EP0217225B1 - Trimmbare Schaltungsanordnung zur Erzeugung einer temperaturunabhängigen Referenzspannung - Google Patents

Trimmbare Schaltungsanordnung zur Erzeugung einer temperaturunabhängigen Referenzspannung Download PDF

Info

Publication number
EP0217225B1
EP0217225B1 EP86112803A EP86112803A EP0217225B1 EP 0217225 B1 EP0217225 B1 EP 0217225B1 EP 86112803 A EP86112803 A EP 86112803A EP 86112803 A EP86112803 A EP 86112803A EP 0217225 B1 EP0217225 B1 EP 0217225B1
Authority
EP
European Patent Office
Prior art keywords
transistors
current sources
transistor
metal oxide
switched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86112803A
Other languages
English (en)
French (fr)
Other versions
EP0217225A1 (de
Inventor
Franz Dipl.-Ing. Dielacher
Jochen Dipl.-Ing. Reisinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT86112803T priority Critical patent/ATE66756T1/de
Publication of EP0217225A1 publication Critical patent/EP0217225A1/de
Application granted granted Critical
Publication of EP0217225B1 publication Critical patent/EP0217225B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/907Temperature compensation of semiconductor

Definitions

  • the invention relates to a circuit arrangement according to the preamble of patent claim 1.
  • Reference voltages are required in almost all circuits with integrated analog circuits. They should be constant under all operating conditions and have no or a certain temperature drift. In particular in integrated circuits themselves, bandgap circuits are preferred for generating the reference voltages. Bandgap circuits are described, for example, in the book "Semiconductor Circuit Technology" by U. Tietze u. Ch. Schenk, 5th revised edition, Springer-Verlag, Berlin, Heidelberg, New York 1980, pages 387 the following.
  • bandgap circuits can be used to generate reference voltages which are independent of the temperature coefficient of the components used in them, ie such a circuit ideally provides a temperature-independent reference voltage which corresponds to the bandgap of the semiconductor material.
  • this temperature-independent differential voltage is 1.205 volts.
  • a bandgap circuit uses the base-emitter voltage of a transistor as a reference, the negative temperature coefficient of which is compensated for by the addition of an electrical variable of the dimension "voltage" with a positive temperature coefficient.
  • the voltage variable is formed from the difference between the base-emitter voltages of two transistors operated with different current densities and can be tapped off via a resistor.
  • the invention is based on the object of specifying a circuit arrangement for generating a reference voltage which is as independent of the temperature as possible.
  • the invention is based on the idea of being able to coordinate the currents through the transistors of the bandgap circuit with different base-emitter voltages even after the production of the bandgap circuit so that the temperature coefficients with different signs are compensated for as well as possible.
  • the elements T1, T2, M1, M2, R1 to R3 and OP show a bandgap voltage reference with metal oxide semiconductors according to the prior art.
  • the circuit arrangement contains the same bipolar transistors, 10 of which are connected in parallel and are given the common reference symbol T2 in order to indicate that these 10 individual transistors can be replaced, for example, by a single transistor with correspondingly larger emitter or collector areas.
  • the collectors and the bases of the 11 individual transistors denoted by the reference symbols T1 and T2 are each connected to one another, the collectors of the transistors being connected to a terminal VDD of a supply voltage source and the common bases of the transistors being connected to a terminal GND of a reference potential.
  • the emitter circuits of the transistor arrangement consisting of T1 and T2 are supplied by current sources which are formed by the transistors M1 and M2 and are coupled together.
  • the emitter of transistor T1 is connected via resistor R1 to the output circuit of transistor M1, while the common emitter connection of the transistor arrangement designated T2 is connected to the output circuit of transistor M2 via the series circuit comprising resistors R3 and R2.
  • the connections of the two metal oxide semiconductor transistors M1 and M2 serving as the source are connected to a terminal VSS of the supply voltage source.
  • the gates of the two transistors M1 and M2 are driven jointly by the output of an operational amplifier OP, the inverting input of which is connected at the connection point of the resistor R1 to the emitter of the transistor T2 and the non-inverting input of which is connected at the connection point of the two resistors R2 and R3 connected in series.
  • the connection point of the transistor R2 to the output circuit of the transistor M2 is connected to the terminal VREF forming the output of the bandgap circuit.
  • the correction device according to the invention for changing the transmission ratio of the current sources formed from the transistors M1 and M2 is parallel to the output circuit of the transistor M1. It contains four switchable power sources, two of which are designed identically.
