EP0875673B1 - Verfahren zum Steuern einer Brennkraftmaschine - Google Patents

Verfahren zum Steuern einer Brennkraftmaschine Download PDF

Info

Publication number
EP0875673B1
EP0875673B1 EP98107031A EP98107031A EP0875673B1 EP 0875673 B1 EP0875673 B1 EP 0875673B1 EP 98107031 A EP98107031 A EP 98107031A EP 98107031 A EP98107031 A EP 98107031A EP 0875673 B1 EP0875673 B1 EP 0875673B1
Authority
EP
European Patent Office
Prior art keywords
torque
determined
value
torque contribution
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98107031A
Other languages
English (en)
French (fr)
Other versions
EP0875673A2 (de
EP0875673A3 (de
Inventor
Hong Dr. Zhang
Johann FRÖHLICH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0875673A2 publication Critical patent/EP0875673A2/de
Publication of EP0875673A3 publication Critical patent/EP0875673A3/de
Application granted granted Critical
Publication of EP0875673B1 publication Critical patent/EP0875673B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply
    • F02D31/003Electric control of rotation speed controlling air supply for idle speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • F02D31/008Electric control of rotation speed controlling fuel supply for idle speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • F02D41/083Introducing corrections for particular operating conditions for idling taking into account engine load variation, e.g. air-conditionning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1006Engine torque losses, e.g. friction or pumping losses or losses caused by external loads of accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1012Engine speed gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque

Definitions

  • the invention relates to a method for controlling an internal combustion engine, especially when idling.
  • a pedal position sensor is provided which detects the pedal position of an accelerator pedal.
  • On Driver request is derived from the pedal position. From the Driver request becomes a setpoint for that of a powertrain output torque to be output determined.
  • the setpoint of the output torque is converted into a setpoint for that of a drive unit on the clutch to output torque implemented.
  • a setpoint for an indexed torque is depending on the target clutch torque and a loss torque determined.
  • the loss torque is taken into account Losses due to friction as well as contributions from auxiliary units, like air conditioning or power steering.
  • an idle speed controller is provided that uses a PID control strategy a fine adjustment to the idle speed performs. How the idle controller is designed, however, is not described.
  • the object of the invention is to create a method with which an internal combustion engine is precise and reliable too is controlled in the idle operating state.
  • the task is characterized by the features of the independent claim 1 solved.
  • the method according to claim 1 is characterized in that a first torque contribution is determined using a non-linear control strategy.
  • the first The torque contribution is dependent on a first map from the time derivative of the speed and a difference between the actual value of the speed and a specified one Setpoint speed determined. This has the advantage that a very high control quality is achieved and that the controller Can be applied simply and clearly using the first map is.
  • Another advantage is that the speed setpoint is very can be set quickly and that each one very low speed can be set, reducing fuel consumption is minimized.
  • a integrated second torque contribution via a non-linear Integral control strategy determined.
  • the second torque contribution is determined based on a second map from the time derivative of the speed and one Difference between the actual value and the speed and a setpoint the speed.
  • the second map is advantageous Applicable that an overshoot of the actual speed prevented after a jump in the setpoint speed and at the same time the actual speed value in minimum Time follows the setpoint of the speed.
  • the first torque contribution is limited such that it greater than or equal to a predetermined third threshold is.
  • This limitation occurs when there is a transition from one further operating state in the operating state of idling takes place and until the first torque contribution is greater than the first threshold.
  • An internal combustion engine (FIG. 1) comprises an intake tract 1, in which a throttle valve 10 is arranged and an engine block 2, which has a cylinder 20 and a crankshaft 21.
  • a piston 22, a connecting rod 23 and a spark plug 24 are assigned to the cylinder 20.
  • the connecting rod 23 is connected to the piston 22 and the crankshaft 21.
  • An injection valve 3 is provided, which is a single injection system is assigned and in the vicinity of the cylinder 20th is arranged on the intake tract 1.
  • the internal combustion engine further comprises an exhaust tract 4, in which a catalyst 40 is arranged.
  • the internal combustion engine is in FIG. 1 shown with a cylinder 20. Preferably it includes however several cylinders.
  • the injection valve 3 can also be one Central injection system or a direct injection system be assigned.
  • a control device 5 for the internal combustion engine is provided, the sensors are assigned to the various measured variables record and determine the measured value of the measured variable.
  • the control device 5 determines depending on at least a measured variable one or more control signals, each control an actuator.
  • the sensors are a pedal position sensor 6, which is a pedal position PV of an accelerator pedal 7 detects a throttle position transmitter 11, which is an opening degree THR of the throttle valve detects an air mass meter 12, the air mass flow MAF detects and / or an intake manifold pressure sensor 13, the one Manifold pressure MAP detects a temperature sensor 14, the one Intake air temperature TAL detected, possibly also another Temperature sensor 25, the cooling water temperature TCO detects a speed sensor 26, the speed of the crankshaft detects and an oxygen probe 41, the residual oxygen content of the exhaust gas and this an air number LAM maps.
  • a pedal position sensor 6 which is a pedal position PV of an accelerator pedal 7 detects a throttle position transmitter 11, which is an opening degree THR of the throttle valve detects an air mass meter 12, the air mass flow MAF detects and / or an intake manifold pressure sensor 13, the one Manifold pressure MAP detects a temperature sensor 14, the one Intake air temperature TAL detected, possibly also another Temperature sensor 25, the cooling water temperature TCO detects a
  • Operating variables include the measured variables and those derived from them Sizes, like an ambient pressure.
  • the actuators include one actuator and one actuator each.
  • the actuator is an electromotive drive, an electromagnetic one Drive, a mechanical drive or another the Drive known to those skilled in the art.
  • the actuators are as a throttle valve 10, as an injection valve 3, as a spark plug 24, as a switch, not shown, between two different Intake pipe lengths, as a device, not shown for adjusting the stroke course, the start of stroke or the end of stroke a gas exchange valve or as an actuator in one not Bypass shown to the throttle valve 10 is formed.
  • On The actuators are each assigned to the following Actuator referred.
  • the control device 5 is preferably electronic Engine control trained. However, it can also have several Control devices that are electrically conductive with each other are connected, e.g. via a bus system.
  • the crankshaft 21 is via a clutch 8 with a transmission 9 can be coupled. If the transmission 9 as an automatic transmission is formed, then the clutch 8 is a converter lock-up clutch, preferably with a hydrodynamic converter, educated.
  • FIG. 2 shows a block diagram of the control device 5.
  • a control device is also in the older application DE 196 12 455 A1 described, the content in this regard is hereby included.
  • a map KF5 becomes dependent on the measured value MAF_AV of the air mass flow and the speed N_AV a first contribution determined for a loss torque TQ_LOSS.
  • the first post takes charge exchange losses into account.
  • a second post the loss torque TQ_LOSS becomes a sixth Map KF6 determined depending on the cooling water temperature.
  • the first post and the second post are on a first Summing point S1 added.
  • For the loss torque TQ_LOSS can also have a torque requirement of Auxiliary units, such as a generator or an air conditioning compressor, be taken into account.
  • a minimal torque TQ_MIN which are minimally applied to the coupling 8 can, depending on the loss torque TQ_LOSS and the measured value N_AV of the speed determined.
  • a maximum torque TQ_MAX the can be applied to the clutch, depending on the Torque loss TQ_LOSS and the measured value N_AV of the speed determined.
  • a torque factor TQF determined in a block B3, depending on the measured value N_AV Speed and the pedal position PV a torque factor TQF determined.
  • the torque factor TQF preferably represents one dimensionless quantity with a value range between 0 and 1
  • the torque factor TQF is preferably from a map determined.
  • an actuating signal from a Driving speed controller are taken into account.
  • the torque factor TQF is in a multiplier M1 multiplied by the difference of the maximum torque TQ_MAX and the minimum torque TQ_MIN linked. In the Summing point S3 then also becomes the minimum torque TQ_MIN added. At the output of the summing point S3 then a setpoint TQ_REQ_SP of the driver's desired torque the clutch 8 that a driver of the vehicle in the the internal combustion engine is arranged on the clutch 8 desired is.
  • Block B4 a setpoint TQ_IS_SP of the torque at idle and a torque reserve TQ_ADD_IS depending on the actual value N_AV of the speed and the cooling water temperature TCO determined. Block B4 continues to function described in detail below with reference to FIG. 3.
  • a maximum selection is made from the target value TQ_IS_SP of the idle torque and the setpoint TQ_REQ_SP of the driver's desired torque on the clutch.
  • alternative can also in the operating state of the idle Setpoint TQ_IS_SP and in the other operating states of the Setpoint TQ_REQ_SP of the driver's desired torque at the output of the B5 blocks.
  • the sum of the Setpoint TQ_IS_SP of the idle torque and the setpoint TQ_REQ_SP of the driver's desired torque is the sum of the Setpoint TQ_IS_SP of the idle torque and the setpoint TQ_REQ_SP of the driver's desired torque.
  • the setpoint is then corrected in block B6 TQ_REQ_SP of the driver's desired torque or the setpoint of the idle torque.
  • the output size of the block B6 is the target torque TQ_SP of the clutch torque.
  • a target value TQI_SP of the indexed Coupling torque determined. To do this, the setpoint TQ_SP of the clutch torque and the loss torque TQ_LOSS added.
  • the setpoint TQI_MAF_SP is preferred over the Air mass flow to be influenced torque additionally dependent of the torque reserve TQ_ADD_IS and others Leading torques, for example for a catalyst heater or determined for a traction control.
  • the setpoint TQI_MAF_SP of the air mass flow influencing torque to a maximum permissible value be limited by an anti-slip control, a Speed limitation, an engine drag torque control or a Catalyst protection function is specified.
  • TQI_MAF_SP is dependent on the setpoint of the torque to be influenced via the air mass flow a setpoint MAF_SP of the air mass flow is determined.
  • Block B9 is the control signal for setting a desired one Throttle valve opening degrees determined.
  • Block B10 depending on the target value TQI_SP indicated clutch torque a setpoint TI_SP one Injection time for injector 3 determined.
  • Block B11 becomes dependent on the setpoint TI_SP of the injection time an actuating signal for controlling the injection valve 3 is determined.
  • the control signals for the throttle valve 10, the spark plug 24 and the injection valve 3 are preferably from maps determined.
  • Figure 3 shows an embodiment of the controller, as in the block B4 is arranged.
  • a setpoint of the speed N_SP becomes a fourth map KF4 depending on the cooling water temperature TCO determined.
  • the setpoint N_SP of the speed also determined depending on other farm sizes.
  • Block B15 becomes a speed difference N_DIF from the target value N_SP and the actual value N_AV of the speed determined.
  • a derivation N_GRD of the actual value N_AV of the speed determined This will be a well known numerical differentiation method used.
  • blocks B17, B18 and B19 it is determined whether the Internal combustion engine is in the operating state of idling.
  • block B17 it is checked whether the pedal value PV is smaller is as a first predetermined threshold value SW1.
  • Block B18 is checked whether the setpoint N_AV of the speed is less than a second predetermined threshold value SW2. If the conditions of blocks B17 and B18 are both fulfilled, then the variable LV_IS is set to the value TRUE in block B19 and thus idle is recognized. Are the condition of If blocks B17 or B18 are not met, the variable LV_IS set to the value FALSE.
  • the controller of block B4 for regulating the speed when idling has a non-linear PD controller 91 and a non-linear one I controller 92.
  • a first map KF1 becomes depending on the speed difference value N_DIF and the derivative N_GRD the speed a first torque contribution TQ_1_PD determined.
  • the first map KF1 is due to driving tests existing adhesion between the internal combustion engine and the transmission 9 determined.
  • a map KF3 also becomes the first torque contribution TQ_1_PD depending on the Speed difference N_DIF and the derivative N_GRD of the speed determined.
  • the third map KF3 is due to driving tests non-existent adhesion between the internal combustion engine and the transmission determined.
  • the first threshold corresponds to the corrected first Torque contribution TQ_1_PD_C.
  • the first threshold can alternatively but also be fixed.
  • a switching mechanism is provided that is dependent from the output size of block B22, the logical variable LV_IS and a logical variable LV_DT that have the value TRUE if there is a frictional connection between the internal combustion engine, and otherwise has the value FALSE, a variable LV_TQ_P_D_ACT assigned the values FALSE or TRUE. If the variable LV_TQ_P_D_ACT has the value FALSE, is then in a block B24 the first torque contribution TQ_1_PD in one predetermined period of time to a predetermined value, e.g. zero recycled.
  • Block B25 is designed as a switch, which puts the output of block B21 at its output, if the variable LV_TQ_P_D_ACT has the value TRUE and otherwise the output size of block B24 to the output of the block B25 sets.
  • Block B23 has a first AND gate L1, at its inputs the output size of block B22 and the logical variable LV_IS and a first NOT gate L2 at its input the logical variable LV_IS is present.
  • An RS flip-flop L3 it is provided that the output variable of the first AND gate L1 is present and at its reset input the output variable of the first NOT gate L2 is present.
  • the Block B23 also has a second NOT gate L4, at its Input the logical variable LV_DT, and a second AND gate L5, at the inputs of which the logical variable LV_IS and the output variable of the second NOT gate L4 are present.
  • an OR gate L6 is provided at its inputs the output variables of the RS flip-flop L3 and the second AND elements L5 are present and the variable's output variable LV_TQ_P_D_ACT is. If the engine is outside the operating state of the idle has the variable LV_TQ_P_D_ACT the value FALSE.
  • variable LV_TQ_P_D_ACT keeps the Value FALSE until the first torque contribution TQ_1_PD is greater than the corrected first torque contribution TQ_1_PD_C.
  • a jerk during the transition to the operating state idling is avoided because at the exit of the Blocks B25 the output of block B24 is present as long as the variable LV_TQ_P_D_ACT has the value FALSE. So is one good driveability of the vehicle in which the internal combustion engine is arranged, guaranteed.
  • the variable LV_TQ_P_D_ACT is assigned the value FALSE. This has the consequence that the first torque contribution TQ_1_PD is present at the output of block B25.
  • the nonlinear I controller 92 has a second characteristic map KF2, from which a second torque contribution TQ_2_I is determined depending on the difference value N_DIF of the speed and the derivative N_GRD of the speed.
  • the integrated second torque contribution TQ_2_I is decremented up to a passive value TQ_2_PAS of the integrated second torque contribution.
  • the output variable of map KF2 is switched through if the variable LV_IS has the value TRUE, otherwise the output variable of block B26 is switched through.
  • the second torque contribution TQ_2 is integrated in a block B28.
  • the integrated second torque contribution TQ_2_I is limited between a fourth threshold value SW4 and a fifth threshold value SW5. The fourth threshold value and the fifth threshold value preferably depend on whether there is a frictional connection between the internal combustion engine and the transmission 9.
  • a block B34 the addition of the first Torque contribution TQ_1_PD and the integrated second Torque contribution TQ_2_I a setpoint TQ_IS_SP of the torque calculated on the clutch.
  • N_AV Speed is the difference value N_DIF of the speed and the derivative N_GRD the speed a predictive value N_DIF_PRED for the Speed difference determined.
  • N_DIF_PRED for the Speed difference determined.
  • TQ_ADD_IS is determined from the predicted value. This increases the control quality and makes it quick Swinging in of the control loop enables.
  • Maps are from stationary Measurements taken on an engine test bench or in driving tests.

