EP2374910A1 - Acier, produit plat en acier, composant en acier et procédé de fabrication d'un composant en acier - Google Patents

Acier, produit plat en acier, composant en acier et procédé de fabrication d'un composant en acier Download PDF

Info

Publication number
EP2374910A1
EP2374910A1 EP10158923A EP10158923A EP2374910A1 EP 2374910 A1 EP2374910 A1 EP 2374910A1 EP 10158923 A EP10158923 A EP 10158923A EP 10158923 A EP10158923 A EP 10158923A EP 2374910 A1 EP2374910 A1 EP 2374910A1
Authority
EP
European Patent Office
Prior art keywords
steel
component
content
flat
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10158923A
Other languages
German (de)
English (en)
Inventor
Thomas Gerber
Ilse Heckelmann
Thomas Heller
Julia Dr.-Ing. Mura
Martin Norden
Nicolas Vives Diaz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Priority to EP10158923A priority Critical patent/EP2374910A1/fr
Priority to UAA201209615A priority patent/UA108091C2/ru
Priority to PL11711594T priority patent/PL2553133T3/pl
Priority to ES11711594.9T priority patent/ES2524352T3/es
Priority to KR1020127024639A priority patent/KR20130014520A/ko
Priority to CA2780082A priority patent/CA2780082A1/fr
Priority to PCT/EP2011/055117 priority patent/WO2011121118A2/fr
Priority to US13/519,916 priority patent/US20120279621A1/en
Priority to MX2012007359A priority patent/MX2012007359A/es
Priority to JP2013501863A priority patent/JP5871901B2/ja
Priority to PT117115949T priority patent/PT2553133E/pt
Priority to DK11711594.9T priority patent/DK2553133T3/en
Priority to EP11711594.9A priority patent/EP2553133B1/fr
Publication of EP2374910A1 publication Critical patent/EP2374910A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a steel, a flat steel product, a steel component produced therefrom and a method for producing a steel component.
  • Hot-formed, press-hardened components made of manganese-boron steels are particularly suitable for crash-relevant automotive components.
  • a typical example of this steel quality is the MnB steel known under the name "22MnB5" (material number 1.5528).
  • MnB steels Possible uses of MnB steels, Press-hardened components are eg B-pillar, B-pillar reinforcement and bumper of car bodies.
  • Combined hot forming and press hardening can be used to produce components with complex geometries and highest strengths (R m : approx. 1500 MPa, R P 0 , 2 : approx. 1100 MPa).
  • the components thus obtained are characterized by a predominantly martensitic structure.
  • Their high strength basically allows a significant reduction in wall thickness and thus a significantly reduced weight of the component.
  • hot-press hardened components typically have only a low ductility from MnB steels (A 80 : approx. 5 - 6%).
  • the sheet thickness of hot-press-hardened components is therefore designed in practice much more pronounced for safety reasons, as would normally be necessary taking into account their strength in practice.
  • body components are made of so-called "tailored blanks".
  • These are sheet metal blanks, which are composed of blanks of different grades of steel.
  • a "tailored blank” is made available for the production of a B pillar of a car body, the area of which associated with the upper part of the B pillar consists of a 22MnB5 steel.
  • a steel grade is then provided which also after hot-press hardening indicates a higher ductility.
  • a suitable steel is known under the name H340LAD (material number 1.0933).
  • the areas made of the ductile material in the critical area of the respective component generally have to have a higher sheet thickness in order to achieve the same in normal operation To be able to absorb component loadings. This in turn has a correspondingly higher weight for the overall component.
  • a first development direction to meet this requirement is aimed at optimizing the manufacturing process.
  • a steel grade with a martensitic structure and improved elongation at break should be able to be produced.
  • An example of this procedure is in the EP 1 642 991 B1 described and provides for reaching the martensite stop temperature before a high and then a slower cooling rate. In this way, a self-tempered martensite is produced, which has an improved elongation at break.
  • An alternative development direction is the optimization of the process for producing a quality with a multi-phase structure by means of the so-called "semi-hot forming".
  • the flat steel product to be formed to the respective component is heated to a temperature between the A C1 and the A C3 temperature at which the steel has a two-phase structure.
  • the finished component has a lower martensite content and higher proportions of more ductile phases, such as ferrite or austenite, after cooling compared to conventionally austenitized and hardened components.
  • the components still have a comparably high strength.
  • tensile strengths R m of 800 - 1000 MPa are achieved with only slightly reduced elongation at break values (A 80 approx. 10-20%) compared to the initial condition.
  • Such a procedure is for example in the WO 2007/034063 A1 described.
  • the heating temperature is above the A C1 temperature and should be selected taking into account a possible grain growth and the evaporation of the Zn-based coating of the flat steel product from which the component is formed.
  • the processed flat steel product is composed according to different alloying concepts.
  • the steel in question in wt .-%) 0.15 - 0.25% C, 1.0 - 1.5% Mn, 0.1 - 0.35% Si, max. 0.8% Cr, in particular 0.1-0.4% Cr, max. 0.1% Al, up to 0.05% Nb, in particular max.
