EP0861368A1 - Einrichtung und verfahren zum kühlen und vorwärmen - Google Patents

Einrichtung und verfahren zum kühlen und vorwärmen

Info

Publication number
EP0861368A1
EP0861368A1 EP97940120A EP97940120A EP0861368A1 EP 0861368 A1 EP0861368 A1 EP 0861368A1 EP 97940120 A EP97940120 A EP 97940120A EP 97940120 A EP97940120 A EP 97940120A EP 0861368 A1 EP0861368 A1 EP 0861368A1
Authority
EP
European Patent Office
Prior art keywords
cooling
flow
water
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97940120A
Other languages
English (en)
French (fr)
Other versions
EP0861368B1 (de
Inventor
Winfrid Eckerskorn
Axel Temmesfeld
Heinz Lemberger
Christian Absmeier
Gerhart Huemer
Victor Brost
Klaus Kalbacher
Karl Schütterle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Modine Manufacturing Co
Original Assignee
Bayerische Motoren Werke AG
Laengerer and Reich GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG, Laengerer and Reich GmbH and Co filed Critical Bayerische Motoren Werke AG
Publication of EP0861368A1 publication Critical patent/EP0861368A1/de
Application granted granted Critical
Publication of EP0861368B1 publication Critical patent/EP0861368B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/029Expansion reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • F01P2003/182Arrangements or mounting of liquid-to-air heat-exchangers with multiple heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • F01P2060/045Lubricant cooler for transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels

Definitions

  • the invention relates to a device for cooling and preheating, in particular gear oil, an internal combustion engine. with an expansion tank, with at least one water cooler. which can be switched into the cooling circuit by means of a motor thermostat when a predetermined temperature is reached and with a water / oil heat exchanger.
  • the invention further relates to a method for cooling and preheating. Oil cooling is often carried out by means of oil / air coolers using a thermostat which responds to corresponding oil temperatures.
  • the oil / water heat exchanger integrated in the normal water circuit for transmission oil cooling is used, which is often installed in a water box of the water cow
  • 25 lers are arranged enclosed, but can also be provided separately. In this solution, only the cooling but not the preheating or heating is achieved
  • the object of the invention is to provide an efficient, compact and inexpensive device for cooling and preheating operating materials, in particular gear oil, for internal combustion engines, with which both drafty warming of the gear oil in the starting phase of the engine Without significantly impairing the heating of the passenger compartment, more efficient oil cooling is also possible without having to use additional air-cooled or water-cooled oil coolers. Furthermore, an associated method for cooling and heating is to be specified. This object is achieved according to the invention with the features specified in the claims
  • the device according to the invention has only a single water / oil heat exchanger which can be used both for heating and for cooling operating materials, in particular gear oil.
  • a valve unit is provided which controls the flow of the heat exchanger mentioned.
  • the heat exchanger receives a cooling water flow which is branched off from the main cooling circuit which is quickly warmed up by the operation of the internal combustion engine.
  • this amount is so small that the warming up of the internal combustion engine itself and the heating of the passenger compartment are hardly affected.
  • the supply flow is essentially formed from the low-temperature range of the water cooler by means of the same valve unit in the secondary coolant flow.
  • the water / oil heat exchanger receives a cooling water flow which is about 10 ° C. lower, as a result of which the temperature difference oil to water increases and the cooling effect is improved the separate low-temperature cooler allows even higher temperature differences to be achieved.
  • a space-saving arrangement that is independent of the water cooler.
  • At a temperature of around 80 to 90 ° C there is a transition area between the heating phase and the cooling phase, in which the flow of the heat exchanger from the expansion tank with that from the low temperature range Water cooler or alternatively mixed from the separate low temperature cooler.
  • the oil temperature is optimized by adding a flow from the low temperature range of the water cooler or from the separate low temperature cooler to a minimal continuous flow from the expansion tank, i.e. a flow of higher temperature. Too low oil temperatures with their negative consequences, as they are in particular with oil / air cooling over large driving ranges are avoided.
  • the low temperature range of the water cooler is realized, as is known per se, by arranging at least one partition in at least one water tank, which divides part of the water flowing through the water cooler into a u- shaped or meandering flow through the water cooler.
  • an additional connection is also provided, which is connected to the flow channels to the oil-water heat exchanger via a valve unit Flow channels for the heat exchanger are formed, one of which is switchable in connection with the low temperature range of the water cooler or with the separate low temperature cooler and the other is in connection with the expansion tank.
  • the housing which includes the valve unit, preferably consists of an upper and a lower receptacle, which are joined together by means of a quick-plug connection.
  • the upper receptacle is molded directly into the bottom area of the surge tank and the lower receptacle forms a single plastic injection molded part with the flow channels of the heat exchanger.
  • the return channel of the heat exchanger and the return connection of the expansion tank and the return pipe leading to the coolant pump are also designed as a uniform injection molded component. All of these features mean that a compact design is achieved, since the components mentioned are to be fastened in the immediate vicinity, for example to the fan hood enclosing the water cooler. Lines requiring space are therefore unnecessary. All media connections are designed as quick-plug connections, which have a favorable effect on assembly and disassembly
  • Claims 13 to 16 are directed to a method for cooling and preheating, with which the efficiency of the cooling and preheating is to be improved. It has proven to be particularly effective if the switching point of the valve unit to cooling operation is negligible, approximately 5 ° C. below the switching point of the engine main thermostat The overall conclusion is that the dynamic control process cooler location or by to ischung w ä poorer Kuhlwassers over the entire control range in bes t he i se We affected is
  • FIG. 1 shows a schematic circuit diagram of the cooling phase of a transmission oil cooler.
  • FIG. 2 shows a schematic circuit diagram of the heating or preheating phase.
  • FIG. 3 shows a schematic circuit diagram in a transition phase
  • Fig. 4 water cooler (schematic) which has a partition in a water tank to form a low temperature range.
  • FIG. 6 housing forming receiving socket as Einzelhei t
  • FIG. 7 schematic circuit diagram of a separate low-temperature radiator in Figs 1 b i s 3 of the prince is shown i Pielle Kuhlwasserniklauf as beispielswe.se to C ooling an internal combustion engine 17 in a vehicle can be found.
  • Components of the circuit are the water block 4, the Break fluid 2, the motor thermostat 9 and the Kuhlstoffpumpe 8
  • the internal combustion engine 17 heats the cooling water in a short time.
