CN110621794A - 具有优异延展性和可拉伸翻边性的高强度钢片 - Google Patents

具有优异延展性和可拉伸翻边性的高强度钢片 Download PDF

Info

Publication number
CN110621794A
CN110621794A CN201880031584.5A CN201880031584A CN110621794A CN 110621794 A CN110621794 A CN 110621794A CN 201880031584 A CN201880031584 A CN 201880031584A CN 110621794 A CN110621794 A CN 110621794A
Authority
CN
China
Prior art keywords
strip
steel
temperature
cooling
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880031584.5A
Other languages
English (en)
Other versions
CN110621794B (zh
Inventor
陈尚平
R·莫斯特尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tata Steel Nederland Technology BV
Original Assignee
Tata Steel Nederland Technology BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tata Steel Nederland Technology BV filed Critical Tata Steel Nederland Technology BV
Publication of CN110621794A publication Critical patent/CN110621794A/zh
Application granted granted Critical
Publication of CN110621794B publication Critical patent/CN110621794B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明涉及作为热轧和冷轧产物的高强度钢片,可用于交通工具和汽车的车架部件例如卡车车架,并且涉及制备钢片的方法及其用途。

Description

具有优异延展性和可拉伸翻边性的高强度钢片
本发明涉及作为热轧和冷轧产物的高强度钢片,可用于交通工具和汽车的车架部件例如卡车车架。
近些年,(先进)高强度钢片材(AHSS)在汽车部件中不断使用以减小重量和燃料消耗。开发了一系列的(先进)高强度钢材例如HSLA钢、双相(DP)钢、铁素体-贝氏体(FB)钢包括可拉伸翻边(SF)钢、复相(CP)钢、转变诱发塑性(TRIP)钢、热成型钢、孪生诱发塑性(TWIP)钢以满足日益增长的需要。
然而,AHSS钢片材不能被容易地应用于各种汽车部件因为它们的可成形性相对差。随着钢材变得越来越强,它们同时变得越来越难以成形为汽车零件。实际上,AHSS钢材(DP、CP和TRIP)实际应用于汽车部件仍受它们的可成形性限制。因此,改进可成形性和可制造性变为对于AHSS应用的重要问题。
从标准拉伸测试很好地建立了AHSS的延伸率和强度之间的关系并且该关系产生了公知的强度-延伸率香蕉曲线。定性地并且较小程度上定量地理解了控制AHSS的强度和延展性的显微组织参数。然而,延伸率不是控制AHSS可成形性的唯一参数。AHSS牌号与低碳钢相比具有额外的相关失效机制。这主要是由局部失效引起的,由于多相组织和变形过程中的相改变所致较常在AHSS中观察到该局部失效。这些局部失效不必然与延伸率和/或n-值相互关联。因此,具有较高(均匀和总)延伸率的钢材不总是具有好的可成形性。改进延展性的显微组织不同于改进可成形性的那些。在延伸率-强度图中的位置不足以选择适合于所有零件的材料。在大多数情况下,需要可成形性和强度之间的另一种关系用于材料选择。在所有相关的成形条件下研究AHSS的行为是必不可少的。在使用各种应力和应变状态的汽车压制成形中存在四种基本操作,即:深拉延、拉伸、拉伸翻边和弯曲。每种成形模式具有特定控制机械参数例如r-值(面内塑性应变和贯穿拉伸测试样品厚度的塑性应变之间的比)、λ(扩孔比)值和弯曲角。对于一些难以成形的零件,在应用中需要高的可冲压性、可拉伸翻边性(stretch flangeability)和疲劳性质。
