EP0878302B1 - Duckmaschine mit einem schwenkbarer, durch einen elektrischen Einzelantrieb angetriebener Zylinder - Google Patents

Duckmaschine mit einem schwenkbarer, durch einen elektrischen Einzelantrieb angetriebener Zylinder Download PDF

Info

Publication number
EP0878302B1
EP0878302B1 EP98108759A EP98108759A EP0878302B1 EP 0878302 B1 EP0878302 B1 EP 0878302B1 EP 98108759 A EP98108759 A EP 98108759A EP 98108759 A EP98108759 A EP 98108759A EP 0878302 B1 EP0878302 B1 EP 0878302B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
printing machine
angle
rotation
pivot device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98108759A
Other languages
English (en)
French (fr)
Other versions
EP0878302A1 (de
Inventor
Stefan Geissenberger
Nils-Hendric Schall
Michael Schramm
Bernhard Feller
Michael Hess
Michael Dotzert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manroland AG
Original Assignee
MAN Roland Druckmaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Roland Druckmaschinen AG filed Critical MAN Roland Druckmaschinen AG
Publication of EP0878302A1 publication Critical patent/EP0878302A1/de
Application granted granted Critical
Publication of EP0878302B1 publication Critical patent/EP0878302B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F13/00Common details of rotary presses or machines
    • B41F13/004Electric or hydraulic features of drives
    • B41F13/0045Electric driving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41PINDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
    • B41P2213/00Arrangements for actuating or driving printing presses; Auxiliary devices or processes
    • B41P2213/70Driving devices associated with particular installations or situations
    • B41P2213/73Driving devices for multicolour presses
    • B41P2213/734Driving devices for multicolour presses each printing unit being driven by its own electric motor, i.e. electric shaft