  • Nb up to 0.01% N, 0.01-0.07 Ti, ⁇ 0.05% P, especially ⁇ 0.03% P, ⁇ 0.03% S,> 0.0005 bis ⁇ 0.008% B, especially at least 0.0015% B, and the balance of unavoidable impurities and iron, wherein the Ti content is 3.4 times greater than the N content.
  • the object of the invention was to provide a steel in which it is ensured with high reliability that a component manufactured from it has in each case high strength values and an increased elongation at break.
  • a steel flat product made using this steel, a steel component made therefrom, and a method suitable for producing such a steel component should be given.
  • the solution according to the invention of the abovementioned object is that such a steel component is designed according to claim 9.
  • the invention is based on the recognition that, by selecting a suitable alloy and setting a suitable microstructure composition, it is possible to provide a steel having a high strength of at least 1000 MPa and an elongation at break A 80 after austenitization, thermoforming and hardening each safely above 6%.
  • the steel according to the invention contains (in% by weight) 0.15-0.40% C, 1.0-2.0% Mn, 0.2-1.6 Al, up to 1.4% Si, where the sum of the contents of Si and Al is 0.25 - 1.6%, up to 0.10% P, 0 - 0.03% S, up to 0.5% Cr, up to 1.0% Mo, up to 0.01% N, up to 2.0% Ni, 0.012-0.25% Nb, up to 0.40% Ti, and 0.0015-0.0050 B with the remainder iron and unavoidable impurities.
  • a flat steel product according to the invention has at least one region which consists of a steel according to the invention.
  • a flat steel product according to the invention can be designed as a tailored blank, in which one region is produced from a steel according to the invention, while another region is produced from a different steel.
  • the area produced by the steel according to the invention of the tailored blanks according to the invention forms on the finished, from the steel flat product produced steel component then a high-strength area in which a high strength combined with a good elongation at break.
  • a steel component produced from such a flat steel product according to the invention then has at each point the advantageous combination of high strength and good extensibility achieved by the steel alloy according to the invention.
  • a steel component according to the invention is correspondingly characterized in that it consists of a steel according to the invention at least in one region and that its structure in the region of the high-strength steel according to the invention is composed of martensite, austenite and up to 20 area% ferrite.
  • a flat steel product according to the invention is first of all made available. This flat steel product is then heated through to an austenitizing temperature of 850-950 ° C. The required hold time is typically 2 to 10 minutes.
  • the flat steel product is usually transported to a thermoforming mold to be thermoformed there.
  • the transport time should be limited to 5 - 12 seconds.
  • the thermoforming itself can be carried out in a conventional manner as compression molding.
  • the steel component is cooled down so rapidly that the steel component obtained after cooling has a structure consisting of martensite, austenite and up to 20 area% of ferrite.
  • the typically required cooling rates are in the range of at least 25 ° C / s.
  • the hot forming and cooling can be carried out in one or two stages. In single-stage hot press hardening, hot forming and hardening are performed in one go together in one tool. In contrast, in the two-stage process, cold forming takes place first (up to 100%) and only then is the final hot forming, including the production of the hardened structure.
  • the component according to the invention When the respective processed flat steel product has been austenitized within the abovementioned temperatures, the component according to the invention, after hot forming and accelerated cooling in the region consisting of a steel according to the invention, has a structure which is characterized by a combination of a hard phase ( Martensite) and at least one more ductile phase (austenite and ferrite).
  • Martensite hard phase
  • austenite and ferrite ductile phase
  • the ferrite content is limited by the inventively given composition of the processed steel to 20 area%, since an improvement in the elongation values and an increase in the energy absorption by austenite are preferred.
  • austenite and a maximum of 20 area% ferrite are the mechanical technological properties of components according to the invention over the entire temperature range of the present invention carried out at 850 - 950 ° C austenitization reliably obtained.
  • the stability of the mechanical-technological properties of the component produced according to the invention is ensured by the analysis concept according to the invention.
  • the structure consisting of a combination of hard (martensite) and ductile (austenite and ferrite) phases of a component according to the invention ensures optimum behavior in the event of a crash load.
  • the austenite to martensite phase transformation that occurs during the deformation of the hot formed component causes the component to subsequently harden when deformed at high kinetic energy in the event of a crash.
  • the combination of high strength, good elongation at break and optimum crash behavior in the region of its high-strength region which is the aim of the invention is achieved with particular certainty if the martensite content of the microstructure in the high-strength region in question is at least 75 area% in a component according to the invention.