Description

Die Erfindung betrifft ein Verfahren zum Steuern einer Brennkraftmaschine, insbesondere im Betriebszustand des Leerlaufs.
Aus der DE 43 04 779 A1 ist ein Verfahren zum Steuern einer Brennkraftmaschine bekannt. Ein Pedalstellungsgeber ist vorgesehen, der die Pedalstellung eines Fahrpedals erfaßt. Ein Fahrerwunsch wird aus der Pedalstellung abgeleitet. Aus dem Fahrerwunsch wird ein Sollwert für das von einem Antriebsstrang abzugebende Abtriebsdrehmoment ermittelt. Der Sollwert des Abtriebsdrehmoments wird in einen Sollwert für das von einer Antriebseinheit an der Kupplung abzugebende Drehmoment umgesetzt. Ein Sollwert für ein indiziertes Drehmoment wird abhängig von dem Soll-Kupplungs-Moment und einem Verlustdrehmoment ermittelt. Das Verlustdrehmoment berücksichtigt Verluste durch Reibung sowie Beiträge von Nebenaggregaten, wie einer Klimaanlage oder einer Servolenkung. Außerdem ist ein Leerlaufdrehzahlregler vorgesehen, der über eine PID-Regelstrategie eine Feineinstellung an der Leerlaufdrehzahl vornimmt. Wie der Leerlaufregler ausgebildet ist, ist jedoch nicht beschrieben.
Die Aufgabe der Erfindung ist es, ein Verfahren zu schaffen, mit dem eine Brennkraftmaschine präzise und zuverlässig auch im Betriebszustand des Leerlaufs gesteuert wird.
Die Aufgabe wird durch die Merkmale des unabhängigen Patentanspruchs 1 gelöst. Das Verfahren gemäß Patentanspruch 1 zeichnet sich dadurch aus, daß ein erster Drehmomentbeitrag über eine nichtlineare Regelstrategie ermittelt wird. Der erste Drehmomentbeitrag wird aus einem ersten Kennfeld abhängig von der zeitlichen Ableitung der Drehzahl und einer Differenz zwischen dem Istwert der Drehzahl und einem vorgegebenen Sollwert der Drehzahl ermittelt. Dies hat den Vorteil, daß eine sehr hohe Regelgüte erreicht wird und daß der Regler einfach und übersichtlich mittels des ersten Kennfelds applizierbar ist.
Ein weiterer Vorteil ist, daß der Sollwert der Drehzahl sehr schnell eingestellt werden kann und daß jeweils eine sehr niedrige Drehzahl eingestellt werden kann, wodurch der Kraftstoffverbrauch minimiert wird.
In einer vorteilhaften Ausgestaltung der Erfindung wird ein integrierter zweiter Drehmomentbeitrag über eine nichtlineare Integral-Regelstrategie ermittelt. Der zweite Drehmomentbeitrag wird aus einem zweiten Kennfeld ermittelt und zwar abhängig von der zeitlichen Ableitung der Drehzahl und einer Differenz zwischen dem Istwert und der Drehzahl und ein Sollwert der Drehzahl. Das zweite Kennfeld ist vorteilhaft so applizierbar, daß ein Überschwingen des Istwertes der Drehzahl nach einem Sprung des Sollwertes der Drehzahl verhindert wird und gleichzeitig der Istwert der Drehzahl in minimaler Zeit dem Sollwert der Drehzahl folgt.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung wird der erste Drehmomentbeitrag derart begrenzt, daß er größer oder gleich einem vorgegebenen dritten Schwellenwert ist. Diese Begrenzung erfolgt, wenn ein Übergang von einem weiteren Betriebszustand in den Betriebszustand des Leerlaufs stattfindet und bis der erste Drehmomentbeitrag größer ist als der erste Schwellenwert. Dadurch wird vorteilhaft ein Ruckeln und ein Lastschlag an der Brennkraftmaschine verhindert. So ergibt sich eine sehr gute Fahrbarkeit eines Fahrzeugs, in dem die Brennkraftmaschine angeordnet ist.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
Ausführungsbeispiele der Erfindung werden im folgenden unter Bezugnahme auf die schematischen Zeichnungen erläutert. Es zeigen:
  • Figur 1 eine Brennkraftmaschine mit einer Steuereinrichtung zum Steuern der Brennkraftmaschine,
  • Figur 2 ein Blockschaltbild der Steuereinrichtung,
  • Figur 3 das Blockschaltbild einer Leerlaufdrehzahlregelung.
  • Elemente gleicher Konstruktion und Funktion sind mit den gleichen Bezugszeichen versehen und werden jeweils nur einmal beschrieben.
    Eine Brennkraftmaschine (Figur 1) umfaßt einen Ansaugtrakt 1, in dem eine Drosselklappe 10 angeordnet ist und ein Motorblock 2, der einen Zylinder 20 und eine Kurbelwelle 21 aufweist. Ein Kolben 22, eine Pleuelstange 23 und eine Zündkerze 24 sind dem Zylinder 20 zugeordnet. Die Pleuelstange 23 ist mit dem Kolben 22 und der Kurbelwelle 21 verbunden.
    Ein Einspritzventil 3 ist vorgesehen, das einem Einzeleinspritzsystem zugeordnet ist und in der Nähe des Zylinders 20 an dem Ansaugtrakt 1 angeordnet ist. Die Brennkraftmaschine umfaßt desweiteren einen Abgastrakt 4, in dem ein Katalysator 40 angeordnet ist. Die Brennkraftmaschine ist in der Figur 1 mit einem Zylinder 20 dargestellt. Vorzugsweise umfaßt sie jedoch mehrere Zylinder. Das Einspritzventil 3 kann auch einem Zentraleinspritzsystem oder einem Direkteinspritzsystem zugeordnet sein.
    Eine Steuereinrichtung 5 für die Brennkraftmaschine ist vorgesehen, der Sensoren zugeordnet sind, die verschiedene Meßgrößen erfassen und jeweils den Meßwert der Meßgröße ermitteln. Die Steuereinrichtung 5 ermittelt abhängig von mindestens einer Meßgröße ein oder mehrere Stellsignale, die jeweils ein Stellgerät steuern.
    Die Sensoren sind ein Pedalstellungsgeber 6, der eine Pedalstellung PV eines Fahrpedals 7 erfaßt, ein Drosselklappenstellungsgeber 11, der ein Öffnungsgrad THR der Drosselklappe erfaßt, ein Luftmassenmesser 12, der einen Luftmassenstrom MAF erfaßt und/oder ein Saugrohrdrucksensor 13, der einen Saugrohrdruck MAP erfaßt, ein Temperatursensor 14, der eine Ansauglufttemperatur TAL erfaßt, gegebenenfalls auch ein weiterer Temperatursensor 25, der eine Kühlwassertemperatur TCO erfaßt, ein Drehzahlgeber 26, der eine Drehzahl der Kurbelwelle erfaßt und eine Sauerstoffsonde 41, die den Restsauerstoffgehalt des Abgases erfaßt und die diesem eine Luftzahl LAM zuordnet. Je nach Ausführungsform der Erfindung kann auch eine beliebige Untermenge der genannten Sensoren oder auch zusätzliche Sensoren vorhanden sein. Insbesondere kann bei einer kostengünstigen Ausführungsform der Erfindung auf den Luftmassenmesser und/oder dem Saugdrucksensor verzichtet werden. Die Meßwerte, die von den Sensoren ermittelt werden, sind jeweils durch ein nachgestelltes AV zu der jeweiligen Meßgröße gekennzeichnet, wenn dies zur Klarheit notwendig ist.