Definitions

  • the invention relates to a printing press with a single electric drive driven cylinder by means of a Swivel device is pivotally arranged in its position, being on the A rotary encoder to measure its angular position with respect to the cylinder Swivel device is arranged.
  • both the forme cylinder and also the blanket cylinder each have a single electric drive motor.
  • the blanket cylinders are together with their electric drive device arranged on a swivel device.
  • the Swivel device is, for example, an eccentric or a swing arm.
  • the Plate cylinders or other cylinders, such as. B. the pressure cylinder can arrange pivotable.
  • a cylinder for a printing unit which by a single drive is driven.
  • the pin of the cylinder becomes eccentric picked up by a spindle unit, which in turn in the side wall of a Printing unit is stored.
  • the stator is one on the support tube of the spindle unit Electric motor arranged.
  • the housing is on the peg located encoder for drive control of the motor attached to the support tube.
  • the spindle unit and thus the support tube is rotated. Twist it the stator of the motor and the housing of the encoder.
  • the reference angle to which the encoder relates the angular position of the Pin of the cylinder and thus the rotor of the motor.
  • the intended one goes not only with respect to the neighboring cylinder Lost the angular position of the cylinder after swiveling, but also in relation to the printing material web.
  • the blanket cylinder also performs due to the position control to its movement corresponding to the web speed of the printing material another movement, which consists of a rotary movement and - according to the Offset of the center of rotation of the cylinder from the center of the eccentric - from one transverse movement.
  • a cylinder 1 (Fig. 1), which is for example a form or blanket cylinder via its shaft journals 2 and shafts 3 via roller bearings 4, 5 in a support tube 6 rotatably mounted.
  • the support tube 6 is laterally connected to an eccentric 7 and how this is formed eccentrically with respect to the shaft 3.
  • the eccentric 7 is Eccentrically supported in a side wall 9 via needle bearings 8 or other bearings.
  • On the shaft 3 is flanged to the side of a connecting pipe 10 which is connected via ball bearings 11 is rotatably mounted in the eccentric 7.
  • the connecting tube 10 of a rotor 12 Surround the electric motor, the stator winding 13 on the inside of the support tube 6 is attached.
  • the rotor 12 and the stator 13 are through an air gap separated from each other.
  • the connecting pipe 10 rotate Shaft 3 and the cylinder 1 opposite the support tube 6 and the eccentric 7.
  • a rotary encoder 15 arranged, based on a fixed predetermined zero position, the angle of rotation of the cylinder 1 on the connecting pipe 10 against the eccentric 7 measures.
  • the encoder 15 performs the of him measured signals either continuously or at predetermined time intervals a control loop (see FIG. 4).
  • a hydraulic servomotor 17 On the side wall 9 another rotary encoder 16 is rigidly attached, the angle measures which the eccentric 7 has with respect to the side wall 9.
  • the eccentric 7 will together with the support tube 6, for example by a hydraulic servomotor 17 moves.
  • the servomotor 17 has a hydraulic cylinder 18, the Piston rod 19 is connected to the support tube 6 via a swivel joint 20.
  • the Hydraulic cylinder 18 is on a fixed part 21 of the printing press, for example, articulated on the side wall 9.
  • the cylinder 1 is, for example, a one-sided bearing in the side wall 9 Cylinder, or it is supported on both sides in both side walls of the printing press. In this case it is also via a second eccentric in the second side wall stored. Especially when the cylinder 1 is only on one side in the side wall 9 is stored, a support wall 22 can be provided in which the support tube 6 via Bearing, for example a needle bearing 23, is mounted. If on both faces of the cylinder 1 eccentric 7 are also available on both sides Angle measuring devices such as the rotary encoder 16 are arranged. these can then both feed the angle values measured by them to the control loop. The Measured angle values can be, for example, in a ratio of 1: 1 weight.
  • the encoder 16 can be replaced by other means to the position of the To determine eccentric 7.
  • an encoder can be provided or the translational movement of the eccentric 7 can also be measured, especially when these are approximately proportional at small angles of rotation to the angle of rotation of the eccentric 7.
  • one can horizontal and a vertical component of the translation movement determine if two position sensors for measuring the Translational movements are provided. The values of the translation movement can then be supplied to an arithmetic circuit which has an associated Angular value for the rotational movement of the eccentric 7 determined.
  • FIGS. 2a, 2b there is a blanket cylinder 24 on both sides via eccentrics 25, 26 in side walls 27, 28 in a printing unit tower 29 stored.
  • the blanket cylinder 24 is directly via an electric motor 30 driven, which is attached to the eccentric 26.
  • an angle encoder 31 is arranged, the angle of rotation of the The shaft journal 32 of the blanket cylinder 24 measures with respect to the eccentric 26.
  • Via a gear 33 the rotary movement of the blanket cylinder 24 is on transmit another gear 34 which drives a forme cylinder 35.
  • an angle encoder 37 is arranged directly the angular position of the forme cylinder 35 and thus indirectly the angular position of the eccentric 26 with respect to the rigid side wall 28 measures.
  • the rubber blanket cylinder 24 and the forme cylinder 35 act with other blanket cylinders 38 to 44 and forme cylinders 45 to 51 together to form a printing material web 52 in the Color printing tower 29 on both sides with four colors each.
  • a printing material web 53 in a satellite printing unit 54 printed on both sides with two colors each.
  • the Satellite printing unit 54 comprises four pairs of blanket cylinders 55 to 58 and for them each associated forme cylinders 59 to 62. Also in this Embodiment are each the blanket cylinders 55 to 58 (not here shown) eccentric or swing mounted.
  • the rubber blanket cylinders 55 to 58 are driven directly by electric motors. Via gear connections are in the same way as shown in Fig. 2a, the forme cylinders 59 to 62 and Printing cylinders 63, 64 via gear connections by means of the on the shaft journal the blanket cylinder 55 to 58 arranged electric motors driven.
  • Rotary encoders 65 to 68 arranged in a stationary manner are used to measure the angular position of the Eccentric of the blanket cylinders 55 to 58 firmly on the side wall of the Satellite printing unit 54 arranged.
  • the web speed of the printing material web v web (FIG. 4) is normally known from the control station of the printing press. However, regardless of this, it can also be determined by a measuring device in the immediate vicinity of the printing unit, in which the eccentric movement takes place, by a separate measuring device.
  • the nominal angular velocity ⁇ cyl can be determined from the path speed v path by means of a calculation circuit. which is the quotient of the path speed v path and the radius r cyl. of a cylinder Z is. By integration over time, the target angular velocity produces ⁇ cyl. the target rotation angle ⁇ cyl.
  • the printing material web for example the printing material web 52 or 53
  • the other cylinders for example the forme cylinders 35, 45 to 51 and 59 to 62 or the printing cylinders 63, 64.
  • the angle ⁇ cyl. is fed to a summing point S1 at which the difference with an angle ⁇ Exz. of the eccentric E flows into the control loop with respect to the machine frame.
  • the angle ⁇ exc. is either directly the angle with respect to the side wall measured by the second rotary encoder, for example the angle encoder 37 or by one of the rotary encoders 65 to 68, or an angle derived therefrom.
  • can also be obtained from the transverse relative movement of the cylinder axis of the eccentrically mounted cylinder, for example by linearizing the functional relationship between the transverse offset and the associated angle ⁇ Exc. ,
  • the from the angles ⁇ cyl. and ⁇ Exc. angle command value obtained target ⁇ is supplied to a position controller L, a target rotational speed ⁇ set is obtained in the ⁇ from the desired nominal angle corresponding to a speed controller DR is supplied.
  • the speed controller DR obtains a setpoint current I setpoint or a setpoint torque for an electric motor M, which corresponds, for example, to the electric motor 30 and which drives the cylinder Z.
  • the encoder or the angle encoder G of the cylinder Z which corresponds to the encoder 15, provides the actual angle of rotation ⁇ 1Zyl. of the cylinder Z with respect to the eccentric E, for example the eccentric 7, or the motor housing, which is connected, for example, to the support arm 6.
  • the actual rotation angle ⁇ 1 cyl. is in turn fed to the speed controller DR on the input side, for example via a differentiating element D.
  • the differentiator D wins from the actual angle of rotation ⁇ 1cyl.
  • the angular velocity ⁇ 1Zyl can also be obtained by forming the difference from different actual rotation angle values at different times and dividing by the difference of the times.
  • the actual rotation angle ⁇ 1 cyl can also be obtained by forming the difference from different actual rotation angle values at different times and dividing by the difference of the times.
  • the actual angle of rotation ⁇ 1Zy1. also utilize according to an embodiment of the invention to find a suitable function from the angle ⁇ Exc. of the eccentric E to win, which is fed to the summing point S1.
  • the adjustment movement of the eccentric E is thus either as an angle adjustment ⁇ exc. directly detected, or an auxiliary variable, for example the position of a lever engaging the eccentric E, is in an angle ⁇ Exz. corresponding value converted.
  • the exact sequence of movements of the eccentric movement is already known, so that direct or indirect detection of the eccentric angle ⁇ exc. can be dispensed with and from the start and the end time of the movement of the eccentric the associated angle values are already stored in an electronic memory and can be used to regulate the angular position of the cylinder.
  • the transverse movement that the cylinder makes during an eccentric adjustment is also known via the movement sequence of the eccentric and can be compensated for via the drive control of the cylinder. This avoids harmful relative movements between the cylinder and the substrate as well as with other neighboring cylinders. For example, from the angle ⁇ Exc. of the eccentric E in a computing circuit, the translatory portion of the eccentric adjustment can be calculated and fed separately to the summing point S1.
  • the actuating movement between the cylinder and the side wall can either be as described above, indirectly via the encoder of an eccentric or directly via an encoder mounted on the cylinder shaft, which detects the movement of the cylinder with respect to the side wall.
  • the invention provides a cylinder 24 which can be shut off by a printing material web or an adjacent cylinder 35, the change in position caused by an eccentric movement being compensated for by an additional rotary movement superimposed on the rotary movement of the cylinder 24 in such a way that the cylinder 24 does not have any relative speed to the adjacent one on its lateral surface Cylinder 35 or to the substrate web.
  • the compensation is carried out by means of a control loop, to which the actual rotation angle ⁇ 1Zyl. of the cylinder 24 with respect to the eccentric 26 and the actual angle of rotation ⁇ Exz. of the eccentric 26 with respect to the side wall 28 or an angle function derived therefrom.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Rotary Presses (AREA)