  • the required high elongation at break can be ensured by the fact that the austenite content of the structure of the component according to the invention is at least 2 area%.
  • the tensile strength of a component made from steel according to the invention should not be below 1000 MPa in the region of its high-strength range. So that the Martensithärte necessary for this purpose is achieved,
  • the steel alloy according to the invention contains a C content of at least 0.15 wt .-%. At the same time to ensure sufficient welding suitability for practice, the C content of the steel according to the invention is limited to 0.4% by weight at the top.
  • the alloying elements Mn, Si and Al of a steel used according to the invention are of particular importance, since they stabilize the austenite at room temperature.
  • the Mn present in amounts of at least 1.0% by weight in the steel of the invention serves as an austenite former by lowering the Ac 3 temperature of the steel.
  • the result is a microstructure consisting essentially of austenite and martensite after hot working.
  • the Mn content is limited to a maximum of 2% by weight.
  • Silicon is present in the steel of the present invention at levels of up to 1.4% by weight. It affects the hardenability and serves in the melting of the steel of the component according to the invention as a deoxidizer. At the same time, Si increases the yield strength, stabilizes the ferrite and austenite at room temperature, and prevents unwanted carbide precipitation in austenite during cooling. However, too high an Si content causes surface defects. Therefore, the Si content of a steel of the present invention is limited to 1.4% by weight.
  • Aluminum contributes to the stabilization of the ferrite and the austenite at room temperature in the steel according to the invention, similar to Si, and effects a grain size control. These effects are certainly achieved when the contents of Al in the inventive manner to 0.2 to 1.6 wt .-% are limited, with Al contents of at least 0.4 wt .-% particularly positive on the properties of an inventive Impact component.
  • the carbide formation is suppressed during the heat treatment and thus the inventively provided proportion of austenite of preferably at least 2 area% stabilized in the thermoformed structure.
  • phase constellation according to the invention Due to the phase constellation according to the invention, a reduction of the scattering of the mechanical properties of a steel according to the invention after its austenitization, hot working and cooling is achieved. Surprisingly, it has been shown here that the mechanical properties of a component produced according to the invention can be achieved with high reliability over a comparatively large temperature range of the austenitizing temperatures. Thus, despite the tolerances inevitably occurring in practice when setting the austenitizing temperature, the desired properties of components according to the invention can be ensured with high reliability and stability of the work result.
  • the sum of the Al and Si contents of a steel component according to the invention can be increased to at least 0.5 wt .-%.
  • Mo may be present in a steel of the invention at levels of up to 1.0% by weight.
  • the presence of Mo promotes martensite formation and improves the toughness of the steel.
  • an excessive Mo content may cause cold cracking.
  • the hardenability can be increased.
  • the Cr content should not be higher to avoid surface defects. Certainly, these effects can be achieved when the Cr content is limited to 0.1 wt%.
  • P can be alloyed in amounts of up to 0.10 wt .-% to increase the yield strength and thus to secure the mechanical properties. Too high a P content, however, damages the ductility and toughness of a steel made in accordance with the present invention.
  • Ti in amounts of up to 0.40 wt .-% increases the yield strength both dissolved and by precipitation formation (eg of Ti-carbonitrides).
  • Ti binds N to TiN, thus promoting the efficiency of B in terms of conversion behavior. This effect can be ensured by the Ti content of the steel according to the invention being the condition % Ti - 3 . 42 x % N > 0 . 005 weight , - % where% Ti is its respective Ti content and% N is its respective N content.
  • the hardenability of a steel according to the invention is improved by retarding the ferrite transformation during cooling towards longer transformation times.
  • the boron present in the steel according to the invention stabilizes the mechanical properties for a wide temperature range of the hot forming process.
  • N stabilizes the austenite and increases the yield strength of a steel according to the invention.
  • the nitrogen present in the alloy steel according to the invention is not completely bound by Ti, it reacts in combination with boron to give boron nitrides.
  • These boron nitrides cause a grain refining of the initial microstructure and thus a refining of the martensitic thermoformed microstructure. As a result, the susceptibility to cracking of a steel processed according to the invention is thus reduced.
  • the boron nitrides contribute significantly to increasing the strength of the steel according to the invention.
  • the N content which is not bound to Ti can be adjusted in a targeted manner such that, in the presence of Ti, the N content of the steel according to the invention is the condition 0 . 0015 ⁇ % N - % Ti / 3 . 42 ⁇ 0 . 0060 weight , - % where% Ti is its respective Ti content and% N is its respective N content.