    Betriebsgrößen umfassen die Meßgrößen und aus diesen abgeleitete Größen, wie ein Umgebungsdruck. Die Stellgeräte umfassen jeweils einen Stellantrieb und ein Stellglied. Der Stellantrieb ist ein elektromotorischer Antrieb, ein elektromagnetische Antrieb, ein mechanischer Antrieb oder ein weiterer dem Fachmann bekannter Antrieb. Die Stellglieder sind als Drosselklappe 10, als Einspritzventil 3, als Zündkerze 24, als ein nicht dargestellter Umschalter zwischen zwei verschiedenen Saugrohrlängen, als eine nicht dargestellte Vorrichtung zum Verstellen Hubverlaufs, des Hubbeginns oder des Hubendes eines Gaswechselventils oder als ein Steller in einem nicht dargestellten Bypaß zu der Drosselklappe 10 ausgebildet. Auf die Stellgeräte wird im folgenden jeweils mit dem zugeordneten Stellglied Bezug genommen.
    Die Steuereinrichtung 5 ist vorzugsweise als elektronische Motorsteuerung ausgebildet. Sie kann jedoch auch mehrere Steuergeräte umfassen, die elektrisch leitend miteinander verbunden sind, so z.B. über ein Bussystem.
    Die Kurbelwelle 21 ist über eine Kupplung 8 mit einem Getriebe 9 koppelbar. Wenn das Getriebe 9 als Automatikgetriebe ausgebildet ist, dann ist die Kupplung 8 als Wandlerüberbrükkungskupplung, vorzugsweise mit einem hydrodynamischen Wandler, ausgebildet.
    Figur 2 zeigt ein Blockschaltbild der Steuereinrichtung 5. Eine derartige Steuereinrichtung ist auch in der älteren Anmeldung DE 196 12 455 A1 beschrieben, deren Inhalt diesbezüglich hiermit einbezogen ist.
    Aus einem Kennfeld KF5 wird abhängig von dem Meßwert MAF_AV des Luftmassenstroms und der Drehzahl N_AV ein erster Beitrag zu einem Verlustdrehmoment TQ_LOSS ermittelt. Der erste Beitrag berücksichtigt Ladungswechselverluste. Ein zweiter Beitrag zu dem Verlustdrehmoment TQ_LOSS wird aus einem sechsten Kennfeld KF6 abhängig von der Kühlwassertemperatur ermittelt. Der erste Beitrag und der zweite Beitrag werden an einer ersten Summierstelle S1 addiert. Für das Verlustdrehmoment TQ_LOSS kann auch zusätzlich noch ein Drehmomentbedarf von Nebenaggregaten, wie ein Generator oder ein Klimakompressor, berücksichtigt werden.
    In einem ersten Block B1 wird ein minimales Drehmoment TQ_MIN, das an der Kupplung 8 minimal aufgebracht werden kann, abhängig von dem Verlustdrehmoment TQ_LOSS und dem Meßwert N_AV der Drehzahl ermittelt.
    In einem Block B2 wird ein maximales Drehmoment TQ_MAX, das an der Kupplung aufgebracht werden kann, abhängig von dem Verlustdrehmoment TQ_LOSS und dem Meßwert N_AV der Drehzahl ermittelt.
    In einem Block B3 wird abhängig von dem Meßwert N_AV der Drehzahl und der Pedalstellung PV ein Drehmomentfaktor TQF ermittelt. Der Drehmomentfaktor TQF stellt vorzugsweise eine dimensionslose Größe mit einem Wertebereich zwischen 0 und 1 dar. Der Drehmomentfaktor TQF wird bevorzugt aus einem Kennfeld ermittelt. Zusätzlich kann auch noch ein Stellsignal eines Fahrgeschwindigkeitsreglers berücksichtigt werden.
    Der Drehmomentfaktor TQF wird in einer Multiplizierstelle M1 multiplikativ mit der Differenz des maximalen Drehmoments TQ_MAX und dem minimalen Drehmoment TQ_MIN verknüpft. In der Summierstelle S3 wird dann auch das minimale Drehmoment TQ_MIN addiert. An dem Ausgang der Summierstelle S3 liegt dann ein Sollwert TQ_REQ_SP des Fahrerwunschdrehmoments an der Kupplung 8 an, daß von einem Fahrer des Fahrzeugs in dem die Brennkraftmaschine angeordnet ist, an der Kupplung 8 gewünscht ist.
    In einem Block B4 wird ein Sollwert TQ_IS_SP des Drehmoments im Leerlauf und ein Drehmomentvorhalt TQ_ADD_IS abhängig von dem Istwert N_AV der Drehzahl und der Kühlwassertemperatur TCO ermittelt. Die Funktionsweise des Blocks B4 wird weiter unten anhand der Figur 3 ausführlich beschrieben.
    In einem Block B5 erfolgt eine Maximalauswahl aus dem Sollwert TQ_IS_SP des Leerlaufdrehmoments und dem Sollwert TQ_REQ_SP des Fahrerwunschdrehmoments an der Kupplung. Alternativ kann aber auch in dem Betriebszustand des Leerlaufs der Sollwert TQ_IS_SP und in den sonstigen Betriebszuständen der Sollwert TQ_REQ_SP des Fahrerwunschdrehmoments am Ausgang des Blocks B5 anliegen. Ebenso kann in dem Block B5 die Summe des Sollwertes TQ_IS_SP des Leerlaufdrehmoments und des Sollwertes TQ_REQ_SP des Fahrerwunschdrehmoments gebildet werden.
    Im Block B6 erfolgt dann auch noch eine Korrektur des Sollwertes TQ_REQ_SP des Fahrerwunschdrehmoments oder des Sollwertes des Leerlaufdrehmoments. Die Ausgangsgröße des Blocks B6 ist der Sollwert TQ_SP des Kupplungsdrehmoments.
    In der Summierstelle S4 wird ein Sollwert TQI_SP des indizierten Kupplungsdrehmoments ermittelt. Dazu werden der Sollwert TQ_SP des Kupplungsdrehmoments und das Verlustdrehmoment TQ_LOSS addiert.
    In einem Block B7 wird ein Sollwert TQI_MAF_SP des über den Luftmassenstrom zu beeinflussenden Drehmoments abhängig von dem Sollwert TQI_SP des indizierten Kupplungsdrehmoments ermittelt. Bevorzugt wird der Sollwert TQI_MAF_SP des über den Luftmassenstrom zu beeinflussenden Drehmoments zusätzlich abhängig von dem Drehmomentvorhalt TQ_ADD_IS und auch weiteren Vorhaltedrehmomenten, zum Beispiel für eine Katalysatorheizung oder für eine Traktionskontrolle ermittelt. Außerdem kann der Sollwert TQI_MAF_SP des über den Luftmassenstrom zu beeinflussenden Drehmoments auf einen maximal zulässigen Wert begrenzt werden, der durch eine Antischlupfregelung, eine Drehzahlbegrenzung, eine Motorschlepp-Momentregelung oder eine Katalysatorschutzfunktion vorgegeben ist.
