EP0952509B1 - Referenzspannungsschaltung - Google Patents

Referenzspannungsschaltung Download PDF

Info

Publication number
EP0952509B1
EP0952509B1 EP99105492A EP99105492A EP0952509B1 EP 0952509 B1 EP0952509 B1 EP 0952509B1 EP 99105492 A EP99105492 A EP 99105492A EP 99105492 A EP99105492 A EP 99105492A EP 0952509 B1 EP0952509 B1 EP 0952509B1
Authority
EP
European Patent Office
Prior art keywords
bipolar transistor
reference voltage
current
voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99105492A
Other languages
English (en)
French (fr)
Other versions
EP0952509A2 (de
EP0952509A3 (de
Inventor
Franz Dr. Wachter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP0952509A2 publication Critical patent/EP0952509A2/de
Publication of EP0952509A3 publication Critical patent/EP0952509A3/de
Application granted granted Critical
Publication of EP0952509B1 publication Critical patent/EP0952509B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/267Current mirrors using both bipolar and field-effect technology

Definitions

  • the present invention relates to a reference voltage circuit, in particular a reference voltage circuit according to the preamble of claim 1, which supplies a tunable reference voltage.
  • Integrated circuits that are not operated from a stabilized supply voltage internally require a reference voltage source. This applies in particular to voltage regulators whose output voltage serves as reference voltage for other integrated circuits or circuit blocks.
  • the forward or forward voltage of a diode or, in general, a pn junction e.g. As the base-emitter voltage of a bipolar transistor, are used as a reference voltage.
  • the forward voltage of a pn junction has a negative temperature coefficient, which has a negative effect on many applications. If, for example, by means of a voltage regulator whose output voltage serves as a reference voltage, sensors, A / D converter or similar components are supplied, the output voltage of the voltage regulator must be highly accurate and in particular extremely temperature stable.
  • bandgap or bandgap reference voltage circuits are preferably used as reference voltage sources that provide a temperature-stabilized reference voltage.
  • These known bandgap reference voltage sources are based on an addition of a forward voltage of a current-carrying pn junction and a differential voltage multiplied by a corresponding factor, which is formed from two voltages of two pn junctions through which different current densities flow.
  • the river voltage has a current-carrying pn junction - as has already been explained before - a negative temperature coefficient.
  • the difference between two forward voltages increases proportionally to the absolute temperature and is therefore subject to a positive temperature coefficient.
  • the factor by which the differential voltage explained above is multiplied is set so as to cancel the negative temperature coefficient of the forward voltage of the pn junction with the positive temperature coefficient of the differential voltage, a temperature-stabilized output voltage can be obtained.
  • the output voltage of such a reference voltage source which is obtained by adding the above-described forward voltage of a current-carrying pn junction with the differential voltage also explained above, about 1.25 V, which corresponds approximately to the band gap (bandgap) of silicon. Therefore, such reference voltage sources are referred to as bandgap reference voltage sources.
  • FIG. 2 shows a generalized circuit diagram of a known bandgap reference voltage source. Via a current source I 0 , which supplies an impressed current I bias , a current mirror circuit is connected to a positive supply voltage terminal V cc .
  • the current mirror circuit comprises two resistors R3 and bipolar transistors T16-T21.
  • the current mirror circuit generates output currents I C1 and I C2 , which are supplied to the npn bipolar transistors T1 and T2 connected according to FIG.
  • the base terminals of the two transistors T1 and T2 are connected to each other, wherein the base voltage U of the transistor T1 is highly multiplied by a voltage divider consisting of two resistors R5 and R4, so that at the resistor R4 a desired output or reference voltage U ref can be tapped.
  • a transistor T10 With the output terminal of this reference voltage circuit, a transistor T10 is coupled, whose task is to regulate the output voltage U ref to a constant value, if the output of the bandgap shown in Figure 2 - reference voltage source with an uneven load is loaded.
  • any desired actuator for example an operational amplifier or a MOS field-effect transistor, can be used, which can take over the previously described control task.
  • the currents flowing through the transistors T1 and T2 are adjusted, wherein the currents I c1 and I C2 are usually the same.
  • the current I C1 is often also set to a multiple value of the current IT2.
  • the transistors T1 and T2 have different emitter areas, the emitter area of the transistor T2 corresponding to a multiple of the emitter area of the transistor T1, so that correspondingly the emitter current density of the transistor T1 corresponds to a multiple of the emitter current density of the transistor T2.
  • the sum voltage from the base-emitter voltage of the transistor T1 and the voltage applied to a node between resistors R1 (consisting of the partial resistors R1a and R1b) and R2 voltage is tapped.
  • the first-mentioned base-emitter voltage of the transistor T1 corresponds to the forward voltage of a current-carrying pn junction and therefore has - as has been explained above - a negative temperature coefficient.
  • the voltage drop across the resistor R1 or to the resistors R1a and R1b depends on the difference between the base-emitter voltage of the transistor T1 and the base-emitter voltage of the transistor T2 and, as has also been explained above, a positive temperature coefficient.
  • the bandgap reference voltage source shown in FIG. 2 can be dimensioned such that the differential voltage applied to the resistor R1 is selected from the flux voltages of the two transistors T1 and T2 is subject to a negative temperature coefficient compensating positive temperature coefficient.
  • the desired temperature-stabilized bandgap reference voltage of approximately 1.25V is applied to the common base terminal of the transistors T1 and T2, which is highly multiplied by the divider with the resistors R4 and R5.
  • Bandgap reference voltage circuits of the type shown in Figure 2 are used, for example, in BICDMOS technology (bipolar, C and D-MOS technology) for precise voltage regulators. Such reference voltage circuits are specified for a relative error of at most ⁇ 1% in the temperature range of -40 ° C to 150 ° C, so that a corresponding calibration or an adjustment of the reference voltage circuit is provided. In order to keep manufacturing spreads as low as possible, each system is adjusted individually during manufacture to the desired voltage value.
  • Reference voltage circuits of the type shown in FIG. 2 are frequently used on chips which, in addition to normal switching regulators, also include circuit breakers. This applies, for example, especially for automotive applications. These power transistors are monitored by integrated temperature sensors, which in turn require a temperature-stable voltage reference to be able to safely switch dynamically in the desired high temperature range of 250 ° C (transistor core temperature). Taking into account the thermal gradient of the particular chip used, it can be assumed that the bandgap reference voltage circuit used must be as temperature stable as possible up to a temperature of 200 ° C or a relative error of ⁇ 2.5% in the extended temperature range must not exceed.
  • thermal barrier leakage currents which start at around 140 ° C and increase exponentially with increasing temperature. Therefore, there is a need to minimize the influence of the thermal junction leak currents on the reference voltage provided by the reference voltage circuit.
  • options for calibrating or balancing the output voltage of the reference voltage circuit are generally provided. In such adjustment circuits, however, leakage currents also occur, which usually exert a great influence on the temperature stability of the reference voltage circuit, especially at high temperatures. This will be explained in more detail below with reference to FIG.
  • FIG. 3 shows, by way of example, a corresponding matching circuit connected to the resistors R1a and R1b shown in FIG. 2, wherein so-called “zapping" diodes are used as adjustment switches, which break down when a high external voltage is applied and generate a low-resistance connection.
  • FIG. 3 shows such a "zapping" diode in the form of an npn bipolar transistor T22, which can be made to break through by applying a correspondingly high balancing voltage to the terminals Z 1N and Z GND .
  • the resistor R1a is short-circuited due to the breakdown of the diode formed in the bipolar transistor T22, and thus the total resistance value of the resistor R1 consisting of the resistors R1a and R1b in FIGS. 2 and 3 is changed.
  • the change in the divider ratio of the resistors R1 and R2 has a direct effect on the difference voltage of the base-emitter voltages of the bipolar transistors T1 and T2 applied to the junction between the resistors R1 and R2 (see FIG. out, so by a corresponding change this.
  • Divider ratio R1: R2 can be set or adjusted at the base of the transistor T1 voltage and thus the output from the reference voltage source reference voltage U ref .
  • collector-substrate leakage currents I.sub.sub22 (or, in the case of diodes not short-circuited) occur at high temperatures Collector-base leakage currents), which falsify the divider ratio R1: R2 and thus the output voltage U ref .
  • voltage clamping circuits are required for such shunt shunts to protect the circuit from the high voltages encountered during calibration at the balance terminals.
  • Such a voltage clamping circuit is shown in Figure 3 with a diode D3, a transistor T23 and a resistor R13.
  • the collector of the transistor T23 has a barrier layer to the substrate, indicated by a diode D2 in FIG. 3, so that collector-substrate leakage currents Isub23 also occur with respect to this transistor T23, in particular by the high balancing voltages for protecting the balancing circuit provided voltage clamping circuit, the leakage current effect described above is even enhanced.
  • No. 4,751,454 describes a temperature-independent reference voltage source, the current sources designed as transistors and a bipolar transistor comprising bandgap circuit.
  • the current sources control the bandgap circuit for generating a temperature-independent reference voltage.
  • An adjustment of the bandgap circuit is effected by adjusting the ratio of the emitter currents of the bipolar transistors of the bandgap circuit through the current source transistors, which are each connected in parallel with four identical further transistors.
  • US 4,325,018 describes a reference network for a reference voltage circuit.
  • an adjustment of a reference voltage provided by a bandgap circuit is made using extrapolated correction values provided by the correction network.
  • the present invention is therefore an object of the invention to provide a reference voltage circuit, although balanced can be; that is, at which the supplied reference voltage can be adjusted at least within certain limits, wherein nevertheless an operation of the reference voltage circuit is possible even at relatively high temperatures with sufficient accuracy.
  • the reference voltage circuit is adjusted by changing the collector current of at least one bipolar transistor of the reference voltage supplying circuit part. If the collector currents of the two bipolar transistors of the reference voltage supplying circuit part is changed, the output voltage of the reference voltage circuit can be adjusted from a preset value both up and down.
  • the adjustment is made by warping, ie distorting, the conversion ratio of the current mirror of the reference voltage circuit.
  • controllable switches in particular in the form of MOS field-effect transistors, can be activated, so that in the closed state of this switch a certain current is diverted from the collector current paths between the current mirror and the two bipolar transistors.
  • the reference voltage circuit comprises a plurality of balancing terminals which are connected to controllable switches such that upon application of a balancing voltage to the individual balancing terminals different currents from the previously mentioned collector current paths are branched off, so that different settings of the reference voltage are possible by activating different connections.
  • measurements on silicon performed on a test circuit according to the invention have a temperature response of the reference voltage of ⁇ 0.72% supplied by the reference voltage circuit in the temperature range of -40 ° C. to +225 ° C., with a comparison of the reference voltage within a range of ⁇ 3% as desired. could be performed. Assuming a basic accuracy after the adjustment of ⁇ 0.5%, the total error to be expected during manufacturing in the temperature range described above is less than ⁇ 1.5%.
  • the tunable reference voltage source of the present invention is thus particularly suitable for high temperature applications of integrated circuits such.
  • integrated circuits such as integrated voltage regulators, A / D converters or measuring circuits, which are produced by means of BICMOS processes. Since with the help of the present invention, all leakage currents can be compensated with the help of a low circuit complexity, the provision of the desired bandgap reference voltage with high accuracy and temperature stability even at working temperatures up to 250 ° C is possible.
  • the principle of reference voltage generation explained with reference to FIG. 2 is furthermore used, ie the reference voltage is obtained by adding a forward voltage of a current-carrying pn junction with a differential voltage of two different forward voltages from corresponding current-carrying pn junctions.
  • the reference voltage is obtained by adding a forward voltage of a current-carrying pn junction with a differential voltage of two different forward voltages from corresponding current-carrying pn junctions.
  • two bipolar transistors T1 and T2 are used in the voltage part generating the reference voltage, to the collectors of which certain collector currents I C1 and I C2 are supplied.
  • the base terminals of the two transistors are connected to each other, while the emitters of the two transistors are coupled to one another via a resistor circuit (see Figure 2).
  • a resistor circuit see Figure 2
  • the reference voltage is tapped at the common base terminal of the bipolar transistors T1 and T2 and optionally multiplied by a voltage divider.
  • the voltage applied to the base of the bipolar transistor T1 is composed of the base-emitter voltage of the bipolar transistor T1 and the voltage applied to the junction between the resistors R1 and R2. The latter voltage is dependent on the difference voltage between the base-emitter voltages of the two bipolar transistors T1 and T2.
  • the positive temperature coefficient of the differential voltage corresponds to the negative temperature coefficient of the base-emitter voltage of the bipolar transistor T1, so that at the common base of the bipolar transistors T1 and T2, the desired temperature-stabilized bandgap reference voltage with approx , 25V can be tapped.
  • the bipolar transistors T1 and T2 are operated with different current densities.
  • the emitter area A E2 of the bipolar transistor T2 corresponds to a multiple of the emitter area A E1 of the bipolar transistor T1.
  • the collector current I C1 of the bipolar transistor T1 generally corresponds to a multiple of the collector current I C2 of the bipolar transistor T2.
  • the voltage U tapped at the common base of the bipolar transistors T1 and T2 in the known reference voltage circuit shown in FIG. 2 can generally depend on the resistance ratio R1: R2, the collector current ratio I C1 : I C2, and the emitter area ratio A E2 :
  • U T denotes the temperature voltage and I s the reverse current of the bipolar transistors.
  • U U ' ⁇ 1 + k ⁇ U T U ' ⁇ 1 + R 1 R 2 ⁇ 1 + I C ⁇ 1 ⁇ ' I C ⁇ 2 ⁇ 1 - ln ⁇ I C ⁇ 1 ⁇ 'A e ⁇ 2 I C ⁇ 2 ⁇ A e ⁇ 1
  • U ' U T ⁇ R 1 R 2 ⁇ 1 + I C ⁇ 1 ⁇ ' I C ⁇ 2 ⁇ ln ⁇ I C ⁇ 1 ⁇ ' ⁇ A e ⁇ 2 I C ⁇ 2 ⁇ A e ⁇ 1 + U T ⁇ ln ⁇ I C ⁇ 1 ⁇ ' I S
  • FIG. 1 shows a detailed circuit diagram of a preferred exemplary embodiment of a reference voltage circuit according to the invention, in which the ratio of the current mirror used is distorted by external trimming measures in order to change the collector current ratio I C1 : I C2 .
  • a reference voltage circuit implemented in automotive applications eg airbag is shown in FIG.
  • a pair of transistors T1 and T2a coupled to one another is present, the emitter area of the transistor T2a being a multiple of the emitter area of the transistor T1.
  • the collectors of these transistors collector currents I C1 and I C2a are supplied.
  • the emitters of the two bipolar transistors are coupled to one another via a resistor circuit with resistors R1 and R2.
  • the voltage applied to the common base of the bipolar transistors T1 and T2a base voltage is tapped and highly multiplied by a voltage divider consisting of resistors R4 and R5, so that depending on the base voltage U, the desired output or reference voltage U ref can be output.
  • the voltage present at the common base of the bipolar transistors T1 and T2a operated with different current densities corresponds to the sum voltage from the base-emitter voltage of the transistor T1 and the voltage present at the junction between the resistors R1 and R2, which in turn is based on the difference between the base -Emitter voltage of the transistor T1 and the base-emitter voltage of the transistor T2a depends.
  • the operating currents of the reference voltage circuit can be adjusted via the resistors R1 and R2.
  • the reference voltage circuit By multiplying or increasing the base voltage U of the bipolar transistor T1 by means of the voltage divider R4, R5, the reference voltage circuit is able to feed itself and the supply voltage penetration is negligible.
  • the mode of operation of the reference voltage circuit shown in FIG. 1 corresponds to the mode of operation of the known reference voltage circuit shown in FIG.
  • At least one of the collector currents I C1 and I C2a is changed in order to be able to adjust the reference voltage U ref delivered by the reference voltage circuit as desired. This is done in particular by a change in the mirroring or conversion ratio of the current mirror used in the known reference voltage circuit of Figure 2.
  • the first current mirror comprises bipolar transistors T3-T5 and essentially corresponds to the current mirror used in FIG.
  • the second current mirror comprises bipolar transistors T6-T8.
  • a further bipolar transistor T2b is provided, which is designed, in particular, identically to the bipolar transistor T2a.
  • the current mirrors with the bipolar transistors T3-T5 and T6-T8 are arranged such that they are connected in parallel to each other via the multiple transistors T2a and T2b.
  • the emitter areas of the two transistors T2a and T2b are the same size, so that the base currents I C2a and I C2b supplied by the two current mirrors are identical.
  • the mirroring ratio of the second current mirror with the transistors T6-T8 remains constant even during the adjustment of the reference voltage circuit, ie, by means of a corresponding adjustment, only the mirroring ratio of the first Current mirror circuit with the bipolar transistors T3-T5 acted. This is done as follows.
  • the output voltage U ref applied to the output terminal of the reference voltage circuit can be calibrated or calibrated via balancing terminals Z P , Z 1N and Z 2N .
  • balancing terminals Z P , Z 1N and Z 2N are used, which are formed by the bipolar transistors shown in Figure 1 with short-circuited base-collector path and each one of the balancing terminals Zp, Z 1N and Z 2N with the balancing ground terminal Z Connect GND .
  • the corresponding "zapping" diode is breached, so that a low-resistance connection is produced between the base and the emitter of the corresponding "zapping" diode, which has a corresponding control of that shown in FIG shown controllable switches in the form of p-channel MOS field effect transistors result.
  • the MOS field-effect transistors M1-M3 and M8 are assigned to the matching terminal Z P.
  • MOS field effect transistors When applying the required high balancing voltage to a specific one of the balancing terminals associated with this balancing connection MOS field effect transistors are connected in such a way by the respective balancing connection corresponding low impedance connection of the respective "zapping" diode, which is assigned to the respective balancing connection current amount of the collector current Bipolar transistors T1 or T2a is branched off in the form of the branch currents IcalP and IcalN shown in Figure 1, which has a corresponding distortion of the mirror ratio of the current mirror with the bipolar transistors T3-T5 result, so that the reference voltage circuit can be calibrated within certain limits to a to achieve desired output voltage U ref .
  • the reference voltage circuit shown in Figure 1 is particularly dimensioned such that by applying a tuning voltage an increase in the output voltage U ref can be achieved at the balancing terminal Z P , while a reduction of the output voltage U ref by various amounts can be brought about by applying a balancing voltage to the balancing terminals Z 1N and Z 2N .
  • the reference voltage circuit shown in Figure 1 is dimensioned such that the output voltage can be varied within a maximum calibration range of ⁇ 3%. As can be seen from the formula for the constant C described above, such a change of the output voltage requires a change of 6% in the collector current IC1 of the bipolar transistor T1.
  • the reference voltage circuit shown in Figure 1 is dimensioned such that an increase of the reference voltage U ref by + 3% is achieved by applying a high tuning voltage between the terminals Z P and Z GND .
  • the compensation step achievable via the balancing connection Z 1N is -1% and the balancing step achievable via the balancing connection Z 2N is -2%.
  • an additive balancing of the output voltage U ref between -3% and + 3% in 1% steps is possible in this way.
  • the adjustment terminal Zp is connected via a control circuit consisting of a resistor R12, two p-channel MOS field effect transistors M15 and M16 and two inverters to the first controllable MOS field effect transistor M8.
  • This control circuit can be activated via a terminal I P and connects the gate terminal of the MOS field-effect transistor M8 in a predefined manner with the "zapping" diode Z1.
  • Corresponding control circuits are also provided for the further balancing connections Z 1N and Z 2N , but are not shown in FIG. 1 for the sake of clarity.
  • the MOS field effect transistor M8 Upon activation of the adjustment terminal Z P as a result of a breakthrough of the "zapping" diode Z1, the MOS field effect transistor M8 is turned on and a certain current I3a via a further bipolar transistor T9 from the second current mirror (bipolar transistors T6-T8) decoupled.
  • This decoupled current I3a is supplied to the MOS field-effect transistors M1-M3 and causes a certain adjustment current IcalP is branched off from the collector current path of the bipolar transistor T2a, which refers to the two MOS field-effect transistors M2 and M3 in the form of the currents shown in FIG Ical1P and Ical2P splits.
  • the mirroring ratio of the current mirror is defined with the bipolar transistors T3-T5 warped defined and the current density of the bipolar transistor T2a reduced, which accordingly has an increase in the node between the resistors R1 and R2 tapped differential voltage result, so that the desired 3% - Increase of the output voltage U ref can be achieved.
  • a predefined current I3b or I3c is coupled via the transistor T9 and fed to the MOS field effect transistors M4 and M5 or M6 and M7, so that a predefined However, in this case, trimming current IcalN is diverted from the collector current path of bipolar transistor T1.
  • This balancing current IcalN is dissipated in the form of the currents Ical1N and Ical2N shown in FIG.
  • the trimming currents IcalP and IcalN and the out-coupled currents I3a-I3c are switched off, if no trimming voltage is applied to one of the terminals Z P , Z 1N , Z 2N , so that the influence of the calibration circuit is zero in this case.
  • a dummy transistor T15 is connected to the collector and to the base of the bipolar transistor T1, although the connection of a plurality of dummy transistors T15 connected in accordance with FIG. 1 is also possible.
  • the collector well of the bipolar transistor T1 is designed to be the same size as that of the multiple transistor T2a / b, so that the increased collector-substrate or collector-base generation currents of the larger multiple transistor T2a / b are compensated by the transistors T1 and T15.
  • a structurally identical pnp bipolar transistor pair T13, T14 is provided, with the aid of which the thermal leakage currents of the pnp bipolar transistors T5 and T8 of the two current mirrors are canceled, the base of the pnp bipolar transistors T5 and T8 in each case corresponds to the Epiwanne.
  • all these bipolar transistors are advantageously operated via the currents I5a-I5c shown in Figure 1 with approximately the same current density.
  • these currents I5a-I5c are likewise derived from the current IC2b via a circuit with p-channel MOS field effect transistors M11-M14 via a current I4, which automatically effects a suitable adjustment of the base voltage of the bipolar transistors T13 and T14 with the voltage drops on the components T11, R11 and T12 shown in FIG.
  • the collector voltages of the bipolar transistors T4 and T7 are thus lower than the base voltages of a diode current voltage, which compensates for the early effects of the two current mirror circuits at the operating point of the reference voltage circuit. Furthermore, a possible saturation of the pnp bipolar transistors T4 and T7 and of the npn bipolar transistor T1 can be avoided in this way.
  • n-epi wells of the individual p-type diffusion resistors are preferably connected to the positive supply voltage V cc in order to prevent the influence of the well leakage currents at the base diffusion resistances, which is not negligible at high temperatures, on the function of the reference voltage circuit.
  • the resistors R6-R11 which are also shown in FIG. 1, serve in particular for presetting the two current mirrors, while the bipolar transistor T10 essentially corresponds to the transistor T10 already shown in FIG. 2 and is provided as an actuator for the output terminal of the reference voltage circuit, by itself the output voltage U ref To be controlled constantly under load with uneven load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Referenzspannungsschaltung, insbesondere eine Referenzspannungsschaltung nach dem Oberbegriff des Anspruches 1, welche eine abgleichbare Referenzspannung liefert.
  • Integrierte Schaltungen, die nicht aus einer stabilisierten Versorgungsspannung betrieben werden, benötigen intern eine Referenzspannungsquelle. Dies gilt insbesondere für Spannungsregler, deren Ausgangsspannung anderen integrierten Schaltungen oder Schaltungsblöcken als Referenzspannung dient.
  • Im Prinzip kann die Durchlaß- oder Flußspannung einer Diode oder allgemein eines pn-Übergangs, z. B. die Basis-Emitter-Spannung eines Bipolartransistors, als Referenzspannung verwendet werden. Allerdings besitzt die Flußspannung eines pn-Übergangs einen negativen Temperaturkoeffizienten, der sich für viele Anwendungen negativ auswirkt. Sollen beispielsweise mit Hilfe eines Spannungsreglers, dessen Ausgangsspannung als Referenzspannung dient, Sensoren, A/D-Wandler oder ähnliche Bauteile versorgt werden, muß die Ausgangsspannung des Spannungsreglers hochgenau und insbesondere äußerst temperaturstabil sein.
  • Daher werden bevorzugt Bandgap- oder Bandabstands-Referenzspannungsschaltungen als Referenzspannungsquellen eingesetzt, die eine temperaturstabilisierte Referenzspannung liefern. Diese bekannten Bandgap-Referenzspannungsquellen basieren auf einer Addition einer Flußspannung eines stromdurchflossenen pn-Übergangs und einer mit einem entsprechenden Faktor multiplizierten Differenzspannung, die aus zwei Spannungen von zwei mit unterschiedlichen Stromdichten durchflossenen pn-Übergängen gebildet wird. Allgemein hat die Flußspannung eines stromdurchflossenen pn-Übergangs - wie bereits zuvor erläutert worden ist - einen negativen Temperaturkoeffizienten. Die Differenz zweier Flußspannungen steigt hingegen proportional zur absoluten Temperatur an und unterliegt damit einem positiven Temperaturkoeffizienten. Wird der Faktor, mit dem die zuvor erläuterte Differenzspannung multipliziert wird, derart eingestellt, daß sich der negative Temperaturkoeffizient der Flußspannung des pn-Übergangs mit dem positiven Temperaturkoeffizienten der Differenzspannung aufhebt, kann eine temperaturstabilisierte Ausgangs- bzw. Referenzspannung erhalten werden. Insbesondere beträgt die Ausgangsspannung einer derartigen Referenzspannungsquelle, welche durch Addition der zuvor erläuterten Flußspannung eines stromdurchflossenen pn-Übergangs mit der ebenfalls zuvor erläuterten Differenzspannung erhalten wird, ca. 1,25V, was in etwa dem Bandabstand (Bandgap) von Silizium entspricht. Daher werden derartige Referenzspannungsquellen als Bandgap-Referenzspannungsquellen bezeichnet.
  • Figur 2 zeigt ein verallgemeinertes Schaltbild einer bekannten Bandgap-Referenzspannungsquelle. Über eine Stromquelle I0, die einen eingeprägten Strom IBias liefert, ist eine Stromspiegelschaltung an einen positiven Versorgungsspannungsanschluß Vcc angeschlossen. Die Stromspiegelschaltung umfaßt zwei Widerstände R3 sowie Bipolartransistoren T16-T21. Die Stromspiegelschaltung erzeugt Ausgangsströme IC1 und IC2, welche den gemäß Figur 2 verschalteten npn-Bipolartransistoren T1 bzw. T2 zugeführt werden. Die Basisanschlüsse der beiden Transistoren T1 und T2 sind miteinander verbunden, wobei die Basisspannung U des Transistors T1 über einen Spannungsteiler bestehend aus zwei Widerständen R5 und R4 hochmultipliziert wird, so daß am Widerstand R4 eine gewünschte Ausgangs- bzw. Referenzspannung Uref abgegriffen werden kann. Mit dem Ausgangsanschluß dieser Referenzspannungsschaltung ist ein Transistor T10 gekoppelt, dessen Aufgabe es ist, die Ausgangsspannung Uref auf einen konstanten Wert zu regeln, falls der Ausgang der in Figur 2 gezeigten Bandgap--Referenzspannungsquelle-mit einer ungleichmäßigen Last belastet wird. Anstelle des Transistors T10 kann jedes beliebige Stellglied, beispielsweise ein Operationsverstärker oder ein MOS-Feldeffekttransistor, eingesetzt werden, welches die zuvor erläuterte Regelungsaufgabe übernehmen kann.
  • Mit Hilfe des in Figur 2 gezeigten Stromspiegels T16-T21 werden die durch die Transistoren T1 bzw. T2 fließenden Ströme eingestellt, wobei die Ströme Ic1 und IC2 üblicherweise gleich groß sind. In BICMOS- oder BICDMOS-Schaltungen wird jedoch der Strom IC1 häufig auch auf einen vielfachen Wert des Stroms IT2 eingestellt. Die Transistoren T1 und T2 besitzen unterschiedliche Emitterflächen, wobei die Emitterfläche des Transistors T2 einem Vielfachen der Emitterfläche des Transistors T1 entspricht, so daß entsprechend die Emitterstromdichte des Transistors T1 einem Vielfachen der Emitterstromdichte des Transistors T2 entspricht.
  • Am gemeinsamen Basisanschluß der Transistoren T1 und T2 wird die Summenspannung aus der Basis-Emitter-Spannung des Transistors T1 sowie der an einem Knotenpunkt zwischen Widerständen R1 (bestehend aus den Teilwiderständen R1a und R1b) und R2 anliegenden Spannung abgegriffen. Die erstgenannte Basis-Emitter-Spannung des Transistors T1 entspricht der Flußspannung eines stromdurchflossenen pn-Übergangs und weist daher - wie zuvor erläutert worden ist - einen negativen Temperaturkoeffizienten auf. Die an dem Widerstand R1 bzw. an den Widerständen R1a und R1b abfallende Spannung ist abhängig von der Differenz zwischen der Basis-Emitter-Spannung des Transistors T1 und der Basis-Emitter-Spannung des Transistors T2 und besitzt - wie ebenfalls zuvor erläutert worden ist - einen positiven Temperaturkoeffizienten. Durch entsprechende Wahl der Widerstände R1 und R2 sowie der zuvor angegebenen Beziehung zwischen den Emitterflächen der Transistoren T1 und T2 kann die in Figur 2 gezeigte Bandgap-Referenzspannungsquelle derart dimensioniert werden, daß die am Widerstand R1 anliegende Differenzspannung aus den Fluß- spannungen der beiden Transistoren T1 und T2 einem den negativen Temperaturkoeffizienten kompensierenden positiven Temperaturkoeffizienten unterliegt. In diesem Fall liegt an dem gemeinsamen Basisanschluß der Transistoren T1 und T2 die gewünschte temperaturstabilisierte Bandgap-Referenzspannung von ca. 1,25V an, die über den Teiler mit den Widerständen R4 und R5 hochmultipliziert wird.
  • Bandgap- bzw. Bandabstands-Referenzspannungsschaltungen der in Figur 2 gezeigten Art werden beispielsweise in der BICDMOS-Technologie (Bipolar, C- und D-MOS-Technologie) für präzise Spannungsregler verwendet. Derartige Referenzspannungsschaltungen sind auf einen relativen Fehler von maximal ±1% im Temperaturbereich von -40 °C bis 150 °C spezifiziert, so daß eine entsprechende Kalibrierung bzw. ein Abgleich der Referenzspannungsschaltung vorzusehen ist. Um dabei Fertigungsstreuungen möglichst gering zu halten, wird während der Fertigung jedes System einzeln auf den gewünschten Spannungswert abgeglichen.
  • Referenzspannungsschaltungen der in Figur 2 gezeigten Art werden häufig auf Chips eingesetzt, die neben normalen Schaltreglern auch Leistungsschalter beinhalten. Dies gilt beispielsweise insbesondere für Automobilanwendungen. Diese Leistungstransistoren werden von integrierten Temperatursensoren überwacht, die ihrerseits eine temperaturstabile Spannungsreferenz benötigen, um im gewünschten Hochtemperaturbereich von 250 °C (Transistorkerntemperatur) noch sicher dynamisch schalten zu können. Berücksichtigt man den thermischen Gradienten an dem jeweils verwendeten Chip, kann davon ausgegangen werden, daß die verwendete Bandabstands-Referenzspannungsschaltung bis zu einer Temperatur von 200 °C möglichst temperaturstabil funktionsfähig sein muß bzw. im erweiterten Temperaturbereich einen relativen Fehler von maximal ±2,5% nicht überschreiten darf.
  • Dem wirken jedoch thermische Sperrschicht-Leckströme entgegen, welche ab ca. 140 °C einsetzen und mit steigender Temperatur exponentiell zunehmen. Daher besteht das Bedürfnis, den Einfluß der thermischen Sperrschicht-Leckströme auf die von der Referenzspannungsschaltung gelieferte Referenzspannung zu minimieren. Wie bereits zuvor erläutert worden ist, sind in der Regel Möglichkeiten zur Kalibrierung oder zum Abgleichen der Ausgangsspannung der Referenzspannungsschaltung vorgesehen. In derartigen Abgleichschaltungen treten jedoch ebenfalls Leckströme auf, die üblicherweise einen großen Einfluß auf die Temperaturstabilität der Referenzspannungsschaltung insbesondere bei hohen Temperaturen ausüben. Dies soll nachfolgend näher anhand Figur 3 erläutert werden.
  • Der Abgleich der von der Referenzspannungsquelle gelieferten Referenzspannung erfolgt üblicherweise durch Umschalten des in Figur 2 gezeigten Teilerverhältnisses R1:R2, was durch entsprechend parallel zu schaltende Widerstände realisiert werden kann. In Figur 3 ist beispielhaft eine entsprechende an die in Figur 2 gezeigten Widerstände R1a und R1b angeschlossene Abgleichschaltung dargestellt, wobei als Abgleichschalter sogenannte "Zapping"-Dioden verwendet werden, die beim Anlegen einer hohen äußeren Spannung in Sperrichtung durchbrechen und eine niederohmige Verbindung erzeugen. In Figur 3 ist eine derartige "Zapping"-Diode in Form eines npn-Bipolartransistors T22 dargestellt, die durch Anlegen einer entsprechend hohen Abgleichspannung an die Anschlüsse Z1N und ZGND zum Durchbruch in Sperrichtung gebracht werden kann. In diesem Fall wird der Widerstand R1a infolge des Durchbrechens der in dem Bipolartransistor T22 ausgebildeten Diode kurzgeschlossen und somit der Gesamtwiderstandswert des Widerstands R1, der gemäß Figur 2 und 3 aus den Widerständen R1a und R1b besteht, verändert. Die Veränderung des Teilerverhältnisses der Widerstände R1 und R2 wirkt sich unmittelbar auf die an dem Knotenpunkt zwischen den Widerständen R1 und R2 anliegende Differenzspannung der Basis-Emitter-Spannungen der Bipolartransistoren T1 und T2 (vgl. Figur 2) aus, so dass durch eine entsprechende Veränderung dieses. Teilerverhältnisses R1:R2 die an der Basis des Transistors T1 anliegende Spannung und damit die von der Referenzspannungsquelle ausgegebene Referenzspannung Uref eingestellt bzw. abgeglichen werden kann.
  • Da der die "Zapping"-Diode bildende Transistor T22 eine in Figur 3 durch eine Diode D1 angedeutete Sperrschicht zum Substrat aufweist (Sperrschichtisolation), treten insbesondere bei hohen Temperaturen Kollektor-Substrat-Leckströme Isub22 (bzw. bei nach dem Abgleich nicht kurzgeschlossenen Dioden Kollektor-Basis-Leckströme) auf, die das Teilerverhältnis R1:R2 und somit die Ausgangsspannung Uref verfälschen. Des weiteren sind für derartige Ableichschältungen Spannungsklemmschaltungen erforderlich, um die Schaltung vor den während der Kalibrierung an den Abgleichanschlüssen auftretenden hohen Spannungen zu schützen. Eine derartige Spannungsklemmschaltung ist in Figur 3 mit einer Diode D3, einem Transistor T23 und einem Widerstand R13 dargestellt. Auch der Kollektor des Transistors T23 besitzt eine durch eine Diode D2 in Figur 3 angedeutet Sperrschicht zum Substrat, so dass auch bezüglich dieses Transistors T23 insbesondere bei hohen Temperaturen Kollektor-Substrat-Leckströme Isub23 auftreten, d.h. durch die zum Schutz der Abgleichschaltung von den hohen Abgleichspannungen vorgesehene Spannungsklemmschaltung wird der zuvor beschriebene Leckstromeffekt sogar noch verstärkt.
  • Somit kann die in Figur 3 gezeigte Schaltung ab Temperaturen von ca. 160 °C nicht mehr mit der erforderlichen Genauigkeit betrieben werden. Ein weiterer Nachteil dieser Schaltung ist der endliche Widerstand der "Zapping"-Diode nach deren Durchbruch, da dieser Widerstand seriell zum eigentlichen Abgleichwiderstand geschaltet und somit ebenfalls die Ausgangsspannung ungewünscht verfälscht.
  • Die US 4,751,454 beschreibt eine temperaturunabhängige Referenzspannungsquelle, die als Transistoren ausgebildete Stromquellen und eine Bipolartransistoren umfassende -Bandgap-Schaltung aufweist. Die Stromquellen steuern dabei die Bandgap-Schaltung zur Erzeugung einer temperaturunabhängigen Referenzspannung an. Ein Abgleich der Bandgap-Schaltung erfolgt dabei durch Einstellung des Verhältnisses von Emitterströmen der Bipolartransistoren der Bandgap-Schaltung durch die Stromquellentransistoren, denen jeweils vier identische weitere Transistoren parallel geschaltet sind.
  • Die US 4,325,018 beschreibt ein Referenznetzwerk für eine Referenzspannungsschaltung. Bei dieser Schaltung erfolgt eine Anpassung einer von einer Bandgap-Schaltung gelieferten Referenzspannung unter Verwendung extrapolierter Korrekturwerte, die von dem Korrekturnetzwerk bereitgestellt werden.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Referenzspannungsschaltung zu schaffen, die zwar abgeglichen werden kann; d. h. bei der die gelieferte Referenzspannung zumindest innerhalb gewisser Grenzen eingestellt werden kann, wobei dennoch ein Betrieb der Referenzspannungsschaltung auch bei relativ hohen Temperaturen mit ausreichender Genauigkeit möglich ist.
  • Diese Aufgabe wird gemäß der vorliegenden Erfindung durch eine Referenzspannungsschaltung mit den Merkmalen des Anspruches 1 gelöst. Die Unteransprüche beschreiben vorteilhafte und bevorzugte Ausführungsformen der vorliegenden Erfindung, die ihrerseits zu einer verbesserten Temperaturstabilität der Referenzspannungsschaltung beitragen.
  • Gemäß der vorliegenden Erfindung wird die Referenzspannungsschaltung durch Verändern des Kollektorstroms mindestens eines Bipolartransistors des die Referenzspannung liefernden Schaltungsteils abgeglichen. Werden die Kollektorströme der beiden Bipolartransistoren des die Referenzspannung liefernden Schaltungsteils verändert, kann die Ausgangsspannung der Referenzspannungsschaltung ausgehend von einem voreingestellten Wert sowohl nach oben als auch nach unten verstellt werden.
  • Gemäß dem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung erfolgt insbesondere der Abgleich durch Verziehen, d. h. Verfälschen, des Umsetzungsverhältnisses des Stromspiegels der Referenzspannungsschaltung. Durch Anlegen entsprechender Abgleichspannungen an Abgleichanschlüsse der Referenzspannungsschaltung können steuerbare Schalter, insbesondere in Form von MOS-Feldeffekttransistoren, aktiviert werden, so daß im geschlossenen Zustand dieser Schalter ein bestimmter Strom von den Kollektorstrompfaden zwischen dem Stromspiegel und den beiden Bipolartransistoren abgezweigt wird. Insbesondere umfaßt die Referenzspannungsschaltung mehrere Abgleichanschlüsse, die derart mit steuerbaren Schaltern verbunden sind, daß bei Anlegen einer Abgleichspannung an die einzelnen Abgleichanschlüsse unterschiedliche Ströme von den zuvor erwähnten Kollektorstrompfaden abgezweigt werden, so daß durch Aktivierung unterschiedlicher Anschlüsse unterschiedliche Einstellungen der Referenzspannung möglich sind.
  • An einer erfindungsgemäßen Testschaltung durchgeführte Messungen am Silizium haben beispielsweise einen Temperaturgang der von der Referenzspannungsschaltung gelieferten Referenzspannung von ±0,72% im Temperaturbereich von -40 °C bis +225 °C ergeben, wobei ein Abgleich der Referenzspannung wunschgemäß in einem Bereich ±3% durchgeführt werden konnte. Wird von einer Grundgenauigkeit nach dem Abgleich von ±0,5% ausgegangen, beträgt der während der Fertigung zu erwartende Gesamtfehler in dem zuvor beschriebenen Temperaturbereich weniger als ±1,5%.
  • Die abgleichbare Referenzspannungsquelle der vorliegenden Erfindung eignet sich somit insbesondere für Hochtemperaturapplikationen von integrierten Schaltungen, wie z. B. für integrierte Spannungsregler, A/D-Wandler oder Meßschaltungen, die mit Hilfe von BICMOS-Prozessen hergestellt werden. Da mit Hilfe der vorliegenden Erfindung sämtliche Leckströme mit Hilfe eines geringen schaltungstechnischen Aufwands ausgeregelt werden können, ist die Bereitstellung der gewünschten Bandgap-Referenzspannung mit hoher Genauigkeit und Temperaturstabilität selbst bei Arbeitstemperaturen bis 250 °C möglich.
  • Die Erfindung wird nachfolgend anhand eines bevorzugten Ausführungsbeispiels unter Bezugnahme auf die beigefügte Zeichnung näher erläutert.
    • Figur 1 zeigt ein detailliertes Schaltbild eines bevorzugten Ausführungsbeispiels einer erfindungsgemäßen Referenzspannungsschaltung,
    • Figur 2 zeigt ein Schaltbild einer bekannten Referenzspannungsschaltung, und
    • Figur 3 zeigt ein Schaltbild einer bekannten Abgleichschaltung, die zum Abgleichen der in Figur 2 gezeigten Referenzspannungsschaltung eingesetzt wird.
  • Bei der vorliegenden Erfindung wird weiterhin das anhand Figur 2 erläuterte Prinzip der Referenzspannungsgewinnung angewendet, d. h. die Referenzspannung wird durch Addieren einer Flußspannung eines stromdurchflossenen pn-Übergangs mit einer Differenzspannung zweier unterschiedlicher Flußspannungen von entsprechenden stromdurchflossenen pn-Übergängen gewonnen. Insbesondere werden in Übereinstimmung mit Figur 2 weiterhin in dem die Referenzspannung erzeugenden Spannungsteil zwei Bipolartransistoren T1 und T2 verwendet, deren Kollektoren bestimmte Kollektorströme IC1 bzw. IC2 zugeführt werden. Die Basisanschlüsse der beiden Transistoren sind miteinander verbunden, während die Emitter der beiden Transistoren über eine Widerstandsschaltung miteinander gekoppelt sind (vgl. Figur 2). An dem gemeinsamen Basisanschluß der Bipolartransistoren T1 und T2 wird - wie bereits anhand Figur 2 erläutert worden ist - die Referenzspannung abgegriffen und gegebenenfalls über einen Spannungsteiler hochmultipliziert. Die an der Basis des Bipolartransistors T1 anliegende Spannung setzt sich aus der Basis-Emitter-Spannung des Bipolartransistors T1 und der am Knotenpunkt zwischen den Widerständen R1 und R2 anliegenden Spannung zusammen. Die letztgenannte Spannung ist von der Differenzspannung zwischen den Basis-Emitter-Spannungen der beiden Bipolartransistoren T1 und T2 abhängig. Durch geeignete Dimensionierung der Spannungsreferenzschaltung kann erzielt werden, daß der positive Temperaturkoeffizient der Differenzspannung dem negativen Temperaturkoeffizient der Basis-Emitter-Spannung des Bipolartransistors T1 entspricht, so daß an der gemeinsamen Basis der Bipolartransistoren T1 und T2 die gewünschte temperaturstabilisierte Bandgap-Referenzspannung mit ca. 1,25V abgegriffen werden kann.
  • Wie bereits anhand Figur- 2 erläutert worden ist, werden die Bipolartransistoren T1 und T2 mit unterschiedlichen Stromdichten betrieben. Insbesondere entspricht die Emitterfläche AE2 des Bipolartransistors T2 einem Vielfachen der Emitterfläche AE1 des Bipolartransistors T1. Ebenso entspricht der Kollektorstrom IC1 des Bipolartransistors T1 in der Regel einem Vielfachen des Kollektorstroms IC2 des Bipolartransistors T2.
  • Unter den zuvor genannten Voraussetzungen kann allgemein die an der gemeinsamen Basis der Bipolartransistoren T1 und T2 bei der in Figur 2 gezeigten bekannten Referenzspannungsschaltung abgegriffene Spannung U abhängig von dem Widerstandsverhältnis R1:R2, dem Kollektorstromverhältnis IC1:IC2 und dem Emitterflächenverhältnis AE2:AE1 wie folgt berechnet werden: U = U T R 1 R 2 1 + I C 1 I C 2 ln I C 1 A E 2 I C 2 A E 1 + U T ln I C 1 I S
    Figure imgb0001
  • Dabei bezeichnet UT die Temperaturspannung und Is den Sperrstrom der Bipolartransistoren. Wie aus der obigen Gleichung ersichtlich ist, kann die Referenzspannung auch durch Verändern des Kollektorstromverhältnisses IC1:IC2 kalibriert werden. Wird davon ausgegangen, daß der Kollektorstrom IC1 ausgehend von einem voreingestellten Wert IC1' verändert wird, ergibt sich: I C 1 = I C 1 ʹ 1 + k
    Figure imgb0002
  • Für kleine Abgleichschritte (k≤6%) kann unter Vernachlässigung quadratischer Terme und unter Anwendung der Vereinfachung ln(1+k)=k umgeschrieben werden in: U = 1 + k U T 1 + R 1 R 2 1 + I C 1 ʹ I C 2 1 - ln I C 1 ʹA E 2 I C 2 A E 1
    Figure imgb0003

    wobei U' die ursprüngliche, d. h. voreingestellte Referenzspannung bezeichnet und durch folgenden Ausdruck wiedergegeben werden kann: = U T R 1 R 2 1 + I C 1 ʹ I C 2 ln I C 1 ʹ A E 2 I C 2 A E 1 + U T ln I C 1 ʹ I S
    Figure imgb0004
  • Es gilt somit der lineare Zusammenhang: U = ( 1 + kC ) ,
    Figure imgb0005

    wobei die Konstante C ausgedrückt werden kann durch C = U T 1 + R 1 R 2 1 + I C 1 ʹ I C 2 1 + ln I C 1 ʹ A E 2 I C 2 A E 1
    Figure imgb0006
  • Die Konstante C nimmt bei der augenblicklich realisierten Schaltung bei Raumtemperatur einen Wert von etwa C=0,5 an. Um die Ausgangsspannung U um 3% zu ändern, wäre demnach eine Änderung des Kollektorstroms IC1 des Bipolartransistors T1 um 6% erforderlich.
  • Insgesamt ist aus den obigen Ausführungen ersichtlich, daß durch Verändern des Kollektorstromverhältnisses IC1:IC2 die von der Referenzspannungsschaltung gelieferte Referenzspan nung abgeglichen werden kann. Diese Erkenntnis macht sich die vorliegende Erfindung zu nutzen.
  • Figur 1 zeigt ein detailliertes Schaltbild eines bevorzugten Ausführungsbeispiels einer erfindungsgemäßen Referenzspannungsschaltung, bei der durch äußere Trimmaßnahmen das Verhältnis des dabei eingesetzten Stromspiegels verzogen wird, um das Kollektorstromverhältnis IC1:IC2 zu verändern. Insbesondere ist in Figur 1 eine in Automobilapplikationen (z. B. Airbag) implementierte Referenzspannungsschaltung dargestellt.
  • Auch bei der in Figur 1 gezeigten Referenzspannungsschaltung ist ein miteinander gekoppeltes Transistorpaar T1 und T2a vorhanden, wobei die Emitterfläche des Transistors T2a ein Vielfaches der Emitterfläche des Transistors T1 beträgt. Den Kollektoren dieser Transistoren werden Kollektorströme IC1 bzw. IC2a zugeführt. Die Emitter der beiden Bipolartransistoren sind über eine Widerstandsschaltung mit Widerständen R1 und R2 miteinander gekoppelt. Die an der gemeinsamen Basis der Bipolartransistoren T1 und T2a anliegende Basisspannung wird abgegriffen und über einen Spannungsteiler bestehend aus Widerständen R4 und R5 hochmultipliziert, so daß abhängig von der Basisspannung U die gewünschte Ausgangs- bzw. Referenzspannung Uref ausgegeben werden kann. Die an der gemeinsamen Basis der mit unterschiedlichen Stromdichten betriebenen Bipolartransistoren T1 und T2a anliegende Spannung entspricht der Summenspannung aus der Basis-Emitter-Spannung des Transistors T1 und der am Knotenpunkt zwischen den Widerständen R1 und R2 anliegenden Spannung, welche wiederum von der Differenz zwischen der Basis-Emitter-Spannung des Transistors T1 und der Basis-Emitter-Spannung des Transistors T2a abhängt.
  • Des weiteren können über die Widerstände R1 und R2 die Arbeitsströme der Referenzspannungsschaltung eingestellt werden. Durch das Hochmultiplizieren bzw. Aufstocken der Basisspannung U des Bipolartransistors T1 mit Hilfe des Spannungsteilers R4, R5 ist die Referenzspannungsschaltung in der Lage, sich selbst zu speisen und der Versorgungsspannungsdurchgriff wird vernachlässigbar klein. Insgesamt entspricht insoweit die Funktionsweise der in Figur 1 gezeigten Referenzspannungsschaltung der Funktionsweise der in Figur 2 gezeigten bekannten Referenzspannungsschaltung.
  • Wie bereits erläutert worden ist, wird jedoch gemäß der vorliegenden Erfindung mindestens einer der Kollektorströme IC1 bzw. IC2a verändert, um die von der Referenzspannungsschaltung gelieferte Referenzspannung Uref gewünscht abgleichen zu können. Dies erfolgt insbesondere durch eine Veränderung des Spiegelungs- bzw. Umsetzverhältnisses des auch bei der bekannten Referenzspannungsschaltung von Figur 2 verwendeten Stromspiegels.
  • Gemäß Figur 1 sind allerdings zwei Stromspiegelschaltungen vorhanden. Der erste Stromspiegel umfaßt Bipolartransistoren T3-T5 und entspricht im wesentlichen dem in Figur 2 verwendeten Stromspiegel. Der zweite Stromspiegel umfaßt Bipolartransistoren T6-T8. Des weiteren ist ein weiterer Bipolartransistor T2b vorgesehen, der insbesondere baugleich zu dem Bipolartransistor T2a ausgebildet ist. Die Stromspiegel mit den Bipolartransistoren T3-T5 bzw. T6-T8 sind derart angeordnet, daß sie über die Vielfachtransistoren T2a und T2b zueinander parallel geschaltet sind. Die Emitterflächen der beiden Transistoren T2a und T2b sind gleich groß, so daß die von den beiden Stromspiegeln gelieferten Grundströme IC2a bzw. IC2b identisch sind.
  • Gemäß der in Figur 1 gezeigten Ausgestaltung bleibt auch während des Abgleichs der Referenzspannungsschaltung das Spiegelungsverhältnis des zweiten Stromspiegels mit den Transistoren T6-T8 konstant, d. h. es wird durch einen entsprechenden Abgleich lediglich auf das Spiegelungsverhältnis der ersten Stromspiegelschaltung mit den Bipolartransistoren T3-T5 eingewirkt. Dies erfolgt folgendermaßen.
  • Die an dem Ausgangsanschluß der Referenzspannungsschaltung anliegende Ausgangsspannung Uref kann über Abgleichanschlüsse ZP, Z1N und Z2N abgeglichen bzw. kalibriert werden. Zu diesem Zweck werden wiederum "Zapping"-Dioden Z1-Z3 verwendet, welche durch die in Figur 1 gezeigten Bipolartransistoren mit kurzgeschlossener Basis-Kollektor-Strecke gebildet sind und jeweils einen der Abgleichanschlüsse Zp, Z1N und Z2N mit dem Abgleich-Masseanschluß ZGND verbinden. Durch Anlegen einer bestimmten hohen Abgleichspannung an einen dieser Abgleichanschlüsse wird die entsprechende "Zapping"-Diode zum Durchbruch gebracht, so daß zwischen der Basis und dem Emitter der entsprechenden "Zapping"-Diode eine niederohmige Verbindung entsteht, die eine entsprechende Ansteuerung von in Figur 1 gezeigten steuerbaren Schaltern in Form von p-Kanal-MOS-Feldeffekttransistoren zur Folge hat. Dabei sind gemäß Figur 1 beispielsweise die MOS-Feldeffekttransistoren M1-M3 und M8 dem Abgleichanschluß ZP zugeordnet. Beim Anlegen der erforderlichen hohen Abgleichspannung an einen bestimmten der Abgleichanschlüsse werden die diesem Abgleichanschluß zugeordneten MOS-Feldeffekttransistoren derart durch die an dem jeweiligen Abgleichanschluß entsprechende niederohmige Verbindung der jeweiligen "Zapping"-Diode geschaltet, das eine bestimmte dem jeweiligen Abgleichanschluß zugeordnete Strommenge von den Kollektorstrompfaden der Bipolartransistoren T1 oder T2a in Form der in Figur 1 gezeigten Abzweigströme IcalP bzw. IcalN abgezweigt wird, was eine entsprechende Verfälschung des Spiegelungsverhältnisses des Stromspiegels mit den Bipolartransistoren T3-T5 zur Folge hat, so daß die Referenzspannungsschaltung innerhalb bestimmter Grenzen kalibriert werden kann, um eine gewünschte Ausgangsspannung Uref zu erzielen.
  • Die in Figur 1 gezeigte Referenzspannungsschaltung ist insbesondere derart dimensioniert, daß durch Anlegen einer Abgleichspannung an den Abgleichanschluß ZP eine Erhöhung der Ausgangsspannung Uref erzielt werden kann, während durch Anlegen einer Abgleichspannung an die Abgleichanschlüsse Z1N bzw. Z2N eine Verringerung der Ausgangsspannung Uref um verschiedene Beträge herbeigeführt werden kann. Insbesondere ist die in Figur 1 gezeigte Referenzspannungsschaltung derart dimensioniert, daß die Ausgangsspannung innerhalb eines maximalen Kalibrierbereichs von ±3% verändert werden kann. Wie der zuvor beschriebenen Formel für die Konstante C entnommen werden kann, ist für eine derartige Veränderung der Ausgangsspannung eine Veränderung des Kollektorstroms IC1 des Bipolartransistors T1 um 6% erforderlich. Insbesondere ist die in Figur 1 gezeigte Referenzspannungsschaltung derart dimensioniert, daß durch Anlegen einer hohen Abgleichspannung zwischen die Anschlüsse ZP und ZGND eine Anhebung der Referenzspannung Uref um +3% erzielt wird. Hingegen beträgt der über den Abgleichanschluß Z1N erzielbare Abgleichschritt -1% und der über den Abgleichanschluß Z2N erzielbare Abgleichschritt -2%. Durch eine gegebenenfalls gemeinsame Ansteuerung der Abgleichanschlüsse ZP, Z1N und Z2N ist auf diese Weise ein additiver Abgleich der Ausgangsspannung Uref zwischen -3% und +3% in 1%-Schritten möglich.
  • In Figur 1 ist der Abgleichanschluß Zp über eine Steuerschaltung bestehend aus einem Widerstand R12, zwei p-Kanal-MOS-Feldeffekttransistoren M15 und M16 sowie zwei Invertern mit dem ersten steuerbaren MOS-Feldeffekttransistor M8 verbunden. Diese Steuerschaltung ist über einen Anschluß IP aktivierbar und verbindet den Gate-Anschluß des MOS-Feldeffekttransistors M8 auf vordefinierte Art und Weise mit der "Zapping"-Diode Z1. Entsprechende Steuerschaltungen sind auch für die weiteren Abgleichanschlüsse Z1N und Z2N vorgesehen, jedoch der Übersichtlichkeit halber nicht in Figur 1 dargestellt.
  • Bei Aktivierung des Abgleichanschlusses ZP infolge eines Durchbruchs der "Zapping"-Diode Z1 wird der MOS-Feldeffekttransistor M8 leitend geschaltet und ein bestimmter Strom I3a über einen weiteren Bipolartransistor T9 aus dem zweiten Stromspiegel (Bipolartransistoren T6-T8) ausgekoppelt. Dieser ausgekoppelte Strom I3a wird den MOS-Feldeffekttransistoren M1-M3 zugeführt und führt dazu, daß aus dem Kollektorstrompfad des Bipolartransistors T2a ein bestimmter Abgleichstrom IcalP abgezweigt wird, der sich auf die beiden MOS-Feldeffekttransistoren M2 und M3 in Form der in Figur 1 gezeigten Ströme Ical1P und Ical2P aufteilt. Auf diese Weise wird das Spiegelungsverhältnis des Stromspiegels mit den Bipolartransistoren T3-T5 definiert verzogen und die Stromdichte des Bipolartransistors T2a reduziert, was entsprechend eine Erhöhung der am Knotenpunkt zwischen den Widerständen R1 und R2 abgegriffenen Differenzspannung zur Folge hat, so daß die gewünschte 3%-Erhöhung der Ausgangsspannung Uref erreicht werden kann.
  • Auf analoge Weise kann durch Anlegen einer entsprechenden Abgleichspannung an die Abgleichanschlüsse Z1N bzw. Z2N ein vordefinierter Strom I3b bzw. I3c über den Transistor T9 ausgekoppelt und den MOS-Feldeffekttransistoren M4 und M5 bzw. M6 und M7 zugeführt werden, so daß ein vordefinierter Abgleichstrom IcalN in diesem Fall jedoch von dem Kollektorstrompfad des Bipolartransistors T1 abgezweigt wird. Dieser Abgleichstrom IcalN wird in Form der in Figur 1 gezeigten Ströme Ical1N bzw. Ical2N über die entsprechend leitend geschalteten MOS-Feldeffekttransistoren M5 bzw. M7 abgeführt und führt zu einer definierten Verringerung der Kollektorstromdichte des Bipolartransistors T1, so daß entsprechend die am Knotenpunkt zwischen den Widerständen R1 und R2 anliegende Differenzspannung verringert wird, was eine wiederum entsprechende Reduzierung der am Ausgangsanschluß der Referenzspannungsschaltung ausgegebenen Referenzspannung Uref zur Folge hat.
  • Mit Hilfe der MOS-Feldeffekttransistoren M8-M10 sind andererseits die Abgleichströme IcalP bzw. IcalN sowie die ausgekoppelten Ströme I3a-I3c ausgeschaltet, falls keine Abgleichspannung an einem der Anschlüsse ZP, Z1N, Z2N anliegt, so daß der Einfluß der Kalibrierschaltung in diesem Fall gleich Null ist. Dies gilt jedoch im Hochtemperaturbereich nur dann, wenn sichergestellt ist, daß die Draingebiete der MOS-Feldeffekttransistoren M2 und M3 denen der MOS-Feldeffekttransistoren M5 und M7 entsprechen, da sich dann die thermisch bedingten Drain-Bulk-Leckströme gegenseitig kompensieren und bei IcalP=IcalN≠0 die Ausgangsspannung Uref nicht beeinflußt wird. Insbesondere hinsichtlich der Linearität der Abgleichschritte ist es vorteilhaft, einerseits die Transistoren M5 und M2 sowie andererseits die Transistoren M7 und M3 entsprechend zu dimensionieren.
  • Aus den zuvor genannten Gründen ist gemäß Figur 1 am Kollektor und an der Basis des Bipolartransistors T1 ein Dummy-Transistor T15 angeschlossen, wobei jedoch auch der Anschluß mehrerer gemäß Figur 1 verschalteter Dummy-Transistoren T15 möglich ist. Vorteilhafterweise ist die Kollektorwanne des Bipolartransistors T1 genauso groß ausgestaltet wie die des Vielfachtransistors T2a/b, so daß die erhöhten Kollektor-Substrat- bzw. Kollektor-Basis-Generationsströme des größeren Vielfachtransistors T2a/b durch die Transistoren T1 und T15 kompensiert werden.
  • Zudem ist bei dem in Figur 1 gezeigten bevorzugten Ausführungsbeispiel ein baugleiches pnp-Bipolartransistorpaar T13, T14 vorgesehen, mit deren Hilfe die thermischen Leckströme der pnp-Bipolartransistoren T5 und T8 der beiden Stromspiegel aufgehoben werden, wobei die Basis der pnp-Bipolartransistoren T5 und T8 jeweils der Epiwanne entspricht. Um zudem den Einfluß der prozeßbedingten Stromverstärkungsschwankungen über die Basisströme dieser pnp-Bipolartransistoren zu eliminieren, werden alle diese Bipolartransistoren vorteilhafterweise über die in Figur 1 gezeigten Ströme I5a-I5c mit in etwa derselben Stromdichte betrieben. Wie in Figur 1 entnommen werden kann, werden diese Ströme I5a-I5c über eine Schaltung mit p-Kanal-MOS-Feldeffekttransistoren M11-M14 über einen Strom I4 ebenfalls von dem Strom IC2b abgeleitet, was automatisch mit den Spannungsabfällen an den in Figur 1 gezeigten Bauteilen T11, R11 und T12 eine geeignete Einstellung der Basisspannung der Bipolartransistoren T13 und T14 bewirkt. Die Kollektorspannungen der Bipolartransistoren T4 bzw. T7 liegen somit eine Diodenflußspannung tiefer als deren Basisspannungen, was die Early-Effekte der beiden Stromspiegelschaltungen im Arbeitspunkt der Referenzspannungsschaltung kompensiert. Des weiteren kann auf diese Weise eine eventuelle Sättigung der pnp-Bipolartransistoren T4 und T7 sowie des npn-Bipolartransistors T1 vermieden werden.
  • Schließlich werden die n-Epi-Wannen der einzelnen p-Diffusionswiderstände vorzugsweise an die positive Versorgungsspannung Vcc angeschlossen, um den bei hohen Temperaturen nicht zu vernachlässigenden Einfluß der Wannenleckströme an den Basis-Diffusionswiderständen auf die Funktion der Referenzspannungsschaltung zu unterbinden.
  • Die zudem in Figur 1 dargestellten Widerstände R6-R11 dienen insbesondere zur Voreinstellung der beiden Stromspiegel, während der Bipolartransistor T10 im wesentlichen dem bereits in Figur 2 gezeigten Transistor T10 entspricht und als Stellglied für den Ausgangsanschluß der Referenzspannungsschaltung vorgesehen ist, um die Ausgangsspannung Uref selbst bei Belastung mit ungleichmäßiger Last konstant zu regeln.
  • Bezugszeichenliste
  • T1-T23
    Bipolartransistor
    M1-M16
    MOS-Feldeffekttransistor
    R1-R13
    Widerstand
    D1-D3
    Diode
    Z1-Z3
    "Zapping"-Diode
    I0
    Stromquelle
    Vcc
    Versorgungsspannung
    IP, ZP, E1N, Z2N, ZGND
    Steueranschluß

Claims (20)

  1. Referenzspannungsschaltung,
    mit einer Bipolartransistorschaltung (T1, T2a, T2b), welche eine Referenzspannung (Uref) liefert, welche von einer Summenspannung aus einer ersten Spannung und einer zweiten Spannung abgeleitet ist, wobei die erste Spannung aus der Flussspannung eines stromdurchflossenen pn-Übergangs und die zweite Spannung aus der Differenzspannung zweier Flussspannungen entsprechender stromdurchflossener pn-Übergänge abgeleitet ist,
    gekennzeichnet durch
    Abgleichmittel (Z1-Z3, M1-M10) zum Abgleichen der von der Bipolartransistorschaltung (T1, T2a, T2b) gelieferten Referenzspannung (Uref), die zum Abgleichen das Verhältnis der Kollektorströme (IC1, IC2a) von Bipolartransistoren (T1, T2a) der Bipolartransistorschaltungverändert.
  2. Referenzspannungsschaltung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Bipolartransistorschaltung einen ersten Bipolartransistor (T1) und einen zweiten Bipolartransistor (T2a) umfasst, dass dem Kollektor des ersten Bipolartransistors (T1) ein erster Kollektorstrom (IC1) und dem Kollektor des zweiten Bipolartransistors (T2a) ein zweiter Kollektorstrom (IC2a) zugeführt wird,
    wobei die Emitterfläche des zweiten Bipolartransistors (T2a) ein Vielfaches des Emitterfläche des ersten Bipolartransistors (T1) ist, so dass der erste Bipolartransistor (T1) und der zweite Bipolartransistor (T2a) mit unterschiedlichen Stromdichten durchflossen werden,
    dass die Basis des ersten Bipolartransistors (T1) mit der Basis des zweiten Bipolartransistors (T2a) verbunden ist, dass der Emitter des ersten Bipolartransistors (T1) derart über eine Widerstandsschaltung (R1, R2) mit dem Emitter des zweiten Bipolartransistors (T2a) gekoppelt ist, dass an der Basis des ersten Bipolartransistors die Referenzspannung (Uref) abgegriffen werden kann, wobei die erste Spannung der Basis-Emitter-Spannung des ersten Bipolartransistors entspricht und die zweite Spannung von der Differenz der Basis-Emitter-Spannungen des ersten und zweiten Bipolartransistors abhängt.
  3. Referenzspannungsschaltung nach Anspruch 2,
    dadurch gekennzeichnet,
    dass die Abgleichmittel (Z1-Z3, M1-M10) von dem ersten Kollektorstrom (IC1) des ersten Bipolartransistors (T1) einen ersten Abgleichstrom (IcalN)und/oder von dem zweiten Kollektorstrom (IC2a) des zweiten Bipolartransistors (T2a) einen zweiten Abgleichstrom abzweigen.
  4. Referenzspannungsschaltung nach Anspruch 3,
    dadurch gekennzeichnet,
    dass die Abgleichmittel (Z1-Z3, M1-M10) mehrere Anschlüsse umfassen, die über eine steuerbare Schalter (M1-M10) aufweisende Steuerschaltung mit den Kollektoren des ersten und zweiten Bipolartransistors (T1, T2a) gekoppelt sind,
    wobei bei Anlegen einer entsprechenden Abgleichspannung an einen der Anschlüsse jeweils ein anderer erster oder zweiter Abgleichstrom (IcalN, IcalP) von dem ersten oder zweiten Kollektorstrom (IC1, IC2a) abgezweigt wird.
  5. Referenzspannungsschaltung nach Anspruch 4,
    dadurch gekennzeichnet,
    dass die Abgleichmittel (Z1-Z3, M1-M10) drei Anschlüsse umfassen.
  6. Referenzspannungsschaltung nach Anspruch 4 oder 5,
    dadurch gekennzeichnet,
    dass die Anschlüsse der Abgleichmittel (Z1-Z3, M1-M10) mit Dioden (Z1-Z3) gekoppelt sind, welch bei Anlegen der entsprechenden Abgleichspannung in Sperrrichtung durchbrechen und
    dadurch entsprechende steuerbare Schalter (M1-M10) der Steuerschaltung der Abgleichmittel ansteuern.
  7. Referenzspannungsschaltung nach Anspruch 6,
    dadurch gekennzeichnet,
    dass die steuerbaren Schalter (M1-M10) durch MOS-Feldeffekttransistoren realisiert sind.
  8. Referenzspannungsschaltung nach einem der vorangehenden Ansprüche,
    gekennzeichnet durch,
    dass zur Erzeugung der Kollektroströme (IC1, IC2a) der Bipolartransistoren (T1, T2a) eine Stromspiegelschaltung (T3-T5) vorgesehen ist.
  9. Referenzspannungsschaltung nach Anspruch 8 und einem der Ansprüche 2 bis 7,
    dadurch gekennzeichnet,
    dass die Bipolartransistorschaltung einen dritten Bipolartransistor (T2b) umfasst, welcher wesengleich zu dem zweiten Bipolartransistor (T2a) ist, und
    dass eine weitere Stromspiegelschaltung (T6-T8) derart mit dem dritten Bipolartransistor (T2b) gekoppelt ist, dass die Stromspiegelschaltung (T3-T5) und die weitere Stromspiegelschaltung (T6-T8) über den zweiten Bipolartransistor (T2a) und den dritten Bipolartransistor (T2b) parallel geschaltet sind, wobei die Basis bzw. der Emitter des zweiten Bipolartransistors (T2a) mit der Basis bzw. dem Emitter des dritten Bipolartransistors (T2b) verbunden ist.
  10. Referenzspannungsschaltung nach Anspruch 9,
    dadurch gekennzeichnet,
    dass die Emitterflächen des zweiten und dritten Bipolartransistors (T2a, T2b) gleich groß sind, so dass die von den beiden Stromspiegelschaltungen (T3-T5; T6-T8) gelieferten Grundströme (Ic2a, Ic2b) gleich groß sind.
  11. Referenzspannungsschaltung nach Anspruch 9 oder 10 und einem der Ansprüche 4 bis 7,
    dadurch gekennzeichnet,
    dass die Anschlüsse der Abgleichmittel (Z1-Z3, M1-M10) über steuerbare Schalter (M8-M10) der Steuerschaltung (M1-M10) mit der weiteren Stromspiegelschaltung (T6-T8) gekoppelt sind,
    wobei bei Anlegen der entsprechenden Abgleichspannung an einen der Anschlüsse ein diesem Anschluss zugeordneter steuerbarer Schalter (M8-M10) einen Steuerstrom (I3a-I3c) abzweigt, welcher seinerseits zu einer Aktivierung eines dem entsprechenden steuerbarer Schalter (M8-M10) nachgeschalteten steuerbaren Schalters (M2, M3, M5, M7) führt, über den der jeweilige Abgleichstrom (IcalN, IcalP) von dem ersten bzw. zweiten Kollektorstrom (IC1, IC2a) abgezweigt wird.
  12. Referenzspannungsschaltung nach Anspruch 11,
    dadurch gekennzeichnet,
    dass der erste Abgleichstrom (IcalN) über zwei parallel geschaltete steuerbare Schalter (M5, M7) geführt' wird, wobei die parallel geschalteten steuerbaren Schalter (M5, M7) durch unterschiedliche von der zweiten Stromspiegelschaltung (T6-T8) abgezweigte Steuerströme (13b, 13c) aktivierbar sind.
  13. Referenzspannungsschaltung nach Anspruch 12,
    dadurch gekennzeichnet,
    dass der zweite Abgleichstrom (IcalP) über zwei parallel geschaltete steuerbare Schalter (M2, M3) geführt wird, welche beide denselben von der weiteren Stromspiegelschaltung (T6-T8) abgezweigten Steuerstrom (13a) aktivierbar sind.
  14. Referenzspannungsschaltung nach Anspruch 12 und 13,
    dadurch gekennzeichnet,
    dass die Drainanschlüsse der für den ersten Abgleichstrom (IcalN) vorgesehenen steuerbaren Schalter (M5, M7) und der für den zweiten Abgleichstrom (IcalP) vorgesehenen steuerbaren Schalter (M2, M3) miteinander verbunden sind.
  15. Referenzspannungsschaltung nach Anspruch 13 oder 14,
    dadurch gekennzeichnet,
    dass jeweils einer der für den ersten Abgleichstrom (IcalN) vorgesehenen steuerbaren Schalter (M5, M7) identisch zu einem der für den zweiten Abgleichstrom (IcalP) vorgesehenen steuerbaren Schalter (M2, M3) ausgebildet ist.
  16. Referenzspannungsschaltung nach einem der Ansprüche 9 bis 15,
    dadurch gekennzeichnet,
    dass ein vierter Bipolartransistor (T5) mit seiner Basis an die Basis des ersten Bipolartransistors (T1) und mit seinem Emitter sowie seinem Kollektor an den Kollektor des ersten Bipolartransistors (T1) angeschlossen ist.
  17. Referenzspannungsschaltung nach einem der Ansprüche 9 bis 16,
    dadurch gekennzeichnet,
    dass der erste Bipolartransistor (T1) eine Kollektorwanne besitzt, welche im wesentlichen genauso groß wie die Kollektorwanne des zweiten und dritten Bipolartransistors (T2a, T2b) aufgebildet ist.
  18. Referenzspannungsschaltung nach einem der Ansprüche 9 bis 17,
    dadurch gekennzeichnet,
    dass die Stromspiegelschaltung (T3-T5) und die weitere Stromspiegelschaltung (T6-T8) jeweils zwei mit einem entsprechenden Ausgang der jeweiligen Stromspiegelschaltung gekoppelte Bipolartransistoren (T3, T4; T6, T7) sowie einen an einen gemeinsamen Basisanschluss dieser beiden Bipolartransistoren (T3, T4; T6, T7) angeschlossenen pnp-Bipolartransistor (T5, T8) umfassen, und
    dass parallel zu den pnp-Bipolartransistoren (T5, T8) mindestens ein weiterer pnp-Bipolartransistor (T13, T14) geschaltet ist, wobei die Stromspiegelschaltungen (T3-T5; T6-T8) derart ausgestaltet sind, dass die pnp-Bipolartransistoren (T5, T8, T13, T14) mit identischen Stromdichten betrieben werden.
  19. Referenzspannungsschaltung nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass n-Epi-Wannen der Bipolartransistoren der Referenzschaltung mit einem positiven Versorgungsspannungsanschluss Vcc verbunden sind.
  20. Referenzspannungsschaltung nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die gemeinsamen Basisanschlüsse des ersten und zweiten Transistors (t1, T2a) mit einer Spannungsteilerschaltung (R4, R5) verbunden sind.
EP99105492A 1998-04-21 1999-03-17 Referenzspannungsschaltung Expired - Lifetime EP0952509B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19817791 1998-04-21
DE19817791A DE19817791A1 (de) 1998-04-21 1998-04-21 Referenzspannungsschaltung

Publications (3)

Publication Number Publication Date
EP0952509A2 EP0952509A2 (de) 1999-10-27
EP0952509A3 EP0952509A3 (de) 2000-03-29
EP0952509B1 true EP0952509B1 (de) 2007-05-30

Family

ID=7865320

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99105492A Expired - Lifetime EP0952509B1 (de) 1998-04-21 1999-03-17 Referenzspannungsschaltung

Country Status (3)

Country Link
US (1) US6094041A (de)
EP (1) EP0952509B1 (de)
DE (2) DE19817791A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1317567B1 (it) * 2000-05-25 2003-07-09 St Microelectronics Srl Circuito di calibrazione di una tensione di riferimento a band-gap.
US6211660B1 (en) * 2000-06-13 2001-04-03 Nortel Networks, Limited MOS transistor output circuits using PMOS transistors
JP2003150115A (ja) * 2001-08-29 2003-05-23 Seiko Epson Corp 電流生成回路、半導体集積回路、電気光学装置および電子機器
US7173406B2 (en) * 2004-06-24 2007-02-06 Anadigics, Inc. Method and apparatus for gain control
US7019508B2 (en) * 2004-06-24 2006-03-28 Anadigics Inc. Temperature compensated bias network
US7830200B2 (en) * 2006-01-17 2010-11-09 Cypress Semiconductor Corporation High voltage tolerant bias circuit with low voltage transistors
US7755419B2 (en) 2006-01-17 2010-07-13 Cypress Semiconductor Corporation Low power beta multiplier start-up circuit and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100437A (en) * 1976-07-29 1978-07-11 Intel Corporation MOS reference voltage circuit
US4325018A (en) * 1980-08-14 1982-04-13 Rca Corporation Temperature-correction network with multiple corrections as for extrapolated band-gap voltage reference circuits
EP0217225B1 (de) * 1985-09-30 1991-08-28 Siemens Aktiengesellschaft Trimmbare Schaltungsanordnung zur Erzeugung einer temperaturunabhängigen Referenzspannung
IT1227488B (it) * 1988-11-23 1991-04-12 Sgs Thomson Microelectronics Circuito di riferimento di tensione ad andamento in temperatura linearizzato.
US5247241A (en) * 1991-10-21 1993-09-21 Silicon Systems, Inc. Frequency and capacitor based constant current source
US5241261A (en) * 1992-02-26 1993-08-31 Motorola, Inc. Thermally dependent self-modifying voltage source

Also Published As

Publication number Publication date
EP0952509A2 (de) 1999-10-27
DE19817791A1 (de) 1999-10-28
EP0952509A3 (de) 2000-03-29
US6094041A (en) 2000-07-25
DE59914352D1 (de) 2007-07-12

Similar Documents

Publication Publication Date Title
DE19804747B4 (de) Bandabstandsbezugsschaltung und Verfahren
DE19530472B4 (de) Konstantstromschaltung
DE102009040543B4 (de) Schaltung und Verfahren zum Trimmen einer Offsetdrift
DE3826254C2 (de) Teilbereich-Analog-/Digitalwandler mit gemultiplexter Eingangsverstärker-Isolationsschaltung zwischen Subtraktionsknotenpunkt und LSB-Codierer
DE102017125831B4 (de) Bandlücke-Referenzspannungsschaltung, kaskadierte Bandlücke-Referenzspannungsschaltung und Verfahren zum Generieren einer temperaturstabilen Referenzspannung
DE3836338A1 (de) Temperaturkompensierte stromquellenschaltung mit zwei anschluessen
EP0525235A1 (de) Hallsensor mit Selbstkompensation
DE2440795B2 (de) Temperaturabhängiger Spannungsgeber
DE2358471A1 (de) Stromaufhebungsschaltung
EP0952508B1 (de) Referenzspannung-Erzeugungsschaltung
DE2508226B2 (de) Stromstabilisierungsschaltung
EP0952509B1 (de) Referenzspannungsschaltung
DE10143032C2 (de) Elektronische Schaltung zum Erzeugen einer Ausgangsspannung mit einer definierten Temperaturabhängigkeit
DE10057844A1 (de) Verfahren zum Abgleichen eines BGR-Schaltkreises und BGR-Schaltkreis
DE102019124959A1 (de) Wärmesensor mit geringem temperaturfehler
DE10224747B4 (de) Sensorschaltung und Verfahren zur Herstellung derselben
DE3212396C2 (de)
DE102015122521A1 (de) Spannungsreferenzschaltung
DE10047620B4 (de) Schaltung zum Erzeugen einer Referenzspannung auf einem Halbleiterchip
WO2004019149A1 (de) Schaltung und verfahren zur einstellung des arbeitspunkts einer bgr-schaltung
DE3034939A1 (de) Signalwandlerschaltung
DE3243145A1 (de) Differenzverstaerker
DE102021112735B3 (de) Bandabstandsreferenz-schaltung
DE10239064B4 (de) Schaltungsanordnung zur Erzeugung eines Stroms
EP0759588A2 (de) Schaltungsanordnung zum Liefern eines konstanten Stromes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IE IT PT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000426

AKX Designation fees paid

Free format text: DE ES FR GB IE IT PT

17Q First examination report despatched

Effective date: 20001030

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INFINEON TECHNOLOGIES AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IE IT PT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 59914352

Country of ref document: DE

Date of ref document: 20070712

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070910

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070530

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071030

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070530

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070530

26N No opposition filed

Effective date: 20080303

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160324

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170322

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170516

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170317

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59914352

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331