  • Nb at levels of 0.012-0.25% by weight in a steel alloyed according to the invention promotes the combination of high tensile strength values with increased elongation at break, resulting overall in an increase in the energy absorption capacity of steel components according to the invention.
  • Nb in composite steel according to the invention increases the yield strength by means of carbide precipitation and, due to austenitic grain refinement, causes a fine martensite structure which has a high stability against crack propagation.
  • Nb precipitates may act as hydrogen traps, thereby reducing susceptibility to hydrogen-induced cracking.
  • the positive effect of niobium is particularly safe if the Nb content of the steel according to the invention is limited to 0.012-0.040% by weight.
  • Ni in amounts of up to 2.0% by weight contributes to increasing the yield strength and the elongation at break.
  • the S content of the steel of a component according to the invention is limited to max. 0.03 wt .-% limited, because S has a strong negative impact on the weldability and the possibilities of surface finishing. Also, this limitation is intended to prevent the formation of harmful, elongated MnS excretions.
  • the steel component according to the invention may be coated on its free surface with a protective coating against oxidation.
  • a protective coating against oxidation This is preferably already present on the flat steel product from which the component is thermoformed.
  • the protective cover can be designed so that it protects against scale formation during heating and thermoforming and / or corrosion during processing or in practical use.
  • metallic, organic or inorganic coatings as well as combinations of these coatings can be used.
  • the coating of the flat steel product can be carried out by conventional methods. A surface refinement in the hot-dip process is preferred.
  • the optional metallic coatings are based on the Zn, Al, Zn-Al, Zn-Mg, Al-Mg, Al-Si and Zn-Al-Mg systems and their unavoidable impurities. Coatings on an Al-Si basis have proven to be particularly useful.
  • the pre-oxidation can advantageously be preceded by the hot-dip process.
  • an oxide layer which is 10-1000 nm thick is selectively produced on the flat steel product, with particularly good coating qualities resulting when the oxide layer is 70-500 nm thick.
  • the adjustment of the oxide layer thickness takes place in an oxidation chamber, as for example from the WO 2007/124781 A1 is known.
  • the iron oxide layer is reduced by hydrogen of the annealing atmosphere. It can be on the surface as well as up to a depth of 10 microns oxides of the alloying elements are present.
  • the electrolytic coating is particularly suitable for applying the respective coating. Particularly good results are obtained when Zn, ZnFe, ZnMn, ZnNi systems or their combination are used as the coating material.
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • an electroless or chemical deposition of metallic (alloy) coatings based on Zn, Zn-Ni, Zn-Fe and their combinations as well as organic / organometallic / inorganic coatings in coil coating systems in the coil coating, spraying or dipping method may be useful.
  • Typical thicknesses of the coatings which can be produced by the methods described here are in the range from 1 to 15 ⁇ m.
  • a steel sheet is produced in a similar manner from comparison steel V with a composition likewise indicated in Table 1, and a larger number of sheet metal plates have been divided from this steel sheet, which also consisted uniformly of comparative steel V.
  • the blanks consisting of the steels E1-E4 and V are each heated to an austenitizing temperature lying in the range of 880-925 ° C, then placed in a thermoforming mold and then hot-formed into a component. After thermoforming, the components thermoformed from the blanks each have been cooled down so rapidly at a cooling rate of at least 25 ° C./s, that hardened structures have formed in them.
  • the mechanical properties yield strength R p0.2 , tensile strength R m and elongation A 80 were determined for the components obtained.
  • the respective average values R p0,2 , R m and A 80 as well as the associated standard deviations ⁇ R p0,2 , ⁇ R m and ⁇ A 80 are given in Table 2 for the steel components produced from the steels E 1 -E 4 and V.
  • the components consisting of the steels E1-E4 according to the invention have a consistently high residual deformation capacity characterized by a high value of the product of tensile strength R m and elongation A 80 and, consequently, high energy absorption capacity.
  • the results of the tests show that the mechanical properties R p0,2 , R m and A 80 of the components produced from steels E1-E4 according to the invention can be reproduced with a significantly higher reliability characterized by small values of the respective standard deviation than this in the case of the components produced from the comparison steel V is the case.
  • Table 1 (in% by weight) stole C Si Mn P s al Cr Not a word N Ni Nb Ti B E1 0.217 0.39 1.63 0,003 ⁇ 0.001 1.08 0,038 0.0016 0.0011 0,014 0,025 0,036 0.0030 E2 0.217 0.41 1.64 0.005 0,002 0.62 0.027 0.0016 0.0023 0,008 0,029 0,022 0.0024 E3 0,205 0,203 1.64 ⁇ 0,10 ⁇ 0,10 0,690 ⁇ 0.1 0.0041 0,012 0.0010 0.0029 E4 0.211 0,203 1.65 ⁇ 0,10 ⁇ 0,10 0.662 ⁇ 0.1 0.0024 0,013 0.0020 0.0032 v 0.214 0.14 1.62 0.005 0,002 1,386 0.086 ⁇ 0.002 0.0015 0,006 0,006 0.0030 0.0004 stolen R p0.2 [MPa] OR p0.2 [MPa] R m [MPa] ⁇ R m [MPa] A 80 [%]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Forging (AREA)
EP10158923A 2010-04-01 2010-04-01 Acier, produit plat en acier, composant en acier et procédé de fabrication d'un composant en acier Withdrawn EP2374910A1 (fr)