  • the current sources can be switched in parallel with the transistors M9 to M12 formed transistor switches the output circuit of the transistor M1.
  • the transistors M9 and M11 or M10 and M12 control current sources of the same design.
  • the output circuits of transistors M3 and M9 or M6 and M11 are each connected in series and in parallel to the output circuit of transistor M1.
  • the output circuits of transistors M4, M5 and M10 or M7, M8 and M12 are also each connected in series and also in parallel with the output circuit of transistor M1.
  • the gates of transistors M3 through M8 are like the gates of transistors M1 and M2 jointly connected to the output of the operational amplifier OP.
  • the gates of transistors M9 and M10 are connected to terminals SE1 and SE2 of the control inputs via two inverters IV1 and IV2.
  • the gates of the transistors M11 and M12 are connected directly to the terminals SE3 and SE4 of the control inputs.
  • All transistors M1 to M12 are n-channel metal oxide semiconductor transistors, but other types of transistors can also be used. Transistors of another type can also be used for the elements T1 and T2, which are embodied as npn transistors in the exemplary embodiment.
  • the bandgap circuit according to the prior art, for example from D. Bingham, CMOS: higher speeds, more drive and analog capability expand its horizons, Electronic Design, Volume 26, No. 23, USA, November 8, 1978, pages 74 to 82, known, ie without the transistors M3 to M12 and the inverters IV1 and IV2, controls the two current mirror transistors M1 and M2 via the operational amplifier OP in such a way that the inverting and non-inverting input of the operational amplifier are at the same potential.
  • the base-emitter voltage U BE2 of the transistor arrangement designated T2 must be lower than the base-emitter voltage U BE1 of the transistor T1.
  • the requirement of a lower current density, which is equivalent to this, due to the transistor arrangement designated T2 is achieved according to the figure by connecting the same transistors in parallel.
  • the currents IE1 and IE2 in the circuit of the exemplary embodiment can be the same or different from one another, as long as the requirement for the current densities of the bipolar transistors T1 and T2 is met.
  • the voltage drop across the resistor R3 is determined by the voltage drop across resistor R2 increased.
  • the voltage present in the circuit at terminal VREF with respect to the reference potential GND has a negative sign and is made up of the sum of the base-emitter voltage U BE1 and the product of the resistance ratio R2 to R3, the temperature voltage, which is equal to the Boltzmann constant multiplied by the absolute temperature based on the elementary charge, and the natural logarithm of the ratio of the currents IE1 and IE2. This makes it clear that the electrical variable can be influenced with the positive temperature coefficient via the resistance ratio R2 to R3 and the current ratio IE1 to IE2.
  • the temperature coefficients are compensated for by changing the ratio of the currents IE1 to IE2 by trimming.
  • the currents IS1 to IS4 of the switchable current sources which are additive to the current IE1, are optionally connected to the current IM1 supplied by the transistor M1.
  • the connection is made via transistors M9 to M12.
  • two currents or two currents can be switched off from the current IM1 via the control inputs SE1 to SE4.
  • the control inputs SE1 to SE4 are at the potential of the terminal VDD of the supply voltage source. This means that the switches M9 and M10 are blocked due to the inverters IV1 and IV2 and the switches M11 and M12 are conductive.
  • the current IE1 then results from the sum of the currents IM1, IS3 and IS4.
  • the control inputs SE1 to SE4 can optionally be connected to the potential of the terminal VSS of the supply voltage source, as a result of which the current IE1 increases or decreases.
  • the ratio of the currents IE1 to IE2 can also be increased or decreased in this way.
  • the currents IS1 to IS4 of the switchable current sources are usefully much smaller than the currents IM1 or IM2 Transistors M1 and M2.
  • the currents IS1 and IS3 are the same size and half the size of the likewise identical currents IS2 and IS4.
  • the trim currents IS1 to IS4 of the switchable current sources are thus binary weighted, so that there is a large trim range.
  • npn transistors which result from the p-well CMOS process, can be used as bipolar transistors T1 or the individual transistors of transistor arrangement T2 in the exemplary embodiment according to the figure.
  • a particularly advantageous embodiment results if the emitter is arranged as a ring emitter around the base contact, which results in a significantly better current gain of the bipolar transistors because of the larger emitter area.
  • a bandgap circuit with ring emitters increases the reliability compared to a bandgap circuit in which the emitters are in the middle of the base zone.
  • the achievable accuracy of a trimmable bandgap circuit according to the invention in the temperature range from + 10 ° C to + 70 ° C better than 10 ppm per degree Celsius.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Logic Circuits (AREA)
  • Analogue/Digital Conversion (AREA)

Description

  • Die Erfindung betrifft eine Schaltungsanordnung nach dem Oberbegriff des Patentanspruchs 1.
  • Referenzspannungen sind in nahezu allen Schaltungen mit integrierten Analog-Schaltkreisen erforderlich. Sie sollen unter allen Betriebsbedingungen konstant sein und keine oder aber eine bestimmte Temperaturdrift besitzen. Insbesondere in integrierten Schaltkreisen selbst werden zur Erzeugung der Referenzspannungen Bandgap-Schaltungen bevorzugt. Bandgap-Schaltungen sind beispielsweise in dem Buch "Halbleiter-Schaltungstechnik" von U. Tietze u. Ch. Schenk, 5. überarbeitete Auflage, Springer-Verlag, Berlin, Heidelberg, New York 1980, Seiten 387 folgende beschrieben.
  • In der vorgenannten Veröffentlichung ist ausgeführt, daß mittels derartiger Bandgap-Schaltungen Referenzspannungen erzeugt werden können, die unabhängig vom Temperaturkoeffizienten der in ihr verwendeten Bauelemente sind, d.h. eine derartige Schaltung liefert im Idealfall eine temperaturunabhängige Referenzspannung, die dem Bandabstand des Halbleitermaterials entspricht. Für das häufig verwendete Silicium beträgt diese temperaturunabhängigere Differenzspannung 1,205 Volt. Eine Bandgap-Schaltung verwendet im Prinzip als Referenz die Basis-Emitter-Spannung eines Transistors, deren negativer Temperaturkoeffizient durch die Addition einer elektrischen Größe der Dimension "Spannung" mit positivem Temperaturkoeffizienten kompensiert wird.
  • Die Spannungsgröße wird aus der Differenz der Basis-Emitter-Spannungen zweier mit verschiedenen Stromdichten betriebener Transistoren gebildet und läßt sich über einem Widerstand abgreifen.
  • Diese Überlegungen gelten jedoch idealerweise nur für eine einzige Temperatur, bei der der negative Temperaturkoeffizient der Basis-Emitter-Spannung des Transistors durch den positiven Temperaturkoeffizienten der durch den Widerstand und den durchfließenden Strom gebildeten Spannung exakt kompensiert wird. Da in erster Näherung die Spannung mit positivem Temperaturkoeffizienten linear mit der Temperatur ansteigt, die Basis-Emitter-Spannung eines Transistors jedoch nichtlinear mit der Temperatur abfällt, ist eine näherungsweise Kompensation des Temperaturkoeffizienten höchstens in einem schmalen Temperaturbereich möglich. In der Praxis versucht man, Bandgap-Schaltungen so zu dimensionieren und herzustellen, die möglichst gut auf diesen relativ schmalen Temperaturbereich abgestimmt sind.
  • Abgesehen von Temperatureffekten höherer Ordnung läßt sich diese Forderung aufgrund von Streueffekten, beispielsweise herstellungsbedingten Geometriefehlern der Transistor- und Widerstandsbereiche oder parasitärer Effekte der verwendeten Materialien, nur schwer verwirklichen.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Schaltungsanordnung zur Erzeugung einer von der Temperatur möglichst unabhängigen Referenzspannung anzugeben.
  • Diese Aufgabe wird bei einer Schaltungsanordnung der eingangs genannten Art erfindungsgemäß durch die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 gelöst.
  • Der Erfindung liegt der Gedanke zugrunde, die Ströme durch die Transistoren der Bandgap-Schaltung mit unterschiedlichen Basis-Emitter-Spannungen auch nach der Herstellung der Bandgap-Schaltung so aufeinander abstimmen zu können, daß sich die Temperaturkoeffizienten mit unterschiedlichem Vorzeichen möglichst gut kompensieren. Dazu dienen zwei die benannten Transistoren speisende Ströme, deren Verhältnis durch Zu- oder Abschalten von Stromquellen einstellbar ist.
  • Weitere Ausgestaltungen des Erfindungsgedankens sind in Unteransprüchen gekennzeichnet.
  • Die Erfindung wird im folgenden anhand eines in der Figur der Zeichnung dargestellten Ausführungsbeispiels näher erläutert, die ein Schaltbild einer trimmbaren Bandgap-Spannungsreferenz zeigt.
  • Die Elemente T1, T2, M1, M2, R1 bis R3 und OP zeigen eine Bandgap-Spannungsreferenz mit Metalloxid-Halbleitern nach dem Stand der Technik. Die Schaltungsanordnung enthält gleiche bipolare Transistoren, von denen 10 parallel geschaltet und mit dem gemeinsamen Bezugszeichen T2 versehen sind, um kenntlich zu machen, daß diese 10 Einzeltransistoren beispielsweise durch einen einzigen Transistor mit entsprechend größeren Emitter- bzw. Kollektorflächen ersetzt werden können.
  • Die Kollektoren und die Basen der mit dem Bezugszeichen T1 und T2 bezeichneten 11 Einzeltransistoren sind jeweils miteinander verbunden, wobei die Kollektoren der Transistoren an einer Klemme VDD einer Speisespannungsquelle und die gemeinsamen Basen der Transistoren an einer Klemme GND eines Bezugspotentials angeschlossen sind. Die Emitterkreise der aus T1 und T2 bestehenden Transistoranordnung werden von Stromquellen versorgt, die durch die Transistoren M1 und M2 gebildet und miteinander gekoppelt sind. Der Emitter des Transistors T1 ist über den Widerstand R1 mit dem Ausgangskreis des Transistors M1 verbunden, während der gemeinsame Emitteranschluß der mit T2 bezeichneten Transistoranordnung über die Serienschaltung aus dem Widerstand R3 und R2 an den Ausgangskreis des Transistors M2 angeschlossen ist. Die als Source dienenden Anschlüsse der beiden Metalloxid-Halbleitertransistoren M1 und M2 sind mit einer Klemme VSS der Versorgungsspannungsquelle verbunden. Die Gates der beiden Transistoren M1 und M2 werden gemeinsam vom Ausgang eines Operationsverstärkers OP angesteuert, dessen invertierender Eingang am Verbindungspunkt des Widerstandes R1 mit dem Emitter des Transistors T2 und dessen nichtinvertierender Eingang am Verbindungspunkt der beiden in Serie geschalteten Widerstände R2 und R3 gelegt ist. Der Verbindungspunkt des Transistors R2 mit dem Ausgangskreis des Transistors M2 ist an die den Ausgang der Bandgap-Schaltung bildende Klemme VREF gelegt.
  • Die erfindungsgemäße Korrektureinrichtung zur Änderung des Übersetzungsverhältnisses der aus den Transistoren M1 und M2 gebildeten Stromquellen liegt parallel zum Ausgangskreis des Transistors M1. Sie enthält vier schaltbare Stromquellen, von denen je zwei gleich ausgelegt sind. Die Stromquellen lassen sich durchaus den Transistoren M9 bis M12 gebildete Transistorschalter dem Ausgangskreis des Transistors M1 parallel schalten. Dabei steuern die Transistoren M9 und M11 bzw. M10 und M12 gleich ausgelegte Stromquellen an. So sind die Ausgangskreise der Transistoren M3 und M9 bzw. M6 und M11 jeweils in Serie und parallel zum Ausgangskreis des Transistors M1 geschaltet. Andererseits sind die Ausgangskreise der Transistoren M4, M5 und M10 bzw. M7, M8 und M12 ebenfalls jeweils in Serie und ebenfalls parallel zum Ausgangskreis des Transistors M1 geschaltet. Die Gates der Transistoren M3 bis M8 sind ebenso wie die Gates der Transistoren M1 und M2 gemeinsam mit dem Ausgang des Operationsverstärkers OP verbunden. Die Gates der Transistoren M9 und M10 sind über zwei Inverter IV1 und IV2 mit den Klemmen SE1 und SE2 der Steuereingänge verbunden. Die Gates der Transistoren M11 und M12 sind direkt an die Klemmen SE3 und SE4 der Steuereingänge angeschlossen.
  • Sämtliche Transistoren M1 bis M12 sind n-Kanal-Metalloxid-Halbleitertransistoren, jedoch lassen sich auch Transistosren anderen Typs verwenden. Auch für die im Ausführungsbeispiel als npn-Transistoren ausgeführten Elemente T1 und T2 lassen sich Transistoren anderen Typs einsetzen.
  • Die Bandgap-Schaltung nach dem Stand der Technik, wie beispielsweise aus D. Bingham, CMOS: higher speeds, more drive and analog capability expand its horizons, Electronic Design, Band 26, Nr. 23, USA, 8. November 1978, Seiten 74 bis 82, bekannt, d.h. ohne die Transistoren M3 bis M12 und die Inverter IV1 und IV2, steuert über den Operationsverstärker OP die beiden Stromspiegeltransistoren M1 und M2 so, daß der invertierende und nichtinvertierende Eingang des Operationsverstärkers auf gleichem Potential liegen. Das bedeutet, daß die Basis-Emitter-Spannung UBE2 der mit T2 bezeichneten Transistoranordnung kleiner sein muß als die Basis-EmitterSpannung UBE1 des Transistors T1. Die damit gleichbedeutende Forderung einer geringeren Stromdichte durch die mit T2 bezeichnete Transistoranordnung wird gemäß der Figur durch das Parallelschalten gleicher Transistoren erreicht. Somit können die Ströme IE1 und IE2 in der Schaltung des Ausführungsbeispiels gleich oder verschieden voneinander sein, solange die Forderung für die Stromdichten der bipolaren Transistoren T1 und T2 erfüllt ist.
  • Die über den Widerstand R3 abfallende Spannung wird durch die über den Widerstand R2 abfallende Spannung vergrößert. Die in der Schaltung an der Klemme VREF gegenüber dem Bezugspotential GND anliegende Spannung besitzt negatives Vorzeichen und setzt sich zusammen aus der Summe der Basis-Emitter-Spannung UBE1 und dem Produkt aus dem Widerstandsverhältnis R2 zu R3, der Temperaturspannung, die gleich der Boltzmannkonstanten multipliziert mit der absoluten Temperatur bezogen auf die Elementarladung ist, und aus dem natürlichen Logarithmus des Verhältnisses der Ströme IE1 und IE2. Damit wird deutlich, daß sich die elektrische Größe mit dem positiven Temperaturkoeffizienten über das Widerstandsverhältnis R2 zu R3 und das Stromverhältnis IE1 zu IE2 beeinflussen läßt.
  • Erfindungsgemäß erfolgt die Kompensation der Temperaturkoeffizienten durch die Veränderung des Verhältnisses der Ströme IE1 zu IE2 durch Trimmen. Dazu werden dem vom Transistor M1 gelieferten Strom IM1 wahlweise die Ströme IS1 bis IS4 der schaltbaren Stromquellen, die sich additiv zum Strom IE1 zusammensetzen, zugeschaltet. Die Zuschaltung erfolgt über die Transistoren M9 bis M12. Im Ausführungsbeispiel gemäß der Figur können dem Strom IM1 über die Steuereingänge SE1 bis SE4 jeweils zwei Ströme zu oder zwei Ströme abgeschaltet werden. Vor dem Trimmen liegen die Steuereingänge SE1 bis SE4 auf dem Potential der Klemme VDD der Versorgungsspannungsquelle. Das heißt, daß die Schalter M9 und M10 aufgrund der Inverter IV1 und IV2 gesperrt sind und die Schalter M11 und M12 leitend sind. Der Strom IE1 ergibt sich dann aus der Summe der Ströme IM1, IS3 und IS4. Durch den Trimmvorgang können die Steuereingänge SE1 bis SE4 wahlweise auf das Potential der Klemme VSS der Versorgungsspannungsquelle gelegt werden, wodurch sich der Strom IE1 vergrößert oder verkleinert. Damit kann aber auch das Verhältnis der Ströme IE1 zu IE2 vergrößert oder verkleinert werden. Die Strome IS1 bis IS4 der schaltbaren Stromquellen sind dabei sinnvollerweise wesentlich kleiner als die Ströme IM1 bzw. IM2 der Transistoren M1 und M2.
  • Verwendet man gleiche Transistoren für die schaltbaren Stromquellen, deren durch das Verhältnis von Kanalweite zu Kanallänge bestimmte Einzelströme gleich groß sind, so sind die Ströme IS1 und IS3 gleich groß und halb so groß wie die ebenfalls jeweils gleichen Ströme IS2 und IS4. Damit sind die Trimmströme IS1 bis IS4 der schaltbaren Stromquellen binär gewichtet, so daß sich ein großer Trimmbereich ergibt.
  • Als Bipolartransistoren T1 bzw. der Einzeltransistoren der Transistoranordnung T2 lassen sich im Ausführungsbeispiel gemäß der Figur vertikale npn-Transistoren verwenden, die sich beim p-Wannen-CMOS-Prozeß ergeben. Eine besonders vorteilhafte Ausgestaltung ergibt sich, wenn der Emitter als Ringemitter um den Basiskontakt angeordnet ist, wodurch sich wegen der größeren Emitterfläche eine wesentlich bessere Stromverstärkung der bipolaren Transistoren ergibt. Gleichzeitig erhöht sich bei einer Bandgap-Schaltung mit Ringemittern die Zuverlässigkeit gegenüber einer Bandgap-Schaltung, bei der die Emitter in der Mitte der Basiszone liegen.
  • Die erreichbare Genauigkeit einer erfindungsgemäßen trimmbaren Bandgap-Schaltung im Temperaturbereich von +10° C bis +70° C besser als 10 ppm pro Grad Celsius.

Claims (3)

  1. Schaltungsanordnung zur Erzeugung einer temperaturunabhängigen Referenzspannung mit einer zwei Bipolartransistoren (T1, T2) aufweisenden Bandgap-Schaltung (T1, T2, R1, R2, R3, OP) und mit zwei jeweils einen Bipolartransistor (T1, T2) speisenden, jeweils aus einem Metalloxidtransistor (M1, M2) bestehenden Stromquellen, dadurch gekennzeichnet,
    daß ein- und ausschaltbare Stromquellen, von denen je zwei gleich ausgelegt sind und deren Ströme binär gewichtet sind, einer der beiden die Bipolartransistoren (T1, T2) speisenden Stromquellen parallel geschaltet sind, daß bei den ein- und ausschaltbaren Stromquellen jeweils die Source-Drain-Strecken eines Metalloxidtransistors (M9 bis M12) als Transistorschalter sowie einer der jeweiligen binären Gewichtung entsprechenden Anzahl von weiteren Metalloxidtransistoren (M3 bis M8) in Reihe geschaltet sind, daß die Gateanschlüsse der weiteren Metalloxidtransistoren (M9 bis M12) mit den Gateanschlüssen der Metalloxidtransistoren (M1, M2), die als die Bipolartransistoren (T1, T2) speisende Stromquellen vorgesehen sind, verbunden sind, daß die Gateanschlüsse der als Transistorschalter vorgesehenen Metalloxidtransistoren (M9 bis M12) mit jeweils einem Steuereingang (SE1 bis SE4) derart gekoppelt sind, daß bei gleich ausgelegten ein- und ausschaltbaren Stromquellen der Gateanschluß einer dieser Stromquellen direkt und der Gateanschluß der anderen über einen Inverter (IV1, IV2) mit dem jeweiligen Steuereingang (SE1 bis SE4) verbunden ist.
  2. Schaltungsanordnung nach Anspruch 1,
    dadurch gekennzeichnet, daß die weiteren Metaloxidtransistoren (M9 bis M12) vom gleichen Typ sind.
  3. Schaltungsanordnung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß die Bipolartransistoren (T1, T2) der Bandgap-Schaltung um den Basiskontakt angeordnete Ringemitter aufweisen.
EP86112803A 1985-09-30 1986-09-16 Trimmbare Schaltungsanordnung zur Erzeugung einer temperaturunabhängigen Referenzspannung Expired - Lifetime EP0217225B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86112803T ATE66756T1 (de) 1985-09-30 1986-09-16 Trimmbare schaltungsanordnung zur erzeugung einer temperaturunabhaengigen referenzspannung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3534891 1985-09-30
DE3534891 1985-09-30

Publications (2)

Publication Number Publication Date
EP0217225A1 EP0217225A1 (de) 1987-04-08
EP0217225B1 true EP0217225B1 (de) 1991-08-28

Family

ID=6282395

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86112803A Expired - Lifetime EP0217225B1 (de) 1985-09-30 1986-09-16 Trimmbare Schaltungsanordnung zur Erzeugung einer temperaturunabhängigen Referenzspannung

Country Status (5)

Country Link
US (1) US4751454A (de)
EP (1) EP0217225B1 (de)
JP (1) JPS6279515A (de)
AT (1) ATE66756T1 (de)
DE (1) DE3681107D1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910631A (en) * 1988-01-25 1990-03-20 Westinghouse Electric Corp. Circuit breaker with over-temperature protection and low error I2 t calculator
EP0360887B1 (de) * 1988-09-26 1993-08-25 Siemens Aktiengesellschaft CMOS-Spannungsreferenz
US5013934A (en) * 1989-05-08 1991-05-07 National Semiconductor Corporation Bandgap threshold circuit with hysteresis
US5132556A (en) * 1989-11-17 1992-07-21 Samsung Semiconductor, Inc. Bandgap voltage reference using bipolar parasitic transistors and mosfet's in the current source
US5120994A (en) * 1990-12-17 1992-06-09 Hewlett-Packard Company Bicmos voltage generator
DE4130245A1 (de) * 1991-09-12 1993-03-25 Bosch Gmbh Robert Bandgapschaltung
EP0632357A1 (de) * 1993-06-30 1995-01-04 STMicroelectronics S.r.l. Spannungsreferenzschaltung mit programmierbarem Temperaturkoeffizienten
US5629612A (en) * 1996-03-12 1997-05-13 Maxim Integrated Products, Inc. Methods and apparatus for improving temperature drift of references
DE19817791A1 (de) * 1998-04-21 1999-10-28 Siemens Ag Referenzspannungsschaltung
US6075354A (en) * 1999-08-03 2000-06-13 National Semiconductor Corporation Precision voltage reference circuit with temperature compensation
US6388853B1 (en) * 1999-09-28 2002-05-14 Power Integrations, Inc. Method and apparatus providing final test and trimming for a power supply controller
JP4513209B2 (ja) * 2000-12-28 2010-07-28 富士電機システムズ株式会社 半導体集積回路
US7088085B2 (en) * 2003-07-03 2006-08-08 Analog-Devices, Inc. CMOS bandgap current and voltage generator
JP4988421B2 (ja) * 2007-04-25 2012-08-01 ラピスセミコンダクタ株式会社 基準電流回路
CN101739052B (zh) * 2009-11-26 2012-01-18 四川和芯微电子股份有限公司 一种与电源无关的电流参考源

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0075221A2 (de) * 1981-09-21 1983-03-30 Siemens Aktiengesellschaft Schaltungsanordnung zur Erzeugung einer temperaturunabhängigen Referenzspannung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100437A (en) * 1976-07-29 1978-07-11 Intel Corporation MOS reference voltage circuit
US4069431A (en) * 1976-12-22 1978-01-17 Rca Corporation Amplifier circuit
DE3006598C2 (de) * 1980-02-22 1985-03-28 Robert Bosch Gmbh, 7000 Stuttgart Spannungsquelle
US4325018A (en) * 1980-08-14 1982-04-13 Rca Corporation Temperature-correction network with multiple corrections as for extrapolated band-gap voltage reference circuits
US4443753A (en) * 1981-08-24 1984-04-17 Advanced Micro Devices, Inc. Second order temperature compensated band cap voltage reference
JPS5835614A (ja) * 1981-08-27 1983-03-02 Matsushita Electric Ind Co Ltd 集積化基準電圧・電流源回路
JPS5880718A (ja) * 1981-11-06 1983-05-14 Mitsubishi Electric Corp 基準電圧発生回路
US4396883A (en) * 1981-12-23 1983-08-02 International Business Machines Corporation Bandgap reference voltage generator
US4525663A (en) * 1982-08-03 1985-06-25 Burr-Brown Corporation Precision band-gap voltage reference circuit
US4633165A (en) * 1984-08-15 1986-12-30 Precision Monolithics, Inc. Temperature compensated voltage reference
US4590418A (en) * 1984-11-05 1986-05-20 General Motors Corporation Circuit for generating a temperature stabilized reference voltage
US4608530A (en) * 1984-11-09 1986-08-26 Harris Corporation Programmable current mirror

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0075221A2 (de) * 1981-09-21 1983-03-30 Siemens Aktiengesellschaft Schaltungsanordnung zur Erzeugung einer temperaturunabhängigen Referenzspannung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEEE Journal of Solid-State Circuits, Band SC-13; Heft 6, 1978, Seiten 873-881, IEEE, New York, US; D.M. Monticelli: "A Versatile Monolithic IC Building - Block for Light-Sensing Applications; *
U. Tietze, Ch.Schenk, "Halbleiter - Schaltungstechnik", Springer-Verlag, 6. Auflage, Berlin, Heidelberg, Tokio, 1983, Seiten 532-537 *

Also Published As

Publication number Publication date
US4751454A (en) 1988-06-14
ATE66756T1 (de) 1991-09-15
DE3681107D1 (de) 1991-10-02
JPS6279515A (ja) 1987-04-11
EP0217225A1 (de) 1987-04-08

Similar Documents

Publication Publication Date Title
EP0217225B1 (de) Trimmbare Schaltungsanordnung zur Erzeugung einer temperaturunabhängigen Referenzspannung
EP0236525B1 (de) Integrierte Isolierschicht-Feldeffekttransistor-Verzögerungsleitung für Digitalsignale
EP0508327A2 (de) CMOS-Bandabstands-Referenzschaltung
DE69736827T2 (de) Spannungsreferenz mit sperrschicht-feldeffekt und herstellungsverfahren
DE3836338A1 (de) Temperaturkompensierte stromquellenschaltung mit zwei anschluessen
DE2230364B2 (de) Temperaturmeßeinrichtung
EP0281684A1 (de) Überspannungsgeschützter Darlingtonschalter
EP0360887B1 (de) CMOS-Spannungsreferenz
EP0217223B1 (de) Digital-Analog-Umsetzer mit Temperaturkompensation
DE3933986A1 (de) Komplementaerer stromspiegel zur korrektur einer eingangsoffsetspannung eines "diamond-followers" bzw. einer eingangsstufe fuer einen breitbandverstaerker
EP0216265B1 (de) Schaltungsanordnung zur Erzeugung einer Referenzspannung mit vorgebbarer Temperaturdrift
DE3447002C2 (de)
EP0499657B1 (de) Integrierbarer Shunt-Regler
DE102015122521A1 (de) Spannungsreferenzschaltung
DE3913446A1 (de) Stromspiegel
DE1279735C2 (de) Stromverstaerkende Abtastschaltung fuer Gleichspannungen
EP0162266B1 (de) Schaltungsanordnung zur Erzeugung einer temperatur- und versorgungsspannungsunabhängigen Referenzspannung
AT392710B (de) Schaltkreis mit hoher eingangsimpedanz
EP0523266B1 (de) Integrierbarer Stromspiegel
DE10047620B4 (de) Schaltung zum Erzeugen einer Referenzspannung auf einem Halbleiterchip
DE2637772A1 (de) Elektrische verstaerkeranordnung
EP0122300B1 (de) Integrierte Schaltung zur Erzeugung einer mittels eines Digitalsignals einstellbaren Klemmenspannung
DE4214106A1 (de) Bezugsspannungsgeneratorschaltung
DE3309396A1 (de) Schaltungsanordnung zur pegelanpassung
DE10139515A1 (de) Transistor für eine Bandabstandsschaltung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19871001

17Q First examination report despatched

Effective date: 19890116

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 66756

Country of ref document: AT

Date of ref document: 19910915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3681107

Country of ref document: DE

Date of ref document: 19911002

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86112803.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980826

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980909

Year of fee payment: 13

Ref country code: SE

Payment date: 19980909

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19980910

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980921

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990916

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19990930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000401

EUG Se: european patent has lapsed

Ref document number: 86112803.1

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000401

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050823

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050905

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050915

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20050920

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051115

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20060915

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL