EP3612650B1 - Feuille d'acier à haute résistance présentant une excellente déformabilité de bordage par étirage, procédé de production dudit acier et son utilisation - Google Patents
Feuille d'acier à haute résistance présentant une excellente déformabilité de bordage par étirage, procédé de production dudit acier et son utilisation Download PDFInfo
- Publication number
- EP3612650B1 EP3612650B1 EP18717386.9A EP18717386A EP3612650B1 EP 3612650 B1 EP3612650 B1 EP 3612650B1 EP 18717386 A EP18717386 A EP 18717386A EP 3612650 B1 EP3612650 B1 EP 3612650B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- strip
- temperature
- steel
- hot
- rolled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 68
- 239000010959 steel Substances 0.000 title claims description 68
- 238000001816 cooling Methods 0.000 claims description 40
- 229910052799 carbon Inorganic materials 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 18
- 229910052719 titanium Inorganic materials 0.000 claims description 18
- 238000005098 hot rolling Methods 0.000 claims description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 238000005096 rolling process Methods 0.000 claims description 12
- 229910052720 vanadium Inorganic materials 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- 238000003303 reheating Methods 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 230000009466 transformation Effects 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 238000005266 casting Methods 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 238000005097 cold rolling Methods 0.000 claims description 4
- 239000000155 melt Substances 0.000 claims description 2
- 239000010936 titanium Substances 0.000 description 32
- 229910001567 cementite Inorganic materials 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 14
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 13
- 239000010949 copper Substances 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 239000011572 manganese Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 229910001566 austenite Inorganic materials 0.000 description 10
- 150000001247 metal acetylides Chemical class 0.000 description 9
- 238000005275 alloying Methods 0.000 description 8
- 238000005452 bending Methods 0.000 description 8
- 239000011651 chromium Substances 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 238000009864 tensile test Methods 0.000 description 7
- 229910000859 α-Fe Inorganic materials 0.000 description 7
- 229910001563 bainite Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 229910000734 martensite Inorganic materials 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910001562 pearlite Inorganic materials 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000002000 scavenging effect Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 240000005561 Musa balbisiana Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007571 dilatometry Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000161 steel melt Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/20—Isothermal quenching, e.g. bainitic hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- This invention relates to a high strength steel sheet as hot rolled and cold rolled products useful for frame components for vehicles and automobiles such as frames for trucks.
- (advanced) high strength steel sheets are increasingly used in car components to reduce weight and fuel consumption.
- a series of (advanced) high strength steels such as HSLA, Dual phase (DP), Ferritic-bainitic (FB) including stretch-flangeable (SF), Complex phase (CP), Transformation-induced plasticity (TRIP), Hot-formed, Twinning-induced plasticity (TWIP) has been developed to meet the growing requirements.
- AHSS sheet steels cannot be applied easily to a wide variety of car components because their formability is relatively poor. As steels became increasingly stronger, they simultaneously became increasingly difficult to form into automotive parts. Actually, the real application of AHSS steels (DP, CP and TRIP) to car components is still limited by their formability. Therefore, improving formability and manufacturability become an important issue for AHSS application.
- AHSS grades have additional relevant failure mechanisms compared to mild steels. This is mainly caused by local failure which is observed more commonly in AHSS due to multi-phase structure and phase changes during deformation. These local failures do not necessarily correlate with elongation and/or n-value. Therefore, steels having higher (uniform and total) elongations do not always have a good formability.
- microstructures improving ductility are different from those improving formability.
- the position in the diagram of the elongation-strength is not sufficient to select the proper materials for all parts. In most cases, another relationship between formability and strength is needed for material selection. It is essential to study the behaviour of AHSS under all relevant forming conditions.
- Each forming mode has a specific governing mechanical parameter such as r-value (the ratio between plastic strain in-plane and the plastic strain through-the-thickness of a tensile test sample), ⁇ (hole expansion ratio) value, and bending angle.
- r-value the ratio between plastic strain in-plane and the plastic strain through-the-thickness of a tensile test sample
- ⁇ hole expansion ratio
- EP 2559783 A1 discloses a high strength hot-rolled steel sheet having a tensile strength of not less than 780 MPa, exhibiting excellent stretch flangeability and excellent fatigue resistance and having a composition close to the one of the present invention.
