EP0904558A2 - Konfokale mikroskopische anordnung - Google Patents

Konfokale mikroskopische anordnung

Info

Publication number
EP0904558A2
EP0904558A2 EP98912431A EP98912431A EP0904558A2 EP 0904558 A2 EP0904558 A2 EP 0904558A2 EP 98912431 A EP98912431 A EP 98912431A EP 98912431 A EP98912431 A EP 98912431A EP 0904558 A2 EP0904558 A2 EP 0904558A2
Authority
EP
European Patent Office
Prior art keywords
confocal microscopic
detection
microscopic arrangement
confocal
illuminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP98912431A
Other languages
German (de)
English (en)
French (fr)
Inventor
Thomas SCHERÜBL
Norbert Czarnetzki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jenoptik AG
Original Assignee
Carl Zeiss Jena GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Jena GmbH filed Critical Carl Zeiss Jena GmbH
Publication of EP0904558A2 publication Critical patent/EP0904558A2/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/006Optical details of the image generation focusing arrangements; selection of the plane to be imaged
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • G02B21/0044Scanning details, e.g. scanning stages moving apertures, e.g. Nipkow disks, rotating lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0064Optical details of the image generation multi-spectral or wavelength-selective arrangements, e.g. wavelength fan-out, chromatic profiling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/008Details of detection or image processing, including general computer control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/50Using chromatic effects to achieve wavelength-dependent depth resolution