    In einem Block B8 wird abhängig von dem Sollwert TQI_MAF_SP des über den Luftmassenstrom zu beeinflussenden Drehmoments ein Sollwert MAF_SP des Luftmassenstroms ermittelt. In einem Block B9 wird das Stellsignal zum Einstellen eines gewünschten Öffnungsgrades der Drosselklappe ermittelt.
    In einem Block B10 wird abhängig von dem Sollwert TQI_SP des indizierten Kupplungsdrehmoments ein Sollwert TI_SP einer Einspritzzeit für das Einspritzventil 3 ermittelt. In dem Block B11 wird abhängig von dem Sollwert TI_SP der Einspritzzeit ein Stellsignal zum Steuern des Einspritzventils 3 ermittelt.
    In dem Block B12 wird abhängig von dem Sollwert TQI_SP des indizierten Kupplungsdrehmoments ein Sollwert IG_SP eines Zündwinkels ermittelt. In dem Block B13 wird dann abhängig von dem Sollwert IG_SP des Zündwinkels ein entsprechendes Stellsignal zum Steuern der Zündkerze 24 ermittelt.
    Die Stellsignale für die Drosselklappe 10, die Zündkerze 24 und das Einspritzventil 3 werden vorzugsweise aus Kennfeldern ermittelt.
    Figur 3 zeigt ein Ausführungsbeispiel des Reglers, wie er in dem Block B4 angeordnet ist. Ein Sollwert der Drehzahl N_SP wird aus einem vierten Kennfeld KF4 abhängig von der Kühlwassertemperatur TCO ermittelt. In einer komfortableren Ausgestaltung der Erfindung wird der Sollwert N_SP der Drehzahl auch abhängig von weiteren Betriebsgrößen ermittelt. In einem Block B15 wird eine Drehzahldifferenz N_DIF aus dem Sollwert N_SP und dem Istwert N_AV der Drehzahl ermittelt.
    In einem Block B16 wird eine Ableitung N_GRD des Istwertes N_AV der Drehzahl ermittelt. Dazu wird ein allgemein bekanntes numerisches Differenzierverfahren verwendet.
    In den Blöcken B17, B18 und B19 wird ermittelt, ob sich die Brennkraftmaschine in dem Betriebszustand des Leerlaufs befindet. Im Block B17 wird geprüft, ob der Pedalwert PV kleiner ist als ein erster vorgegebener Schwellenwert SW1. In dem Block B18 wird geprüft, ob der Sollwert N_AV der Drehzahl kleiner ist als ein zweiter vorgegebener Schwellenwert SW2. Sind die Bedingungen der Blöcke B17 und B18 beide erfüllt, so wird im Block B19 die Variable LV_IS auf den Wert TRUE gesetzt und somit der Leerlauf erkannt. Sind die Bedingung der Blöcke B17 oder B18 nicht erfüllt, so wird die Variable LV_IS auf den Wert FALSE gesetzt.
    Der Regler des Blocks B4 zum Regeln der Drehzahl im Leerlaufzustand hat einen nichtlinearen PD-Regler 91 und einen nichtlinearen I-Regler 92.
    Im folgenden wird die Ausgestaltung des nichtlinearen PD-Reglers 91 beschrieben. Aus einem ersten Kennfeld KF1 wird abhängig von dem Drehzahldifferenzwert N_DIF und der Ableitung N_GRD der Drehzahl ein erster Drehmomentbeitrag TQ_1_PD ermittelt. Das erste Kennfeld KF1 ist durch Fahrversuche bei vorhandenen Kraftschluß zwischen der Brennkraftmaschine und dem Getriebe 9 ermittelt. Aus einem Kennfeld KF3 wird ebenfalls der erste Drehmomentbeitrag TQ_1_PD abhängig von der Drehzahldifferenz N_DIF und der Ableitung N_GRD der Drehzahl ermittelt. Das dritte Kennfeld KF3 ist durch Fahrversuche bei nicht vorhandenem Kraftschluß zwischen der Brennkraftmaschine und dem Getriebe ermittelt. In einem Block B21 ist ein nicht dargestellter Schalter vorgesehen, der bei vorhandenem Kraftschluß zwischen der Brennkraftmaschine und dem Getriebe 9 den aus dem ersten Kennfeld KF1 ermittelten ersten Drehmomentbeitrag TQ_Q_PD seinem Ausgang zuführt und sonst den aus dem dritten Kennfeld KF3 ermittelten ersten Drehmomentbeitrag TQ_1_PD seinem Ausgang zuführt. In dem bevorzugten Ausführungsbeispiel wird der erste Drehmomentbeitrag TQ_1_PD abhängig von den Werten der Ausgangsgrößen von Blöcken B22, B23, B24 in einem Block B25 korrigiert, dessen Ausgangsgröße ein korrigierter erster Drehmomentbeitrag TQ_1_PD_C ist.
    In dem Block B22 wird geprüft, ob der erste Drehmomentbeitrag TQ_1_PD größer ist als ein vorgegebener erster Schwellenwert. Der erste Schwellenwert entspricht dem korrigierten ersten Drehmomentbeitrag TQ_1_PD_C. Der erste Schwellenwert kann alternativ aber auch fest vorgegeben sein.
    In dem Block B23 ist ein Schaltwerk vorgesehen, das abhängig von der Ausgangsgröße des Blocks B22, der logischen Variable LV_IS und einer logischen Variable LV_DT, die den Wert TRUE hat, wenn Kraftschluß zwischen der Brennkraftmaschine besteht, und sonst den Wert FALSE hat, eine Variable LV_TQ_P_D_ACT mit den Werten FALSE oder TRUE belegt. Falls die Variable LV_TQ_P_D_ACT den Wert FALSE hat, wird dann in einem Block B24 der erste Drehmomentbeitrag TQ_1_PD in einer vorgegebenen Zeitdauer auf einen vorgegebenen Wert, z.B. Null zurückgeführt. Der Block B25 ist als Schalter ausgebildet, der die Ausgangsgröße des Blocks B21 an seinen Ausgang legt, falls die Variable LV_TQ_P_D_ACT den Wert TRUE hat und sonst die Ausgangsgröße des Blocks B24 an den Ausgang des Blocks B25 legt.
    Der Block B23 hat ein erste UND-Glied L1, an dessen Eingängen die Ausgangsgröße des Blocks B22 und die logische Variable LV_IS anliegen, und ein erstes NICHT-Glied L2, an dessen Eingang die logische Variable LV_IS anliegt. Ein RS-Flipflop L3 ist vorgesehen, an dessen Setz-Eingang die Ausgangsgröße des ersten UND-Glieds L1 anliegt und an dessen Rücksetz-Eingang die Ausgangsgröße des ersten NICHT-Glieds L2 anliegt. Der Block B23 hat ferner ein zweites NICHT-Glied L4, an dessen Eingang die logische Variable LV_DT anliegt, und ein zweites UND-Glied L5, an dessen Eingängen die logische Variable LV_IS und die Ausgangsgröße des zweiten NICHT-Glieds L4 anliegen. Des weiteren ist ein ODER-Glied L6 vorgesehen, an dessen Eingängen die Ausgangsgrößen des RS-Flipflops L3 und des zweiten UND-Glieds L5 anliegen und dessen Ausgangsgröße die Variable LV_TQ_P_D_ACT ist. Wenn sich die Brennkraftmaschine außerhalb des Betriebszustands des Leerlaufs befindet, hat die Variable LV_TQ_P_D_ACT den Wert FALSE.