- a high strength steel strip having a cementite-free microstructure comprising:
- the unique and balanced combination of chemical elements ensures that the microstructure of the steel comprises bainitic and ferritic components, and ideally consists only of bainitic and ferritic components. Preferably the entire microstructure consists of bainitic components only. Even though it is sometimes hard to distinguish between ferritic and bainitic components, it is easy to distinguish between ferritic and bainitic components on the one hand, and structures like martensite, retained austenite, cementite, pearlite, etc. on the other hand.
- Crucial in the invention is the absence of cementite (Fe 3 C) in the microstructure.
- titanium (Ti) and vanadium (V) cementite formation is prevented and TiC and VC are formed instead.
- These latter carbides are much smaller ( ⁇ 5-30 nm) and more finely dispersed than the cementite ( ⁇ 200 nm) that would normally have been present.
- the cementite would also be plate shaped and located between the ferrite laths in the bainite structure, whereas the VC and TiC are usually spherical or needle like and located inside the ferrite lath.
- This microstructure offers an improved combination of strength and fracture toughness.
- the microstructure derives its high strength from the ultra-fine grain size, less than 1 ⁇ m, which can additionally be strengthened by the small carbide precipitates.
- the formation of Fe 3 C or martensitic/austenitic microconstituents is suppressed by using microalloying such as titanium and vanadium.
- microalloying precipitation strengthening is an effective way to increase strength without sacrificing toughness, when microstructural refinement is used simultaneously.
- higher amount of micro alloying with V and Ti is necessary to avoid (coarse) Fe3C.
- C is an element that forms cementite-free bainite, thus contributing to an increase in strength.
- the low carbon content of between 0.005 and 0.08 wt.% in the steel ensures that the cooling rate dependence of the microstructure is low.
- At these low carbon contents in a preferable embodiment of less than 0.05 wt.%, preferably less than 0.045 wt.%, more preferably less than 0.04%, even more preferably less than 0.035 wt.% carbon partitioning does not occur during the austenite to ferrite transformation.
- a suitable minimum carbon content is 0.01 wt.% to obtain the bainitic structure and ensure the high strength of a UTS of 760 MPa or more.
- bainitic microstructures By optimizing the other alloying elements, it is possible to obtain a uniform bainitic microstructure that will form across a very large range of cooling rates in a very similar manner. In the absence of carbide formers, some cementite will form.
- the bainitic microstructures can be made cementite free by further alloying with Ti and/or V. Also, the low carbon concentrations may bring about good low temperature impact toughness balanced with adequate weldability.
- Ti combines with N, S and C to form nitrides, carbosulphides and carbides depending on the specific chemical composition of the steel.
- the Ti content exceeds 0.20% it is difficult to dissolve coarse Ti carbides during reheating of the slab prior to hot rolling.
- V is added to replace some amount of Ti and V will combined with rest of carbon to form VC.
- the titanium content is at least 0.03%.
- TiC and VC will completely prevent the formation of cementite.
- Ti also plays the role of fixing N. Any free nitrogen is detrimental to the hardenability improving effect of B, and therefore the nitrogen scavenging effect of the titanium is desired.
- the vanadium content is at most 0.30%.
- a suitable minimum value for C/(Ti_sol+V) is 0.15.
- the Ti_sol > 0, preferably > 0.01 wt.%, more preferably > 0.02 wt.%.
- cementite-free is intended to mean that the aim is that no cementite (Fe 3 C) whatsoever is present in the microstructure.
- a composition satisfying the equation presented above should ensure that this is the case.
- due to local compositional fluctuations in the steel strip it may inadvertently and unintentionally occur that a minute amount of cementite is discernible in the microstructure that does not affect the properties and performance of the steel strip as a whole.
- Manganese (Mn) is an essential element for promoting low carbon bainitic microstructures and in improving the balance between strength and low temperature toughness.
- the Mn content is at least 1.30 and at most 2.30 wt.%.
- Mn stabilizes austenite and delays the bainite transformation at a given temperature and ensures a good hardenability. The austenite field is extended to lower temperatures, which offers a wide temperature gap for proper controlled rolling. Furthermore, Mn promotes the formation of fine acicular ferrite and lower-bainite. Disadvantages of very high Mn contents are, deterioration of HAZ toughness, increased centreline segregation of the continuous cast steel slabs, and poor surface quality after hot rolling due to increased interior oxidation.