Priority Applications (13)

Application Number Priority Date Filing Date Title
EP10158923A EP2374910A1 (fr) 2010-04-01 2010-04-01 Acier, produit plat en acier, composant en acier et procédé de fabrication d'un composant en acier
UAA201209615A UA108091C2 (uk) 2010-04-01 2011-01-04 Сталь, плоский сталевий продукт, сталевий конструктивний елемент і спосіб виготовлення сталевого конструктивного елемента
PL11711594T PL2553133T3 (pl) 2010-04-01 2011-04-01 Stal, płaski produkt stalowy, element stalowy i sposób wytwarzania elementu stalowego
ES11711594.9T ES2524352T3 (es) 2010-04-01 2011-04-01 Acero, producto plano de acero, elemento de construcción de acero y procedimiento para la fabricación de un elemento de construcción de acero
KR1020127024639A KR20130014520A (ko) 2010-04-01 2011-04-01 강, 강판 제품, 강 부품 및 강 부품의 제조 방법
CA2780082A CA2780082A1 (fr) 2010-04-01 2011-04-01 Acier, produit plat d'acier, piece d'acier et procede de production d'une piece d'acier
PCT/EP2011/055117 WO2011121118A2 (fr) 2010-04-01 2011-04-01 Acier, produit plat en acier, élément en acier et procédé de fabrication d'un élément en acier
US13/519,916 US20120279621A1 (en) 2010-04-01 2011-04-01 Steel, steel flat product, steel part and method for producing a steel part
MX2012007359A MX2012007359A (es) 2010-04-01 2011-04-01 Acero, producto plano de acero, pieza de acero y procedimiento para producir una pieza de acero.
JP2013501863A JP5871901B2 (ja) 2010-04-01 2011-04-01 鋼、鋼板製品、鋼部品及び鋼部品の製造方法
PT117115949T PT2553133E (pt) 2010-04-01 2011-04-01 Aço, produto de aço, componente de aço e métodos de fabrico de um componente de aço
DK11711594.9T DK2553133T3 (en) 2010-04-01 2011-04-01 Steel, flat steel product, the steel component and the process for the production of a steel component
EP11711594.9A EP2553133B1 (fr) 2010-04-01 2011-04-01 Acier, produit plat en acier, élément en acier et procédé de fabrication d'un élément en acier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10158923A EP2374910A1 (fr) 2010-04-01 2010-04-01 Acier, produit plat en acier, composant en acier et procédé de fabrication d'un composant en acier

Publications (1)

Publication Number Publication Date
EP2374910A1 true EP2374910A1 (fr) 2011-10-12

Family

ID=42244674

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10158923A Withdrawn EP2374910A1 (fr) 2010-04-01 2010-04-01 Acier, produit plat en acier, composant en acier et procédé de fabrication d'un composant en acier
EP11711594.9A Active EP2553133B1 (fr) 2010-04-01 2011-04-01 Acier, produit plat en acier, élément en acier et procédé de fabrication d'un élément en acier

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11711594.9A Active EP2553133B1 (fr) 2010-04-01 2011-04-01 Acier, produit plat en acier, élément en acier et procédé de fabrication d'un élément en acier

Country Status (12)

Country Link
US (1) US20120279621A1 (fr)
EP (2) EP2374910A1 (fr)
JP (1) JP5871901B2 (fr)
KR (1) KR20130014520A (fr)
CA (1) CA2780082A1 (fr)
DK (1) DK2553133T3 (fr)
ES (1) ES2524352T3 (fr)
MX (1) MX2012007359A (fr)
PL (1) PL2553133T3 (fr)
PT (1) PT2553133E (fr)
UA (1) UA108091C2 (fr)
WO (1) WO2011121118A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013139327A1 (fr) * 2012-03-23 2013-09-26 Salzgitter Flachstahl Gmbh Acier de traitement thermique présentant peu de calamine, et procédé permettant de fabriquer à partir de cet acier une pièce présentant peu de calamine
WO2019166941A1 (fr) * 2018-02-27 2019-09-06 Arcelormittal Procédé de production d'une pièce en acier soudé au laser durci à la presse et pièce en acier soudé au laser durci à la presse