本发明的目的是提供组合高屈服和拉伸强度与良好延伸率和优异扩孔比值的钢牌号。
本发明的目的还是提供具有至少570MPa的屈服强度、至少760MPa的拉伸强度和至少70%的扩孔比(λ)值的钢牌号。
这个目的通过高强度钢带实现,该高强度钢带具有不含渗碳体的显微组织,包含:
·0.005-0.08重量%C;
·1.30-2.30重量%Mn;
·2-35ppm B;
·5-65ppm N;
·总计0.005-0.1重量%Al;
·0.03至0.20重量%Ti;
·0-1.5重量%Cu;
·0-0.75重量%Cr;
·0-0.05重量%Mo;
·0-0.50重量%Ni;
·0-0.30重量%V;
·0-0.6重量%Si;
·0-0.01重量%P;
·0-0.01重量%S;
·C/(Ti_sol+V)≤0.25
余量为铁和不可避免的杂质,钢带具有至少570MPa的屈服强度、至少760MPa的拉伸强度和、至少10.3%的总延伸率(A50)和至少70%的扩孔比(λ)值。
化学元素的独特和平衡的组合确保了钢的显微组织包含贝氏体和铁素体组分,并理想地仅由贝氏体和铁素体组分构成。优选地整个显微组织仅由贝氏体组分构成。即使有时难以区分铁素体和贝氏体组分,但是容易区分一方面的铁素体和贝氏体组分和另一方面的如马氏体、残余奥氏体、渗碳体、珠光体等组织。
本发明中的关键是在显微组织中不存在渗碳体(Fe3C)。通过添加钛(Ti)和钒(V),防止渗碳体形成并替代形成TiC和VC。后面这些碳化物比通常会存在的渗碳体(~200nm)小得多(~5-30nm)并分散得更细。渗碳体还为板形的并且位于贝氏体组织中的铁素体板条之间,然而VC和TiC常为球形或针状并位于铁素体板条内。这种显微组织提供强度和断裂韧性的改进组合。显微组织的高强度来源于小于1μm的超细晶粒尺寸,其可通过小的碳化物析出物额外地强化。在本发明中,为了制备具有高的可成形性的不含渗碳体的贝氏体钢材,通过使用微合金化例如钛和钒来抑制Fe3C或马氏体/奥氏体显微成分的形成。此外,当同时使用显微组织细化时,微合金化析出强化是提高强度而不牺牲韧性的有效方式。在较高的碳含量下,对于避免(粗大的)Fe3C而言与V和Ti的较高量的微合金化时必要的。
C是形成不含渗碳体的贝氏体的元素,因此有助于提高强度。在钢中0.005和0.08重量%之间的低碳含量确保显微组织的冷却速率依赖性低。在这些低碳含量下,在小于0.05重量%、优选小于0.045重量%、更优选小于0.04%、甚至更优选小于0.035重量%的优选实施方案中,在奥氏体至铁素体转变过程中不发生碳分配。合适的最小碳含量为0.01重量%以获得贝氏体组织并确保UTS为760MPa或更大的高强度。通过优化其它合金化元素,能够获得均匀的贝氏体显微组织,该贝氏体显微组织将跨非常大范围的冷却速率以非常类似的方式形成。在不存在碳化物形成体的情况下,将形成一些渗碳体。可通过与Ti和/或V进一步合金化使贝氏体显微组织不含渗碳体。同样,低的碳浓度可产生与适当焊接性平衡的良好低温冲击韧性。
钛和钒在形成高强度的不含渗碳体的贝氏体时起到非常重要的作用。取决于钢的具体化学组成,Ti与N、S和C组合形成氮化物、硫碳化物和碳化物。当Ti含量超过0.20%时,在热轧之前再加热板坯的过程中难以溶解粗大的Ti碳化物。在这种情况下,添加V以替代一定量的Ti并且V将与剩余的碳组合形成VC。钛含量为至少0.03%。
形成TiC和VC将完全防止渗碳体的形成。细的碳化物TiC和/或VC,在热轧之后的初步冷却后的自然冷却(空气冷却)过程中铁素体相中的晶粒尺寸小于10nm,因此有助于提高强度。Ti还起固定N的作用。任何游离的氮对B的淬硬性改进效应有害,并因此需要钛的氮清除效应。钒含量为至多0.30%。