- the Mn content is preferably at least 1.5, and preferably at most 2.0 wt.%. More preferably Mn is at least 1.65 and at most 1.95 wt.%.
- B Boron
- B is a potent hardenability enhancer in low C, low alloy steels. A small amount of B is added to low carbon steels to ensure that bainitic microstructures can be produced at lower cooling rates without formation of proeutectoid ferrite.
- the B content is at least 2 and at most 35 ppm. B is the most effective alloying element in increasing the yield strength. The B content should preferably be at most 25 ppm so as not to impair low temperature toughness.
- N Nitrogen
- the N content is at least 5 and at most 65 ppm.
- a suitable and practical minimum N content is 10 ppm.
- the titanium content is at least 0.03 and at most 0.20 wt.% Ti, and preferably at least 0.06 and at preferably at most 0.18, more preferably at most 0.16 wt.%.
- the steels are preferably additionally alloyed with one or both of copper (Cu) or chromium (Cr) to a maximum of 1.50 wt.% Cu and 0.75 wt.% Cr.
- a suitable maximum is 1.25 wt.% Cu.
- Cu can promote low carbon bainitic structures, and provide solid solution hardening.
- the strength of the steel is increased by precipitation hardening of nano-sized Cu precipitates. Through a thermo-mechanical precipitation control process (TPCP) it is possible to obtain Cu precipitation during coil cooling after hot rolling, and therefore no extra heat treatment is necessary. Cr increases the strength mainly due to transformation strengthening.
- TPCP thermo-mechanical precipitation control process
- Nickel (Ni) improves toughness as well as hardenability. Nickel imparts good toughness to the steel material at a high level of strength. In addition to increasing the strength and toughness of the steel, Ni counters the hot shortness caused by any Cu alloying. Ni is preferably present only as an impurity, mainly from a cost perspective. Ni can be added up to 0.5 wt% to prevent hot shortness when the Cu content exceeds 0.5%. In an embodiment no nickel is added to the steel.
- Silicon (Si) is added to improve the strength though solution hardening and transformation hardening. However, with excess of Si, the HAZ toughness, weldability and coatability are impaired.
- the silicon is maximised at 0.6 wt.%, preferably maximised at 0.5%.
- Aluminium is utilized as a deoxidizing element and is an element effective for improving the steel cleanliness. It is necessary to set the total Al content in the steel at 0.005 wt.% or more to obtain such an effect.
- the Al content is maximised at 0.1 wt.% and preferably at 0.05 wt.% because the higher the content the higher the likelihood of cause surface defects and the higher the costs of the alloy.
- Molybdenum (Mo) has been found to promote low carbon bainitic structure at small concentrations of about 0.1 wt%, but at higher concentration it can deteriorate toughness of high strength cementite free bainitic steels. Mo is not an economically preferred alloying element and it is not recommended to use as an alloying element in these steels.
- Sulphur (S) is present in steel as an impurity.
- Primary MnS particles will be formed in Mn containing steels during casting. These coarse MnS particles are very detrimental because they are elongated in the rolling direction.
- Ti is added, Ti 4 S 2 C 2 and/or MnS are formed during casting depending on the concentrations of Ti, C and S.
- Ti 4 S 2 C 2 will be present as primary coarse particles and needs to be avoided as much as possible.
- the S content should be at most 0.012, preferably at most 0.01 wt.% and most preferably below 0.005 wt.%.
- Phosphorus (P) is present in steel as impurity.
- P content exceeds 0.03%, segregation in the grain boundaries becomes marked, resulting in degradation in toughness and weldability.
- the P content is decreased as much as possible.
- the P content should be at most 0.012, preferably at most 0.01 wt.% and most preferably below 0.005 wt.%.
- the steel according to the invention may be a hot-rolled steel and used as such, or a subsequently cold-rolled and annealed steel.
- the hot-rolled or cold-rolled steel may be provided with a metallic coating.
- the coating may be provided by means of hot-dipping, and preferably the metallic coating is a zinc or aluminium based coating.
- the optional coating of the steel is performed by conventional means and includes, but is not limited to, hot dip coating, electrocoating, PVD or CVD.
- the steel according to the invention does not contain niobium (Nb) as alloying element.