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2719788B1 (fr) * 2011-06-10 2016-11-02 Kabushiki Kaisha Kobe Seiko Sho Article moulé par pressage à chaud, procédé pour produire celui-ci, et tôle d'acier mince pour moulage à la presse à chaud
CN109023051A (zh) 2012-08-15 2018-12-18 新日铁住金株式会社 热压用钢板、其制造方法以及热压钢板构件
DE102012111118B3 (de) 2012-11-19 2014-04-03 Wisco Tailored Blanks Gmbh Verfahren zum Laserschweißen eines oder mehrerer Werkstücke aus härtbarem Stahl im Stumpfstoß
JP5942841B2 (ja) * 2012-12-21 2016-06-29 新日鐵住金株式会社 強度と耐水素脆性に優れたホットスタンプ成形体及びホットスタンプ成形体の製造方法
EP2754603B1 (fr) * 2013-01-10 2017-07-19 Volvo Car Corporation Procédé, renforcement de véhicule et véhicule
EP2886332B1 (fr) 2013-12-20 2018-11-21 ThyssenKrupp Steel Europe AG Produit en acier plat, et procédé de fabrication d'un composant d'une carrosserie de véhicule automobile et d'une carrosserie de véhicule automobile.
US10273555B2 (en) 2013-12-27 2019-04-30 Nippon Steel & Sumitomo Metal Corporation Hot-pressed steel sheet member
EP3088547A4 (fr) 2013-12-27 2017-07-26 Nippon Steel & Sumitomo Metal Corporation Élément en tôle d'acier pressée à chaud, son procédé de production et tôle d'acier pressée à chaud
DE102014001979A1 (de) 2014-02-17 2015-08-20 Wisco Tailored Blanks Gmbh Verfahren zum Laserschweißen eines oder mehrerer Werkstücke aus härtbarem Stahl im Stumpfstoß
CN104404367B (zh) * 2014-12-10 2016-08-31 东北大学 一种高强度高塑性冷轧低碳钢及其制备方法
CN104785688A (zh) * 2015-04-10 2015-07-22 江苏苏南重工机械科技有限公司 热送扁方钢锭的锻造方法
DE102015115915A1 (de) 2015-09-21 2017-03-23 Wisco Tailored Blanks Gmbh Laserschweißverfahren zur Herstellung eines Blechhalbzeugs aus härtbarem Stahl mit einer Beschichtung auf Aluminium- oder Aluminium-Silizium-Basis
WO2018088984A1 (fr) 2016-11-14 2018-05-17 Георгий Владимирович БЕЙЛИН Suspension de véhicule « afw-5 »
WO2019171157A1 (fr) * 2018-03-09 2019-09-12 Arcelormittal Procédé de fabrication de pièces durcies à la presse à productivité élevée
MX2020010257A (es) * 2018-03-29 2020-10-22 Nippon Steel Corp Lamina de acero para uso en estampado en caliente.
CN114703427A (zh) * 2018-04-28 2022-07-05 育材堂(苏州)材料科技有限公司 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件
JP7215518B2 (ja) * 2020-05-15 2023-01-31 Jfeスチール株式会社 熱間プレス部材およびその製造方法
KR20220071545A (ko) 2020-11-24 2022-05-31 현대자동차주식회사 Twb 공법을 이용한 핫스탬핑 성형체 및 그 제조방법
WO2023020931A1 (fr) 2021-08-19 2023-02-23 Thyssenkrupp Steel Europe Ag Acier ayant des propriétés de traitement améliorées pour travailler à des températures élevées
WO2023020932A1 (fr) 2021-08-19 2023-02-23 Thyssenkrupp Steel Europe Ag Acier doté de propriétés de traitement améliorées pour le travail à des températures élevées
EP4324950A1 (fr) 2022-08-18 2024-02-21 ThyssenKrupp Steel Europe AG Acier ayant des propriétés améliorées d'usinage destiné au formage à des températures élevées