为了获得具有高延展性和高扩孔比的热轧钢片,有必要防止渗碳体的形成。即C/(Ti_sol+V)必须满足以下表达式:
其中Ti_sol表示可形成Ti碳化物的Ti的量:
对于C/(Ti_sol+V)而言合适的最小值为0.15。为了促进硼的硬化效应,Ti_sol>0、优选>0.01重量%、更优选>0.02重量%。
术语不含渗碳体的意图是指目的是无论怎样在显微组织中不存在渗碳体(Fe3C)。满足以上表示的等式的组成应确保是这种情况。然而,由于钢带中的局部组成波动所致,在显微组织中可无意地和非故意地出现微量的渗碳体,其总体上不影响钢带的性质和性能。
锰(Mn)是促进低碳贝氏体显微组织和在改进强度和低温韧性之间平衡方面的必要元素。Mn含量为至少1.30且至多2.30重量%。Mn稳定奥氏体并且推迟在给定温度下的贝氏体转变和确保良好的淬硬性。将奥氏体区延伸至较低温度,其为适当的受控轧制提供宽的温度间隙。此外,Mn促进细微针状铁素体和下贝氏体的形成。非常高Mn含量的劣势是HAZ韧性劣化、连续铸造钢坯的中心偏析提高和在热轧之后由于提高的内部氧化所致差的表面品质。对于本发明的钢,Mn含量为优选至少1.5且优选至多2.0重量%。更优选地,Mn为至少1.65且至多1.95重量%。
硼(B)是在低C低合金钢材中可能的淬硬性增强剂。添加少量的B至低碳钢材以确保可在较低的冷却速率下产生贝氏体显微组织而没有先共析铁素体的形成。B含量为至少2且至多35ppm。B在提高屈服强度方面是最有效的合金化元素。B含量应优选为至多25ppm从而不损害低温韧性。为了使硼能够发挥这种作用,必要的是不存在游离氮使得避免了BN的形成。这是钛的氮清除效应起作用的地方。
氮(N)是在BOF炼钢过程中不可避免存在的。N是对Ti具有强亲和力并且形成Ti氮化物的元素,Ti氮化物在再加热过程中充当弥散体用于奥氏体晶粒尺寸控制。N含量为至少5且至多65ppm。当N含量超过50ppm(=0.005重量%)时,需要相对大量的Ti以确保形成Ti碳化物的能力(其有助于强化并保护游离的硼),导致成本上升。因此,N含量为50ppm或更少。期望地,尽可能多地减少N含量。适合且实际的最小N含量为10ppm。钛含量为至少0.03且至多0.20重量%Ti,和优选地至少0.06和优选地至多0.18、更优选至多0.16重量%。
优选地将钢材与铜(Cu)或铬(Cr)的一种或两种额外地合金化至最大1.50重量%Cu和0.75重量%Cr。合适的最大值为1.25重量%Cu。Cu可促进低碳贝氏体组织并提供固溶硬化。通过纳米尺寸Cu析出物的析出硬化提高钢的强度。通过热机械析出控制过程(TPCP),能够在热轧之后卷材冷却过程中获得Cu析出,并因此没必要额外热处理。主要由于转变强化所致,Cr提高强度。
镍(Ni)改进韧性以及淬硬性。镍赋予处于高强度水平的钢材料以良好韧性。除了提高钢的强度和韧性之外,Ni对抗由任何Cu合金化引起的热脆性。主要从成本观点来看,Ni优选仅作为杂质存在。当Cu含量超过0.5%时可添加至多0.5重量%Ni以防止热脆性。在一种实施方案中,没有向钢添加镍。
添加硅(Si)以通过固溶硬化和转变硬化来改进强度。然而,使用过量的Si,损害HAZ韧性、可焊接性和涂覆性。硅最大为0.6重量%、优选最大为0.5%。
使用铝(Al)作为脱氧元素和对改进钢洁净度有效的元素。有必要将钢中的Al总含量设为0.005重量%或更大以获得这样的效应。Al含量最大为0.1重量%且优选为0.05重量%,因为含量越高引起表面缺陷的可能性越高并且合金的成本越高。
发现钼(Mo)在约0.1重量%的小浓度下促进低碳贝氏体组织,但是在较高的浓度下其可使高强度不含渗碳体的贝氏体钢材的韧性劣化。Mo不是经济上优选的合金化元素并且在这些钢材中不建议使用其作为合金化元素。
硫(S)作为杂质存在于钢中。在铸造过程中在含有Mn的钢材中将形成一次MnS颗粒。这些粗大的MnS颗粒非常有害,因为它们在轧制方向上伸长。当添加Ti时,取决于Ti、C和S的浓度,在铸造过程中形成Ti4S2C2和/或MnS。Ti4S2C2将作为一次粗大颗粒存在并需要尽可能地被避免。S含量应为至多0.012、优选至多0.01重量%和最优选小于0.005重量%。