- Nb niobium
- Table 1 indicate a presence as impurity only, and no niobium is added to the steel.
- the invention is also embodied in a process for producing a high strength steel strip having a cementite-free microstructure, a yield strength of at least 570 MPa, a tensile strength of at least 760 MPa, a total elongation (A50) of at least 10.3 % and a hole expansion ratio ( ⁇ ) value of at least 70%, said process comprising:
- a steel melt is conventionally cast in the form of a thick slab, a thin slab or a strip. After casting it is brought to hot-rolling temperatures by (re-)heating and/or homogenising and hot-rolled. The last hot-rolling pass is performed on the steel while still fully austenitic, i.e. the finish rolling temperature is above Ar3. After finish rolling the steel is cooled on the run-out table of the hot strip mill at an average cooling rate of between 15 and 100 °C/s to a coiling temperature of at most 500 °C followed by cooling of the coil by natural cooling down to ambient temperature.
- the slab reheating temperature for the steel has to be sufficiently high to dissolve coarse Ti and V carbides precipitated in the slab during casting.
- a suitable maximum SRT is 1300 °C.
- the hot rolling finishing temperature has to be in the austenite range, and is preferably between 850 °C to 950 °C. This range of 850 °C to 950 °C is applied to produce a fine austenite grain size in the strip after the last rolling pass, and to keep Ti and V in solid solution.
- the strips are cooled by accelerated cooling at rates in the range of 15 to 100 °C/s to a coiling temperature of at most 500°C. After coiling the coil is allowed to cool to ambient temperature without further accelerated cooling.
- ambient temperature has the same meaning as room temperature.
- the average cooling rate after hot rolling of 15 to 100 °C/s is needed to avoid the formation of pearlite and to avoid the formation of ferrite and coarse Ti and V carbides.
- the hot-rolled sheet After cooling, the hot-rolled sheet is coiled at a coiling temperature up to 500°C.
- the coiled strip cools slowly, which allows for the bainitic phase transformation to occur.
- the bainite phase formed in the steels according to the invention during coiling in this coiling temperature range is cementite-free, which is preferable for the steel sheet to exhibit excellent stretch flangeability.
- the precipitation of fine TiC and/or VC carbides may occur within this coiling temperature range, enabling additional hardening to be obtained.
- cementite might be formed as pearlite or degenerated pearlite and the resulting stretch flangeability is markedly lower than in the process according to the invention.
- the coiling temperature is at least 420 °C, because for lower values of the coiling temperature there is a risk of the formation of too much martensite and retained austenite and the formability of the resulting steel will be reduced as a consequence thereof. This risk is more prominent for higher carbon contents.
- the coiling temperature should be in the range of 420 to 500 °C , as the microstructure and properties, especially stretch flangeability are rather sensitive to the process routes.
- the CCT diagram for the VS72 alloy shown in Figure 1 indicates that depending on the cooling rate different microstructures develop.
- the cooling rate after hot rolling has to be in the range of 15 to 100 °C/s and the coiling temperature has to be below 500 °C.
- No minimum coiling temperature is specified, because the risk of forming martensite or the presence of retained austenite is very low.
- the coiling temperature is preferably not below 420 °C.
- the inventors found that the mechanical properties were relatively insensitive to cooling rate and the cooling temperature. As the CCT diagram for VS74 alloy ( Figure 2 ) and the microstructures ( Figure 3 ) already suggest, the final structure is relatively insensitive to the cooling trajectory. This is particularly the case for the steel grades containing Cu and/or Cr.
- the cooling rate range may be obtained by means of a water or air/water mixture spray, depending on the thickness of the sheet, at the exit of the finishing mill.
- the coiling temperature is preferably at least 440 °C and/or at most 480 °C.
- the cooling rate after rolling and prior to coiling is at least 25 °C/s.
- the hot-rolled strip is subsequently cold rolled, a cold rolling reduction is applied to obtain the required thickness.
- the total cold-rolling reduction of the hot-rolled strip is preferably between 50 and 90 %.
- the cold-rolled full-hard strip is reheated to a solution temperature above Ac3, preferably in the temperature range of 850-1000 °C, and held at the solution temperature for 2 to 8 minutes, and then cooled with a cooling rate in the range of 15 to 50 °C/s to a holding temperature between 440 and 480 °C, and held for up to 30 min, and preferably for 0.5 to 30 min, to allow the bainitic transformation to take place and avoid the risk for formation of martensite in amounts that adversely affect the formability.
- the sheet should be cooled with a cooling rate of 0.5 to 100 °C/s to room temperature.
- the cooling rate should preferably be between 10 and 100 °C/s.
- a higher reheating temperature is preferable to allow more TiC dissolve in to austenite.
- the invention is also embodied in a car or truck component, such as an automotive chassis component, a component of the body in white, a component of the frame or the subframe, said component having been produced from the steel sheet according to the invention.
- a car or truck component such as an automotive chassis component, a component of the body in white, a component of the frame or the subframe, said component having been produced from the steel sheet according to the invention.
- Steels having compositions shown in Table 1 were cast into 30 kg ingots of 200 mm x 110 mm x 110 mm in dimensions.
- Steel VS71 is a comparable example because the C/(T_sol+V) ratio is out of the invented composition range.
- the ingots were reheated to 1250 °C and soaked for 1 hour and then rough hot rolled to 35 mm thickness.
- the shrinkage and segregation zone from both ends were cut off.
- the cut blocks were reheated at 1200 °C for 30 min and then hot rolled to 3 mm thickness in 5 passes.
- the finish rolling temperature was about 900 °C.
- the strips were cooled at 30-60 °C/s to 500 °C in the run-out table and were then transferred to a preheated furnace at 440 °C or 480 °C and held for 1 hour to simulate the coiling process. The materials were then taken out the furnace and cooled in the air to the room temperature. The hot rolled strips were then pickled in HCl at 85 °C to remove the oxide layers. Samples for microstructure observations, tensile tests and hole expansion tests were machined for hot rolled strips.
- the hot rolled strips were subsequently cold-rolled at a cold rolling reduction of 67%.
- the cold rolled 1 mm strips were then heat treated at 900 °C for 2 min and then cooled with 3 different conditions, as specified in Table 3.
- Room temperature tensile tests were performed in a Schenk TREBEL testing machine following NEN10002 standard to determine tensile properties (yield strength YS (MPa), ultimate tensile strength UTS (MPa), total elongation TE (%)). For each condition, three tensile tests were performed and the average values of mechanical properties are reported.
- Bending test The 3-point "guided bending tests" were conducted on samples with dimensions 40 mm x 30 mm. The length direction of the samples was parallel to the rolling direction of steel sheets. Parallel bending tests where the bending axis is perpendicular to the rolling direction of the sheets were carried out. For this method, a former and two supporting cylinders were used in order to bend the steel sheets. The cylinders and the punch were mounted in a tensile testing machine. The load cell is used to measure the punch force and the displacement of the crosshead gives the punch displacement. The experiments were stopped at different bending angles and the bent surface of the specimen was inspected for identification of failure in order to determine the bending angle.
- Figure 1 The CCT diagram for VS72 alloy.
- FIG. 2 The CCT diagram for VS74 alloy.
- Figure 3 The microstructure of the VS74 alloy (taken from the samples of figure 2 ).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Claims (14)
- Bande d'acier à haute résistance ayant une microstructure sans cémentite comprenant :• 0,005 à 0,08 % en poids de C ;• 1,30 à 2,30 % en poids de Mn ;• 2 à 35 ppm de B ;• 5 à 65 ppm de N ;• 0,005 à 0,1% en poids de Al_tot ;• 0,03 à 0,20 % en poids de Ti ;• 0 à 1,5 % en poids de Cu ;• 0 à 0,75% en poids de Cr ;• 0 à 0,05 % en poids de Mo ;• 0 à 0,50 % en poids de Ni ;• 0 à 0,30 % en poids de V ;• 0 à 0,6 % en poids de Si ;• 0 à 0,03 % en poids de P ;• 0 à 0,01 % en poids de S ;le fer restant et les inévitables impuretés, la bande d'acier ayant une limite d'élasticité d'au moins 570 MPa, une résistance à la traction d'au moins 760 MPa, un allongement total (A50) d'au moins 10,3 % et une valeur de taux d'expansion de trous (λ) d'au moins 70 %.
- Acier selon la revendication 1 contenant au moins l'un de• 0 à 1,5 % en poids de Cu ;• 0 à 0,75% en poids de Cr.
