EP0499657B1 - Integrierbarer Shunt-Regler - Google Patents

Integrierbarer Shunt-Regler Download PDF

Info

Publication number
EP0499657B1
EP0499657B1 EP91102283A EP91102283A EP0499657B1 EP 0499657 B1 EP0499657 B1 EP 0499657B1 EP 91102283 A EP91102283 A EP 91102283A EP 91102283 A EP91102283 A EP 91102283A EP 0499657 B1 EP0499657 B1 EP 0499657B1
Authority
EP
European Patent Office
Prior art keywords
transistor
shunt regulator
supply voltage
transistors
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91102283A
Other languages
English (en)
French (fr)
Other versions
EP0499657A1 (de
Inventor
Günter Dipl.-Ing. Donig
Bruno Dipl.-Ing. Scheckel
Karl-Reinhard Dipl.-Ing. Schön
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to ES91102283T priority Critical patent/ES2071849T3/es
Priority to DE59105528T priority patent/DE59105528D1/de
Priority to EP91102283A priority patent/EP0499657B1/de
Priority to US07/837,278 priority patent/US5229708A/en
Publication of EP0499657A1 publication Critical patent/EP0499657A1/de
Application granted granted Critical
Publication of EP0499657B1 publication Critical patent/EP0499657B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/613Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in parallel with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities

Definitions

  • the invention relates to an integrable shunt regulator with a controllable semiconductor component, the load path of which is connected between the poles of a supply voltage source and the control input of which is connected to the output of a differential amplifier.
  • Such a shunt regulator serves as a voltage regulator and is e.g. from GB-A-2226664 also known as a so-called parallel regulator.
  • the load path of a semiconductor device z. B. a power transistor lies between the poles of the supply voltage to be regulated.
  • the power transistor is controlled by an operational amplifier, which in turn is fed by a reference voltage source.
  • a so-called bandgap reference usually serves as the reference voltage. This is e.g. B. from semiconductor circuit technology, Tietze Schenk, 8th edition 1986, page 534 ff known.
  • a shunt controller having a bandgap reference and a parallel controller is known from the Linear Circuits Data Book by Texas Instruments, 1984 on pp. 6-99 ff.
  • This adjustable shunt regulator has three connections, the anode and cathode of the shunt regulator being connected to the poles of a supply voltage and a reference voltage, for example, having to be supplied to the reference input via a voltage divider.
  • the shunt controller shown in the circuit on p. 6-99 has a relatively complicated structure and has a regulated bandgap reference, the voltage value of which can be adjusted from the outside, and an operational amplifier coupled to it. This solution has the disadvantage of an increased tendency to oscillate due to the two coupled operational amplifiers.
  • a series regulator is usually connected downstream of the shunt regulator for precise regulation of the operating voltage.
  • the shunt controller is only used for pre-stabilization.
  • the object of the invention is therefore to provide an integrable shunt regulator which keeps the output voltage in a defined range with as little effort as possible.
  • the advantage of the shunt regulator according to the invention is that it has only two supply voltage connections without a control or reference input.
  • the reference voltage is generated by means of a bandgap reference in such a way that the output variable of the control amplifier is the voltage to be controlled itself.
  • the shunt regulator shown in FIG. 1 has two connection terminals 1, 2 to which the supply voltage source can be connected.
  • the positive pole of the supply voltage source is at connection 1 and the negative pole of the supply voltage source at connection 2.
  • a semiconductor component for. B. a MOSFET 3 is provided, the load path between the terminals 1 and 2 is connected.
  • an operational amplifier 9 is used, the output of which is connected to the gate of the MOSFET 3.
  • the operational amplifier has a positive and a negative input.
  • two NPN transistors 4, 5 are provided. The base connections and the collector connections of the two transistors 4, 5 are connected to one another and connected to the input terminal 1.
  • the emitter connection of the first transistor 4 is connected to the second connection 2 via a resistor 6.
  • the emitter connection of the first transistor 4 is connected to the negative input 20 of the operational amplifier 9.
  • the emitter connection of the second transistor 5 is connected to the connection 2 via the series connection of a second and third resistor 7, 8.
  • the series connection of the two resistors 7, 8 has a connection node which is connected to the positive input 19 of the operational amplifier 9.
  • the bandgap reference is formed by transistors 4, 5 and resistors 6, 7, 8.
  • the output voltage of this bandgap reference is fed to the operational amplifier 9, which in turn controls the MOSFET 3.
  • the regulation of the differential output voltage of the bandgap reference is thus connected to the supply voltage regulation.
  • the value of the output voltage can be selected by selecting the resistance values of resistors 6 and 8. If the output voltage at terminals 1 and 2 corresponds to the value defined by resistors 6 and 8, the input reference voltage of the operational amplifier becomes 0.
  • a disadvantage of the bandgap reference shown in FIG. 1 is that the temperature response of the output voltage at terminals 1 and 2 deteriorates to the same extent that the output voltage deviates from the bandgap reference voltage.
  • the operating point setting of the operational amplifier 9 is difficult because of the small threshold voltage of the bipolar transistors.
  • FIG. 2 shows an improvement of the bandgap reference circuit shown in FIG. 1.
  • the band gap reference shown in FIG. 2 has four additional transistors 10, 11, 12, 13 in addition to that shown in FIG.
  • the emitter of the first additional transistor 10 is connected to the two base connections of the first and second transistors 4, 5.
  • the emitter of the second additional transistor 11 is connected to the base of the first additional transistor 10, the emitter of the third additional transistor 12 to the base of the second additional transistor 11 and the emitter of the fourth additional transistor 13 to the base of the third additional transistor 12.
  • the collectors of all four additional transistors 10, 11, 12, 13 are connected to the collectors of the first and second transistors 4, 5. Furthermore, the base of the fourth additional transistor 13 is connected to its collector.
  • a fourth, fifth and sixth resistor are also provided, the fourth resistor 14 between the emitter of the second additional transistor 11 and the emitter of the first additional transistor 10, the second resistor between the emitter of the third additional transistor 12 and the emitter of the first additional transistor 10 and the third resistor 16 is connected between the emitter of the fourth additional transistor 13 and the emitter of the first additional transistor 10.
  • a seventh and eighth resistor 17 and 18 between the connected base connections of the first and second transistors 4, 5 and the connection 2.
  • the other components shown in FIG. 2 correspond 1 and have the same designation. 19 and 20 in turn denote the connections which lead to the two inputs of the operational amplifier 9 from FIG. 1.
  • the differential input voltage of the subsequent operational amplifier 9 is favorably reduced by the potential present at terminal 1 shifted, on the other hand the point of complete temperature compensation is shifted by approx. 5 times.
  • the bandgap reference voltage here has a value of approximately 6V. Deviations from this are less significant.
  • An expansion as shown in FIG. 2 is not limited to four transistors, but can be enlarged or reduced as desired within a reasonable range.
  • Essential to the invention is the increase in the bandgap reference voltage by means of n transistors connected in series, the collectors of which are connected to the positive supply potential. The output voltage is then temperature compensated at n + 1 times the bandgap reference voltage.
  • resistors 17 and 18 were chosen in FIG. These can be replaced by one or possibly several resistors.
  • the circuit including the bipolar npn transistors can be implemented particularly in CMOS technology with an n-substrate.
  • the collector connections of the bipolar npn transistors are formed by the common substrate. This is possible because only bipolar transistors are used that are connected as emitter followers. Such transistors are also referred to as parasitic "substrate npn transistors".
  • the circuit shown is particularly suitable for transportable data carriers, for. B. so-called chip cards and chip keys, which do not have their own power supply and whose energy is supplied by means of two coils.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Control Of Electrical Variables (AREA)

Description

  • Die Erfindung betrifft einen integrierbaren Shunt-Regler mit einem steuerbaren Halbleiterbauelement, dessen Laststrecke zwischen die Pole einer Versorgungsspannungsquelle geschaltet ist, und dessen Steuereingang mit dem Ausgang eines Differenzverstärkers verbunden ist.
  • Ein derartiger Shunt-Regler dient als Spannungsregler und ist z.B. aus der GB-A-2226664 auch als sogenannter Parallelregler bekannt. Die Laststrecke eines Halbleiterbauelementes z. B. eines Leistungstransistors liegt dabei zwischen den Polen der zu regelnden Versorgungsspannung. Der Leistungstransistor wird durch einen Operationsverstärker gesteuert, welcher wiederum von einer Referenzspannungsquelle gespeist wird. Als Referenzspannung dient dabei meist eine sogenannte Bandabstands-Referenz. Diese ist z. B. aus Halbleiterschaltungstechnik, Tietze Schenk, 8. Auflage 1986, Seite 534 ff bekannt.
  • Einen eine Bandabstands-Referenz sowie einen Parallelregler aufweisender Shunt-Regler ist aus dem Linear Circuits Data Book von Texas Instruments, 1984 auf S. 6-99 ff bekannt. Dieser einstellbare Shunt-Regler weist drei Anschlüsse auf, wobei Anode und Kathode des Shunt-Reglers mit den Polen einer Versorgungsspannung zu verbinden sind und dem Referenzeingang beispielsweise eine Referenzspannung über einen Spannungsteiler zugeführt werden muß. Der in der Schaltung auf S. 6-99 gezeigte Shunt-Regler ist relativ kompliziert aufgebaut und weist eine geregelte Bandabstands-Referenz, deren Spannungswert von außen einstellbar ist sowie einen mit ihr verkoppelten Operationsverstärker auf. Diese Lösung hat den Nachteil einer erhöhten Schwingneigung durch die beiden verkoppelten Operationsverstärker.
  • Speziell bei der Verwendung eines derartigen Shunt-Reglers in Chip-Karten oder in Chip-Schlüsseln ist weniger eine hohe Genauigkeit der Ausgangsspannung als ein möglichst platzsparender einfacher Aufbau des Shuntreglers gefordert. In derartigen Systemen ist zur genauen Ausregelung der Betriebsspannung meist ein Serienregler dem Shunt-Regler nachgeschaltet. Der Shunt-Regler dient hier also nur zur Vorstabilisierung.
  • Aufgabe der Erfindung ist es daher einen integrierbaren ShuntRegler anzugeben, der mit möglichst wenig Aufwand die Ausgangsspannung in einem definierten Bereich hält.
  • Diese Aufgabe wird durch folgende Merkmale gelöst:
    • ein erster und ein zweiten Transistor 4, 5 vorgesehen, deren Basisanschlüsse und Kollektoranschlüsse miteinander und mit dem einen Pol (1) der Versorgungsspannungsquelle verschaltet sind,
    • drei Widerstände 6, 7, 8 sind vorgesehen,
    • der Emitteranschluß des ersten Transistors 4 ist zum einen über den ersten Widerstand 6 mit dem anderen Pol 2 der Versorgungsspannungsquelle und zum anderen mit dem ersten Eingang 20 des Differenzverstärkers 9 verbunden,
    • der Emitteranschluß des zweiten Transistors 5 ist über eine Reihenschaltung aus zweitem und drittem Widerstand 7, 8 mit dem anderen Pol 2 der Versorgungsspannungsquelle verbunden,
    • die Reihenschaltung der beiden Widerstände 7, 8 weist einen Verbindungsknoten auf, der mit dem zweiten Eingang (19) des Differenzverstärkers (9) verbunden ist.
  • Vorteil des erfindungsgemäßen Shunt-Reglers ist, daß er lediglich zwei Versorgungsspannungsanschlüsse ohne Steuer- oder Referenzeingang aufweist. Die Referenzspannungserzeugung geschieht mittels einer Bandabstands-Referenz derart, daß die Ausgangsgröße des Regelverstärkers die zu regelnde Spannung selbst ist.
  • Die Erfindung wird nachfolgend anhand von zwei Figuren näher erläutert. Es zeigen:
  • FIG 1
    ein erstes Ausführungsbeispiel eines erfindungsgemäßen Shunt-Reglers,
    FIG 2
    eine Ausführungsform einer Bandabstands-Referenz.
  • Der in FIG 1 gezeigte Shunt-Regler weist zwei Anschlußklemmen 1, 2 auf, an denen die Versorgungsspannungsquelle anschließbar ist. Im gezeigten Beispiel liegt der positive Pol der Versorgungsspannungsquelle am Anschluß 1 und der negative Pol der Versorgungsspannungsquelle am Anschluß 2. Als Parallelregler ist ein Halbleiterbauelement, z. B. ein MOSFET 3 vorgesehen, dessen Laststrecke zwischen den Anschlußklemmen 1 und 2 geschaltet ist. Zur Ansteuerung des MOSFET 3 dient ein Operationsverstärker 9, dessen Ausgang mit dem Gate des MOSFET 3 verbunden ist. Der Operationsverstärker weist einen positiven und einen negativen Eingang auf. Desweiteren sind zwei npn-Transistoren 4, 5 vorgesehen. Die Basisanschlüsse und die Kollektoranschlüsse der beiden Transistoren 4, 5 sind miteinander verbunden und mit der Eingangsklemme 1 verschaltet. Der Emitteranschluß des ersten Transistors 4 ist über einen Widerstand 6 mit dem zweiten Anschluß 2 verschaltet. Außerdem ist der Emitteranschluß des ersten Transistors 4 mit dem negativen Eingang 20 des Operationsverstärkers 9. Weiterhin ist der Emitteranschluß des zweiten Transistors 5 über die Reihenschaltung eines zweiten und dritten Widerstandes 7, 8 mit dem Anschluß 2 verbunden. Die Reihenschaltung der beiden Widerstände 7, 8 weist einen Verbindungsknoten auf, der mit dem positiven Eingang 19 des Operationsverstärkers 9 verschaltet ist.
  • Die Bandabstands-Referenz wird durch die Transistoren 4, 5 sowie die Widerstände 6, 7, 8 gebildet. Die Ausgangsspannung dieser Bandabstands-Referenz wird dem Operationsverstärker 9 zugeführt, welcher wiederum den MOSFET 3 steuert. Es wird also die Regelung der Differenz-Ausgangsspannung der Bandabstands-Referenz mit der Versorgungsspannungregelung verbunden. Der Wert der Ausgangsspannung kann über die Wahl der Widerstandswerte der Widerstände 6 und 8 erfolgen. Entspricht die Ausgangsspannung an den Klemmen 1 und 2 dem durch die Widerstände 6 und 8 definierten Wert, so wird die Eingangsreferenzspannung des Operationsverstärkers zu 0.
  • Ein Nachteil der in FIG 1 dargestellten Bandabstands-Referenz ist, daß der Temperaturgang der Ausgangsspannung an den Anschlüssen 1 und 2 im gleichen Maße schlechter wird, wie die Ausgangsspannung von der Bandabstands-Referenzspannung abweicht. Außerdem ist die Arbeitspunkteinstellung des Operationsverstärkers 9 wegen der kleinen Schwellspannung der bipolaren Transistoren schwierig.
  • FIG 2 zeigt hier eine Verbesserung der in FIG 1 gezeigten Bandabstands-Referenzschaltung.
  • Die in FIG 2 gezeigte Bandabstands-Referenz weist zu der in FIG 1 gezeigten zusätzlich vier weitere Transistoren 10, 11, 12, 13 auf. Der Emitter des ersten zusätzlichen Transistors 10 ist mit den beiden Basisanschlüssen des ersten und zweiten Transistors 4, 5 verbunden. Der Emitter des zweiten zusätzlichen Transistors 11 ist mit der Basis des ersten zusätzlichen Transistors 10, der Emitter des dritten zusätzlichen Transistors 12 mit der Basis des zweiten zusätzlichen Transistors 11 und der Emitter des vierten zusätzlichen Transistors 13 mit der Basis des dritten zusätzlichen Transistors 12 verbunden. Die Kollektoren aller vier zusätzlichen Transistoren 10, 11, 12, 13 sind mit den Kollektoren des ersten und zweiten Transistors 4, 5 verschaltet. Weiterhin ist die Basis des vierten zusätzlichen Transistors 13 mit seinem Kollektor verschaltet. Es sind weiterhin ein vierter, fünfter und sechster Widerstand vorgesehen, wobei der vierte Widerstand 14 zwischen den Emitter des zweiten zusätzlichen Transistor 11 und dem Emitter des ersten zusätzlichen Transistors 10, der zweite Widerstand zwischen dem Emitter des dritten zusätzlichen Transistors 12 und dem Emitter des ersten zusätzlichen Transistors 10 und der dritte Widerstand 16 zwischen dem Emitter des vierten zusätzlichen Transistors 13 und dem Emitter des ersten zusätzlichen Transistors 10 geschaltet ist. Schließlich liegt zwischen den verschalteten Basisanschlüssen des ersten und zweiten Transistors 4, 5 und dem Anschluß 2 eine Reihenschaltung eines siebten und achten Widerstands 17 und 18. Die übrigen in FIG 2 dargestellten Bauelemente entsprechen den in FIG 1 gezeigten und haben die gleiche Bezeichnung. Mit 19 und 20 sind wiederum die Anschlüsse bezeichnet, die zu den beiden Eingängen des Operationsverstärkers 9 aus FIG 1 führen.
  • Durch Hinzufügen der vier Basis-Emitter-Spannungen der zusätzlichen Transistoren 10, 11, 12, 13, die in Reihe zur ursprünglichen Bandabstands-Referenz geschaltet sind, wird zum einen die Differenzeingangsspannung des nachfolgenden Operationsverstärkers 9 in günstiger Weise von dem am Anschluß 1 anliegenden Potential verschoben, zum anderen wird der Punkt der vollständigen Temperaturkompensation hier um den ca. 5-fachen Wert verschoben. Gegenüber der in FIG 1 gezeigten Schaltung, in der der Wert der Bandabstands-Referenzspannung bei ca. 1,2 V liegt, weist hier die Bandabstands-Referenzspannung einen Wert von ca. 6V auf. Abweichungen von dieser fallen also weniger ins Gewicht.
  • Eine Erweiterung wie sie in FIG 2 dargestellt ist, ist nicht auf vier Transistoren beschränkt, sondern kann beliebig innerhalb eines sinnvollen Rahmens vergrößert oder verkleinert werden. Erfindungswesentlich ist die Erhöhung der Bandabstands-Referenzspannung durch n in Serie geschaltete Transistoren, deren Kollektoren am positiven Versorgungspotential liegen. Die Ausgangsspannung ist dann beim n+1-fachen Wert der Bandabstands-Referenzspannung temperaturkompensiert.
  • Aus Gründen leichterer Einstellbarkeit von Widerstandswerten wurden in FIG 2 zwei Widerstände 17 und 18 gewählt. Diese können beliebig durch einen oder eventuell mehrere Widerstände ersetzt werden.
  • Die Schaltung incl. der bipolaren npn-Transistoren läßt sich besonders in einer CMOS-Technologie mit n-Substrat realisieren. Die Kollektoranschlüsse der bipolaren npn-Transistoren werden durch das gemeinsame Substrat gebildet. Dies ist möglich, da nur bipolare Transistoren verwendet werden, die als Emitterfolger geschaltet sind. Derartige Transistoren werden auch als parasitäre "Substrat-npn-Transistoren" bezeichnet.
  • Die gezeigte Schaltung eignet sich insbesondere für transportabble Datenträger, z. B. sogenannte Chip-Karten und Chip-Schlüssel, die keine eigene Stromversorgung aufweisen und deren Energiezuführung mittels zweier Spulen erfolgt.

Claims (4)

  1. Integrierbarer Shunt-Regler mit einem steuerbaren Halbleiterbauelement (3), dessen Laststrecke zwischen die Pole (1, 2) einer Versorgungsspannungsquelle geschaltet ist, und dessen Steuereingang mit dem Ausgang eines Differenzverstärkers (9) verbunden ist,
    dadurch gekennzeichnet, daß
    - ein erster und ein zweiter Transistor (4, 5) vorgesehen ist, deren Basisanschlüsse und Kollektoranschlüsse miteinander und mit dem einen Pol (1) der Versorgungsspannungsquelle verschaltet sind,
    - drei Widerstände (6, 7, 8) vorgesehen sind,
    - der Emitteranschluß des ersten Transistors (4) zum einen über den ersten Widerstand (6) mit dem anderen Pol (2) der Versorgungsspannungsquelle und zum anderen mit dem ersten Eingang (20) des Differenzverstärkers (9) verbunden ist,
    - der Emitteranschluß des zweiten Transistors (5) über eine Reihenschaltung aus zweitem und drittem Widerstand (7, 8) mit dem anderen Pol (2) der Versorgungsspannungsquelle verbunden ist,
    - die Reihenschaltung der beiden Widerstände (7, 8) einen Verbindungsknoten aufweist, der mit dem zweiten Eingang (19) des Differenzverstärkers (9) verbunden ist.
  2. Integrierbarer Shunt-Regler nach Anspruch 1,
    dadurch gekennzeichnet, daß
    - n (n ≧ 1) weitere Transistoren (10, 11, 12, 13) vorgesehen sind, die zwischen die Basisanschlüsse und Kollektoranschlüsse des ersten und zweiten Transistors (4, 5) geschaltet sind,
    - der Emitteranschluß des ersten der weiteren Transistoren (10) mit den Basisanschlüssen des ersten und zweiten Transistors (4,5) verbunden ist,
    - der Emitteranschluß des n+1-ten der weiteren Transistoren (11, 12, 13) jeweils zum eine mit dem Basisanschluß des n-ten der weiteren Transistoren (10, 11, 12) und zum anderen über jeweils einen Widerstand (14, 15, 16) mit den Basisanschlüssen des ersten und zweiten Transistors (4, 5) verbunden ist,
    - der Basisanschluß des letzten der weiteren Transistoren (13) mit seinem Kollektoranschluß verbunden ist,
    - die Kollektoranschlüsse der n weiteren Transistoren (10, 11, 12, 13) mit den Kollektoranschlüssen des ersten und zweiten Transistors (4, 5) verbunden sind,
    - ein Widerstand (17, 18) zwischen den Basisanschlüssen des ersten und zweiten Transistors (4, 5) und den anderen Pol (2) der Versorgungsspannungsquelle geschaltet ist.
  3. Integrierbarer Shunt-Regler nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß
    der Shunt-Regler in CMOS-Technologie aufgebaut ist, wobei die bipolaren Transistoren durch parasitäre Strukturen gebildet werden.
  4. Integrierbarer Shunt-Regler nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    der Shunt-Regler in einer Chip-Karte oder in einem Chip-Schlüssel vorgesehen ist.
EP91102283A 1991-02-18 1991-02-18 Integrierbarer Shunt-Regler Expired - Lifetime EP0499657B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES91102283T ES2071849T3 (es) 1991-02-18 1991-02-18 Regulador shunt integrable.
DE59105528T DE59105528D1 (de) 1991-02-18 1991-02-18 Integrierbarer Shunt-Regler.
EP91102283A EP0499657B1 (de) 1991-02-18 1991-02-18 Integrierbarer Shunt-Regler
US07/837,278 US5229708A (en) 1991-02-18 1992-02-18 Integrable shunt regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP91102283A EP0499657B1 (de) 1991-02-18 1991-02-18 Integrierbarer Shunt-Regler

Publications (2)

Publication Number Publication Date
EP0499657A1 EP0499657A1 (de) 1992-08-26
EP0499657B1 true EP0499657B1 (de) 1995-05-17

Family

ID=8206418

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91102283A Expired - Lifetime EP0499657B1 (de) 1991-02-18 1991-02-18 Integrierbarer Shunt-Regler

Country Status (4)

Country Link
US (1) US5229708A (de)
EP (1) EP0499657B1 (de)
DE (1) DE59105528D1 (de)
ES (1) ES2071849T3 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9417267D0 (en) * 1994-08-26 1994-10-19 Inmos Ltd Current generator circuit
DE4439707A1 (de) * 1994-11-05 1996-05-09 Bosch Gmbh Robert Spannungsreferenz mit Prüfung und Eigenkalibrierung
US5701071A (en) * 1995-08-21 1997-12-23 Fujitsu Limited Systems for controlling power consumption in integrated circuits
US5949212A (en) * 1997-06-05 1999-09-07 The Boeing Company Integrated solar cell array and power regulator
JP3488054B2 (ja) * 1997-09-12 2004-01-19 Necエレクトロニクス株式会社 液晶駆動用装置
US6134130A (en) * 1999-07-19 2000-10-17 Motorola, Inc. Power reception circuits for a device receiving an AC power signal
JP2001101364A (ja) 1999-10-01 2001-04-13 Fujitsu Ltd 非接触icカード用lsi
US6259324B1 (en) * 2000-06-23 2001-07-10 International Business Machines Corporation Active bias network circuit for radio frequency amplifier
WO2004107077A1 (en) * 2003-05-28 2004-12-09 Koninklijke Philips Electronics N.V. Circuit for a data carrier having reference parameter generation means with supply voltage limiting means
KR100812086B1 (ko) * 2006-11-30 2008-03-07 동부일렉트로닉스 주식회사 반도체 소자의 전압조절장치
US7969127B1 (en) 2008-04-25 2011-06-28 National Semiconductor Corporation Start-up circuit for a shunt regulator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617859A (en) * 1970-03-23 1971-11-02 Nat Semiconductor Corp Electrical regulator apparatus including a zero temperature coefficient voltage reference circuit
PL71890B1 (de) * 1972-10-02 1974-06-29
US4088941A (en) * 1976-10-05 1978-05-09 Rca Corporation Voltage reference circuits
US4160201A (en) * 1978-06-08 1979-07-03 Rca Corporation Voltage regulators
US4743833A (en) * 1987-04-03 1988-05-10 Cross Technology, Inc. Voltage regulator
DE68925029T2 (de) * 1988-02-04 1996-08-01 Magellan Corp Australia Shuntregelvorrichtung.
GB2226664B (en) * 1988-11-26 1992-09-09 Motorola Inc Shunt regulators
US5103160A (en) * 1991-04-25 1992-04-07 Hughes Aircraft Company Shunt regulator with tunnel oxide reference

Also Published As

Publication number Publication date
DE59105528D1 (de) 1995-06-22
US5229708A (en) 1993-07-20
ES2071849T3 (es) 1995-07-01
EP0499657A1 (de) 1992-08-26

Similar Documents

Publication Publication Date Title
DE69011756T2 (de) Stromspiegelschaltung.
DE69210305T2 (de) Mehrstufiger Differenzverstärker
DE69934735T2 (de) Vielstufige Verstärkerschaltung mit verbesserter verschachtelter Transkonduktanzkapazitätskompensation
EP0499657B1 (de) Integrierbarer Shunt-Regler
DE112012000470T5 (de) Vorrichtung und Verfahren zur Miller-Kompensation bei mehrstufigen Verstärkern
DE2855303A1 (de) Linearer verstaerker
DE69221999T2 (de) Bezugsstromschleife
DE69528845T2 (de) N-bit umsetzer mit n-1-grössenverstärkern und n-vergleichern
DE102015107881A1 (de) Stromgeregelte Transimpedanz-Verstärker
EP0562359A1 (de) Ansteuerschaltung für eine Laserdiode
DE2250625C3 (de) Schaltungsanordnung zur Konstanthaltung eines an eine Last gelieferten Stromes
DE69421083T2 (de) Schutzschaltung und Verfahren für Leistungstransistor sowie diese verwendender Spannungsregler
DE69222721T2 (de) Stromspiegelschaltung
EP0049793A2 (de) Elektronisches, berührungslos arbeitendes Schaltgerät
DE3545392C2 (de)
DE2924171C2 (de)
DE2945538C2 (de)
EP0523266A1 (de) Integrierbarer Stromspiegel
DE69410654T2 (de) Stromquelle
DE2931525A1 (de) Schaltungsanordnung zur stabilisierung des gleichstromarbeitspunktes eines differenzverstaerkers
DE69508063T2 (de) Konstantspannungsabfall-Spannungsregler
EP0696741B1 (de) Bipolare kaskadierbare Schaltungsanordnung zur Signalbegrenzung und Feldstärkedetektion
EP0277377A1 (de) Schaltungsanordnung zur Bildung eines begrenzten Stromes
EP0990199B1 (de) Reglervorrichtung
EP0484360B1 (de) Elektrischer schaltkreis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19930204

17Q First examination report despatched

Effective date: 19941107

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 59105528

Country of ref document: DE

Date of ref document: 19950622

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2071849

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950728

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010419

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020205

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020215

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020221

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020228

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030219

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030219

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050218