磷(P)作为杂质存在于钢中。当P含量超过0.03%时,在晶界中的偏析变得明显,导致韧性和可焊接性劣化。期望地,尽可能多地减少P含量。P含量应为至多0.012、优选至多0.01重量%和最优选小于0.005重量%。
根据本发明的钢可为热轧钢并这样使用,或随后冷轧并退火的钢。热轧或冷轧钢可设有金属性涂层。可通过热浸的方式提供涂层,并且优选地金属性涂层是基于锌或铝的涂层。通过常规的方式进行钢的任选涂覆并且包括但不限于热浸涂覆、电镀、PVD或CVD。
注意到根据本发明的钢不含有铌(Nb)作为合金化元素。表1中的值表示仅作为杂质存在,并且没有向钢添加铌。
根据第二方面,本发明还体现在制备高强度钢带的工艺中,该高强度钢带具有不含渗碳体的显微组织、至少570MPa的屈服强度、至少760MPa的拉伸强度、至少10.3%的总延伸率(A50)和至少70%的扩孔比(λ)值,所述工艺包括:
-将熔体铸造成具有以下组成的板坯或带材;
·0.005-0.08重量%C;
·1.30-2.30重量%Mn;
·2-30ppm B;
·5-65ppm N;
·总计0.005-0.1重量%Al;
·0.03至0.20重量%Ti;
·0-1.5重量%Cu;
·0-0.75重量%Cr;
·0-0.05重量%Mo;
·0-0.50重量%Ni;
·0-0.30重量%V;
·0-0.6重量%Si;
·0-0.01重量%P;
·0-0.01重量%S;
·C/(Ti_sol+V)≤0.25,
余量为铁和不可避免的杂质,
-再加热该板坯至至少1200℃的板坯再加热温度,热轧该板坯或带材至热轧带材,其中热轧终轧温度大于Ar3;
-以15至100℃/s的平均冷却速率在出料辊道上冷却该热轧带材至小于500℃的卷取温度,然后带卷冷却至室温。
在根据本发明的工艺中,以厚板坯、薄板坯或带材的形式常规铸造钢熔体。在铸造之后,通过(再)加热和/或匀质化使其达到热轧温度并热轧。在钢上进行最后的热轧道次时钢仍然时完全奥氏体的,即终轧温度大于Ar 3。在终轧之后在带材热轧机的出料辊道上以15和100℃/s之间的平均冷却速率使钢冷却至至多500℃的卷取温度,然后通过自然冷却使带卷冷却降至环境温度。对于钢而言板坯再加热温度必须足够高以溶解在铸造过程中在板坯中析出的粗大的Ti和V碳化物。发明人发现需要至少1200℃的SRT。合适的最大SRT为1300℃。热轧终轧温度必须在奥氏体范围内,并优选在850℃至950℃之间。应用850℃至950℃的这个范围以在最后轧制道次之后在带材中产生细的奥氏体晶粒尺寸,并保持Ti和V固溶。在最后热轧道次之后立即(在终轧和开始冷却之间至多在2秒的时间段内)通过以15至100℃/s范围内的速率加速冷却使带材冷却至至多500℃的卷取温度。在卷取之后使卷材在没有进一步加速冷却的情况下冷却至环境温度。为了避免误解,指出环境温度与室温具有相同的意义。
需要热轧之后平均冷却速率为15至100℃/s以避免珠光体的形成并且避免铁素体和粗大的Ti和V碳化物的形成。
在冷却之后,在至多500℃的卷取温度下卷取热轧片。卷取的带材缓慢冷却,其允许发生贝氏体相变。在这个卷取温度范围内卷曲过程中在根据本发明的钢材中形成的贝氏体相不含渗碳体,其对于钢片表现出优异的可拉伸翻边性而言是优选的。在这个卷取温度范围内可发生细TiC和/或VC碳化物的析出而不是Fe3C的形成,从而能够获得额外的硬化。
如果卷取温度超过500℃,渗碳体可形成为珠光体或退化珠光体,并且产生的可拉伸翻边性显著小于根据本发明的工艺。
优选地卷取温度为至少420℃,因为对于更低的卷取温度值存在形成过多马氏体和残余奥氏体的风险并将因此减小所得的钢的可成形性。这种风险对于较高的碳含量更突出。对于具有C含量在0.03至0.08重量%范围内的钢材而言,卷取温度应在420至500℃的范围内,因为显微组织和性质(尤其是可拉伸翻边性)对工艺路径相当敏感。在图1中显示的VS72合金的CCT图指出:取决于冷却速率,产生不同的显微组织。
对于具有C含量小于0.03重量%的钢材,在热轧之后的冷却速率必须在15至100℃/s的范围内并且卷取温度必须小于500℃。没有规定最小卷取温度,因为形成马氏体或存在残余奥氏体的风险非常低。然而,为了安全,卷取温度优选不小于420℃。发明人发现机械性质对冷却速率和冷却温度相对不敏感。因为VS74合金的CCT图(图2)和显微组织(图3)已经表明,最终组织对冷却轨迹相对不敏感。尤其是含有Cu和/或Cr的钢牌号的情况。
取决于片材的厚度,在精轧机的出口处,可通过水或空气/水混合物喷雾的方式获得冷却速率范围。
从确保稳定性质的观点来看,卷取温度优选为至少440℃和/或至多480℃。优选地在轧制之后和卷取之前的冷却速率为至少25℃/s。
如果随后冷轧经热轧的带材,应用冷轧减薄以获得需要的厚度。热轧带材的总冷轧减薄优选在50和90%之间。将冷轧的完全硬化的带材再加热至大于Ac3的固溶温度,优选在850-1000℃的温度范围内,并在该固溶温度下保持2至8分钟,并然后使用在15至50℃/s范围内的冷却速率冷却至在440和480℃之间的保温温度,并停留持续至多30min,和优选持续0.5至30min,以允许发生贝氏体转变并避免其量不利地影响可成形性的马氏体的形成风险。此后,应使用0.5至100℃/s的冷却速率使片材冷却至室温。对于含有小于0.03重量%C的合金而言,冷却速率应优选在10和100℃/s之间。较高的再加热温度是优选的以使更多TiC溶解至奥氏体中。
根据第三方面本发明还体现在汽车或卡车部件中,例如汽车底盘部件、白车身部件、车架或副车架部件,由根据本发明的钢片制备所述部件。
现在将参考以下非限制性实例描述本发明。
将具有表1中所示组成的钢材铸造成尺寸为200mm x 110mm x 110mm的30kg铸锭。钢VS71是比较例,因为C/(T_sol+V)比在本发明组成范围之外。将铸锭再加热至1250℃并均热1小时并然后粗热轧至35mm厚度。从两端切掉收缩和偏析区域。在1200℃下再加热切割的块体30min并然后在5个道次中热轧至3mm厚度。终轧温度为约900℃。
立即在热轧之后,在出料辊道中以30-60℃/s将带材冷却至500℃并然后转移至440℃或480℃下的预加热炉并保持1小时以模拟卷取工艺。然后从炉中取出材料并在空气中冷却至室温。然后在85℃下的HCl中酸洗热轧带材以去除氧化物层。对于热轧带材机加工用于显微组织观察、拉伸测试和扩孔测试的样品。
随后以67%的冷轧减薄将热轧带材冷轧。然后在900℃下热处理冷轧的1mm带材2min并然后采用如表3中规定的3种不同条件冷却。
拉伸测试-从获得的热轧并冷轧且退火的片材机加工Euronorm测试件(规格长度=50mm;宽度=12.5mm)使得拉伸方向平行于轧制方向。在Schenk TREBEL测试机中按照NEN10002标准进行室温拉伸测试以测定拉伸性质(屈服强度YS(MPa)、极限拉伸强度UTS(MPa)、总延伸率TE(%))。对于每种条件,进行三次拉伸测试并报告机械性质的平均值。
扩孔测试(可拉伸翻边性评价测试)-从获得的轧制片材取样用于测试可扩孔性的测试件(尺寸:90×90mm)。按照日本钢铁联合会标准JFS T 1001,在测试件中心冲出10mm直径的冲孔并且将60°锥形冲头上推并插入该孔中。当裂纹穿透片厚度时,测量孔直径d(mm)。通过以下等式计算扩孔比λ(%):λ(%)={(d-d0)/do}×100,其中d0为10mm。
弯曲测试-在具有尺寸40mm x 30mm的样品上进行3点“导向弯曲测试”。样品的长度方向平行于钢片材的轧制方向。进行了弯曲轴垂直于片材的轧制方向的平行弯曲测试。对于这种方法,使用成形工具(former)和两个支撑柱以便弯曲钢片材。在拉伸测试机中安装柱体和冲头。使用载荷传感器测量冲力并且十字头的位移给出冲头的位移。在不同的弯曲角停止实验并且检查试样的弯曲表面用于鉴别失效以便测定弯曲角。
通过标准膨胀测量法(5℃/s加热速率至900℃,保持5分钟)的方式测定钢材VS72和VS74的CCT图(图1和图2)。显微组织评价(图3)揭示了在不同的冷却速率之后对于VS74合金而言显微组织始终是铁素体-贝氏体。
表1以重量%计的铸造钢材的化学组成,除了B和N以ppm计
x=杂质水平。
表2热轧的3mm带材的机械性质
表3冷轧和退火钢材的性质(厚度1.0mm)
图1.VS72合金的CCT图。
图2.VS74合金的CCT图。
图3.VS74合金的显微组织(取自图2的样品)。