Description

Die Erfindung bezieht sich auf eine Druckmaschine mit einem durch einen elektrischen Einzelantrieb angetriebenen Zylinder, der mittels einer Schwenkvorrichtung in seiner Lage verschwenkbar angeordnet ist, wobei an dem Zylinder ein Drehgeber zur Messung seiner Winkelposition bezüglich der Schwenkvorrichtung angeordnet ist.
In jüngster Zeit werden zunehmend Druckmaschinen, beispielsweise Offset-Druckmaschinen, eingesetzt, deren Zylinder einzeln angetrieben werden. Beispielsweise haben in einer Offset-Druckmaschine sowohl der Formzylinder als auch der Gummituchzylinder jeweils einen einzelnen elektrischen Antriebsmotor. Bei Beginn eines Druckprozesses müssen die Gummituchzylinder an die Bedruckstoffbahn angestellt werden, bei Beendigung des Druckprozesses müssen sie von ihr abgestellt werden. Hierzu sind die Gummituchzylinder zusammen mit ihrer elektrischen Antriebsvorrichtung auf einer Schwenkvorrichtung angeordnet. Die Schwenkvorrichtung ist beispielsweise ein Exzenter oder eine Schwinge. Auch die Plattenzylinder oder andere Zylinder, wie z. B. die Druckzylinder, lassen sich verschwenkbar anordnen. Bei Verwendung eines Exzenters ist die Welle des Zylinders auf dem Exzenter exzentrisch bezüglich des Drehpunktes des Exzenters in der Seitenwand gelagert.
Aus der DE 196 24 394 A1 ist ein Zylinder für ein Druckwerk bekannt, der durch einen Einzelantrieb angetrieben wird. Dort wird der Zapfen des Zylinders exzentrisch von einer Spindeleinheit aufgenommen, die wiederum in der Seitenwand eines Druckwerks gelagert ist. Auf dem Tragrohr der Spindeleinheit ist der Stator eines Elektromotors angeordnet. Außerdem ist das Gehäuse des auf dem Zapfen befindlichen Drehgebers zur Antriebsregelung des Motors am Tragrohr befestigt. Zum Zwecke von Positionsänderungen des Zylinders zu einem benachbarten Zylinder wird die Spindeleinheit und damit das Tragrohr verdreht. Dabei verdrehen sich auch der Stator des Motors und das Gehäuse des Drehgebers. Somit verstellt sich auch der Bezugswinkel, auf den sich der Drehgeber die Drehwinkelposition des Zapfens des Zylinders und damit des Rotors des Motors bezieht. Im Ergebnis stellen sich also unerwünschte Verdrehungen des Zylinders bezüglich eines mit ihm zusammenarbeitenden Zylinders ein.
In der Praxis zeigt es sich, daß bereits kleine Verstellwege zwischen den Positionen "Druck an" und "Druck ab" des Zylinders mit großen Exzenterverdrehungen verbunden sind. Beipielsweise erfordern Verstellwege von 0,1 mm bereits 10° Exzenterverdrehung. Auch bei Verwendung einer Schwinge als Schwenkvorrichung für den Zylinder ergibt sich dieses Problem. Entsprechend der Länge der Schwingen treten jedoch geringere Winkelfehler auf als bei Verwendung eines Exzenters.
Nicht nur gegenüber dem benachbarten Zylinder geht die vorgesehene Winkelposition des Zylinders nach Durchführung einer Schwenkbewegung verloren, sondern auch gegenüber der Bedruckstoffbahn. Wenn sich nämlich der Exzenter dreht, vollzieht auch der Gummituchzylinder aufgrund der Lageregelung zusätzlich zu seiner der Bahngeschwindigkeit des Bedruckstoffs entsprechenden Bewegung eine weitere Bewegung, die sich aus einer Drehbewegung und - entsprechend dem Versatz des Drehpunktes des Zylinders vom Mittelpunkt des Exzenters - aus einer transversalen Bewegung zusammensetzt. Durch diese Bewegung beim Druck an-/Druck ab-Stellvorgang kann die Bedruckstoffbahn reißen, weil der Gummituchzylinder nicht nur auf ihrer Oberfläche abrollt, sondern infolge der translatorischen Bewegung auf ihrer Oberfläche Gleitreibung verursacht und dabei an ihr zieht.
Es ist die Aufgabe der Erfindung, die durch die Schwenkbewegung des Exzenter oder der Schwinge verfälschte Drehbewegung des Zylinders zu korrigieren und das Reißen der Bedruckstoffbahn zu vermeiden.
Diese Aufgabe wird, wie in Patentanspruch 1 angegeben, gelöst.
Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.
Nachstehend wird die Erfindung anhand der Zeichnungen näher erläutert. Es zeigen:
Fig. 1:
einen der exzentrisch gelagerten Gummituchzylinder
Fig. 2a und b:
einen Formzylinder und einen Gummituchzylinder mit einem gemeinsamen Antrieb und ihren Einsatz in einem Gummi-Gummi-Druckwerk,
Fig. 3:
ein Satellitendruckwerk mit einzeln angetriebenen Zylindern und
Fig. 4:
das Schema eines elektrischen Schaltkreises zur Winkelkorrektur des Zylinders bezüglich den starren Teilen der Druckmaschine.
Ein Zylinder 1 (Fig. 1), der beispielsweise ein Form- oder Gummituchzylinder ist, ist über seine Wellenzapfen 2 und Wellen 3 über Wälzlager 4, 5 in einem Tragrohr 6 drehbar gelagert. Das Tragrohr 6 ist seitlich fest mit einem Exzenter 7 verbunden und wie dieser exzentrisch gegenüber der Welle 3 ausgebildet. Der Exzenter 7 ist über Nadellager 8 oder andere Lager in einer Seitenwand 9 exzentrisch gelagert. An die Welle 3 ist seitlich ein Anschlußrohr 10 angeflanscht, das über Kugellager 11 drehbar in dem Exzenter 7 gelagert ist. Im Bereich zwischen den Kugellagern 11 und der Stirnseite der Welle 3 ist das Anschlußrohr 10 von einem Rotor 12 eines Elektromotors umgeben, dessen Statorwicklung 13 auf der Innenseite des Tragrohrs 6 befestigt ist. Der Rotor 12 und der Stator 13 sind durch einen Luftspalt voneinander getrennt. Durch den Elektromotor drehen sich das Anschlußrohr 10, die Welle 3 und der Zylinder 1 gegenüber dem Tragrohr 6 und dem Exzenter 7. Auf dem Exzenter 7 ist auf der von dem Zylinder 1 abgewandten Seite der Seitenwand 9 auf einem Ansatz des Exzenters 7 ein Drehgeber 15 angeordnet, der, bezogen auf eine fest vorgegebene Null-Lage, den Drehwinkel des Zylinders 1 an dem Anschlußrohr 10 gegenüber dem Exzenter 7 mißt. Der Drehgeber 15 führt die von ihm gemessenen Signale entweder kontinuierlich oder in vorgegebenen Zeitabständen einem Regelkreis (vgl. Fig. 4) zu.
An der Seitenwand 9 ist starr ein weiterer Drehgeber 16 befestigt, der den Winkel mißt, den der Exzenter 7 bezüglich der Seitenwand 9 aufweist. Der Exzenter 7 wird zusammen mit dem Tragrohr 6 beispielsweise durch einen hydraulischen Stellmotor 17 bewegt. Der Stellmotor 17 weist einen Hydraulikzylinder 18 auf, dessen Kolbenstange 19 über ein Drehgelenk 20 mit dem Tragrohr 6 verbunden ist. Der Hydraulikzylinder 18 ist an einem festen Bestandteil 21 der Druckmaschine, beispielsweise an der Seitenwand 9, angelenkt.
Der Zylinder 1 ist beispielsweise ein einseitig in der Seitenwand 9 gelagerter Zylinder, oder er ist beidseitig in beiden Seitenwänden der Druckmaschine gelagert. In diesem Fall ist er auch über einen zweiten Exzenter in der zweiten Seitenwand gelagert. Insbesondere dann, wenn der Zylinder 1 nur einseitig in der Seitenwand 9 gelagert ist, läßt sich eine Stützwand 22 vorsehen, in der das Tragrohr 6 über ein Lager, beispielsweise ein Nadellager 23, gelagert ist. Wenn auf beiden Stirnseiten des Zylinders 1 Exzenter 7 vorhanden sind, können auch auf beiden Seiten Winkelmeßvorrichtungen wie die Drehgeber 16 angeordnet werden. Diese können dann beide die von ihnen gemessenen Winkelwerte dem Regelkreis zuführen. Die gemessenen Winkelwerte lassen sich beispielsweise in einem Verhältnis von 1:1 gewichten.
Der Drehgeber 16 läßt sich ersetzen durch andere Mittel, um die Position des Exzenters 7 zu bestimmen. Es kann beispielsweise ein Encoder vorgesehen werden, oder es läßt sich auch die translatorische Bewegung des Exzenters 7 messen, insbesondere dann, wenn diese bei kleinen Drehwinkeln angenähert proportional zum Drehwinkel des Exzenters 7 ist. Darüber hinaus lassen sich auch eine waagrechte und eine senkrechte Komponente der Translationsbewegung bestimmen, wenn entsprechend zwei Lagegeber zur Messung der Translationsbewegungen vorgesehen werden. Die Werte der Translationsbewegung können dann einer Rechenschaltung zugeführt werden, die einen zugehörigen Winkelwert für die Drehbewegung des Exzenters 7 bestimmt.
Anstelle der Lagerung des Zylinders 1 in dem Exzenter 7 können dessen Wellenzapfen 2 und der Elektromotor 14 auch von einer Schwinge aufgenommen werden, die schwenkbar in der Seitenwand 9 und der gegenüberliegenden Seitenwand befestigt ist. Bei der Verwendung einer Schwinge wird wegen des im Vergleich zu dem Exzenter 7 längeren Hebels ein geringerer Winkelfehler anfallen; es ist daher hier eher möglich, die Winkelbewegung durch eine translatorische Bewegung anzunähern.
In einem anderen Ausführungsbeispiel (Fig. 2a, 2b) ist ein Gummituch-Zylinder 24 beidseitig über Exzenter 25, 26 in Seitenwänden 27, 28 in einem Druckwerksturm 29 gelagert. Der Gummituch-Zylinder 24 wird über einen Elektromotor 30 direkt angetrieben, der an dem Exzenter 26 befestigt ist. An der Stirnseite des Elektromotors 30 ist ein Winkel-Encoder 31 angeordnet, der den Drehwinkel des Wellenzapfens 32 des Gummituch-Zylinders 24 bezüglich des Exzenters 26 mißt. Über ein Zahnrad 33 wird die Drehbewegung des Gummituch-Zylinders 24 auf ein weiteres Zahnrad 34 übertragen, das einen Formzylinder 35 antreibt. Auf dem Wellenzapfen 36 des Formzylinders 35 ist ein Winkel-Encoder 37 angeordnet, der direkt die Winkellage des Formzylinders 35 und damit auch indirekt die Winkellage des Exzenters 26 bezüglich der starren Seitenwand 28 mißt. Der Gummituch-Zylinder 24 und der Formzylinder 35 wirken mit anderen Gummituch-Zylindern 38 bis 44 und Formzylindern 45 bis 51 zusammen, um eine Bedruckstoffbahn 52 in dem Druckwerksturm 29 beidseitig mit je vier Farben einzufärben. Dabei sind jeweils nur die Gummituch-Zylinder 24, 38 bis 44 von Motoren angetrieben. Auch bei Verstellung der Exzenter bleibt die Antriebsverbindung erhalten, weil sich die Exzenterverstellung nur innerhalb des Zahnflankenspiels der jeweiligen Zahnräder 33, 34 bewegt.
In einem weiteren Ausführungsbeispiel (Fig. 3) wird eine Bedruckstoffbahn 53 in einem Satellitendruckwerk 54 beidseitig mit je zwei Farben bedruckt. Das Satellitendruckwerk 54 umfaßt vier Paare von Gummituch-Zylindern 55 bis 58 und ihnen jeweils zugeordneten Formzylindern 59 bis 62. Auch in dieser Ausführungsform sind jeweils die Gummituch-Zylinder 55 bis 58 auf (hier nicht dargestellten) Exzentern oder Schwingen gelagert. Die Gummituch-Zylinder 55 bis 58 werden durch Elektromotoren direkt angetrieben. Über Zahnradverbindungen werden in derselben Weise, wie in Fig. 2a dargestellt, die Formzylinder 59 bis 62 und Druckzylinder 63, 64 über Zahnradverbindungen mittels der auf den Wellenzapfen der Gummituchzylinder 55 bis 58 angeordneten Elektromotoren angetrieben. Stationär angeordnete Drehgeber 65 bis 68 sind zur Messung der Winkellage der Exzenter der Gummituch-Zylinder 55 bis 58 fest an der Seitenwand des Satellitendruckwerks 54 angeordnet.
Um die Bewegung des Zylinders 1 sowie der Gummituch-Zylinder 24, 38 bis 44, 55 bis 58 bei einer Exzenterverstellung derart zu regeln, daß sie auf der Oberfläche benachbarter Zylinder keine gleitende Bewegung ausführen, sondern stets auf diesen abrollen und insbesondere auch nicht durch eine Gleitbewegung an der Bedruckstoffbahn 52, 53 ziehen, so daß diese reißen könnte, wird die Exzenterbewegung derart geregelt, daß dessen Drehung mit einer Abrollbewegung des Zylinders 1 oder der Gummituch-Zylinder 24, 38 bis 44, 55 bis 58 einhergeht.
Die Bahngeschwindigkeit der Bedruckstoffbahn vBahn (Fig. 4) ist im Normalfall durch Vorgabe vom Leitstand der Druckmaschine bekannt. Sie kann jedoch unabhängig davon auch durch eine Meßvorrichtung in unmittelbarer Nähe des Druckwerks, in dem die Exzenterbewegung stattfindet, durch eine gesonderte Meßvorrichtung bestimmt werden. Durch eine Rechenschaltung läßt sich aus der Bahngeschwindigkeit vBahn die Soll-Winkelgeschwindigkeit ωZyl. gewinnen, die der Quotient aus der Bahngeschwindigkeit vBahn und dem Radius rZyl. eines Zylinders Z ist. Durch Integration über die Zeit entsteht aus der Soll-Winkelgeschwindigkeit ωZyl. der Soll-Drehwinkel ϕZyl., den der Zylinder Z bezüglich des Maschinengestells, der Bedruckstoffbahn, beispielsweise der Bedruckstoffbahn 52 oder 53, sowie bezüglich der anderen Zylinder, beispielsweise der Formzylinder 35, 45 bis 51 und 59 bis 62 oder der Druckzylinder 63, 64, einnimmt. Der Winkel ϕZyl. wird einem Summierpunkt S1 zugeführt, an dem die Differenz mit einem Winkel ϕExz. des Exzenters E bezüglich des Maschinengestells in den Regelkreis einfließt. Der Winkel ϕExz. ist entweder unmittelbar der durch den zweiten Drehgeber, beispielsweise den Winkel-Encoder 37 oder durch einen der Drehgeber 65 bis 68 gemessene Winkel bezüglich der Seitenwand, oder ein davon abgeleiteter Winkel. Beispielsweise kann der Winkel ϕExz. auch aus der transversalen Relativbewegung der Zylinderachse des exzentrisch gelagerten Zylinders gewonnen werden, beispielsweise durch Linearisierung des funktionalen Zusammenhangs zwischen dem transversalen Versatz und dem zugehörigen Winkel ϕExz.. Der aus den Winkeln ϕZyl. und ϕExz. gewonnene Winkel-Sollwert ϕSoll wird einem Lageregler L zugeführt, in dem aus dem Soll-Winkel ϕSoll eine Soll-Drehzahl ωSoll gewonnen wird, die einem Drehzahlregler DR zugeführt wird. Der Drehzahlregler DR gewinnt hieraus als Regelgröße einen Sollstrom ISoll oder ein Soll-Drehmoment für einen Elektromotor M, der beispielsweise dem Elektromotor 30 entspricht, und der den Zylinder Z antreibt. Der Drehgeber oder der Winkel-Encoder G des Zylinders Z, der dem Drehgeber 15 entspricht, liefert den Ist-Drehwinkel ϕ1Zyl. des Zylinders Z bezüglich des Exzenters E, beispielsweise des Exzenters 7, oder des Motorgehäuses, das beispielsweise mit dem Tragarm 6 verbunden ist. Der Ist-Drehwinkel ϕ1Zyl. wird wiederum eingangsseitig, beispielsweise über ein Differenzierglied D, dem Drehzahlregler DR zugeführt. Das Differenzierglied D gewinnt aus dem Ist-Drehwinkel ϕ1Zyl. die Ist-Winkelgeschwindigkeit. Die Winkelgeschwindigkeit ω1Zyl läßt sich auch durch Differenzbildung aus verschiedenen Ist-Drehwinkelwerten zu verschiedenen Zeitpunkten und Division durch die Differenz der Zeitpunkte gewinnen. Der Ist-Drehwinkel ϕ1Zyl. wird über einen zweiten Summierpunkt S2 ebenso dem Eingang des Lagereglers L zugeführt. Darüber hinaus läßt sich der Ist-Drehwinkel ϕ1Zy1. gemäß einer Ausführungsform der Erfindung auch verwerten, um eine geeignete Funktion aus dem Winkel ϕExz. des Exzenters E zu gewinnen, die dem Summierpunkt S1 zugeführt wird. Die Verstellbewegung des Exzenters E wird somit entweder als Winkelverstellung ϕExz. direkt erfaßt, oder eine Hilfsgröße, beispielsweise die Stellung eines an dem Exzenter E angreifenden Hebels, wird in einen dem Winkel ϕExz. entsprechenden Wert umgewandelt.
Darüber hinaus ist es auch möglich, daß der genaue Bewegungsablauf der Exzenterbewegung bereits vorbekannt ist, so daß auf eine direkte oder indirekte Erfassung des Exzenterwinkels ϕExz. verzichtet werden kann und aus dem Startsowie dem Endzeitpunkt der Bewegung des Exzenters die zugehörigen Winkelwerte bereits in einem elektronischen Speicher abgelegt sind und zur Regelung der Winkellage des Zylinders genutzt werden können. Die transversale Bewegung, die der Zylinder bei einer Exzenterverstellung vollzieht, ist über den Bewegungsablauf des Exzenters ebenfalls bekannt und kann über die Antriebssteuerung des Zylinders kompensiert werden. Dadurch lassen sich schädliche Relativbewegungen zwischen dem Zylinder und dem Bedruckstoff sowie mit anderen benachbarten Zylindern vermeiden. Beispielsweise kann aus dem Winkel ϕExz. des Exzenters E in einer Rechenschaltung der translatorische Anteil der Exzenterverstellung errechnet werden und gesondert dem Summierpunkt S1 zugeführt werden.
Es ist aber auch möglich, mit einem entsprechenden Sensor ausschließlich die translatorische Bewegung des Exzenters E zu messen und daraus in einer Rechenschaltung den zugehörigen Winkelwert ϕExz. zu gewinnen, beispielsweise aus einer algebraischen Vorschrift. Zur Glättung der errechneten Winkelwerte ϕExz. kann ein Filter eingebaut werden. Ebenso können die Winkelwerte für ϕExz. bereits in einer Tabelle abgelegt sein, so daß aus dieser bei einer bestimmten Translationsbewegung des Exzenters E ein dem zurückgelegten Weg entsprechender Winkelwert ϕExz. dem Regelkreis (Fig. 4) zugeführt wird.
Die Stellbewegung zwischen dem Zylinder und der Seitenwand läßt sich entweder, wie oben beschrieben, indirekt über den Drehgeber eines Exzenters erfassen oder direkt über einen auf der Zylinderwelle angebrachten Drehgeber, der die Bewegung des Zylinders bezüglich der Seitenwand mißt.
Durch die Erfindung wird ein von einer Bedruckstoffbahn oder einem benachbarten Zylinder 35 abstellbarer Zylinder 24 geschaffen, dessen durch eine Exzenterbewegung verursachte Lageveränderung durch eine der Drehbewegung des Zylinders 24 überlagerte zusätzliche Drehbewegung derart kompensiert wird, daß der Zylinder 24 auf seiner Mantelfläche keine Relativgeschwindigkeit zu dem benachbarten Zylinder 35 oder zu der Bedruckstoffbahn aufweist. Die Kompensation wird mittels eines Regelkreises durchgeführt, dem der Ist-Drehwinkel ϕ1Zyl. des Zylinders 24 bezüglich des Exzenters 26 sowie der Ist-Drehwinkel ϕExz. des Exzenters 26 bezüglich der Seitenwand 28 oder eine daraus abgeleitete Winkelfunktion zugeführt werden.
Statt, wie oben beschrieben, den Gummizylinder 24, 38, 39, 40, 41, 42, 43, 44, 55, 56, 57, 58 direkt anzutreiben, kann dieser jeweils auch indirekt vom direkt angetriebenen Formzylinder 35, 45, 46, 47, 48, 49, 50 bzw. 51 angetrieben werden.

Claims (10)

  1. Druckmaschine mit einem durch einen elektrischen Einzelantrieb (14, 30, M) direkt oder indirekt angetriebenen Zylinder (1, 24, 38 bis 44, 55 bis 58, Z), der mittels einer Schwenkvorrichtung (7, 26) in seiner Lage verschwenkbar angeordnet ist, wobei eine Drehwinkel-Meßvorrichtung (15, 31) zur Messung der Winkelposition (ϕ1Zyl.) des Zylinders (1, 24, 38 bis 44, 55 bis 58, Z) bezüglich der Schwenkvorrichtung (7, 26) vorhanden ist, wobei ein Mittel (16, 37, 65 bis 68) zur Erfassung des Winkelwerts der Schwenkbewegung (ϕExz.) der Schwenkvorrichtung (7, 26) bezüglich der Seitenwände (9, 27, 28) und ein Mittel zur Gewinnung eines Soll-Drehwinkels (ϕSoll) des Zylinders (1, 24, 38 bis 44, 55 bis 58, Z) aus der in einen Winkelwert (ϕZyl.) umgerechneten Bahngeschwindigkeit der Druckmaschine und dem Winkelwert der Schwenkbewegung (ϕExz.) vorhanden sind, und wobei eine Vergleichseinrichtung vorhanden ist, die aus einem Vergleich des Soll-Drehwinkels (ϕSoll) mit der Winkelposition (ϕ1Zyl.) des Zylinders (1, 24, 38 bis 44, 55 bis 58, Z) bezüglich der Schwenkvorrichtung (7, 26) ein Steuersignal zur Steuerung der Drehgeschwindigkeit des Zylinders (1, 24, 38 bis 44, 55 bis 58, Z) gewinnt.
  2. Druckmaschine nach Anspruch 1, dadurch gekennzeichnet, daß die Vergleichseinrichtung einen Drehzahlregler (DR) in einem elektronischen Regelkreis aufweist, wobei der Drehzahlregler (DR) als Regelgröße einen Soll-Strom (ISoll) oder ein Soll-Drehmoment für den Motor (14, 30, M) erzeugt, der den Zylinder (1, 24, 38 bis 44, 55 bis 58, Z) antreibt.
  3. Druckmaschine nach Anspruch 2, dadurch gekennzeichnet, daß dem Drehzahlregler (DR) die in einem Differenzierglied (D) aus der Winkelposition (ϕ1Zyl.) des Zylinders (1, 24, 38 bis 44, 55 bis 58, Z) bezüglich der Schwenkvorrichtung (7, 26) gewonnene Drehgeschwindigkeit (ω1Zyl.) zugeführt wird.
  4. Druckmaschine nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß der Ist-Drehwinkel (ϕ1Zyl.) des Zylinders (1, 24, 38 bis 44, 55 bis 58, Z), bezogen auf die Schwenkvorrichtung (7, 26), während des Schwenkvorgangs fortlaufend korrigiert wird, so daß die durch die Schwenkbewegung der Schwenkvorrichtung (7, 26) hervorgerufene Verdrehung der Mantelfläche des Zylinders (1, 24, 38 bis 44, 55 bis 58, Z) in Bezug auf den Bedruckstoff (52, 53) oder zu einem benachbarten Zylinder (35, 45 bis 51, 59 bis 62) kompensiert wird, wobei die Korrekturwerte für den Soll-Drehwinkel des Zylinders (1, 24, 38 bis 44, 55 bis 58, Z) in einer Tabelle abgelegt sind oder durch eine Rechenschaltung jeweils berechnet werden.
  5. Druckmaschine nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Verdrehung der Schwenkvorrichtung (7, 26) gegenüber den Seitenwänden (9, 27, 28) der Druckmaschine durch einen Winkel-Drehgeber (16, 37) direkt als Winkel meßbar ist.
  6. Druckmaschine nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Verdrehung der Schwenkvorrichtung (7, 26) durch Messung des translatorischen Verstellweges der Schwenkvorrichtung (7, 26) meßbar ist, wobei die Winkelstellung der Schwenkvorrichtung (7, 26) über eine Rechenschaltung gewonnen wird oder in einer Tabelle abgelegt ist.
  7. Druckmaschine nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Einstellung des Soll-Drehwinkels des Zylinders (1, 24, 38 bis 44, 55 bis 58, Z) fortlaufend aus einem bekannten Bewegungsverlauf der Schwenkvorrichtung (7, 26) angepaßt wird.
  8. Druckmaschine nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Schwenkvorrichtung ein Exzenter (7, 26) oder eine Schwinge ist.
  9. Druckmaschine nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Mittel zur Erfassung der Schwenkbewegung (16, 37, 65 bis 68) ein Drehgeber oder ein Encoder ist.
  10. Druckmaschine nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Mittel (16, 37, 65 bis 68) zur Erfassung der Schwenkbewegung die Verdrehung der Schwenkvorrichtung (7, 26) bezüglich eines starren Teils der Druckmaschine (9), insbesondere der Seitenwand (9), direkt mißt, oder daß die Schwenkbewegung aufgrund der Drehbewegung des benachbarten Zylinders (35, 45 bis 51, 59 bis 62), dessen Zahnrad (34) mit einem Zahnrad (33) des angetriebenen Zylinders (1, 24, 38 bis 44, 55 bis 58, Z) in Eingriff steht, durch ein Mittel (37) zur Erfassung der Schwenkbewegung meßbar ist.
EP98108759A 1997-05-17 1998-05-14 Duckmaschine mit einem schwenkbarer, durch einen elektrischen Einzelantrieb angetriebener Zylinder Expired - Lifetime EP0878302B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19720952A DE19720952C2 (de) 1997-05-17 1997-05-17 Schwenkbarer, durch einen elektrischen Einzelantrieb angetriebener Zylinder
DE19720952 1997-05-17

Publications (2)

Publication Number Publication Date
EP0878302A1 EP0878302A1 (de) 1998-11-18
EP0878302B1 true EP0878302B1 (de) 2001-04-11

Family

ID=7829906

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98108759A Expired - Lifetime EP0878302B1 (de) 1997-05-17 1998-05-14 Duckmaschine mit einem schwenkbarer, durch einen elektrischen Einzelantrieb angetriebener Zylinder

Country Status (5)

Country Link
US (1) US5953991A (de)
EP (1) EP0878302B1 (de)
JP (1) JP2865660B2 (de)
CA (1) CA2237424C (de)
DE (2) DE19720952C2 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2164872C1 (ru) * 1997-05-14 2001-04-10 Кениг Унд Бауер Акциенгезельшафт Привод для цилиндра или валка ротационной печатной машины
DE19732330C2 (de) * 1997-07-28 2001-04-19 Koenig & Bauer Ag Antrieb für eine Druckeinheit
DE19803558A1 (de) 1998-01-30 1999-08-12 Koenig & Bauer Ag Verfahren zur Ermittlung einer Winkellage eines ortsveränderbaren Zylinders einer Druckmaschine
DE59802253D1 (de) * 1998-08-29 2002-01-10 Fischer & Krecke Gmbh & Co Verfahren und Vorrichtung zur Kollisionsüberwachung in Druckmaschinen
IT1314383B1 (it) * 2000-02-18 2002-12-13 Uteco S P A Roto Flexo & Conve Macchina da stampa rotativa flessografica a piu' colori
CN100446974C (zh) 2001-04-09 2008-12-31 柯尼格及包尔公开股份有限公司 印刷机的印刷装置
ATE340076T1 (de) * 2001-04-09 2006-10-15 Koenig & Bauer Ag Druckwerk einer druckmaschine mit einem linear bewegbaren übertragungszylinder
DE10132807C5 (de) * 2001-07-06 2009-01-08 Siemens Ag Regelungsverfahren zum Betrieb von gekoppelten Antriebsachsen mit überlagerten Bewegungskomponenten
CN1781703A (zh) 2001-08-03 2006-06-07 柯尼格及包尔公开股份有限公司 印刷机的印刷装置
DE10234402B4 (de) * 2001-09-21 2015-10-08 Heidelberger Druckmaschinen Ag Unabhängiger Direktantrieb für Papier verarbeitende Druckmaschinen
EP1440801A3 (de) 2001-10-05 2006-06-07 Koenig & Bauer Aktiengesellschaft Rollenrotationsdruckmaschine
DE10259494B4 (de) * 2002-01-21 2017-01-26 Heidelberger Druckmaschinen Ag Verfahren zum Steuern einer Druckmaschine
DE10304495B4 (de) * 2003-02-05 2015-04-16 Koenig & Bauer Aktiengesellschaft Verfahren und Anordnung für die Synchronisierung eines elektrischen Einzelantriebes
DE10327218B4 (de) * 2003-06-17 2015-08-06 Schaeffler Technologies AG & Co. KG Direktantrieb für einen Zylinder einer Druckmaschine
DE10339733A1 (de) * 2003-08-28 2004-11-25 Siemens Ag Antrieb zum rotatorischen Betrieb einer Walze
DE102005018528C5 (de) * 2004-05-05 2019-03-14 manroland sheetfed GmbH Lagegeber für einen Direktantrieb eines Zylinders in einer Verarbeitungsmaschine
CN101378904B (zh) * 2005-06-23 2011-04-27 柯尼格及包尔公开股份有限公司 印刷机具有端侧轴颈的旋转滚筒
DE102005029969A1 (de) * 2005-06-28 2007-01-11 Koenig & Bauer Ag Anordnung von Drehwinkelgebern
DE102005042932A1 (de) * 2005-09-09 2007-03-22 Man Roland Druckmaschinen Ag Druckmaschine, insbesondere Rollendruckmaschine
DE102005052497B4 (de) * 2005-10-31 2011-09-01 Koenig & Bauer Aktiengesellschaft Antrieb eines Zylinders einer Druckmaschine
DE102006013636B4 (de) * 2006-03-22 2012-02-09 Siemens Ag Druckmaschine bzw. elektrische Maschine für eine Druckmaschine
JP2008096923A (ja) * 2006-10-16 2008-04-24 Fuji Xerox Co Ltd 画像形成装置及びプロセスカートリッジ
ES2303471B1 (es) * 2007-01-26 2009-04-16 Comexi, S.A. Maquina impresora flexografica con unidades de impresion de estabilidad mejorada.
DE102007010289A1 (de) * 2007-02-13 2008-08-14 Man Roland Druckmaschinen Ag Druckeinheit einer Rollendruckmaschine
DE102007048827A1 (de) 2007-10-10 2009-04-16 Wolfgang Maurer Schlosserei, Maschinenbau Und -Handels Gmbh Rotationsdruckmaschine
DE102007058282B4 (de) * 2007-12-04 2015-01-22 manroland sheetfed GmbH Verfahren und Antrieb zum Antreiben einer Verarbeitungsmaschine für Bogenmaterial
EP2072252B1 (de) * 2007-12-22 2018-11-14 Koenig & Bauer AG Verfahren und Anordnung zur Kompensation von regelungsbedingten Drehwinkel- Asynchronitäten
WO2019038305A1 (de) * 2017-08-21 2019-02-28 manroland sheetfed GmbH Regelung von druckmaschinen mit mehreren hauptantriebsmotoren

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4137979B4 (de) * 1991-11-19 2004-05-06 Heidelberger Druckmaschinen Ag Antrieb für eine Druckmaschine mit mindestens zwei mechanisch voneinander entkoppelten Druckwerken
DE4138479C3 (de) * 1991-11-22 1998-01-08 Baumueller Nuernberg Gmbh Verfahren und Anordnung für einen Elektromotor zum Antrieb eines Drehkörpers, insbesondere des druckgebenden Zylinders einer Druckmaschine
US5570633A (en) * 1993-06-01 1996-11-05 Comco Machinery, Inc. Automated printing press with reinsertion registration control
JP3501844B2 (ja) * 1994-05-06 2004-03-02 株式会社小森コーポレーション 胴着脱装置
DE4435986C2 (de) * 1994-10-08 1997-04-24 Heidelberger Druckmasch Ag Vorrichtung zum An- und Abstellen eines Gummituchzylinders einer Rotationsdruckmaschine
DE19513378A1 (de) * 1995-04-08 1996-10-10 Roland Man Druckmasch Vorrichtung zur Druckan- und -abstellung
JPH08290552A (ja) * 1995-04-25 1996-11-05 Toyo Electric Mfg Co Ltd セクショナルドライブの同期制御方法
US5492062A (en) * 1995-05-08 1996-02-20 Heidelberg Druckmaschinen Ag Printing cylinder positioning device and method
DE19521827A1 (de) * 1995-06-16 1996-12-19 Roland Man Druckmasch Druckmaschinen-Direktantrieb
DE19624394C1 (de) * 1996-06-19 1997-12-04 Roland Man Druckmasch Angetriebener Zylinder
US5706728A (en) * 1996-07-30 1998-01-13 Rdp Marathon Inc. Printing apparatus

Also Published As

Publication number Publication date
JPH10323972A (ja) 1998-12-08
CA2237424A1 (en) 1998-11-17
EP0878302A1 (de) 1998-11-18
CA2237424C (en) 2002-01-29
DE19720952C2 (de) 2001-02-01
DE59800603D1 (de) 2001-05-17
JP2865660B2 (ja) 1999-03-08
US5953991A (en) 1999-09-21
DE19720952A1 (de) 1998-11-19

Similar Documents

Publication Publication Date Title
EP0878302B1 (de) Duckmaschine mit einem schwenkbarer, durch einen elektrischen Einzelantrieb angetriebener Zylinder
DE3435487C2 (de)
EP0699524B2 (de) Rollenrotationsoffsetdruckmaschine
DE4322744C2 (de) Elektrisches Antriebssystem und Positionierverfahren zur synchronen Verstellung mehrerer dreh- und/oder verschwenkbarer Funktionsteile in Geräten und Maschinen, Antriebsanordnung mit einem Winkellagegeber und Druckmaschine
DE602004003090T2 (de) Fahrzeuglenkung
EP0812682B1 (de) Antrieb für eine Druckmaschine
EP1040917B1 (de) Verfahren und Vorrichtung zur Kompensation der Drehschwingungen einer Druckmaschine
EP1674258B1 (de) Verfahren zur Kompensation von rotationsschwingungsbedingten Passerabweichungen
EP1820650B1 (de) Steuerung einer Druckmaschine mittels Torsionsmodell
EP2195166B1 (de) Farbwerke einer druckmaschine
DE102011118904A1 (de) Produktionswerk mit Einzelantrieb
DE10132266A1 (de) Verfahren und Vorrichtung zur Regelung des Übergabepassers in einer Bogenrotationsdruckmaschine
DE19781048B4 (de) Druckeinrichtung
EP0806294A2 (de) Verfahren und Vorrichtung zum Einstellen des Umfangsregisters in einer Rollenrotationsdruckmaschine mit einem eine hülsenförmige Druckplatte tragenden Plattenzylinder
EP0518234B1 (de) Elektronisch steuerbare Farbkastenwalzenantriebseinrichtung und Verfahren
EP0653302B1 (de) Farbauftragwalzendrehzahlsteuerung für Offsetrotationsdruckmaschinen
DE10304495B4 (de) Verfahren und Anordnung für die Synchronisierung eines elektrischen Einzelantriebes
WO2007093576A2 (de) Changierantrieb eines zylinders einer druckmaschine
DE3407792C2 (de)
EP2724861B1 (de) Bogendruckmaschine und Verfahren zum Betreiben einer Bogendruckmaschine
DE20213169U1 (de) Druckeinheiten mit mindestens zwei zusammen wirkenden Walzen sowie Vorrichtungen zur Ermittlung eines Abrollverhaltens einer elastischen Schicht
WO2024149511A1 (de) Vorrichtung zum bearbeiten von bogen und/oder bahnen
DE29522314U1 (de) Offsetdruckmaschine
DE9422047U1 (de) Offsetdruckmaschine
DE9421909U1 (de) Offsetdruckmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990511

AKX Designation fees paid

Free format text: AT BE CH CY DE LI

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB LI SE

RTI1 Title (correction)

Free format text: PRINTING MACHINE WITH A DISPLACEABLE CYLINDER DRIVEN BY AN INDIVIDUAL ELECTRICAL DRIVE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000222

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010411

REF Corresponds to:

Ref document number: 59800603

Country of ref document: DE

Date of ref document: 20010517

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: MAN ROLAND DRUCKMASCHINEN AG

Free format text: MAN ROLAND DRUCKMASCHINEN AG#POSTFACH 10 12 64#63012 OFFENBACH (DE) -TRANSFER TO- MAN ROLAND DRUCKMASCHINEN AG#POSTFACH 10 12 64#63012 OFFENBACH (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: MANROLAND AG

Free format text: MAN ROLAND DRUCKMASCHINEN AG#POSTFACH 10 12 64#63012 OFFENBACH (DE) -TRANSFER TO- MANROLAND AG#MUEHLHEIMER STRA?E 341#63075 OFFENBACH (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20110513

Year of fee payment: 14

Ref country code: CH

Payment date: 20110524

Year of fee payment: 14

Ref country code: FR

Payment date: 20110607

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110520

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110520

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120515

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59800603

Country of ref document: DE

Effective date: 20121201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120514

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201