- Acier selon l'une quelconque des revendications précédentes, dans laquelle la microstructure comprend des grains bainitiques et ferritiques.
- Acier selon l'une quelconque des revendications précédentes, dans lequel C est au plus 0,045 % en poids.
- Procédé de production d'une bande d'acier à haute résistance ayant une microstructure sans cémentite, une limite d'élasticité d'au moins 570 MPa, une résistance à la traction d'au moins 760 MPa, un allongement total (A50) d'au moins 10,3 % et une valeur de taux d'expansion de trous (λ) d'au moins 70 %, ledit procédé comprenant :- la coulée d'une fonte en une brame ou une bande ayant la composition suivante :• 0,005 à 0,08 % en poids de C ;• 1,30 à 2,30 % en poids de Mn ;• 2 à 35 ppm de B ;• 5 à 65 ppm de N ;• 0,005 à 0,1% en poids de Al_tot ;• 0,03 à 0,20 % en poids de Ti ;• 0 à 1,5 % en poids de Cu ;• 0 à 0,75% en poids de Cr ;• 0 à 0,05 % en poids de Mo ;• 0 à 0,50 % en poids de Ni ;• 0 à 0,30 % en poids de V ;• 0 à 0,6 % en poids de Si ;• 0 à 0,03% en poids de P ;• 0 à 0,01 % en poids de S ;• le fer restant et les impuretés inévitables ;- le réchauffage de la brame à une température de réchauffage de brame d'au moins 1200 °C- le laminage à chaud de la brame ou de la bande en une bande laminée à chaud dans lequel la température de finition de laminage à chaud est supérieure à Ar3 ;- le refroidissement de la bande laminée à chaud à une vitesse de refroidissement moyenne de 15 à 100° C/s sur la table de sortie dans un laps de temps de 2 secondes entre la fin du laminage et le début du refroidissement à une température de bobinage inférieure à 500° C, puis le refroidissement de bobine par refroidissement naturel à température ambiante.
- Procédé selon la revendication 5, dans lequel la brame ou la bande contient au moins l'un de• 0 à 1,5 % en poids de Cu ;• 0 à 0,75% en poids de Cr.
- Procédé selon la revendication 5 ou la revendication 6, dans lequel la teneur en carbone de l'acier est d'au moins 0,03 % et dans lequel la température de bobinage est d'au moins 420°C.
- Procédé selon l'une quelconque des revendications 5 à 7, dans lequel C est au plus 0,045 % en poids.
- Procédé selon l'une quelconque des revendications 5 à 8, dans lequel la température de bobinage est d'au moins 440° C et/ou d'au plus 480° C.
- Procédé selon l'une quelconque des revendications 5 à 9, dans lequel la bande laminée à chaud est ensuite laminée à froid pour obtenir une bande laminée à froid.
- Procédé selon la revendication 10, dans lequel la bande laminée à froid est recuite en réchauffant la bande à une température supérieure à Ar3, en la maintenant et en la refroidissant ensuite à température ambiante.
- Procédé selon la revendication 10, dans lequel la réduction totale par laminage à froid est comprise entre 50 et 90 %.
- Procédé selon l'une quelconque des revendications 10 à 12, dans lequel la bande entièrement dure laminée à froid est réchauffée à une température de solution supérieure à Ac3 dans la plage de 850 à 1000° C, maintenue à la température de solution pendant 2 à 8 minutes, refroidie à une vitesse de refroidissement comprise entre 15 et 50° C/s jusqu'à une température de maintien comprise entre 440 et 480° C, maintenue à la température de maintien pendant 0 à 30 min pour permettre la transformation bainitique et puis refroidie à température ambiante.