Claims (15)

1.高强度钢带,具有不含渗碳体的显微组织,包含:
·0.005-0.08重量%C;
·1.30-2.30重量%Mn;
·2-35ppm B;
·5-65ppm N;
·总计0.005-0.1重量%Al;
·0.03至0.20重量%Ti;
·0-1.5重量%Cu;
·0-0.75重量%Cr;
·0-0.05重量%Mo;
·0-0.50重量%Ni;
·0-0.30重量%V;
·0-0.6重量%Si;
·0-0.01重量%P;
·0-0.01重量%S;
·其中Ti_sol=Ti-((48/14)·N)
余量为铁和不可避免的杂质,该钢带具有至少570MPa的屈服强度、至少760MPa的拉伸强度、至少10.3%的总延伸率(A50)和至少70%的扩孔比(λ)值。
2.根据权利要求1所述的钢,含有至少以下一者:
·0-1.5重量%Cu;
·0-0.75重量%Cr。
3.根据前述权利要求中任一项所述的钢,其中显微组织包含贝氏体和铁素体晶粒。
4.根据前述权利要求中任一项所述的钢,其中C为至多0.045重量%。
5.制备高强度钢带的方法,该高强度钢带具有不含渗碳体的显微组织、至少570MPa的屈服强度、至少760MPa的拉伸强度、至少10.3%的总延伸率(A50)和至少70%的扩孔比(λ)值,所述方法包括:
-将熔体铸造成具有以下组成的板坯或带材;
·0.005-0.08重量%C;
·1.30-2.30重量%Mn;
·2-35ppm B;
·5-65ppm N;
·总计0.005-0.1重量%Al;
·0.03至0.20重量%Ti;
·0-1.5重量%Cu;
·0-0.75重量%Cr;
·0-0.05重量%Mo;
·0-0.50重量%Ni;
·0-0.30重量%V;
·0-0.6重量%Si;
·0-0.01重量%P;
·0-0.01重量%S;
·其中Ti_sol=Ti-((48/14)·N);
·余量为铁和不可避免的杂质,
-热轧该板坯或带材至热轧带材;
-在终轧和开始冷却之间2秒的时间段内以15至100℃/s的平均冷却速率在出料辊道上冷却该热轧带材至小于500℃的卷取温度,并然后通过自然冷却将卷材冷却至环境温度。
6.根据权利要求5所述的方法,其中该板坯或带材含有以下至少一种
·0-1.5重量%Cu;
·0-0.75重量%Cr。
7.根据权利要求5或权利要求6所述的方法,其中该钢的碳含量为至少0.03%并且其中该卷取温度为至少420℃。
8.根据权利要求5-7中任一项所述的方法,其中C为至多0.045重量%。
9.根据权利要求5-8中任一项所述的方法,其中该卷取温度为至少440℃和/或至多480℃。
10.根据权利要求5-9中任一项所述的方法,其中随后冷轧经热轧的带材以获得冷轧带材。
11.根据权利要求10所述的方法,其中通过将该带材再加热至大于Ar3的温度,保温该带材并随后冷却该带材至环境温度来退火该冷轧带材。
12.根据权利要求10所述的方法,其中总冷轧减薄在50和90%之间。
13.根据权利要求10-12中任一项所述的方法,其中将冷轧的完全硬化带材再加热至在850-1000℃范围内的大于Ac3的固溶温度,在该固溶温度下保持2至8分钟,使用在15至50℃/s范围内的冷却速率冷却至440和480℃之间的保温温度,在该保温温度下停留0至30min以允许发生贝氏体转变,并然后冷却至室温。
14.汽车或卡车部件,例如汽车底盘部件、白车身部件、车架或副车架部件,由根据权利要求1-4中任一项的钢片制备所述部件。
15.汽车或卡车部件,例如汽车底盘部件、白车身部件、车架或副车架部件,通过根据权利要求5-13中任一项的方法制备所述部件。
CN201880031584.5A 2017-04-20 2018-04-19 具有优异延展性和可拉伸翻边性的高强度钢片 Active CN110621794B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17167303 2017-04-20
EP17167303.1 2017-04-20
PCT/EP2018/060022 WO2018193032A1 (en) 2017-04-20 2018-04-19 High strength steel sheet having excellent ductility and stretch flangeability

