崎製鉄株式会社 | 耐衝撃性に優れた自動車用鋼板とその製造方法 |
US5585184A (en) | 1994-09-29 | 1996-12-17 | Union Carbide Chemicals & Plastics Technology Corporation | Colorable non-sticky resin core-shell particles |
JP3533719B2 (ja) | 1994-09-29 | 2004-05-31 | 村田機械株式会社 | ファクシミリ装置 |
JP3039842B2 (ja) * | 1994-12-26 | 2000-05-08 | 川崎製鉄株式会社 | 耐衝撃性に優れる自動車用熱延鋼板および冷延鋼板ならびにそれらの製造方法 |
JPH08176732A (ja) * | 1994-12-27 | 1996-07-09 | Nkk Corp | 被削性の優れた窒化用鋼 |
JP3529178B2 (ja) * | 1994-12-28 | 2004-05-24 | Jfeスチール株式会社 | 衝撃吸収能に優れた極低炭素鋼板 |
JP3090421B2 (ja) * | 1996-07-22 | 2000-09-18 | 新日本製鐵株式会社 | 耐久疲労性に優れた加工用熱延高強度鋼板 |
-
1998
- 1998-03-16 EP EP98907247.5A patent/EP0969112B2/fr not_active Expired - Lifetime
- 1998-03-16 KR KR1019997008474A patent/KR100334949B1/ko not_active IP Right Cessation
- 1998-03-16 AU AU63118/98A patent/AU717294B2/en not_active Expired
- 1998-03-16 CA CA002283924A patent/CA2283924C/fr not_active Expired - Lifetime
- 1998-03-16 EP EP10181225.3A patent/EP2314729B2/fr not_active Expired - Lifetime
- 1998-03-16 TW TW087103834A patent/TW426742B/zh not_active IP Right Cessation
- 1998-03-16 CN CN98803465A patent/CN1080321C/zh not_active Expired - Lifetime
- 1998-03-16 WO PCT/JP1998/001101 patent/WO1998041664A1/fr active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5123969A (en) † | 1991-02-01 | 1992-06-23 | China Steel Corp. Ltd. | Bake-hardening cold-rolled steel sheet having dual-phase structure and process for manufacturing it |
Non-Patent Citations (3)
Title |
---|
G. BÉRANGER ET AL.: "The Book of Steel", vol. 59, 1996, LAVOISIER PUBLISHERS, PARIS, pages: 1208 - 1211 † |
O. MAID ET AL.: "Herstellung von Warmband aus Dualphasen-Stahl mit Haspeltemperaturen unterhalb der Martensitstart-Temperatur", THYSSEN TECHNISCHE BERICHTE, no. 1/85, 1985, pages 28 - 33 † |
S. MASATOSCHI ET AL.: "Influence of Microstructure on Yielding Behavior in Continuous-Annealed Multi-Phase Sheet Steels", 1985, THE METALLURGICAL SOCIETY OF AIME, PENNSYLVANIA, pages: 341 - 360 † |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2704049C1 (ru) * | 2018-10-03 | 2019-10-23 | Общество с ограниченной ответственностью Научно-производственное предприятие "БУРИНТЕХ" (ООО НПП "БУРИНТЕХ") | Долотная сталь |
Also Published As
Publication number | Publication date |
---|---|
CA2283924A1 (fr) | 1998-09-24 |
WO1998041664A1 (fr) | 1998-09-24 |
CA2283924C (fr) | 2006-11-28 |
KR100334949B1 (ko) | 2002-05-04 |
EP0969112A4 (fr) | 2003-05-21 |
EP0969112A1 (fr) | 2000-01-05 |
EP2314729A1 (fr) | 2011-04-27 |
KR20000076372A (ko) | 2000-12-26 |
EP2314729B2 (fr) | 2017-03-08 |
CN1251140A (zh) | 2000-04-19 |
AU717294B2 (en) | 2000-03-23 |
CN1080321C (zh) | 2002-03-06 |
AU6311898A (en) | 1998-10-12 |
TW426742B (en) | 2001-03-21 |
EP2314729B1 (fr) | 2012-02-08 |
EP0969112B1 (fr) | 2011-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0969112B2 (fr) | Procede de preparation des toles d'acier biphasees a haute resistance mécanique et a haute capacité d'absorption d'energie de chock | |
EP0974677B1 (fr) | Procede de fabrication de toles d'acier a haute resistance mecanique ayant une excellente aptitude à la déformation et a haute capacite d'absorption d'energie de chock | |
EP2314730B1 (fr) | Aciers haute résistance ayant d'excellentes propriétés d'absorption d'énergie aux chocs. | |
US6364968B1 (en) | High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same | |
JP3793350B2 (ja) | 動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板とその製造方法 | |
JP3619357B2 (ja) | 高い動的変形抵抗を有する高強度鋼板とその製造方法 | |
US6319338B1 (en) | High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same | |
JP3492176B2 (ja) | 高い動的変形抵抗を有する良加工性高強度鋼板とその製造方法 | |
EP3612650B1 (fr) | Feuille d'acier à haute résistance présentant une excellente déformabilité de bordage par étirage, procédé de production dudit acier et son utilisation | |
EP1325966A1 (fr) | Plaque en acier ecroui presentant une tres haute resistance a la traction et procede de production | |
JPH1161326A (ja) | 耐衝突安全性及び成形性に優れた自動車用高強度鋼板とその製造方法 | |
JP3936440B2 (ja) | 耐衝突安全性と成形性に優れた自動車用高強度鋼板とその製造方法 | |
CN115698362B (zh) | 钢板、构件及它们的制造方法 | |
JPH10259448A (ja) | 静的吸収エネルギー及び耐衝撃性に優れた高強度鋼板並びにその製造方法 | |
KR102440772B1 (ko) | 성형성이 우수한 고강도강판 및 그 제조방법 | |
EP4265781A1 (fr) | Tôle d'acier laminée à froid de très forte ténacité, possédant d'excellentes propriétés en termes de limite d'élasticité et de flexion, et son procédé de fabrication | |
EP3730651A1 (fr) | Tôle d'acier à haute résistance de type à rapport de rendement élevé et son procédé de fabrication | |
JP2000290745A (ja) | 疲労特性と衝突安全性に優れた加工用高強度鋼板及びその製造方法 | |
JP4016573B2 (ja) | 延性と耐衝撃特性に優れた高張力鋼板およびその製造方法と、耐衝撃特性を有する構造部材の製造方法 | |
JPH10317096A (ja) | 耐衝突安全性に優れた自動車用高強度鋼板とその製造方法 | |
KR20240139067A (ko) | 강판, 부재, 그들의 제조 방법, 냉연 강판용 열연 강판의 제조 방법 및 냉연 강판의 제조 방법 | |
CN116194609A (zh) | 扩孔性优异的高强度钢板及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19990929 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB NL |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20030403 |
|
17Q | First examination report despatched |
Effective date: 20080303 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: A METHOD OF PRODUCING DUAL-PHASE HIGH-STRENGTH STEEL SHEETS HAVING HIGH IMPACT ENERGY ABSORPTION PROPERTIES |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NIPPON STEEL CORPORATION |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MABUCHI, HIDESATOC/O NIPPON STEEL CORP. OITA WORKS Inventor name: WAKITA, JUNICHIC/O NIPPON STEEL CORP. OITA WORKS Inventor name: KAWANO, OSAMUC/O NIPPON STEEL CORP. OITA WORKS Inventor name: SAKUMA, YASUHARUC/O NIPPON STEEL CORP. KIMITSU WOR Inventor name: KURIYAMA, YUKIHISAC/O NIPPON STEEL CORPORATION Inventor name: TAKAHASHI, MANABUC/O NIPPON STEEL CORPORATION Inventor name: UENISHI, AKIHIROC/O NIPPON STEEL CORPORATION |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 69842366 Country of ref document: DE Effective date: 20111027 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: THYSSENKRUPP STEEL EUROPE AG Effective date: 20120518 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 69842366 Country of ref document: DE Effective date: 20120518 |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: NIPPON STEEL & SUMITOMO METAL CORPORATION |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69842366 Country of ref document: DE Representative=s name: VOSSIUS & PARTNER PATENTANWAELTE RECHTSANWAELT, DE Effective date: 20130227 Ref country code: DE Ref legal event code: R082 Ref document number: 69842366 Country of ref document: DE Representative=s name: VOSSIUS & PARTNER, DE Effective date: 20130227 Ref country code: DE Ref legal event code: R081 Ref document number: 69842366 Country of ref document: DE Owner name: NIPPON STEEL & SUMITOMO METAL CORPORATION, JP Free format text: FORMER OWNER: NIPPON STEEL CORP., TOKIO/TOKYO, JP Effective date: 20130227 Ref country code: DE Ref legal event code: R081 Ref document number: 69842366 Country of ref document: DE Owner name: NIPPON STEEL & SUMITOMO METAL CORPORATION, JP Free format text: FORMER OWNER: NIPPON STEEL CORP., TOKIO/TOKYO, JP Effective date: 20110901 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: THYSSENKRUPP STEEL EUROPE AG Effective date: 20120518 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
27A | Patent maintained in amended form |
Effective date: 20170308 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): DE FR GB NL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 69842366 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170307 Year of fee payment: 20 Ref country code: FR Payment date: 20170213 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170315 Year of fee payment: 20 Ref country code: NL Payment date: 20170210 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69842366 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20180315 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20180315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20180315 |