- Pièce de voiture ou de camion, telle qu'une pièce de châssis automobile, une pièce de carrosserie en blanc, une pièce de cadre ou de faux-cadre, ladite pièce ayant été réalisée à partir de la tôle d'acier selon l'une quelconque des revendications 1 à 4.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17167303 | 2017-04-20 | ||
PCT/EP2018/060022 WO2018193032A1 (fr) | 2017-04-20 | 2018-04-19 | Tôle d'acier haute résistance dotée d'excellentes ductilité et déformabilité de bordage par étirage |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3612650A1 EP3612650A1 (fr) | 2020-02-26 |
EP3612650B1 true EP3612650B1 (fr) | 2022-08-24 |
Family
ID=58579077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18717386.9A Active EP3612650B1 (fr) | 2017-04-20 | 2018-04-19 | Feuille d'acier à haute résistance présentant une excellente déformabilité de bordage par étirage, procédé de production dudit acier et son utilisation |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200071789A1 (fr) |
EP (1) | EP3612650B1 (fr) |
KR (1) | KR20190142768A (fr) |
CN (1) | CN110621794B (fr) |
WO (1) | WO2018193032A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220149776A (ko) | 2020-03-13 | 2022-11-08 | 타타 스틸 네덜란드 테크날러지 베.뷔. | 강 물품 및 그 제조 방법 |
WO2021210577A1 (fr) * | 2020-04-14 | 2021-10-21 | 日本製鉄株式会社 | Matériau d'acier de forme proche de celle d'un filet et son procédé de production |
DE102021104584A1 (de) | 2021-02-25 | 2022-08-25 | Salzgitter Flachstahl Gmbh | Hochfestes, warmgewalztes Stahlflachprodukt mit hoher lokaler Kaltumformbarkeit sowie ein Verfahren zur Herstellung eines solchen Stahlflachprodukts |
WO2024032949A1 (fr) | 2022-08-09 | 2024-02-15 | Tata Steel Ijmuiden B.V. | Bande d'acier à haute résistance laminée à chaud |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6364968B1 (en) * | 2000-06-02 | 2002-04-02 | Kawasaki Steel Corporation | High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same |
KR100849974B1 (ko) * | 2000-12-29 | 2008-08-01 | 니폰 스틸 코포레이션 | 도금 밀착성 및 프레스 성형성이 뛰어난 고강도 용융아연계 도금강판 및 그 제조방법 |
EP1559798B1 (fr) * | 2004-01-28 | 2016-11-02 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Tôle d'acier laminée à froid, à haute résistance, à bas rapport de limite d'élasticité et procédé pour sa fabrication |
WO2006103991A1 (fr) * | 2005-03-28 | 2006-10-05 | Kabushiki Kaisha Kobe Seiko Sho | Acier lamine a chaud ayant une tres haute resistance et une excellente aptitude a la dilatation au forage |
JP4998756B2 (ja) * | 2009-02-25 | 2012-08-15 | Jfeスチール株式会社 | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
KR101420554B1 (ko) * | 2010-03-10 | 2014-07-16 | 신닛테츠스미킨 카부시키카이샤 | 고강도 열연 강판 및 그 제조 방법 |
JP4978741B2 (ja) * | 2010-05-31 | 2012-07-18 | Jfeスチール株式会社 | 伸びフランジ性および耐疲労特性に優れた高強度熱延鋼板およびその製造方法 |
MX364430B (es) * | 2011-03-18 | 2019-04-26 | Nippon Steel & Sumitomo Metal Corp | Hoja de acero laminado en caliente con excelente formabilidad de prensa y metodo de produccion del mismo. |
PL2762592T3 (pl) * | 2011-09-30 | 2018-08-31 | Nippon Steel & Sumitomo Metal Corporation | Cynkowana ogniowo blacha stalowa o dużej wytrzymałości oraz cynkowana ogniowo blacha ze stali stopowej o dużej wytrzymałości, z których każda ma wytrzymałość na rozciąganie wynoszącą 980 MPa albo więcej, doskonałą przyczepność plateru, doskonałą formowalność i doskonałą rozszerzalność otworu, oraz sposób ich wytwarzania |
TWI467027B (zh) * | 2011-09-30 | 2015-01-01 | Nippon Steel & Sumitomo Metal Corp | High strength galvanized steel sheet |
JP5545414B2 (ja) * | 2012-01-13 | 2014-07-09 | 新日鐵住金株式会社 | 冷延鋼板及び冷延鋼板の製造方法 |
KR101504404B1 (ko) * | 2012-12-21 | 2015-03-19 | 주식회사 포스코 | 구멍확장성 및 재질 편차가 우수한 고강도 열연강판 및 이의 제조방법 |
CN113215501B (zh) * | 2014-01-24 | 2022-09-20 | 罗奇钢铁公司 | 热轧超高强度钢带产品 |
-
2018
- 2018-04-19 EP EP18717386.9A patent/EP3612650B1/fr active Active
- 2018-04-19 WO PCT/EP2018/060022 patent/WO2018193032A1/fr unknown
- 2018-04-19 KR KR1020197031256A patent/KR20190142768A/ko not_active Application Discontinuation
- 2018-04-19 CN CN201880031584.5A patent/CN110621794B/zh active Active
- 2018-04-19 US US16/606,530 patent/US20200071789A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO2018193032A1 (fr) | 2018-10-25 |
US20200071789A1 (en) | 2020-03-05 |
CN110621794A (zh) | 2019-12-27 |
EP3612650A1 (fr) | 2020-02-26 |
CN110621794B (zh) | 2022-03-29 |
KR20190142768A (ko) | 2019-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3555336B1 (fr) | Plaque d'acier laminée à froid et traitée thermique avec haute résistance et haute formabilité, pprocédé de fabrication et joint soude par point par resistance | |
EP3221476B1 (fr) | Procédé de fabrication d'un produit en acier haute résistance et produit en acier ainsi obtenu | |
US9028626B2 (en) | Method for manufacturing high strength galvanized steel sheet with excellent formability | |
US8876987B2 (en) | High-strength steel sheet and method for manufacturing same | |
KR100334948B1 (ko) | 높은 동적 변형저항을 가진 우수한 가공성 고강도 강판 및 그제조방법 | |
EP1870483B1 (fr) | Tole d'acier laminee a chaud, procede de sa production et article moule forme a partir de ce tole d'acier laminee a chaud | |
EP2546375B1 (fr) | Pièce emboutie haute résistance et son procédé de production | |
EP2695961B1 (fr) | Tôle d'acier à haute résistance présentant une excellente aptitude au façonnage, et son procédé de fabrication | |
EP1350859B1 (fr) | Tôle d'acier laminée à chaud résistant à la traction, ayant une allongement et une déformabilité de bordage par étirage excellente et son procédé de fabrication | |
US20240182997A1 (en) | Hot dip galvanized steel sheet and method for producing same | |
EP3508600A1 (fr) | Tôle d'acier à haute résistance, et procédé de fabrication de celle-ci | |
US10640855B2 (en) | High-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel | |
EP3508601B1 (fr) | Tôle d'acier à haute résistance, et procédé de fabrication de celle-ci | |
EP3612650B1 (fr) | Feuille d'acier à haute résistance présentant une excellente déformabilité de bordage par étirage, procédé de production dudit acier et son utilisation | |
US10626478B2 (en) | Ultra high-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel | |
US20180044759A1 (en) | High-strength air-hardening multi-phase steel comprising outstanding processing properties and method for the production of a steel strip from said steel | |
EP3561121A1 (fr) | Tôle d'acier laminée à froid ayant une excellente aptitude au pliage et une excellente aptitude d'expansion des trous et sont procédé de fabrication | |
EP3730651A1 (fr) | Tôle d'acier à haute résistance de type à rapport de rendement élevé et son procédé de fabrication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20191120 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 38/54 20060101ALI20220315BHEP Ipc: C22C 38/50 20060101ALI20220315BHEP Ipc: C22C 38/38 20060101ALI20220315BHEP Ipc: C22C 38/16 20060101ALI20220315BHEP Ipc: C22C 38/12 20060101ALI20220315BHEP Ipc: C22C 38/08 20060101ALI20220315BHEP Ipc: C22C 38/02 20060101ALI20220315BHEP Ipc: C22C 38/14 20060101ALI20220315BHEP Ipc: C22C 38/06 20060101ALI20220315BHEP Ipc: C22C 38/04 20060101ALI20220315BHEP Ipc: C22C 38/00 20060101ALI20220315BHEP Ipc: C21D 1/20 20060101ALI20220315BHEP Ipc: C21D 9/48 20060101ALI20220315BHEP Ipc: C21D 8/02 20060101AFI20220315BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220503 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1513684 Country of ref document: AT Kind code of ref document: T Effective date: 20220915 Ref country code: DE Ref legal event code: R096 Ref document number: 602018039680 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221226 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221124 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1513684 Country of ref document: AT Kind code of ref document: T Effective date: 20220824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221224 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018039680 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20230525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230419 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240429 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240429 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240425 Year of fee payment: 7 |