Publications (2)

Publication Number Publication Date
CN110621794A true CN110621794A (zh) 2019-12-27
CN110621794B CN110621794B (zh) 2022-03-29

Family

ID=58579077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880031584.5A Active CN110621794B (zh) 2017-04-20 2018-04-19 具有优异延展性和可拉伸翻边性的高强度钢片

Country Status (5)

Country Link
US (1) US20200071789A1 (zh)
EP (1) EP3612650B1 (zh)
KR (1) KR20190142768A (zh)
CN (1) CN110621794B (zh)
WO (1) WO2018193032A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115917027A (zh) * 2020-04-14 2023-04-04 日本制铁株式会社 钢近终形材料及其制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021180978A1 (en) 2020-03-13 2021-09-16 Tata Steel Nederland Technology B.V. Method of manufacturing a steel article and article
DE102021104584A1 (de) 2021-02-25 2022-08-25 Salzgitter Flachstahl Gmbh Hochfestes, warmgewalztes Stahlflachprodukt mit hoher lokaler Kaltumformbarkeit sowie ein Verfahren zur Herstellung eines solchen Stahlflachprodukts
WO2024032949A1 (en) 2022-08-09 2024-02-15 Tata Steel Ijmuiden B.V. Hot-rolled high-strength steel strip

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364968B1 (en) * 2000-06-02 2002-04-02 Kawasaki Steel Corporation High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
US20040055667A1 (en) * 2000-12-29 2004-03-25 Yoshihisa Takada High-strength molten-zinc-plated steel plate excellent in deposit adhesion and suitability for press forming and process for producing the same
US20050161134A1 (en) * 2004-01-28 2005-07-28 Shinshu Tlo Co., Ltd. High strength and low yield ratio cold rolled steel sheet and method of manufacturing the same
CN101906567A (zh) * 2005-03-28 2010-12-08 株式会社神户制钢所 扩孔加工性优异的高强度热轧钢板及其制造方法
US20120037282A1 (en) * 2009-02-25 2012-02-16 Jfe Steel Corporation High strength galvanized steel sheet with excellent workability and method for manufacturing the same
CN102791896A (zh) * 2010-03-10 2012-11-21 新日本制铁株式会社 高强度热轧钢板及其制造方法
CN102918173A (zh) * 2010-05-31 2013-02-06 杰富意钢铁株式会社 延伸凸缘性和耐疲劳特性优良的高强度热轧钢板及其制造方法
CN103328671A (zh) * 2011-03-18 2013-09-25 新日铁住金株式会社 冲压成形性优良的热轧钢板及其制造方法
CN103827336A (zh) * 2011-09-30 2014-05-28 新日铁住金株式会社 具有980MPa以上拉伸强度的镀层附着性、成型性和扩孔性优异的高强度热浸镀锌钢板和高强度合金化热浸镀锌钢板及其制造方法
US20140255724A1 (en) * 2011-09-30 2014-09-11 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet
US20140342185A1 (en) * 2012-01-13 2014-11-20 Nippon Steel & Sumitomo Metal Corporation Cold rolled steel sheet and method for producing cold rolled steel sheet
KR101504404B1 (ko) * 2012-12-21 2015-03-19 주식회사 포스코 구멍확장성 및 재질 편차가 우수한 고강도 열연강판 및 이의 제조방법
CN106103749A (zh) * 2014-01-24 2016-11-09 罗奇钢铁公司 热轧超高强度钢带产品

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364968B1 (en) * 2000-06-02 2002-04-02 Kawasaki Steel Corporation High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
US20040055667A1 (en) * 2000-12-29 2004-03-25 Yoshihisa Takada High-strength molten-zinc-plated steel plate excellent in deposit adhesion and suitability for press forming and process for producing the same
US20050161134A1 (en) * 2004-01-28 2005-07-28 Shinshu Tlo Co., Ltd. High strength and low yield ratio cold rolled steel sheet and method of manufacturing the same
CN101906567A (zh) * 2005-03-28 2010-12-08 株式会社神户制钢所 扩孔加工性优异的高强度热轧钢板及其制造方法
US20120037282A1 (en) * 2009-02-25 2012-02-16 Jfe Steel Corporation High strength galvanized steel sheet with excellent workability and method for manufacturing the same
CN102791896A (zh) * 2010-03-10 2012-11-21 新日本制铁株式会社 高强度热轧钢板及其制造方法
CN102918173A (zh) * 2010-05-31 2013-02-06 杰富意钢铁株式会社 延伸凸缘性和耐疲劳特性优良的高强度热轧钢板及其制造方法
CN103328671A (zh) * 2011-03-18 2013-09-25 新日铁住金株式会社 冲压成形性优良的热轧钢板及其制造方法
CN103827336A (zh) * 2011-09-30 2014-05-28 新日铁住金株式会社 具有980MPa以上拉伸强度的镀层附着性、成型性和扩孔性优异的高强度热浸镀锌钢板和高强度合金化热浸镀锌钢板及其制造方法
US20140255724A1 (en) * 2011-09-30 2014-09-11 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet
US20140342185A1 (en) * 2012-01-13 2014-11-20 Nippon Steel & Sumitomo Metal Corporation Cold rolled steel sheet and method for producing cold rolled steel sheet
KR101504404B1 (ko) * 2012-12-21 2015-03-19 주식회사 포스코 구멍확장성 및 재질 편차가 우수한 고강도 열연강판 및 이의 제조방법
CN106103749A (zh) * 2014-01-24 2016-11-09 罗奇钢铁公司 热轧超高强度钢带产品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115917027A (zh) * 2020-04-14 2023-04-04 日本制铁株式会社 钢近终形材料及其制造方法

Also Published As

Publication number Publication date
WO2018193032A1 (en) 2018-10-25
US20200071789A1 (en) 2020-03-05
EP3612650B1 (en) 2022-08-24
CN110621794B (zh) 2022-03-29
EP3612650A1 (en) 2020-02-26
KR20190142768A (ko) 2019-12-27

Similar Documents

Publication Publication Date Title
US8430975B2 (en) High strength galvanized steel sheet with excellent formability
KR100334948B1 (ko) 높은 동적 변형저항을 가진 우수한 가공성 고강도 강판 및 그제조방법
US8828154B2 (en) Hot-rolled steel sheet, method for making the same, and worked body of hot-rolled steel sheet
KR101424859B1 (ko) 고강도 강판 및 그 제조 방법
US20080199347A1 (en) Method of Producing High-Strength Steel Plates with Excellent Ductility and Plates Thus Produced
EP3899067B1 (en) Cold rolled and heat-treated steel sheet and method of manufacturing the same
US10640855B2 (en) High-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel
US10626478B2 (en) Ultra high-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel
CN110621794B (zh) 具有优异延展性和可拉伸翻边性的高强度钢片
US20180044759A1 (en) High-strength air-hardening multi-phase steel comprising outstanding processing properties and method for the production of a steel strip from said steel
US20220177996A1 (en) High-Hardness Steel Product and Method of Manufacturing the Same
KR20040091751A (ko) 연성 및 내피로특성에 우수한 고장력 용융 아연도금강판의제조방법
JP2002053935A (ja) 歪時効硬化特性に優れた高張力冷延鋼板およびその製造方法
WO2020151856A1 (en) A high strength high ductility complex phase cold rolled steel strip or sheet
JP2001226741A (ja) 伸びフランジ加工性に優れた高強度冷延鋼板およびその製造方法
JP5034296B2 (ja) 歪時効硬化特性に優れた熱延鋼板およびその製造方法
EP3686293B1 (en) A high strength high ductility complex phase cold rolled steel strip or sheet
SE542818C2 (en) A high strength high ductility complex phase cold rolled steel strip or sheet
JP7193044B1 (ja) 高強度鋼板およびその製造方法、ならびに、部材
US20240167137A1 (en) High strength cold rolled steel sheet for automotive use having excellent global formability and bending property

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant