EP0890291B1 - Verfahren und anordnung zum umwandeln eines akustischen signals in ein elektrisches signal - Google Patents

Verfahren und anordnung zum umwandeln eines akustischen signals in ein elektrisches signal Download PDF

Info

Publication number
EP0890291B1
EP0890291B1 EP97900600A EP97900600A EP0890291B1 EP 0890291 B1 EP0890291 B1 EP 0890291B1 EP 97900600 A EP97900600 A EP 97900600A EP 97900600 A EP97900600 A EP 97900600A EP 0890291 B1 EP0890291 B1 EP 0890291B1
Authority
EP
European Patent Office
Prior art keywords
sound
signal
receptor
digital
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97900600A
Other languages
English (en)
French (fr)
Other versions
EP0890291A1 (de
Inventor
Otmar Kern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Georg Neumann GmbH
Original Assignee
Georg Neumann GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georg Neumann GmbH filed Critical Georg Neumann GmbH
Publication of EP0890291A1 publication Critical patent/EP0890291A1/de
Application granted granted Critical
Publication of EP0890291B1 publication Critical patent/EP0890291B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/005Details of transducers, loudspeakers or microphones using digitally weighted transducing elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones

Definitions

  • the invention relates to a method according to the preamble of claim 1 and a sound receiving arrangement according to the preamble of claim 19.
  • Such a control loop system provides a modulator synchronized by a supplied clock, whereby by Splitting the information in the modulator into several signal paths and different signal treatment, favorable noise and resolution properties can be achieved.
  • the object of the invention is a method and a Sound receiving arrangement to specify a direct conversion from one to the Sound receptor of a sound signal acting acoustic signal in a digital To enable information and the requirements regarding dynamic range, Noise and sufficient quantization to meet.
  • the invention is based on the consideration that has so far been made with regard to dynamic range and noise behavior unsurpassed principle of the capacitive converter for a to keep "real" digital microphone.
  • the well-known and mature Capacitive converter technology can thus be fully adopted.
  • the capacitive transducer is transformed into a digitizing process included that the receptor (e.g. condenser membrane) on which the acoustic signal acts as sound pressure, not in one of the signal strength is deflected proportionally, but according to the invention by a Counter-sound signal or held almost at rest by a counterforce becomes.
  • the counter signal is derived from the controlled variable of a control loop, which contains the sound receiver as a component, the controlled variable being the Contains information about the acoustic signal.
  • the reference numeral 1 is a sound generator and with the Reference numeral 2 denotes a sound receiver, which is the same or different locations can be and on the same or different electro-acoustic Converter principles can be based. It is essential that the sound receptor of the Sound receiver 2 two oppositely directed, equally large forces simultaneously act, namely the force of the incident useful sound (acoustic signal) and the counterforce of a counter signal generated by the sounder 1, which the invention has the desired effect that the sound receptor despite Exposure of the acoustic signal is largely kept in its rest position. Every smallest deviation of the receptor from its rest position in positive and negative direction can be immediately as digital information "one" or "zero" evaluate. The digital information is created directly at the receptor of the Sound receiver 2.
  • the sounder 1 can generate a counter signal which is simultaneous with the there is an acoustic signal incident on the sound receiver and the same amount As large as the acoustic signal, the counter signal becomes a controlled variable sufficiently fast control circuit derived, the sounder 1 and the Contains sound receiver 2 as a component.
  • the acoustic runtime or the structural The distance between sound generator 1 and sound receiver 2 largely determines the achievable frequency bandwidth of the control loop and should therefore, if possible be small so that the control loop works stably in the entire hearing frequency range. For the practical implementation, it is therefore favorable if sound generator 1 and Sound receiver 2 are the same location, which is equivalent to the fact that the sound receptor (e.g.
  • the Sounder 1 electrostatic or magnetic and the sound receiver 2 as Capacitor of a high-frequency resonant circuit can be realized.
  • FIGS. 1 to 3 differ in how the digitally generated directly at the receptor of the sound receiver 2 Information is evaluated and how the control loop is designed.
  • control loop is in the form of a modified one Delta-sigma modulator, such as that in the Journal Audio Professional, Issue 3/4, 1995, pages 59 to 65.
  • the sound receiver 2 is in Fig. 1 as in all other figures 2 to 4 as Capacitor of a high-frequency resonant circuit with resonant circuit inductance 22 realized.
  • the common membrane of the Sounder-sound receiver combination 1/2 first deflected and detuned the RF resonant circuit due to the changing capacitance.
  • the resonant circuit inductance 22 is part of a high-frequency demodulator 3 (phase or Amplitude demodulator), which by an RF oscillator 31 and Demodulator diode 32 is indicated in the block of the RF demodulator 3.
  • the RF demodulator 3 can therefore be very high Sensitivity are designed, which is of considerable advantage for the noise and Dynamic behavior of the overall system is.
  • the output signal of the RF demodulator 3 is fed to a comparator 4, whose output signal is at the receptor (membrane) of the sound receiver 2 directly represents digitally generated digital information, i.e., the Deviation of the diaphragm position in a positive or negative direction as an "O" signal or "1" signal.
  • This digital signal represents a 1-bit word.
  • the output signal of the comparator 4 controls the counting direction (Up / Down input) of a 4-stage counter 5, the clock input CLK of one Clock 9 (CTL Network) with, for example, 64 times that at Digitization of audio signals with a standard sampling frequency (FS) of 48 kHz becomes.
  • the 4-bit word on the parallel outputs of the counter 5 becomes one digital filter 10 and on the other hand a 4-bit digital / analog converter 6 fed.
  • the 4-bit signal converted into an analog signal is or multi - stage integration and difference formation using a chain of Difference and Intergierprocessn 7.1 to 7.N passed to the in the quantization process resulting bit patterns statistically in the frequency transmission range distribute and the quantization noise in a frequency range above the Focus hearing frequency range. That at the end of the chain of difference and Intergierprocessn 7.1 to 7.N resulting signal is in a driver amplifier 8 amplified, whose output signal drives the sounder 1.
  • the control loop from the Blocks 2, 3, 4, 5, 6, 7.1 to 7.N., 8 and 1 are now closed. How nice mentioned, as a result of the effect of this control loop, those by the incident The forces acting on the membrane are neutralized.
  • the digital filter 10 at the parallel inputs A, B, C and D the 4-bit word of the parallel outputs of the counter 5 is at the same clock frequency (3.072 MHz) clocked like the counter 5.
  • the filter 10 serializes the parallel 4-word, due to the 64-fold oversampling, a 20-bit signal 12 with the 48 kHz sampling frequency at the output of the digital filter. 10 occurs.
  • an FIR filter is preferably provided. With the digital Filtering also the noise components located above the listening area in the 4-bit output signal of counter 5 effectively suppressed.
  • the 20-bit serial digital output signal 12 can also be in any other data formats can be converted.
  • a format converter is shown in FIG. 1 11 indicated, the serial input SER.IN fed the signal 12 becomes.
  • the clock input CLK and another, which serves the word synchronization FRM CTL input are connected to the clock 9.
  • the optional one Format converter 11 produces a parallel output signal on its Multiple outputs, the first of which has LSB (corresponding to the least significant Bit) and the last with MSB (corresponding to the most significant bit) are designated.
  • the format converter 11 has an output AES / EBU for an AES / EBU interface and a free OTHER output FORM for a selectable other digital format.
  • the control loop can be modified from the embodiment according to FIG. 1 as a 1-bit converter be carried out so that the output 5 when the counter 5 is omitted of the comparator 4 directly with the chain of differential and integration stages 7.1 to 7.N is connected. Furthermore, the modulated RF oscillation does not need to be demodulated first and then digitized (using an RF demodulator 3 with a downstream comparator 4), but can; like Figures 2 and 3 show, immediately converted in a stage 30 into a (digital) 1-bit signal become.
  • the stage 30 contains a limiter amplifier or comparator 31 which the phase-modulated RF oscillation at the oscillating circuit coil 22 directly into one Rectangular signal converted with digital logic level.
  • phase-locked RF clock oscillator 33 which is the resonant circuit consisting of the capacitive sound receiver 2 and the oscillating circuit coil 22, via the coupling capacitor 35 excites and is synchronized by the clock oscillator 9 if necessary.
  • the 1-bit signal sequence which the Information of the sound receptor deflection from the rest position carries.
  • this function is represented by a D flip-flop executed.
  • the 1-bit signal is now with the required Oversampling, from which the desired quantization of the useful signal results, read into the digital filter 10 and the differential and integration stages 7.1 to 7.N fed.
  • the embodiment according to FIG. 3 differs from the embodiment according to Fig. 2 in that the difference and typical for a delta-sigma converter Integrating stages 7.1 to 7.N with digital filter 10 are eliminated and by one high-resolution analog-digital converter 50 (in the example considered as a counter trained) and a high-resolution digital-to-analog converter 60 are replaced, so that the control loop is closed again.
  • the digital output signal 12 which in the considered example is shown as a serial signal and which in the previous described in the format converter 11 in any other formatted digital Output signals can be converted.
  • the one converted to an analog microphone 4 remain from the advantages of the "real" digital microphone Microphones according to Figures 1 to 3, the advantages with regard to the low sound receptor deflection and the associated improvements explained at the beginning in terms of linear and non-linear distortions and sensitivity obtained if the amplifier 20 with a sufficiently large gain is trained. For example, with a gain factor of 100 Amplifier 20, the membrane deflection of the sound receiver 2 and that electrical output signal of the sound receiver 2 by the appropriate amount reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Electric Clocks (AREA)
  • Communication Cables (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren gemäß dem Oberbegriff des Anspruchs 1 sowie auf eine Schallempfangsanordnung gemäß dem Oberbegriff des Anspruchs 19.
Die bisherigen Bemühungen, ein "echtes" digitales Mikrofon ohne analogen Zwischenschritt zu bauen, sind über theoretische Überlegungen nicht hinausgekommen. Diese Überlegungen beruhen darauf, den Schallrezeptor (z.B. Membran) eines elektroakustischen Schallgebers hinsichtlich seiner Position oder seiner Bewegung optisch oder mittels Ultraschall zu vermessen, beispielsweise durch Auswertung von Interferenzmustern oder von Laufzeiteffekten, wobei die Digitalisierung der gemessenen Information u.a. durch einen Zählvorgang erfolgt. Ein solches Verfahren ist beispielsweise in der GB-A-2 077 074 angegeben. Der Schall wird über zwei Schallrezeptoren aufgenommen, welche akustisch in Richtung des einfallenden Schalls in Reihe geschaltet sind. Die von beiden Schallrezeptoren abgegebenen Signalspannungen sind um einen Betrag versetzt, welcher sich aus der Schall-Laufzeit zwischen den beiden in bestimmtem Abstand angeordneten Schallrezeptoren ergibt. Durch Vergleich und Digitalisierung dieser beiden Signale wird ein 1-Bit DPCM-Signal erzeugt, welches einem Auf-Abwärtszähler zur Umwandlung in ein bitparalleles Digitalsignal zugeführt wird.
Bei der rein elektrischen Wandlung von analogen Audiosignalen in ein entsprechendes Digitalsignal stehen inzwischen Wandler zur Verfügung, die den besonderen Anforderungen bei der Wandlung von Audiosignalen schon weitreichend genügen. Das sind vorallen hohe Auflösung, Linearität und geringes Eigenrauschen. Diese Eigenschaften werden insbesondere von sogenannten Sigma-Delta-Wandlern erreicht, wie sie beispielsweise aus der US-A-5 181 032 und der US-A-5 191 332 bekannt sind. Bei den bekannten Sigma-Delta-Wandlers wird das Audiosignal in einen Regelkreis eingespeist, wobei das rückgeführte Gegenkopplungssignal über einen 1-Bit oder einen herkömmlichen Multi-Bit-AD-Wandler und einen korrespondierenden Rückwandler geführt wird. In dem erzeugten digitalen 1-Bit oder Mehr-Bit-Datenstrom wird die analoge Audiosignalinformation durch das zeitliche Verhältnis der digitalen 0/1-Zustände dargestellt. Mittels digitaler Filterung und Umformatierung wird das gewünschte digitale Ausgangssignal gewonnen. Ein solches Regelkreissystem stellt einen durch einen zugeführten Takt synchronisierten Modulator dar, wobei durch Aufspaltung der Information im Modulator in mehrere Signalwege und unterschiedlicher Signalbehandlung günstige Rausch- und Auflöungseigenschaften erreicht werden.
Alle bekannten Wandler zum direkten Erzeugen eines digitalen Signals aus einem akustischen Eingangssignal sind indessen für Studiomikrofone ungeeignet, da sie hinsichtlich Dynamikumfang, Rauschen und ausreichender Quantisierung mit analogen Studiomikrofonen nicht mithalten können.
Die Aufgabe der Erfindung besteht demgegenüber darin, ein Verfahren und eine Schallempfangsanordnung anzugeben, um eine direkte Umwandlung eines auf den Schallrezeptor eines Schallempfängers wirkenden akustischen Signals in eine digitale Information zu ermöglichen und dabei die Anforderungen hinsichtlich Dynamikumfang, Rauschen und ausreichende Quantisierung zu erfüllen.
Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale der nebengeordneten Ansprüche 1 und 19 gelöst.
Vorteilhafte Ausgestaltungen und Weiterbildungen des erfindungsgemäßen Verfahrens ergeben sich aus den Unteransprüchen 2 bis 18.
Vorteilhafte Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Schallempfangsanordnung ergeben sich aus den Unteransprüchen 20 bis 36.
Die Erfindung geht von der Überlegung aus, das bisher hinsichtlich Dynamikumfang und Rauschverhalten unübertroffene Prinzip des kapazitiven Wandlers für ein "echtes" digitales Mikrofon beizubehalten. Die bekannte und ausgereifte Technologie des kapazitiven Wandlers kann damit voll übernommen werden. Der kapazitive Wandler wird in der Weise in einen digitalisierenden Wandlungsprozeß einbezogen, daß der Rezeptor (z.B. Kondensatormembran), auf welchen das akustische Signal als Schalldruck einwirkt, nicht in einer der Signalstärke proportionalen Weise ausgelenkt wird, sondern erfindungsgemäß durch ein Gegenschallsignal oder durch eine Gegenkraft annähernd in Ruhestellung gehalten wird. Das Gegensignal wird aus der Regelgröße eines Regelkreises hergeleitet, welcher den Schallempfänger als Bestandteil enthält, wobei die Regelgröße die Information über das akustische Signal enthält. Infolge des weitgehenden Verharrens des Rezeptors in seiner schallharten Ruhestellung werden gegenüber bekannten Kondensatormikrofonen Kennlinienfehler, welche von der Position des Rezeptors abhängen und zu Signalverzerrungen führen, sowie mechanische Eigenresonanzen des Rezeptors, welche den Frequenzgang und das Impulsverhalten des elektrischen Ausgangssignals beeinflussen, praktisch nicht mehr wirksam. Ferner sind Maßnahmen zur passiven Dämpfung des Rezeptors, wie sie bei bekannten Kondensatormikrofonen zur Linearisierung erforderlich sind unter Inkaufnahme einer Verschlechterung der Empfindlichkeit, bei der Erfindung praktisch nicht mehr erforderlich, so daß die Empfindlichkeit eines erfindungsgemäß ausgebildeten Wandlers deutlich verbessert ist. Wesentlich ist, daß die nur noch geringen Restauslenkungen des Rezeptors in der Weise ausgewertet werden, daß lediglich eine Information über die Richtung der Abweichung aus der Ruhestellung entsteht und diese Information als digitale "Null" oder "Eins" dargestellt wird. Dies bedeutet, daß unmittelbar an dem Schallrezeptor die Komparatorfunktion als elementare Funktion eines jeden Analog-Digital-Wandlungsprozesses ausgeführt wird, ohne daß ein aus dem Schallempfänger gewonnenes analoges Zwischensignal benötigt wird.
Die Erfindung wird anhand der in den Zeichnungen dargestellten Ausführungsbeispiele näher erläutert. Es zeigt:
Fig. 1
ein Blockschaltbild einer ersten Ausführungsform eines digitalen Mikrofons nach der Erfindung;
Fig. 2
ein Blockschaltbild einer zweiten Ausführungsform eines digitalen Mikrofons nach der Erfindung;
Fig. 3
ein Blockschaltbild einer dritten Ausführungsform eines digitalen Mikrofons nach der Erfindung, und
Fig. 4
ein Blockschaltbild einer Ausführungsform eines analogen Mikrofons nach der Erfindung.
In den Figuren 1 bis 4 sind mit dem Bezugszeichen 1 ein Schallgeber und mit dem Bezugszeichen 2 ein Schallempfänger bezeichnet, welche ortsgleich oder ortsverschieden sein können und auf gleichen oder unterschiedlichen elektro-akustischen Wandlerprinzipien beruhen können. Wesentlich ist, daß auf den Schallrezeptor des Schallempfängers 2 zwei entgegengesetzt gerichtete, gleich große Kräfte gleichzeitig einwirken, nämlich die Kraft des einfallenden Nutzschalls (akustisches Signal) und die Gegenkraft eines vom Schallgeber 1 erzeugten Gegensignals, was die erfindungsgemäß angestrebte Wirkung zur Folge hat, daß der Schallrezeptor trotz Einwirkungdes akustischen Signals weitgehend in seiner Ruhelage gehalten wird. Jede kleinste Abweichung des Rezeptors aus seiner Ruhelage in positiver und negativer Richtung läßt sich unmittelbar als digitale Information "Eins" oder "Null" auswerten. Die digitale Information entsteht damit unmittelbar am Rezeptor des Schallempfängers 2.
Damit der Schallgeber 1 ein Gegensignal erzeugen kann, welches zeitgleich mit dem am Schallempfänger einfallenden akustischen Signal ist und betragsmäßig genauso groß wie das akustische Signal ist, wird das Gegensignal aus der Regelgröße eines ausreichend schnellen Regelkreises abgeleitet, welcher den Schallgeber 1 und den Schallempfänger 2 als Bestandteil enthält. Die akustische Laufzeit bzw. der bauliche Abstand zwischen Schallgeber 1 und Schallempfänger 2 bestimmen dabei maßgeblich die erzielbare Frequenzbandbreite des Regelkreises und sollten daher möglichst klein sein, damit der Regelkreis im gesamten Hörfrequenzbereich stabil arbeitet. Für die praktische Realisierung ist es deshalb günstig, wenn Schallgeber 1 und Schallempfänger 2 ortsgleich sind, was gleichbedeutend damit ist, daß der Schallrezeptor (z.B. Membran) des Schallempfängers 2 und der Schallerzeuger des Schallgebers 1 in einem gemeinsamen Bauteil vereinigt sind, d.h., daß Schallgeber 1 und Schallempfänger 2 beispielsweise eine gemeinsame Membran aufweisen. Es ist ferner günstig, wenn Schallgeber 1 und Schallempfänger 2 nach unterschiedlichen elektroakustischen Wandlerprinzipien arbeiten, um einen unerwünschten elektrischen Nebenweg und damit ein Übersprechen zu vermeiden. Beispielsweise kann der Schallgeber 1 elektrostatisch oder magnetisch und der Schallempfänger 2 als Kondensator eines Hochfrequenz-Schwingkreises realisiert werden.
Die in den Figuren 1 bis 3 dargestellten Ausführungsbeispiele unterscheiden sich darin, wie die am Rezeptor des Schallempfängers 2 unmittelbar erzeugte digitale Information ausgewertet wird und wie der Regelkreis ausgebildet ist.
Bei der Ausführungform nach Fig. 1 ist der Regelkreis in Form eines abgewandelten Delta-Sigma-Modulators ausgebildet, wie er beispielsweise in der Zeitschrift Audio Professional, Heft 3/4, 1995, Seiten 59 bis 65 beschrieben ist.
Der Schallempfänger 2 ist in Fig. 1 wie auch in allen anderen Figuren 2 bis 4 als Kondensator eines Hochfrequenz-Schwingkreises mit Schwingkreisinduktivität 22 realisiert. Durch den ein-fallenden Nutzschall wird die gemeinsame Membran der Schallgeber-Schall-Empfänger -Kombination 1/2 zunächst ausgelenkt und verstimmt durch die sich ändernde Kapazität den HF-Schwingkreis. Die Schwingkreisinduktivität 22 ist Bestandteil eines Hochfrequenz-Demodulators 3 (Phasen- oder Amplituden-Demodulator), welcher durch einen HF-Oszillator 31 und eine Demodulator-Diode 32 in dem Block des HF-Demodulators 3 angedeutet ist. Eine lange Aussteuerkennlinie, wie sie bei herkömmlichen Kondensatormikrofonen benötigt wird, ist für den HF-Demodulator 3 nicht erforderlich, da es lediglich darauf ankommt, die Abweichungen der Membran der Schallgeber-Schallempfänger-Kombination 1/2 in positiver oder negativer Richtung aus ihrer Ruhestellung vorzeichenrichtig zu erkennen. Der HF-Demodulator 3 kann deshalb mit sehr hoher Empfindlichkeit ausgelegt werden, was von erheblichem Vorteil für das Rausch- und Dynamikverhalten des Gesamtsystems ist.
Das Ausgangssignal des HF-Demodulators 3 wird einem Komparator 4 zugeführt, dessen Ausgangssignal die am Rezeptor (Membran) des Schallempfängers 2 unmittelbar erzeugte digitale Information elektrisch repräsentiert, d.h., die Abweichung der Membranstellung in positiver oder negativer Richtung als "O"-Signal oder "1"-Signal wiedergibt. Dieses digitale Signal stellt ein 1-Bit-Wort dar. Um hieraus ein Mehr-Bit-Wort, im dargestellten Beispielsfalle ein 4-Bit-Wort zu erzeugen, steuert das Ausgangssignal des Komparators 4 die Zählrichtung (Up/Down-Eingang) eines 4-stufigen Zählers 5, dessen Takteingang CLK von einem Taktgeber 9 (CTL Network) mit beispielsweise dem 64-Fachen der bei der Digitalisierung von Audiosignalen üblichen Abtastfrequenz (FS) von 48 kHz getaktet wird. Infolge dieser Überabtastung mit 64 mal 48 kHz (= 3,072 MHz) wird die zeitliche Auflösung des 1-Bit-Wortes, die durch das Verhältnis der "Nullen" und "Einsen" dargestellt wird, entsprechend dem Maß der Überabtastung erhöht. An den Parallelausgängen A, B, C und D des Zählers 5 entsteht ein 4-Bit-Signal, das die Information über die Amplitude des am Schallempfänger 2 ein-fallenden akustischen Signals enthält. Die Quantisierung der Information ergibt sich jedoch nicht nur amplitudenorientiert (4-Bit-Wort). Infolge der Überabtastung des 1-Bit-Wortes am Eingang des Zählers 5 ergibt sich die Quantisierung der Information auch zeitorientiert entsprechend dem zeitlichen Verhältnis zwischen verschiedenen 4-Bit-Worten.
Das 4-Bit-Wort an den Parallelausgängen des Zählers 5 wird einerseits einem digitalen Filter 10 und andererseits einem 4-Bit-Digital/Analog-Wandler 6 zugeführt. Das in ein analoges Signal umgewandelte 4-Bit-Signal wird durch ein- oder mehrstufige Aufintegration und Differenzbildung mittels einer Kette von Differenz- und Intergierstufen 7.1 bis 7.N geleitet, um die beim Quantisierungsprozeß entstandenen Bitmuster statistisch im Frequenzübertragungsbereich zu verteilen und das Quantisierungsrauschen in einem Frequenzbereich oberhalb des Hörfrequenzbereichs zu konzentrieren. Das am Ende der Kette von Differenz- und Intergierstufen 7.1 bis 7.N entstehende Signal wird in einem Treiberverstäker 8 verstärkt, dessen Ausgangssignal den Schallgeber 1 antreibt. Der Regelkreis aus den Bausteinen 2, 3, 4, 5, 6, 7.1 bis 7.N., 8 und 1 ist damit geschlossen. Wie schon erwähnt, werden infolge der Wirkung dieses Regelkreises die durch den einfallenden Schall an der Membran wirkenden Kräfte neutralisiert.
Das digitale Filter 10, an dessen Paralleleingängen A, B, C und D das 4-Bit-Wort von den Parallelausgängen des Zählers 5 anliegt, wird mit derselben Taktfrequenz (3,072 MHz) wie der Zähler 5 getaktet. Das Filter 10 serialisiert das parallele 4-Wort, wobei infolge der 64-fachen Überabtastung ein 20-Bit-Signal 12 mit der Abtastfrequenz von 48 kHz am Ausgang des digitalen Filters. 10 auftritt. Als digitales Filter 10 ist vorzugsweise ein FIR-Filter vorgesehen. Bei der digitalen Filterung werden ferner die oberhalb des Hörbereichs befindlichen Rauschanteile im 4-Bit-Ausgangssignal des Zählers 5 wirksam unterdrückt.
Es versteht sich, daß das serielle digitale 20-Bit-Ausgangssignal 12 auch in beliebige andere Datenformate umgewandelt werden kann. Hierzu ist in Fig. 1 ein Formatkonverter 11 angedeutet, dessen seriellem Eingang SER.IN das Signal 12 zugeführt wird. Der Takteingang CLK und ein weiterer, der Wortsynchronisation dienender Eingang FRM CTL sind mit dem Taktgeber 9 verbunden. Der wahlweise vorgesehene Formatkonverter 11 erzeugt ein paralleles Ausgangssignal an seinen Vielfachausgängen, von denen der erste mit LSB (ent-sprechend dem geringstwertigen Bit) und der letzte mit MSB (entsprechend dem größstwertigen Bit) bezeichnet sind. Des weiteren verfügt der Formatkonverter 11 über einen Ausgang AES/EBU für eine AES/EBU-Schnittstelle sowie einen freien Ausgang OTHER FORM für ein wählbares anderes Digitalformat.
Der Regelkreis kann in Abwandlung von der Ausführungsform nach Fig. 1 als 1-Bit-Wandler ausgeführt werden, so daß unter Wegfall des Zählers 5 der Ausgang des Komparators 4 direkt mit der Kette von Differenz- und Integrierstufen 7.1 bis 7.N verbunden wird. Des weiteren braucht die modulierte HF-Schwingung nicht erst analog demoduliert und dann digitalisiert zu werden (mittels HF-Demodulator 3 mit nachgeschaltetem Komparator 4), sondern kann; wie die Figuren 2 und 3 zeigen, unmittelbar in einer Stufe 30 in ein (digitales) 1-Bit-Signal umgewandelt werden. Die Stufe 30 enthält einen Begrenzerverstärker bzw. Komparator 31, der die phasenmodulierte HF-Schwingung an der Schwingkreisspule 22 direkt in ein Rechtscksignal mit Digitallogikpegel umwandelt. Weiterer Bestandteil ist der phasenstarre HF-Taktoszillator 33, der den Schwingkreis, bestehend aus dem kapazitiven Schallempfänger 2 und der Schwingkreisspule 22, über den Koppelkondensator 35 anregt und im Bedarfsfall vom Taktoszillator 9 synchronisiert wird. Durch einen digitalen Phasenvergleich zwischen der digitalisierten HF-Schwingung und dem HF-Taktoszillator 33 entsteht unmittelbar die 1-Bit-Signalfolge, welche die Information der Schallrezeptorauslenkung aus der Ruhelage trägt. In dem betrachteten Ausführungsbeispiel nach Fign. 2 und 3 wird diese Funktion durch ein D-FlipFlop ausgeführt. Das 1-Bit-Signal wird nun mit der erforderlichen Überabtastung, aus der sich die gewünschte Quantisierung des Nutzsignals ergibt, in das digitale Filter 10 eingelesen sowie den Differenz- und Integrierstufen 7.1 bis 7.N zugeführt.
Die Ausführungsform nach Fig. 3 unterscheidet sich von der Ausführungsform nach Fig 2 dadurch, daß die für einen Delta-Sigma-Wandler typischen Differenz- und Integrierstufen 7.1 bis 7.N mit digitalem Filter 10 entfallen und durch einen hochauflösenden Analog-Digital-Wandler 50 (im betrachteten Beispielsfall als Zähler ausgebildet) und einen hochauflösenden Digital-Analog-Wandler 60 ersetzt werden, so daß der Regelkreis wieder geschlossen ist. In diesem Fall entsteht unmittelbar am Ausgang des Analog-Digital-Wandlers 50 das digitale Ausgangssignal 12, das im betrachteten Beispielsfall als serielles Signal dargestellt ist und welches in der zuvor beschriebenen Weise im Formatkonverter 11 in beliebig anders formatierte digitale Ausgangssignale umgewandelt werden kann.
In Fig. 4 ist sozusagen als "Abfallprodukt" des digitalen Mikrofons nach Figuren 1 bis 3 ein verbessertes Analogmikrofon dargestellt, bei welchem im Vergleich zu der Schaltungsanordnung nach Fig. 1 nur die Schallempfänger-Schallgeber-Kombination 1/2, der HF-Demodulator 3 und der Treiberverstärker 8 beibehalten wurden. Das demodulierte HF-Signal (mit sehr kleiner Amplitude) am Ausgang des HF-Demodulators 3 wird lediglich mittels eines Verstärkers 20 verstärkt, um ein analoges Mikrofonausgangssignal 23 hoher Qualität zu bilden. Aus dem Ausgangssignal 23 wird ferner im Verstärker 8 das Treibersignal zum Treiben des Schallgebers 1 gewonnen. Falls gewünscht, kann das analoge Ausgangs-Mikrofonausgangssignal 23 mittels eines herkömmlichen Analog-Digital-Wandlers 21 in ein Digitalsignal umgewandelt werden, welches im dargestellten Beispielsfall als serielles Signal dargestellt ist. Bei dem zum analogen Mikrofon umfunktionierten digitalen Mikrofon gemäß Fig. 4 bleiben von den Vorteilen des "echten" digitalen Mikrofons gemäß Figuren 1 bis 3 die Vorteile hinsichtlich der geringen Schallrezeptorauslenkung und die damit verbundenen, eingangs erläuterten Verbesserungen hinsichtlich linearer und nicht-linearer Verzerrungen sowie der Empfindlichkeit erhalten, sofern der Verstärker 20 mit ausreichend großer Verstärkung ausgebildet ist. Beispielsweise wird bei einem Verstärkungsfaktor 100 des Verstärkers 20 die Membranauslenkung des Schallempfängers 2 sowie das elektrische Ausgangssignal des Schallempfängers 2 um das entsprechende Maß reduziert.

Claims (36)

  1. Verfahren zum Umwandeln eines auf einen Schallrezeptor eines Schallempfängers (2) wirkenden akustischen Signals in ein elektrisches Signal, dadurch gekennzeichnet, daß der Schallrezeptor bei Einwirkung des akustischen Signals von einem Gegensignal derart beaufschlagt wird, daß der Schallrezeptor trotz Einwirkung des akustischen Signals weitgehend in seiner Ruhelage gehalten wird, daß das Gegensignal aus einer Regelgröße eines Regelkreises (1, 2, 3, 4, 5, 6, 7.1 bis 7.N, 8) abgeleitet wird, welcher den Schallempfänger (2) als Bestandteil enthält, und wobei die Regelgröße eine Information über das einwirkende akustische Signal enthält und daß jede Abweichung des Rezeptors aus seiner Ruhelage unmittelbar die digitale Information "Null" oder "Eins" erzeugt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Gegensignal von einem Schallgeber (1) erzeugt wird, welcher mit dem Schallempfänger (2) akustisch gekoppelt ist.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß daß das Gegensignal von einem Schallgeber (1) erzeugt wird und der Schallrezeptor gleichzeitig als schallaufnehmendes und schallabgebendes Bauteil einer Schallgeber-/Schallempfängerkombination vorgesehen ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Schallrezeptor eine Membran vorgesehen ist.
  5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Schallrezeptor ein federnd gelagertes oder als Feder ausgebildetes Bauelement vorgesehen ist.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Schallgeber (1) und der Schallempfänger (2) nach beliebigen elektroakustischen Wandlerprinzipien aufgebaut sind.
  7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Auslenkungen des Schallrezeptors mittels eines Komparators (31) und unmittelbar in ein Digitalsignal umgesetzt werden.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß das Digitalsignal zur Gewinnung des Gegensignals mittels eines Digital-Analog-Wandlers (6') in ein Analogsignal rückgewandelt wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Regelkreis nach dem Prinzip eines ein- oder mehrstufigen Delta-Sigma-Modulators arbeitet, wobei der Rezeptor in die Komparatorfunktion des Delta-Sigma-Modulators einbezogen wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß der Delta-Sigma-Modulator in Einbit- oder Mehrbit-Technik ausgeführt ist.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Schallrezeptor die Phase und/oder Amplitude eines HF-Schwingkreises moduliert, dessen kapazitiver Bestandteil der Schallempfänger (2) ist.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß der HF-Schwingkreis mit einem HF-Demodulator (3) verbunden ist, welcher die phasen- und/oder amplitudenmodulierte HF-Schwingung demoduliert.
  13. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die phasenmodulerte HF-Schwingung durch einen Begrenzerkomparator (31) direkt digitalisiert wird und die digitalisierte HF-Schwingung durch einen digitalen Phasenvergleicher (32) unmittelbar in ein die Rezeptorinformation tragendes Digitalsignal umgewandelt wird.
  14. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Auslenkungen des Schallrezeptors in ein elektrisches analoges Signal umgewandelt werden, welches nach erfolgter Verstärkung (20) dem Schallgeber (1) als Gegensignal zugeführt wird (Fig. 4).
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß das analoge elektrische Ausgangssignal in ein digitales Signal umgesetzt (21) wird.
  16. Verfahren nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, daß das Digitalsignal derart gefiltert (10) wird, daß Zeitinformationen in Amplitudeninformationen transformiert werden.
  17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß das transformierte Digitalsignal in ein anderes Datenformat konvertiert wird, wobei Informationen aus der Zeit- in die Amplitudenebene transformiert werden.
  18. Verfahren nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß als digitales Filter (10) ein FIR-Filter verwendet wird.
  19. Schallempfangsanordnung, mit einem Schallempfänger (2) in welchem ein Schallrezeptor angebracht ist, dadurch gekennzeichnet, daß der Schallrezeptor bei Einwirkung eines akustischen Signals von einem Gegensignal derart beaufschlagt wird, daß der Schallrezeptor trotz Einwirkung des akustischen Signals weitgehend in seiner Ruhelage gehalten wird, daß das Gegensignal aus einer Regelgröße eines Regelkreises (1, 2, 3, 4, 5, 6, 7.1 bis 7.N, 8) abgeleitet wird, welcher den Schallempfänger (2) als Bestandteil enthält, und wobei die Regelgröße eine Information über das einwirkende akustische Signal enthält und daß jede Abweichung des Rezeptors aus seiner Ruhelage unmittelbar die digitale Information "Null" oder "Eins" erzeugt.
  20. Schallempfangsanordnung nach Anspruch 19, dadurch gekennzeichnet, daß das Gegensignal von einem Schallgeber (1) erzeugt wird, welcher mit dem Schallempfänger (2) akustisch gekoppelt ist.
  21. Schallempfangsanordnung nach Anspruch 19, dadurch gekennzeichnet, daß daß das Gegensignal von einem Schallgeber (1) erzeugt wird und der Schallrezeptor gleichzeitig als schallaufnehmendes und schallabgebendes Bauteil einer Schallgeber-/Schallempfängerkombination vorgesehen ist.
  22. Schallempfangsanordnung nach einem der Ansprüche 19 bis 21, dadurch gekennzeichnet, daß als Schallrezeptor eine Membran vorgesehen ist.
  23. Schallempfangsanordnung nach einem der Ansprüche 19 bis 21, dadurch gekennzeichnet, daß als Schallrezeptor ein federnd gelagertes oder als Feder ausgebildetes Bauelement vorgesehen ist.
  24. Schallempfangsanordnung nach einem der Ansprüche 19 bis 23, dadurch gekennzeichnet, daß der Schallgeber (1) und der Schallempfänger (2) nach beliebigen elektroakustischen Wandlerprinzipien aufgebaut sind.
  25. Schallempfangsanordnung nach Anspruch 19, dadurch gekennzeichnet, daß Auslenkungen des Schallrezeptors mittels eines Komparators (31) unmittelbar in ein Digitalsignal urngesetzt werden.
  26. Schallempfangsanordnung nach Anspruch 25, dadurch gekennzeichnet, daß das Digitalsignal zur Gewinnung des Gegensignals mittels eines Digital-Analog-Wandlers (6') in ein Analogsignal rückgewandelt wird.
  27. Schallempfangsanordnung nach einem der Ansprüche 1 bis 26, dadurch gekennzeichnet, daß der Regelkreis nach dem Prinzip eines ein- oder mehrstufigen Delta-Sigma-Modulators arbeitet, wobei der Rezeptor in die Komparatorfunktion des Delta-Sigma-Modulators einbezogen wird.
  28. Schallempfangsanordnung nach Anspruch 27, dadurch gekennzeichnet, daß der Delta-Sigma-Modulator in Einbit- oder Mehrbit-Technik ausgeführt ist.
  29. Schallempfangsanordnung nach einem der Ansprüche 19 bis 28, dadurch gekennzeichnet, daß der Schallrezeptor die Phase und/oder Amplitude eines HF-Schwingkreises moduliert, dessen kapazitiver Bestandteil der Schallempfänger (2) ist.
  30. Schallempfangsanordnung nach Anspruch 29, dadurch gekennzeichnet, daß der HF-Schwingkreis mit einem HF-Demodulator (3) verbunden ist, welcher die phasen- und/oder amplitudenmodulierte HF-Schwingung demoduliert.
  31. Schallempfangsanordnung nach Anspruch 29, dadurch gekennzeichnet, daß die phasenmodulerte HF-Schwingung durch einen Begrenzerkomparator (31) direkt digitalisiert wird und die digitalisierte HF-Schwingung durch einen digitalen Phasenvergleicher (32) unmittelbar in ein die Rezeptorinformation tragendes Digitalsignal umgewandelt wird.
  32. Schallempfangsanordnung nach Anspruch 19, dadurch gekennzeichnet, daß die Auslenkungen des Schallrezeptors in ein elektrisches analoges Signal umgewandelt werden, welches nach erfolgter Verstärkung (20) dem Schallgeber (1) als Gegensignal zugeführt wird (Fig. 4).
  33. Schallempfangsanordnung nach Anspruch 32, dadurch gekennzeichnet, daß das analoge elektrische Ausgangssignal in ein digitales Signal umgesetzt (21) wird.
  34. Schallempfangsanordnung nach einem der Ansprüche 25 bis 31, gekennzeichnet durch ein digitales Filter (10) zur Filterung des Digitalsignals, derart, daß Zeitinformationen in Amplitudeninfonnationen transformiert werden.
  35. Schallempfangsanordnung nach Anspruch 34, dadurch gekennzeichnet, daß das transformierte Digitalsignal in ein anderes Datenformat konvertiert wird, wobei Informationen aus der Zeit- in die Amplitudenebene transformiert werden.
  36. Schallempfangsanordnung nach Anspruch 34 oder 35, dadurch gekennzeichnet, daß als digitales Filter (10) ein FIR-Filter verwendet wird.
EP97900600A 1996-03-27 1997-01-14 Verfahren und anordnung zum umwandeln eines akustischen signals in ein elektrisches signal Expired - Lifetime EP0890291B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19612068A DE19612068A1 (de) 1996-03-27 1996-03-27 Verfahren und Anordnung zum Umwandeln eines akustischen Signals in ein elektrisches Signal
DE19612068 1996-03-27
PCT/EP1997/000131 WO1997036454A1 (de) 1996-03-27 1997-01-14 Verfahren und anordnung zum umwandeln eines akustischen signals in ein elektrisches signal

Publications (2)

Publication Number Publication Date
EP0890291A1 EP0890291A1 (de) 1999-01-13
EP0890291B1 true EP0890291B1 (de) 2001-09-05

Family

ID=7789558

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97900600A Expired - Lifetime EP0890291B1 (de) 1996-03-27 1997-01-14 Verfahren und anordnung zum umwandeln eines akustischen signals in ein elektrisches signal

Country Status (7)

Country Link
US (1) US6697493B1 (de)
EP (1) EP0890291B1 (de)
JP (1) JP3534778B2 (de)
AT (1) ATE205354T1 (de)
DE (2) DE19612068A1 (de)
DK (1) DK0890291T3 (de)
WO (1) WO1997036454A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3553375B2 (ja) * 1998-06-18 2004-08-11 松下電器産業株式会社 防騒音型ディジタル式受話器
US6449370B1 (en) 1998-02-16 2002-09-10 Matsushita Electric Industrial Co., Ltd. Digital electro-acoustic transducer
JP3456924B2 (ja) * 1999-07-01 2003-10-14 アオイ電子株式会社 マイクロホン装置
JP4383695B2 (ja) * 2001-07-06 2009-12-16 株式会社オーディオテクニカ コンデンサマイクロフォン
JP4603730B2 (ja) * 2001-07-11 2010-12-22 株式会社オーディオテクニカ コンデンサマイクロフォン
US6810125B2 (en) * 2002-02-04 2004-10-26 Sabine, Inc. Microphone emulation
US6853733B1 (en) * 2003-06-18 2005-02-08 National Semiconductor Corporation Two-wire interface for digital microphones
WO2005055406A1 (en) * 2003-12-01 2005-06-16 Audioasics A/S Microphine with voltage pump
US10720939B2 (en) * 2018-06-12 2020-07-21 Asahi Kasei Microdevices Corporation Delta-sigma ad converter and delta-sigma ad converting method
DE102018118795B3 (de) 2018-08-02 2019-11-28 Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg Verfahren und Schaltungsanordnung zum Betreiben eines Kondensatormikrofons

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3020247C2 (de) * 1980-05-28 1982-09-02 Franz Vertriebsgesellschaft mbH, 7634 Kippenheim Verfahren und Anordnung zur Umwandlung von Schallwellen in digitale elektrische Signale mit Hilfe von elektroakustischen Wandlern
EP0284175B1 (de) * 1987-03-23 1995-03-22 Matsushita Electric Industrial Co., Ltd. Filterkoeffizientenberechnung für ein digitales Filter
US5191332A (en) * 1991-02-11 1993-03-02 Industrial Technology Research Institute Differentiator/integrator based oversampling converter
US5181032A (en) 1991-09-09 1993-01-19 General Electric Company High-order, plural-bit-quantization sigma-delta modulators using single-bit digital-to-analog conversion feedback
US6285769B1 (en) 1997-04-10 2001-09-04 Borealis Technical Limited Force balance microphone
GB2330725B (en) * 1997-10-24 2001-08-15 Sony Uk Ltd Microphone

Also Published As

Publication number Publication date
DE59704535D1 (de) 2001-10-11
DK0890291T3 (da) 2001-12-27
ATE205354T1 (de) 2001-09-15
US6697493B1 (en) 2004-02-24
WO1997036454A1 (de) 1997-10-02
DE19612068A1 (de) 1997-10-02
JP3534778B2 (ja) 2004-06-07
EP0890291A1 (de) 1999-01-13
JP2000514608A (ja) 2000-10-31

Similar Documents

Publication Publication Date Title
DE69818631T2 (de) Verstärkungsanordnung für digitale signale
EP0082905B1 (de) Schaltungsanordnung zur Verarbeitung, Übertragung und akustischen Wiedergabe von digitalisierten Tonfrequenzsignalen
DE69117794T2 (de) Mehrstufiger sigma-delta-Analog-zu-Digitalkonverter
DE60013602T2 (de) Verfahren und gerät zum effizienten verarbeiten gemischter signale in einen digitalen verstärker
DE2840243C2 (de)
DE69918344T2 (de) Digitaler elektroakustischer Wandler
EP0890291B1 (de) Verfahren und anordnung zum umwandeln eines akustischen signals in ein elektrisches signal
DE69425808T2 (de) Vorrichtung zur Kompression und Expansion der Bandbreite eines Sprachsignals, Verfahren zur Übertragung eines komprimierten Sprachsignals sowie Verfahren zu dessen Wiedergabe
EP0431214A1 (de) Analog-Digital-Wandleranordnung
DE69627278T2 (de) Vielfach-Abtastraten-Digitalfilter und Verfahren für einen sigma-delta Konversionsprozess
EP0145997B1 (de) Einrichtung zur Kompensation von Wiedergabefehlern eines elektroakustischen Wandlers
DE102016116421A1 (de) Sensoranordnung mit optimierter gruppenlaufzeit und verfahren zur signalverarbeitung
DE4001747C2 (de) Digitales Audiofrequenz-Signalverarbeitungssystem
WO2004068703A1 (de) Vorrichtung und verfahren zur digitalen pulsweiten-modulation
DE3020247C2 (de) Verfahren und Anordnung zur Umwandlung von Schallwellen in digitale elektrische Signale mit Hilfe von elektroakustischen Wandlern
DE10320674B4 (de) Pulsmodulator und Verfahren zur Pulsmodulation
DE112018004659T5 (de) Digitale Mikrofon-Rauschdämpfung
EP0370277A2 (de) Subband-Übertragungssystem
DE3790740C2 (de) Vorrichtung zur Verarbeitung eines elektrischen Tonfrequenzsignals
DE602004013177T2 (de) Delta-sigma-modulator mit integraldezimierung
DE10228942A1 (de) Verfahren und Schaltungsanordnung zur Sigma-Delta-Wandlung mit reduzierten Leerlauftönen
DE102021200904A1 (de) Delta-Sigma-Modulator, Delta-Sigma-Digital-Analog-Wandler und Verfahren zum Betreiben eines Delta-Sigma-Modulators und eines Delta-Sigma-Digital-Analog-Wandlers
EP3606098B1 (de) Verfahren und schaltungsanordnung zum betreiben eines kondensatormikrofons
DE112018003280T5 (de) Nachlinearisierungssystem und -verfahren unter verwendung eines trackingsignals
DE3447111C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE DK FR GB LI

17P Request for examination filed

Effective date: 19980914

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010222

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE DK FR GB LI

REF Corresponds to:

Ref document number: 205354

Country of ref document: AT

Date of ref document: 20010915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010905

REF Corresponds to:

Ref document number: 59704535

Country of ref document: DE

Date of ref document: 20011011

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061205

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20070104

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070125

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070131

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071123

Year of fee payment: 12

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080114

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090114