Definitions

  • the illuminating light is split longitudinally spectrally and focused on an object, with each focus point corresponding to a certain wavelength.
  • the light reflected from the object reaches a dispersive element via a beam splitter and is focused by this onto a photodiode array.
  • the strongest signal is determined by reading the photodiode array and related to the object surface.
  • US Pat. No. 4,965,441 describes a scanning, ie point-by-point confocal arrangement with increased depth resolution, dispersive elements being arranged in the evaluation beam path for wavelength separation.
  • WO 92/01965 describes an arrangement for simultaneous image generation with a moving pinhole in the illumination beam path, the objective having a high chromatic aberration and the arrangement being intended to be used as a profile sensor.
  • WO 95/00871 also describes an arrangement with a moving pinhole and a focusing element with axial chromatism, wherein in
  • a system for generating a color height image is also implemented, for example, with the CSM additive for the applicant's axiotron microscope.
  • the height profile is inspected by visual evaluation of the color image.
  • a special application is wafer inspection, i.e. the detection of defects on wafers (e.g. particles on top, irregularities in the structure). Defects become visible as areas with different colors. In this way, height differences ⁇ 0.1 ⁇ m can be differentiated in color.
  • the accessible height range, the color spread, depends on the lens used and is, for example, 4 ⁇ m for a 50x lens.
  • the detection of a defect size of 0.1 ⁇ m is considered necessary.
  • the minimum detectable defect size is determined by the resolution, the inspection speed by the computer capacity.
  • Considerable electronic computational effort has to be made to process the information at the appropriate speed. If, for example, a wafer with a diameter of 300 mm is scanned with a 0.3 ⁇ m grid, a total of 10 12 pixels must be processed with digital image processing.
  • the object of the invention is to enable a rapid yet highly accurate detection of wafer defects.
  • the method of integral spectral decomposition and analysis of the color image information shown has the advantage that defects whose height expansion is less than 0.1 ⁇ m can be detected.
  • optical preprocessing by means of spectral decomposition also enables faster processing of the present height profile, since the height profile of the entire image field is compressed in the spectrum.
  • An arrangement according to the invention can also be used to implement a highly precise autofocus, which will be discussed in more detail below.
  • Fig. 1 The measuring and evaluation principle according to the invention
  • Fig. 2 Different height profiles and corresponding color - height spectra.
  • Fig. 3 The shift of a spectral line due to a height difference
  • Spectrometer entry slit Fig. 5 A first version with cross-section converter Fig. 6: A second version with cross-section converter Fig. 7: A version with a color camera for image evaluation Fig. 8: A version with several lasers of different wavelengths Fig. 9: Spectra for different height profiles Focusing on two levels with laser wavelengths 11 and 12 Table 1: Color spreads for different lenses 1 with a light source 1, which can be a white light source, but can also consist of several lasers of different wavelengths or multi-line lasers, collector lens 2
  • the hole pattern 5 is preferably a rotating one
  • the grid arrangement is moved appropriately for scanning the image and generates a parallel confocal image.
  • a targeted longitudinal color error is introduced into the beam path in such a way that after the beam has passed through the color corrected one
  • Height information is optically coded by a corresponding color representation.
  • a dispersive element 9 which can be, for example, a prism or holographic grating on a diode row or
  • CCD - line 10 shown, which is connected to an evaluation and processing unit 14.
  • the color-coded height profiles are thus broken down into an equivalent color spectrum. This is shown in Fig. 2 a - d.
  • the spectral positions of the maxima correspond to the corresponding contour lines, while the number of
  • the object is located on an xy shift table, not shown, and is scanned either in a continuous movement or in a step-and-go procedure.
  • Height information about the location on object 0 is given.
  • the height setting in the z direction is controlled by an autofocus system or by a special height control algorithm described below.
  • 2 a - d shows a height profile H and a defect point F to be detected as well as the spectrum S AD corresponding to the profile and measured on the receiver 10 and the difference spectra S AB.A-C, AD formed during the evaluation.
  • Two adjacent spectra are recorded and subtracted from one another, as shown schematically in FIG. 2.
  • a routine for example peak search routine, as is usually used in optical spectroscopy, the maxima in the difference spectrum are determined which are above a predetermined noise level. If such maxima are present, there is a defect in the area examined.
  • the position and the corresponding spectra or the reference spectrum are saved.
  • the spectra are evaluated in more detail later in a classification unit, since the position and half-width range contain further information about the type of defects that are used for a defect classification. 2.
  • the comparison of spectra is carried out as described under 1., but an ideal stored spectrum is used as the comparison spectrum.
  • this height control is necessary, since a difference in height leads to a shift of the spectra to one another.
  • this height control can be carried out with a conventional autofocus system or with the height control algorithm described below, which uses the spectral height information.
  • spectral deviation ⁇ from a wavelength ⁇ o which corresponds to a height deviation ⁇ z, is shown schematically.
  • the height of the object to be examined relative to the imaging optics is determined by a suitable z setting, e.g. B. z-table chosen so that a certain spectral line corresponds to a certain height level of the object.
  • This line ⁇ 0 target maximum
  • ⁇ 0 target maximum
  • the Z table position is readjusted using an adjusting element, preferably a piezo adjusting element. If the deviation is less than this previously defined value, the entire spectrum is shifted accordingly by electronic means and then one of the defect detection algorithms described above is carried out.
  • the above-mentioned method for height control is suitable - advantageously as an autofocus method for a confocal microscope.
  • the advantages of confocal microscopy are known to be that a defined object plane, the focal plane, is worked out in the image. The confocal principle suppresses the optical image from another level. Therefore, only the focus plane is visible in the image.
  • a certain wafer level can be focused using the confocal principle. All other layers appear dark in this image. In applications in which only a certain level is to be examined, the confocal method is therefore advantageous. This simplifies digital image processing for defect detection.
  • confocal microscopy for the analysis of special levels, for example a wafer, requires a highly accurate autofocus system that focuses precisely on the level of interest.
  • Usual autofocus methods (such as the triangulation method) only measure the altitude of a certain object point. Depending on the structure at hand, this does not necessarily focus on the level of interest. Averaging processes over several object points also focus only on any plane.
  • the present invention permits the recording of a height histogram, ie the height distribution over a specific object area, by means of the spectral analysis. An evaluation of this distribution according to the height control algorithm given above then enables focusing on a specific plane, which corresponds, for example, to the wavelength ⁇ 0 in FIG. 3.
  • a microscope objective 7 with a tube lens (not shown) generates an intermediate image Z, which lies in the plane of the pinhole arrangement 5.
  • This intermediate image is imaged, for example, on the camera output KA of the microscope with the aid of imaging optics 9.
  • a diode array spectrometer which consists of a grating 12, here a holographic grating, a diode row 13 and an evaluation unit 14, consisting here of memory, display unit and comparator.
  • the object is scanned by a step-and-go mode with an xy- table, not shown.
  • Known interferometric displacement measuring systems are provided for detecting the table position, for example, the control and detection of the table position in the x, y and Z direction being coupled to the spectral evaluation by a connection to the evaluation unit 14. In this embodiment, therefore, only a part of the intermediate image field is transferred to the spectrometer.
  • the evaluation or defect detection takes place in the evaluation unit by means of a comparison with a stored ideal height professional (die-to-database comparison) or with one or more previous height profiles (die-to-die comparison) in accordance with the defect detection algorithm shown above with the height control algorithm shown.
  • part of the intermediate image field imaged on the camera output KA is mapped with a disordered glass fiber bundle 15, which serves as a cross-sectional converter, in a diode array spectrometer consisting of a grating 13, a diode array 13 and an evaluation unit 14, by the fibers are arranged in the intermediate image plane as a light entrance bundle and in front of the entrance slit 11.
  • a larger area of the intermediate image field can be spectrally analyzed at the same time.
  • an anamorphic (cylinder-optical) cross-sectional converter 16 is used to image the intermediate image in the spectrometer slit 11 in a further advantageous embodiment according to FIG. 6, ie the imaging scales in the slit direction and perpendicular to the slit direction are different.
  • This embodiment has the advantage that the entire intermediate image field or a larger part of it can be spectrally analyzed.
  • the evaluation and defect detection as well as the raster movement and z control - are carried out as already described.
  • a camera K which is mounted on the camera output KA of the microscope, is used for the spectral analysis of the entire intermediate image.
  • the analysis is carried out pixel by pixel by comparing the gray values, when using a color camera by pixel-by-pixel color comparison.
  • the gray values or colors are counted pixel by pixel and displayed spectrally according to color or gray value in a histogram.
  • the spectral color information can also be obtained by using two black and white cameras in combination with different filters, as described in WO 95/00871 and SCANNING, Vol. 14, 1992, pp. 145-153.
  • the height control is carried out by an autofocus system, preferably by the autofocus method shown above, and the defect detection by the defect detection algorithm shown.
  • FIG. 8 shows a further embodiment, the white light source being replaced by illumination with 3 differently colored lasers L1-L3.
  • the white light source being replaced by illumination with 3 differently colored lasers L1-L3.
  • different image planes can now be highlighted.
  • the resulting spectrum consists only of the lines of the laser wavelengths ⁇ i, ⁇ 2 and ⁇ 3 used .
  • the integral number of events of the respective lines is proportional to the area share of the corresponding focus level. If there are defects in this plane, the number of photons detected decreases accordingly, as shown schematically in FIG. 9 for two wavelengths.
  • Defects therefore only manifest themselves in the integral number of detected events, but not, as in the embodiments with a white light source, also in different wavelengths.
  • the cross-sectional converters shown in the described embodiments are used as cross-sectional converters 14.
  • the anamorphic figure 16 is shown.
  • the specified defect detection algorithm is simplified. After subtracting the spectra only in the range of laser wavelengths used events are counted above a noise threshold. The number of these events is then proportional to the area share of the defect on the corresponding contour line.
  • Table 1 shows the typical color spreads for different lenses.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)
EP98912431A 1997-03-29 1998-03-03 Konfokale mikroskopische anordnung Ceased EP0904558A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19713362A DE19713362A1 (de) 1997-03-29 1997-03-29 Konfokale mikroskopische Anordnung
DE19713362 1997-03-29
PCT/EP1998/001177 WO1998044375A2 (de) 1997-03-29 1998-03-03 Konfokale mikroskopische anordnung

Publications (1)

Publication Number Publication Date
EP0904558A2 true EP0904558A2 (de) 1999-03-31

Family

ID=7825095

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98912431A Ceased EP0904558A2 (de) 1997-03-29 1998-03-03 Konfokale mikroskopische anordnung

Country Status (5)

Country Link
US (1) US6674572B1 (ja)
EP (1) EP0904558A2 (ja)
JP (1) JP2000512401A (ja)
DE (1) DE19713362A1 (ja)
WO (1) WO1998044375A2 (ja)

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7202953B1 (en) 1998-12-21 2007-04-10 Evotec Biosystems Ag Scanning microscopic method having high axial resolution
DE10024685A1 (de) * 2000-05-18 2001-11-22 Zeiss Carl Jena Gmbh Anordnung zur konfokalen Autofokussierung
GB2363857A (en) * 2000-06-23 2002-01-09 Yokogawa Electric Corp Nipkow disk confocal scanner with optical image separation system
US6724489B2 (en) * 2000-09-22 2004-04-20 Daniel Freifeld Three dimensional scanning camera
DE10056329B4 (de) * 2000-11-14 2006-10-26 Precitec Kg Optisches Abstandsmeßverfahren und Abstandssensor
JP2002236257A (ja) * 2001-02-13 2002-08-23 Dainippon Printing Co Ltd マルチカラー共焦点顕微鏡
DE10127284A1 (de) 2001-06-05 2002-12-12 Zeiss Carl Jena Gmbh Autofokussiereinrichtung für ein optisches Gerät
DE10161486B4 (de) * 2001-12-14 2008-11-13 Carl Mahr Holding Gmbh Konfokaler Liniensensor
JP2005525550A (ja) 2002-05-14 2005-08-25 アマーシャム バイオサイエンセズ ナイアガラ,インク. 細胞の迅速自動化スクリーニングシステム及び方法
DE10222779A1 (de) 2002-05-16 2004-03-04 Carl Zeiss Jena Gmbh Verfahren und Anordnung zur Untersuchung von Proben
JP2006527852A (ja) * 2003-06-19 2006-12-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ オートフォーカシング手段を有する分析装置と方法
DE10331906B4 (de) * 2003-07-15 2005-06-16 Leica Microsystems Heidelberg Gmbh Lichtquelle mit einem Mikrostruktuierten optischen Element und Mikroskop mit Lichtquelle
US7298478B2 (en) * 2003-08-14 2007-11-20 Cytonome, Inc. Optical detector for a particle sorting system
DE102004011189B4 (de) * 2004-03-04 2011-05-05 Carl Mahr Holding Gmbh Optischer Messkopf
DE102004022454B4 (de) * 2004-05-06 2014-06-05 Carl Mahr Holding Gmbh Messeinrichtung mit optischer Tastspitze
US7317513B2 (en) * 2004-07-15 2008-01-08 Mitutoyo Corporation Absolute distance measuring device
DE102004053905B4 (de) * 2004-11-05 2007-10-11 My Optical Systems Gmbh Verfahren zur berührungslosen Erfassung von geometrischen Eigenschaften einer Objektoberfläche
US7477401B2 (en) * 2004-11-24 2009-01-13 Tamar Technology, Inc. Trench measurement system employing a chromatic confocal height sensor and a microscope
DE102004058728A1 (de) * 2004-12-06 2006-06-08 Leica Microsystems Cms Gmbh Verfahren zur Auswahl einer Wellenlänge und Mikroskop
KR100721512B1 (ko) 2005-02-16 2007-05-23 한국과학기술원 분산 광학계를 이용한 실시간 공초점 현미경
US20060232790A1 (en) * 2005-04-18 2006-10-19 Lee Chase Confocal measurement method and apparatus in a paper machine
JP2006308336A (ja) * 2005-04-26 2006-11-09 Ohkura Industry Co 撮像システム
DE102005022125A1 (de) * 2005-05-12 2006-11-16 Carl Zeiss Microlmaging Gmbh Lichtrastermikroskop mit Autofokusmechanismus
DE102005023351A1 (de) * 2005-05-17 2006-11-30 Micro-Epsilon Messtechnik Gmbh & Co Kg Vorrichtung und Verfahren zum Vermessen von Oberflächen
TWI268339B (en) * 2005-05-25 2006-12-11 Ind Tech Res Inst Displacement measuring device and method, an internal diameter measuring device by use of the variance of the wavelength to measure the displacement and the internal diameter
DE102005052743B4 (de) * 2005-11-04 2021-08-19 Precitec Optronik Gmbh Messsystem zur Vermessung von Grenz- oder Oberflächen von Werkstücken
EP1947498A4 (en) * 2005-11-11 2008-11-19 Nikon Corp KOFOKALES MICROSCOPE
DE102006016871B3 (de) * 2006-04-07 2007-10-11 Korea Advanced Institute Of Science & Technology Konfokales Echtzeitmikroskop mit Dispersionsoptik
DE102006019384B4 (de) 2006-04-26 2015-10-22 Carl Zeiss Microscopy Gmbh Mikroskop und Mikroskopierverfahren zur Messung des Oberflächenprofils eines Objekts
DE102006023887B3 (de) * 2006-05-16 2007-08-23 Universität Stuttgart Anordnung und Verfahren zur konfokalen Durchlicht-Mikroskopie, insbesondere auch zur Vermessung von bewegten Phasenobjekten
DE102006027836B4 (de) * 2006-06-16 2020-02-20 Carl Zeiss Microscopy Gmbh Mikroskop mit Autofokuseinrichtung
DE102006036504A1 (de) * 2006-08-04 2008-02-07 Vistec Semiconductor Systems Gmbh Vorrichtung und Verfahren zur Messung des Höhenprofils eines strukturierten Substrats
JP2008170366A (ja) * 2007-01-15 2008-07-24 Disco Abrasive Syst Ltd チャックテーブルに保持された被加工物の計測装置およびレーザー加工機
DE102007011877A1 (de) 2007-03-13 2008-09-18 Eppendorf Ag Optisches Sensorsystem an einer Vorrichtung zur Behandlung von Flüssigkeiten
JP2008268387A (ja) * 2007-04-18 2008-11-06 Nidec Tosok Corp 共焦点顕微鏡
US7812971B2 (en) * 2007-06-28 2010-10-12 Quality Vision International, Inc. Multi color autofocus apparatus and method
FI127623B (fi) * 2007-08-31 2018-10-31 Abb Ltd Rainan paksuuden mittauslaite
JP5951928B2 (ja) 2007-09-06 2016-07-13 スリーエム イノベイティブ プロパティズ カンパニー 光出力の領域制御を提供する光抽出構造体を有する光ガイド
JP2010537843A (ja) * 2007-09-06 2010-12-09 スリーエム イノベイティブ プロパティズ カンパニー 微細構造物品を作製するための工具
WO2009033029A1 (en) 2007-09-06 2009-03-12 3M Innovative Properties Company Methods of forming molds and methods of forming articles using said molds
DE102007044530B4 (de) * 2007-09-18 2009-06-10 VMA Gesellschaft für visuelle Meßtechnik und Automatisierung mbH Anordnung zur Messung der Dicke und des Abstandes transparenter Objekte
EP2208100B8 (en) 2007-10-11 2017-08-16 3M Innovative Properties Company Chromatic confocal sensor
JP5524856B2 (ja) * 2007-12-12 2014-06-18 スリーエム イノベイティブ プロパティズ カンパニー エッジ明瞭性が向上した構造の製造方法
JP5801558B2 (ja) 2008-02-26 2015-10-28 スリーエム イノベイティブ プロパティズ カンパニー 多光子露光システム
EP2353042A4 (en) * 2008-10-14 2013-06-26 Sanford Burnham Med Res Inst AUTOMATED SCANNING CYTOMETRY USING CHROMATIC ABERRATION FOR ACQUIRING MULTIPLANE IMAGES
US20100097693A1 (en) * 2008-10-16 2010-04-22 Kazunori Koga Confocal microscope
TWI490444B (zh) * 2009-01-23 2015-07-01 Univ Nat Taipei Technology 線型多波長共焦顯微方法與系統
DE102009025815A1 (de) * 2009-05-15 2010-11-25 Degudent Gmbh Messanordnung sowie Verfahren zum dreidimensionalen Messen eines Objektes
DE102010036447A1 (de) * 2010-03-26 2011-09-29 Degudent Gmbh Verfahren zur Ermittlung von Materialcharakteristika
TWI414817B (zh) * 2010-07-23 2013-11-11 Univ Nat Taipei Technology 線型彩色共焦顯微系統
US9305341B2 (en) * 2011-01-21 2016-04-05 Christopher L. Claypool System and method for measurement of through silicon structures
JP5790178B2 (ja) * 2011-03-14 2015-10-07 オムロン株式会社 共焦点計測装置
CN102749027B (zh) * 2011-04-18 2015-08-12 陈亮嘉 线型彩色共焦显微系统
DE102011083726A1 (de) * 2011-09-29 2013-04-04 Siemens Aktiengesellschaft Konfokales Spektrometer und Verfahren zur Bildgebung in einem konfokalen Spektrometer
US10001622B2 (en) 2011-10-25 2018-06-19 Sanford Burnham Medical Research Institute Multifunction autofocus system and method for automated microscopy
GB2497792A (en) * 2011-12-21 2013-06-26 Taylor Hobson Ltd Metrological apparatus comprising a confocal sensor
TW201415153A (zh) 2012-10-01 2014-04-16 Ind Tech Res Inst 自動對焦系統與自動對焦方法
GB2507813B (en) * 2012-11-13 2017-06-21 Focalspec Oy Apparatus and method for inspecting seals of items
DE102012221566A1 (de) * 2012-11-26 2014-05-28 Dr. Johannes Heidenhain Gmbh Optische Positionsmesseinrichtung
JP5966982B2 (ja) * 2013-03-15 2016-08-10 オムロン株式会社 共焦点計測装置
US9696264B2 (en) 2013-04-03 2017-07-04 Kla-Tencor Corporation Apparatus and methods for determining defect depths in vertical stack memory
DE102013016368B4 (de) * 2013-09-30 2024-05-16 Carl Zeiss Microscopy Gmbh Lichtmikroskop und Mikroskopieverfahren zum Untersuchen einer mikroskopischen Probe
DE102013016367A1 (de) 2013-09-30 2015-04-02 Carl Zeiss Microscopy Gmbh Lichtmikroskop und Verfahren zum Untersuchen einer Probe mit einem Lichtmikroskop
US9772297B2 (en) 2014-02-12 2017-09-26 Kla-Tencor Corporation Apparatus and methods for combined brightfield, darkfield, and photothermal inspection
JP2017520801A (ja) * 2014-07-14 2017-07-27 ブルッカー、ゲーリー 物体の単一面のホログラフィック撮像のシステム及び方法
US9383190B1 (en) 2014-12-10 2016-07-05 Carl Zeiss Industrielle Messtechnik Gmbh Measuring apparatus and method for determining dimensional characteristics of a measurement object
JP6520669B2 (ja) * 2015-12-03 2019-05-29 オムロン株式会社 光学計測装置
JP6615604B2 (ja) * 2015-12-25 2019-12-04 株式会社キーエンス 共焦点変位計
CN108474646B (zh) * 2015-12-25 2021-07-23 株式会社基恩士 共焦位移计
JP6493265B2 (ja) 2016-03-24 2019-04-03 オムロン株式会社 光学計測装置
EP3222964B1 (en) * 2016-03-25 2020-01-15 Fogale Nanotech Chromatic confocal device and method for 2d/3d inspection of an object such as a wafer
US10627614B2 (en) * 2016-04-11 2020-04-21 Verily Life Sciences Llc Systems and methods for simultaneous acquisition of multiple planes with one or more chromatic lenses
DE102016006107A1 (de) 2016-05-17 2017-11-23 Technische Universität Ilmenau Vorrichtung und Verfahren zur konfokalen Vermessung einer Oberflächentopografie
US10627310B2 (en) * 2016-10-04 2020-04-21 LiFodas Imaging system for multi-fiber connector inspection
JP6811950B2 (ja) * 2016-12-09 2021-01-13 オリンパス株式会社 走査型共焦点顕微鏡装置、走査制御方法、及び、プログラム
JP6834623B2 (ja) 2017-03-13 2021-02-24 オムロン株式会社 光学計測装置および光学計測装置用アダプタ
JP6919458B2 (ja) * 2017-09-26 2021-08-18 オムロン株式会社 変位計測装置、計測システム、および変位計測方法
FR3086748B1 (fr) * 2018-10-02 2023-10-13 Sciences Et Techniques Ind De La Lumiere Comparateur optique avec dynamisation du point de mesure
JP6590429B1 (ja) * 2018-12-25 2019-10-16 レーザーテック株式会社 共焦点顕微鏡、及びその撮像方法
DE102019103035A1 (de) * 2019-02-07 2020-08-13 Analytik Jena Ag Atomabsorptionsspektrometer
FR3118175A1 (fr) * 2020-12-18 2022-06-24 Unity Semiconductor Procede d’inspection d’une surface d’un objet
CN113074644B (zh) * 2021-04-01 2022-11-01 南京信息工程大学 一种高速低成本光谱共焦位移测量方法及装置
CN116026255B (zh) * 2023-02-15 2023-06-20 中国科学院长春光学精密机械与物理研究所 一种无像差点检测光路的粗调装置及粗调方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963354A (en) * 1975-05-05 1976-06-15 Bell Telephone Laboratories, Incorporated Inspection of masks and wafers by image dissection
US4200396A (en) * 1977-12-19 1980-04-29 Rca Corporation Optically testing the lateral dimensions of a pattern
DE3372235D1 (en) * 1982-12-07 1987-07-30 Secretary Trade Ind Brit Improvements in or relating to apparatus to focus light on a surface
CH663466A5 (fr) * 1983-09-12 1987-12-15 Battelle Memorial Institute Procede et dispositif pour determiner la position d'un objet par rapport a une reference.
JPH0762913B2 (ja) * 1984-08-17 1995-07-05 株式会社日立製作所 自動焦点制御方法
FR2626383B1 (fr) * 1988-01-27 1991-10-25 Commissariat Energie Atomique Procede de microscopie optique confocale a balayage et en profondeur de champ etendue et dispositifs pour la mise en oeuvre du procede
JPH06100723B2 (ja) * 1988-04-05 1994-12-12 大日本スクリーン製造株式会社 反射照明装置
DE4023292A1 (de) * 1990-07-21 1992-01-23 Leica Lasertechnik Anordnung zur simultanen konfokalen bilderzeugung
US5105076A (en) * 1990-08-08 1992-04-14 Nikon Corporation Method and apparatus for detecting focusing errors utilizing chromatic aberration
DE4100478A1 (de) * 1991-01-07 1992-07-09 Vision 2 D Messtechnik Gmbh System zum messen eines spektrums von sichtbarem, uv- und vuv-licht, bestehend aus einem spektrographen, einem lichtleiterbuendel und einem detektor
DE4131737C2 (de) * 1991-09-24 1997-05-07 Zeiss Carl Fa Autofokus-Anordnung für ein Stereomikroskop
DE4205865C2 (de) * 1992-02-26 2002-09-26 Zeiss Carl Spaltlampen-Mikroskop
US5313265A (en) * 1992-03-02 1994-05-17 Hughes Aircraft Company Non-contact non-destructive latent image scanner
US5479252A (en) * 1993-06-17 1995-12-26 Ultrapointe Corporation Laser imaging system for inspection and analysis of sub-micron particles
FR2707018B1 (ja) 1993-06-22 1995-07-21 Commissariat Energie Atomique
FR2716727B1 (fr) * 1994-02-25 1996-04-19 Cohen Sabban Joseph Dispositif de tomographie optique en champ coloré.
DE4419940A1 (de) 1994-06-08 1995-12-14 Eberhard Dipl Phys Tuengler 3D-Bilderkennungsverfahren mit konfokaler Lichtmikroskopie
US5737084A (en) * 1995-09-29 1998-04-07 Takaoka Electric Mtg. Co., Ltd. Three-dimensional shape measuring apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9844375A2 *

Also Published As

Publication number Publication date
US6674572B1 (en) 2004-01-06
WO1998044375A2 (de) 1998-10-08
JP2000512401A (ja) 2000-09-19
DE19713362A1 (de) 1998-10-01
WO1998044375A3 (de) 1999-03-04

Similar Documents

Publication Publication Date Title
EP0904558A2 (de) Konfokale mikroskopische anordnung
EP3891465B1 (de) Optische messeinrichtung
DE102006050834B4 (de) Grabenmesssystem mit einem chromatischen konfokalen Höhensensor und einem Mikroskop
EP0168643B1 (de) Gerät zur Wafer-Inspektion
DE102013016368B4 (de) Lichtmikroskop und Mikroskopieverfahren zum Untersuchen einer mikroskopischen Probe
EP0162120B1 (de) Verfahren und Einrichtung zur Oberflächenprüfung
DE112015000627B4 (de) Mikrospektroskopische Vorrichtung
DE102011055294B4 (de) Mikroskopische Einrichtung und Verfahren zur dreidimensionalen Lokalisierung von punktförmigen Objekten in einer Probe
WO2013171309A1 (de) Lichtmikroskop und verfahren zur bildaufnahme mit einem lichtmikroskop
DE3926349C2 (ja)
DE3428593A1 (de) Optisches oberflaechenmessgeraet
DE102008029459A1 (de) Verfahren und Vorrichtung zur berührungslosen Abstandsmessung
DE69927367T2 (de) Optoelektronische Formerfassung durch chromatische Kodierung mit Beleuchtungsebenen
EP4325208A2 (de) Verfahren und vorrichtung zum erfassen von verlagerungen einer probe gegenüber einem objektiv
DE102021105946A1 (de) Messvorrichtung und Verfahren zur Rauheits- und/oder Defektmessung an einer Oberfläche
DE19746575A1 (de) Optische Bildaufnahmeeinrichtung und Verfahren zu deren Nutzung
EP0805996A1 (de) Verfahren und vorrichtung zum aufnehmen eines objektes
DE10056329B4 (de) Optisches Abstandsmeßverfahren und Abstandssensor
DE102017107343A1 (de) Verfahren und Vorrichtung zum Betreiben eines optischen Abstandssensors
EP3101385A1 (de) Vorrichtung und verfahren zur erfassung von oberflächentopographien
EP0013325A2 (de) Optische Messeinrichtung zur Bestimmung des Abstands zwischen kantenförmigen Strukturen auf Oberflächen
DE102019135521A1 (de) Messanordnung, Lichtmikroskop und Messverfahren zur bildgebenden Tiefenmessung
DE102013105102A1 (de) Verfahren und Vorrichtung zur Bestimmung von Merkmalen an Messobjekten
EP4010145B1 (de) Verfahren zum analysieren einer werkstückoberfläche für einen laserbearbeitungsprozess und eine analysevorrichtung zum analysieren einer werkstückoberfläche
DE102022202778A1 (de) System und Verfahren zur konfokal-chromatischen Linienabstandsmessung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981119

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20030502

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20050813