    Erfolgt ein Übergang in den Betriebszustand des Leerlaufs und ist Kraftschluß zwischen der Brennkraftmaschine und dem Getriebe vorhanden, so behält die Variable LV_TQ_P_D_ACT den Wert FALSE solange, bis der erste Drehmomentbeitrag TQ_1_PD größer ist als der korrigierte erste Drehmomentbeitrag TQ_1_PD_C. Ein Ruckeln beim Übergang in den Betriebszustand des Leerlaufs wird dadurch vermieden, da am Ausgang des Blocks B25 die Ausgangsgröße des Blocks B24 anliegt, solange die Variable LV_TQ_P_D_ACT den Werts FALSE hat. So ist eine gute Fahrbarkeit des Fahrzeugs in dem die Brennkraftmaschine angeordnet ist, gewährleistet.
    Sobald in dem Betriebszustand des Leerlaufs der erste Drehmomentbeitrag TQ_1_PD größer ist als der korrigierte erste Drehmomentbeitrag TQ_1_PD_C oder kein Kraftschluß zwischen der Brennkraftmaschine und dem Getriebe vorhanden ist, wird der Variable LV_TQ_P_D_ACT der Wert FALSE zugewiesen. Dies hat dann zur Folge, daß am Ausgang des Blocks B25 der erste Drehmomentbeitrag TQ_1_PD anliegt.
    Der nichtlineare I-Regler 92 hat ein zweites Kennfeld KF2, aus dem abhängig von dem Differenzwert N_DIF der Drehzahl und der Ableitung N_GRD der Drehzahl ein zweiter Drehmomentbeitrag TQ_2_I ermittelt wird. In dem Block B26 erfolgt ein Dekrementieren des integrierten zweiten Drehmomentbeitrags TQ_2_I und zwar bis zu einem Passivwert TQ_2_PAS des integrierten zweiten Drehmomentenbeitrags. In einem Block B27 wird die Ausgangsgröße des Kennfeldes KF2 durchgeschaltet, wenn die Variable LV_IS den Wert TRUE hat, sonst wird die Ausgangsgröße des Blocks B26 durchgeschaltet. In einem Block B28 wird der zweite Drehmomentbeitrag TQ_2 integriert. In dem Block B29 erfolgt eine Begrenzung des integrierten zweiten Drehmomentbeitrags TQ_2_I zwischen einem vierten Schwellenwert SW4 und einem fünften Schwellenwert SW5. Vorzugsweise hängen der vierte Schwellenwert und der fünfte Schwellenwert davon ab, ob ein Kraftschluß zwischen der Brennkraftmaschine und dem Getriebe 9 besteht.
    In einem Block B34 wird dann durch Addition des ersten Drehmomentbeitrags TQ_1_PD und des integrierten zweiten Drehmomentbeitrags TQ_2_I ein Sollwert TQ_IS_SP des Drehmoments an der Kupplung berechnet.
    In einem Block B31 wird abhängig von dem Istwert N_AV der Drehzahl dem Differenzwert N_DIF der Drehzahl und der Ableitung N_GRD der Drehzahl ein Vorhersagewert N_DIF_PRED für die Drehzahldifferenz ermittelt. In einem Block B32 wird abhängig von dem Vorhersagewert der Drehmomentvorhalt TQ_ADD_IS ermittelt. Dadurch wird die Regelungsgüte erhöht und ein schnelles Einschwingen des Regelkreises ermöglicht.
    Die Erfindung ist nicht auf die hier dargestellten Ausführungsbeispiele beschränkt. Kennfelder sind aus stationären Messungen an einen Motorprüfstand oder in Fahrversuchen ermittelt.
    Bezugszeichenliste
    1
    Ansaugtrakt Orsysat
    10
    Drosselklappe
    11
    Drosselklappenstellungsgeber
    12
    Luftmassenmesser
    13
    Saugrohrdrucksensor
    14
    Temperatursensor
    2
    Motorblock DIN ISO 7967 Teil 1
    20
    Zylinder
    21
    Kurbelwelle
    22
    Kolben
    23
    Pleuelstange
    24
    Zündkerze
    25
    weiterer Temperatursensor (TCO)
    26
    Drehzahlgeber
    3
    Einspritzventil
    4
    Abgastrakt Orsysat
    40
    Katalysator
    41
    Sauerstoffsonde
    5
    Steuereinrichtung
    51
    Überwachungseinrichtung
    511
    Beobachter
    512
    Auswerteeinheit
    KF1, KF2, KF3, KF4, KF5
    erstes, zweites, drittes, viertes, fünftes Kennfeld
    6
    Pedalstellungsgeber
    7
    Fahrpedal
    8
    Kupplung
    9
    Getriebe
    Fig. 2: B1
    Block
    Größen:
    XX_MOD
    Schätzwert des XX
    XX_MES
    Meßwert des XX
    PV
    Fahrpedalstellung
    N
    Drehzahl
    THR
    Öffnungsgrad
    MAP
    Saugrohrdruck
    MAF
    Luftmassenstrom
    LAM
    Luftzahl (LAM_AV, LAM_SP)
    TAL
    Ansauglufttemperatur
    TCO
    Kühlwassertemperatur
    TOIL
    Öftemperatur
    TQF Drehmomentfaktor
    TQ_REQ_SP
    Sollwert des Fahrerwunschdrehmoments an der Kupplung
    TQ_IS_SP
    Sollwert des Drehmoments im Leerlauf
    Sollwert des Kupplungsdrehmoments
    TQI_SP
    Sollwert des indizierten Kupplungsdrehmoments
    TQ_LOSS
    Verlustdrehmoment
    TQ_1_PD
    erster Drehmomentenbeitrag
    TQ_2
    zweiter Drehmomentenbeitrag
    TQ_2_I
    integrierter zweiter Drehmomentenbeitrag
    TQ_3
    dritter Drehmomentenbeitrag
    TQ_2_PASSIV
    Passivwert des integrierten zweiten Drehmomentenbeitrags
    KF1
    erstes Kennfeld
    KF2
    zweites Kennfeld
    KF3
    drittes Kennfeld
    B1- B18
    Block
    SW1
    erster Schwellenwert
    SW2
    zweiter Schwellenwert
    SW3
    dritter Schwellenwert   Begr. TQ_2
    SW4
    vierter Schwellenwert
    SW5
    fünfter Schwellenwert
    L1-L6
    Logikblock
    TQI_MAF_SP
    Sollwert des über den Luftmassenstrom zu beeinflussenden Drehmoments
    MAF_SP
    Sollwert des Luftmassenstroms
    TI_SP
    Sollwert Einspritzzeit
    IG_SP
    Sollwert Zündwinkel
    Allg. Begriffe:
  • Sensor(en)
  • Stellgerät(e) i.A. Bez.: Stellglieder verw. klarstell. Stellgr. ->Santr.
  • Stellantrieb
  • Stellglied
  • Meßgröße(n)
  • Betriebsgrößen   Meßgrößen und abgeleitete Größen
  • Stellsignal
  • Stellgrößen
  • Claims (7)

    1. Verfahren zum Steuern einer Brennkraftmaschine, bei dem
      ein erster Drehmomentbeitrag (TQ_1_PD) in dem Betriebszustand des Leerlaufs ermittelt wird und zwar aus einem ersten Kennfeld (KF1) abhängig von der zeitlichen Ableitung (N_GRD) der Drehzahl und einer Differenz zwischen einem vorgegebenen Sollwert (N_SP) der Drehzahl und einem Istwert (N_AV) der Drehzahl,
      ein Sollwert (TQ_IS_SP) des Drehmoments an der Kupplung aus dem ersten Drehmomentbeitrag (TQ_1_PD) abgeleitet wird und
      ein Stellsignal für mindestens ein Stellglied der Brennkraftmaschine aus dem Sollwert (TQ_IS_SP) des Drehmoments abgeleitet wird.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet,
      daß in dem Betriebszustand des Leerlaufs ein zweiter Drehmomentbeitrag (TQ_2) ermittelt wird und zwar aus einem zweiten Kennfeld (KF2) abhängig von der zeitlichen Ableitung (N_GRD) der Drehzahl und einer Differenz zwischen dem Istwert (N_AV) der Drehzahl und einem Sollwert (N_SP) der Drehzahl
      daß der zweite Drehmomentbeitrag (TQ_2) integriert wird und
      daß der Sollwert des Drehmoments (TQ_IS_SP) zusätzlich abhängig von dem integrierten zweiten Drehmomentbeitrag (TQ_2_I) ermittelt wird.
    3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der erste Drehmomentbeitrag (TQ_1_PD) derart begrenzt wird, daß er größer oder gleich einem vorgegebenen dritten Schwellenwert ist, und zwar, wenn ein Übergang von einem weiteren Betriebszustand in den Betriebszustand des Leerlaufs stattfindet und bis der erste Drehmomentbeitrag (TQ_1_PD) größer ist als der dritte Schwellenwert (SW3).
    4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß bei Kraftschluß zwischen der Brennkraftmaschine und einem Getriebe der erste Drehmomentbeitrag (TQ_1_PD) aus dem ersten Kennfeld (KF1) und sonst der erste Drehmomentenbeitrag (TQ_1_PD) aus einem dritten Kennfeld (KF3) abhängig von der zeitlichen Ableitung (N_GRD) der Drehzahl und einer Differenz zwischen dem Istwert (N_AV) der Drehzahl und einem vorgegebenen Sollwert (N_SP) der Drehzahl ermittelt wird.
    5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der integrierte zweite Drehmomentbeitrag (TQ_2_I), nach einem Übergang von dem Betriebszustand des Leerlaufs in den weiteren Betriebszustand über eine Rampenfunktion mit einem vorgegebenen Passivwert (TQ_2_PAS) belegt wird.
    6. Verfahren nach einem der Ansprüche 2 oder 5, dadurch gekennzeichnet, daß der integrierte zweite Drehmomentbeitrag (TQ_2_I) in dem Betriebszustand des Leerlaufs auf einen vierten Schwellenwert (SW4) begrenzt wird, wenn der integrierte zweite Drehmomentbeitrag (TQ_2_I) größer ist als der vierte Schwellenwert (SW4), daß der integrierte zweite Drehmomentbeitrag (TQ_2_I) in dem Betriebszustand des Leerlaufs auf einen fünften Schwellenwert (SW5) begrenzt wird, wenn der integrierte zweite Drehmomentbeitrag (TQ_2_I) kleiner ist als der fünfte Schwellenwert (SW5), und daß der vierte und fünfte Schwellenwert (SW4, SW5) davon abhängen, ob ein Kraftschluß zwischen der Brennkraftmaschine und dem Getriebe (9) besteht.
    7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Drehmomentvorhalt (TQ_ADD_IS) ermittelt wird in dem Betriebszustand des Leerlaufs, der abhängt von einer vorausgesagten Differenz (N_DIF_PRED) des Sollwertes (N_SP) und des Istwertes (N_AV) der Drehzahl und daß durch ein Erhöhen der Füllung der Zylinder der Brennkraftmaschine und ein gleichzeitiges Verstellen des Zündwinkels nach spät der Drehmomentvorhalt (TQ_ADD_IS) eingestellt wird
    EP98107031A 1997-05-02 1998-04-17 Verfahren zum Steuern einer Brennkraftmaschine Expired - Lifetime EP0875673B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19718719 1997-05-02
    DE19718719 1997-05-02

    Publications (3)

    Publication Number Publication Date
    EP0875673A2 EP0875673A2 (de) 1998-11-04
    EP0875673A3 EP0875673A3 (de) 2000-04-12
    EP0875673B1 true EP0875673B1 (de) 2003-08-20

    Family

    ID=7828529

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98107031A Expired - Lifetime EP0875673B1 (de) 1997-05-02 1998-04-17 Verfahren zum Steuern einer Brennkraftmaschine

    Country Status (2)

    Country Link
    EP (1) EP0875673B1 (de)
    DE (1) DE59809316D1 (de)

    Families Citing this family (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19947052C1 (de) * 1999-09-30 2001-05-03 Siemens Ag Verfahren zum Überwachen einer Steuereinrichtung für eine Brennkraftmaschine
    DE19953767C2 (de) * 1999-11-09 2002-03-28 Mtu Friedrichshafen Gmbh Regelsystem zum Schutz einer Brennkraftmaschine vor Überlast
    DE10045759A1 (de) 2000-09-15 2002-05-23 Bosch Gmbh Robert Antriebsaggregat für ein Fahrzeug
    JP3890902B2 (ja) * 2001-02-22 2007-03-07 トヨタ自動車株式会社 内燃機関燃料供給量設定方法及び装置
    DE10143950A1 (de) * 2001-09-07 2003-04-30 Siemens Ag Verfahren zur Leerlaufregelung einer Mehrzylinder-Brennkraftmaschine und Signalkonditionierungsanordnung hierfür
    DE10205024C1 (de) * 2002-02-07 2003-08-21 Bosch Gmbh Robert Vorrichtung zur Steuerung des Drehmoments einer Antriebseinheit eines Fahrzeugs
    DE102004044652B4 (de) * 2004-09-15 2006-12-21 Siemens Ag Verfahren zur Regelung einer Brennkraftmaschine im Leerlauf
    JP2006177241A (ja) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd 内燃機関の制御装置
    DE102005011027A1 (de) 2005-03-08 2006-09-14 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
    DE102006023893A1 (de) * 2006-05-22 2007-11-29 Robert Bosch Gmbh Verfahren und Steuergerät zur Steuerung eines Verbrennungsmotors mit einer Zündwinkel-Drehmomentenreserve
    FR2920830B1 (fr) * 2007-09-10 2010-03-12 Peugeot Citroen Automobiles Sa Regulation de ralenti d'un moteur
    SE536239C2 (sv) * 2011-12-13 2013-07-16 Scania Cv Ab Anordning och förfarande för reglering av en motors varvtal vid tillskottsbelastning
    FR3000992B1 (fr) * 2013-01-15 2016-05-27 Peugeot Citroen Automobiles Sa Dispositif de controle de la consigne de couple moteur en fonction d'un couple de compensation de course morte d'acceleration adaptable

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4141947C2 (de) * 1991-12-19 2002-02-07 Bosch Gmbh Robert Steuersystem für eine Antriebseinheit in einem Flugzeug
    DE4202407C2 (de) * 1992-01-29 1994-02-03 Daimler Benz Ag Verfahren zur Dämpfung von Fahrlängsschwingungen
    DE4304779B4 (de) 1992-06-20 2005-11-24 Robert Bosch Gmbh Vorrichtung zur Steuerung des von einer Antriebseinheit eines Fahrzeugs abzugebenden Drehmoments
    DE4405340B4 (de) * 1994-02-19 2008-05-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Einstellung der Drehzahl einer Antriebseinheit eines Fahrzeugs im Leerlauf

    Also Published As

    Publication number Publication date
    EP0875673A2 (de) 1998-11-04
    EP0875673A3 (de) 2000-04-12
    DE59809316D1 (de) 2003-09-25

    Similar Documents

    Publication Publication Date Title
    EP0889795B1 (de) Verfahren zum steuern einer brennkraftmaschine
    DE19712843C2 (de) Verfahren und Einrichtung zum Steuern einer Brennkraftmaschine
    DE19704313C2 (de) Verfahren und Einrichtung zum Steuern einer Brennkraftmaschine
    EP1000235B1 (de) Verfahren zum steuern einer brennkraftmaschine
    DE19536038B4 (de) Verfahren und Vorrichtung zur Steuerung der Antriebseinheit eines Kraftfahrzeugs
    EP0875673B1 (de) Verfahren zum Steuern einer Brennkraftmaschine
    EP1082231B1 (de) Verfahren und einrichtung zum steuern einer kraftmaschine
    EP0950148B1 (de) Verfahren und vorrichtung zur steuerung der antriebseinheit eines fahrzeugs
    DE19703685C2 (de) Verfahren und Einrichtung zum Steuern einer Brennkraftmaschine
    DE19739564A1 (de) Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs
    EP1216352A1 (de) Verfahren zum steuern einer brennkraftmaschine
    DE19754461A1 (de) Kraftübertragungssteuerung für ein Automobil
    EP1021649B1 (de) Verfahren und einrichtung zum überwachen einer brennkraftmaschine
    DE19913272A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
    DE4223253C2 (de) Steuereinrichtung für ein Fahrzeug
    WO2001075300A1 (de) Verfahren zum starten einer brennkraftmaschine und starteinrichtung für eine brennkraftmaschine
    DE10114040A1 (de) Verfahren und Vorrichtung zur Steuerung der Antriebseinheit eines Fahrzeugs
    DE10065516B4 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
    DE10340852B4 (de) System und Verfahren zum Regeln einer Motorleerlaufdrehzahl eines Verbrennungsmotors
    DE3919108C2 (de) Verfahren zur Steuerung eines Betriebsparameters eines Kraftfahrzeugs bei dynamischen Betriebszuständen
    DE10305092B4 (de) Verfahren zur automatischen Anpassung eines Drehmomentenmodells sowie Schaltungsanordnung
    DE10015320A1 (de) Verfahren und Vorrichtung zur Steuerung der Antriebseinheit eines Fahrzeugs
    WO1991004399A1 (de) Verfahren zur steuerung der luftzufuhr einer brennkraftmaschine eines kraftfahrzeugs
    DE19947052C1 (de) Verfahren zum Überwachen einer Steuereinrichtung für eine Brennkraftmaschine

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): DE FR GB

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20000523

    AKX Designation fees paid

    Free format text: DE FR GB

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): DE FR GB

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    REF Corresponds to:

    Ref document number: 59809316

    Country of ref document: DE

    Date of ref document: 20030925

    Kind code of ref document: P

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040524

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20080417

    Year of fee payment: 11

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20090417

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20091231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090417

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091222

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20080422

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20170430

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59809316

    Country of ref document: DE