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147814A (ja) * 1996-11-20 1998-06-02 Kobe Steel Ltd 熱処理歪みの少ない肌焼鋼製品の製法
EP0969112A1 (fr) * 1997-03-17 2000-01-05 Nippon Steel Corporation Tole d'acier biphase a haute resistance ayant d'excellentes proprietes de deformation dynamique et son procede de preparation
WO2007034063A1 (fr) 2005-09-21 2007-03-29 Arcelormittal France Procede de fabrication d’une piece en acier de microstructure multi-phasee
WO2007124781A1 (fr) 2006-04-26 2007-11-08 Thyssenkrupp Steel Ag Procédé de revêtement par immersion en fusion d'un produit plat en acier hyperrésistant
US20080178972A1 (en) * 2006-10-18 2008-07-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd) High strength steel sheet and method for producing the same
WO2008102012A1 (fr) 2007-02-23 2008-08-28 Corus Staal Bv Procédé de mise en forme thermomécanique d'un produit final à très haute résistance et produit obtenu selon ledit procédé
EP1642991B1 (fr) 2003-05-28 2009-02-18 Sumitomo Metal Industries, Ltd. Procede de thermoformage et element thermoforme

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2847271B1 (fr) * 2002-11-19 2004-12-24 Usinor Procede pour fabriquer une tole en acier resistant a l'abrasion et tole obtenue
JP4974331B2 (ja) * 2006-02-28 2012-07-11 株式会社神戸製鋼所 耐衝撃特性と強度−延性バランスに優れた鋼製高強度加工品およびその製造方法、並びに高強度かつ耐衝撃特性および耐内圧疲労特性に優れたディーゼルエンジン用燃料噴射管およびコモンレールの製造方法
JP5092523B2 (ja) * 2007-04-20 2012-12-05 新日本製鐵株式会社 高強度部品の製造方法および高強度部品
JP5218404B2 (ja) * 2007-06-15 2013-06-26 新日鐵住金株式会社 成形品の製造方法
JP5167487B2 (ja) * 2008-02-19 2013-03-21 Jfeスチール株式会社 延性に優れる高強度鋼板およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147814A (ja) * 1996-11-20 1998-06-02 Kobe Steel Ltd 熱処理歪みの少ない肌焼鋼製品の製法
EP0969112A1 (fr) * 1997-03-17 2000-01-05 Nippon Steel Corporation Tole d'acier biphase a haute resistance ayant d'excellentes proprietes de deformation dynamique et son procede de preparation
EP1642991B1 (fr) 2003-05-28 2009-02-18 Sumitomo Metal Industries, Ltd. Procede de thermoformage et element thermoforme
WO2007034063A1 (fr) 2005-09-21 2007-03-29 Arcelormittal France Procede de fabrication d’une piece en acier de microstructure multi-phasee
WO2007124781A1 (fr) 2006-04-26 2007-11-08 Thyssenkrupp Steel Ag Procédé de revêtement par immersion en fusion d'un produit plat en acier hyperrésistant
US20080178972A1 (en) * 2006-10-18 2008-07-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd) High strength steel sheet and method for producing the same
WO2008102012A1 (fr) 2007-02-23 2008-08-28 Corus Staal Bv Procédé de mise en forme thermomécanique d'un produit final à très haute résistance et produit obtenu selon ledit procédé

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013139327A1 (fr) * 2012-03-23 2013-09-26 Salzgitter Flachstahl Gmbh Acier de traitement thermique présentant peu de calamine, et procédé permettant de fabriquer à partir de cet acier une pièce présentant peu de calamine
US20150020992A1 (en) * 2012-03-23 2015-01-22 Salzgitter Flachstahl Gmbh Non-scaling heat-treatable steel and method for producing a non-scaling component from said steel
US10036085B2 (en) 2012-03-23 2018-07-31 Salzgitter Flachstahl Gmbh Non-scaling heat-treatable steel and method for producing a non-scaling component from said steel
US10822681B2 (en) 2012-03-23 2020-11-03 Salzgitter Flachstahl Gmbh Non-scaling heat-treatable steel and method for producing a non-scaling component from said steel
WO2019166941A1 (fr) * 2018-02-27 2019-09-06 Arcelormittal Procédé de production d'une pièce en acier soudé au laser durci à la presse et pièce en acier soudé au laser durci à la presse
WO2019166852A1 (fr) * 2018-02-27 2019-09-06 Arcelormittal Procédé de production d'une pièce en acier soudée au laser durcie à la presse et pièce en acier soudée au laser durcie à la presse
RU2746702C1 (ru) * 2018-02-27 2021-04-19 Арселормиттал Способ изготовления горячештампованной стальной детали, с использованием лазерной сварки, и горячештампованная стальная деталь, сваренная лазерной сваркой
US11911847B2 (en) 2018-02-27 2024-02-27 Arcelormittal Method for producing a press-hardened laser welded steel part and press-hardened laser welded steel part

Also Published As

Publication number Publication date
WO2011121118A2 (fr) 2011-10-06
KR20130014520A (ko) 2013-02-07
PL2553133T3 (pl) 2015-03-31
PT2553133E (pt) 2014-11-27
MX2012007359A (es) 2012-08-01
JP2013527312A (ja) 2013-06-27
WO2011121118A3 (fr) 2012-02-02
DK2553133T3 (en) 2014-12-08
ES2524352T3 (es) 2014-12-05
CA2780082A1 (fr) 2011-10-06
US20120279621A1 (en) 2012-11-08
EP2553133B1 (fr) 2014-08-27
UA108091C2 (uk) 2015-03-25
EP2553133A2 (fr) 2013-02-06
JP5871901B2 (ja) 2016-03-01

Similar Documents

Publication Publication Date Title
EP2553133B1 (fr) Acier, produit plat en acier, élément en acier et procédé de fabrication d'un élément en acier
DE102008035714B4 (de) Stahlblech zum Warmpreßformen, das Niedrigtemperatur-Vergütungseigenschaft hat, Verfahren zum Herstellen desselben, Verfahren zum Herstellen von Teilen unter Verwendung desselben, und damit hergestellte Teile
EP2446064B1 (fr) Procédé de fabrication d'une pièce trempée à chaud sous presse et utilisation d'un produit en acier pour la fabrication d'une pièce trempée à chaud sous presse
EP3655560B1 (fr) Produit plat en acier possédant une bonne résistance au vieillissement et son procédé de fabrication
EP3221484B1 (fr) Procédé de production d'une bande en acier polyphasé, durcissant à l'air, ayant une haute résistance et ayant d'excellentes propriétés de mise en oeuvre
EP3221478B1 (fr) Bande à chaud ou à froid d'un acier multiphasé à haute résistance durcissant à l'air qui présente d'excellentes propriétés de traitement et procédé de fabrication d'une bande à chaud ou à froid à partir de cet acier multiphasé à haute résistance durcissant à l'air
WO2017009192A1 (fr) Acier multiphase à haute résistance et procédé de fabrication d'une bande d'acier laminée à froid composée dudit acier
EP3692178B1 (fr) Procede de fabrication d'une bande d'acier a partir d'un acier multiphase a tres haute resistance
EP3221483A1 (fr) Acier polyphasé, trempé à l'air et à haute résistance, ayant d'excellentes propriétés de mise en oeuvre et procédé de production d'une bande avec cet acier
EP3724359B1 (fr) Produit plat en acier laminé à chaud, à rigidité élevée, doté d'une résistance à la fissuration de bords élevée ainsi que d'une capacité de durcissement à la cuisson élevée et procédé de fabrication d'un tel produit plat en acier
DE102018107291A1 (de) Verfahren zum Schweißen beschichteter Stahlbleche
WO2018210574A1 (fr) Acier résistant à l'usure ou acier de sécurité à trois couches, procédé de fabrication d'un élément et utilisation
EP2664682A1 (fr) Acier destiné à la fabrication d'un composant en acier, produit plat en acier en étant constitué, composant en étant issu et leur procédé de fabrication
EP1865086B1 (fr) Utilisation d'un produit plat fabriqué à partir d'un acier au manganèse et au bore et procédé de sa fabrication
EP2289770A1 (fr) Tôle à flans mince soudés traitée anti-corrosion pour un véhicule automobile et son procédé de fabrication
WO2018210414A1 (fr) Matériau de formage à chaud, pièce et utilisation correspondante
EP3658307B1 (fr) Pièce en tôle fabriquée par formage à chaud d'un produit plat en acier et procédé pour sa fabrication
EP3430180A1 (fr) Procédé de fabrication d'une pièce en acier façonnée à chaud et pièce en acier façonnée à chaud
EP3749469B1 (fr) Procédé de fabrication d'un élément structural par formage à chaud d'un produit primaire en acier manganésifère et élément structural formé à chaud
EP3872206A1 (fr) Procédé de fabrication d'un produit plan en acier laminé à froid, traité ultérieurement et produit plan en acier laminé à froid, traité ultérieurement
DE102020204356A1 (de) Gehärtetes Blechbauteil, hergestellt durch Warmumformen eines Stahlflachprodukts und Verfahren zu dessen Herstellung
DE102018114838A1 (de) Kraftfahrzeugbauteil aus Vergütungsstahl
EP4283003A1 (fr) Procédé de fabrication d'une pièce moulée en tôle
EP4324950A1 (fr) Acier ayant des propriétés améliorées d'usinage destiné au formage à des températures élevées
DE102021108448A1 (de) Stahlband aus einem hochfesten Mehrphasenstahl und Verfahren zur Herstellung eines derartigen Stahlbandes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA ME RS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120413