  • the W ä rmeenergie of Kuhlwassers can be used for example for the Au l heating of the passenger ⁇ space, after which in the present case will not be discussed st
  • a single oil / water heat exchanger 5 for example, a Getriebeolkuhler, integrated whose forward stream 1 by means of a valve unit 3 adjustable i st.
  • the valve unit 3 has a terminal for Niede ⁇ emperatur Scheme 14 of the water ⁇ ready kuhlers 4 and a further connection to Break fluid 2 in the Kuhlphase, as shown in Fig.
  • the motor ⁇ has thermostat 9 the short path bere i ts asksper ⁇ so that the main cooling circuit 12 proceeds through the water block 4 and ü ck to 8 Kuhlstoffpumpe also, since the valve unit has selectsper ⁇ the way to Break fluid 2 3 - except for a small constant current - is the flow stream 1 of the heat exchanger 5 essentially from the low temperature range 14 of the water cooler 4.
  • This low temperature range 14 allows the water temperature to be further cooled, for example by 10 ° C., which is advantageous for the transmission oil cooling.
  • FIG. 4 shows how this low-temperature range is formed, which will be discussed in more detail below.
  • the valve unit 3 has opened the inlet on the left in the figure and closed the right inlet leading to the low temperature range! 4. A part of the cooling water quickly warmed up by the internal combustion engine 17 is thus provided for the rapid heating up of the transmission oil.
  • a transition range has been established, as shown in FIG. 3.
  • the flow stream 1 of the heat exchanger 5 comes both from the expansion tank 2 and from the low temperature range 14, which in turn is useful for optimizing the oil temperature.
  • Another operating situation not shown, occurs when the temperature continues to rise, even if the engine thermostat 9 is already partially open, the low temperature range 14 then only being flowed through by a subset of the water flowing through the water cooler 4, as is in principle also shown in FIG 1 is recognizable.
  • the schematic water cooler 4 is shown in FIG. 4.
  • a low temperature range 14 is separated by using a partition 16 in the left water box 15, which causes the water or part of the water to flow through the water cooler 4 again in the opposite direction and thereby cool down by an additional amount.
  • the main coolant flow 12 or a part thereof enters the water cooler 4 at the top left at the inlet connection 22 and leaves it after flowing through on the right side at the outlet connection 23 according to the arrow shown.
  • the portion flowing through the low-temperature region 14 forms the secondary coolant flow 13, which leaves the water cooler 4 at the bottom left in order to enter the flow channel designated 10, which leads to the heat exchanger 5.
  • a connection piece 24 for connection to the flow channel 10 is shown in a schematic form.
  • the flow channel 10 is also shown in FIGS. 5 and 6, which show an expansion tank 2 with a schematic valve unit 3 located in the bottom 21.
  • the valve unit 3 is located in an insert housing 19, which consists of a lower 18 and an upper receptacle 20. These sockets are preferably made of plastic.
  • the lower receiving nozzle 18 forms a single component together with the flow channel 10, which comes from the low temperature region 14 and the flow channel 11, which leads from the receiving nozzle 18 to the flow connection of the heat exchanger 5.
  • the return channel 28 from the heat exchanger 5 with the return connection 29 of the expansion tank 2 and the return pipe 30, which represents the connection to the return to the cooling water pump 8, forms a single injection molded part made of plastic.
  • the arrows drawn in FIG. 5 indicate the flow through the expansion tank 2 and the channels 10; 1 1; 28; 29 on. During the heating phase, the part of the area made clear with the upper horizontal arrow occurs
  • the cooling water comes from the low-temperature region 14 via the flow channel 10, into the flow channel 11, into the transmission oil cooler 5 and leaves it as described.
  • the flow stream 1 is controlled by means of the valve unit 3 so that part of the cooling water is fed via the channel 10 from the low-temperature area 14 and another part from the expansion tank 2 into the flow channel 11.
  • 6 shows the already described essential details of the housing 19 accommodating the valve unit 3, the valve unit 3 itself, for the sake of clarity, not being drawn but merely indicated by the reference number 3.
  • the two parts of the housing 19, the lower receptacle 18 and the upper receptacle 20, which is part of the expansion tank 2, are sealed to the outside by means of a suitable seal 32.
  • the connection is made through slots or groove 31 on the wall, in which there is a spring clip, which was not shown in the drawing.
  • the arrows indicate the flow of the water.
  • This illustration also shows the compact design which dispenses with separate lines, in which the lower receiving connector 18 and the flow channels 10 and 11 are designed as a single injection-molded part. Since the upper receptacle 20, as already described, is formed directly in the bottom 21 of the expansion tank 2, the number of individual parts is extremely small, which contributes to ease of installation.
  • FIG. 7 shows the pure cooling phase in which the main coolant flow 12 is passed through the water cooler 4a.
  • the low-temperature cooler 14a is connected downstream of the water cooler 4a and lies parallel to it. The water flowing into this cooler 14a reaches the valve unit 3 and from there into the gear oil cooler 5, where efficient oil cooling is possible due to the large temperature difference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

Die Erfindung betrifft eine Einrichtung zum Kühlen und Vorwärmen, insbesondere von Getriebeöl, einer Brennkraftmaschine, mit einem Ausgleichsbehälter, mit mindestens einem Wasserkühler, der mittels Motorthermostat bei Erreichen einer vorbestimmten Temperatur in den Kühlkreislauf einschaltbar ist und mit Wasser/Öl-Wärmetauscher. Ferner betrifft die Erfindung ein Verfahren zum Kühlen und Vorwärmen. Um eine effizientere Ölkühlung und Ölvorwärmung bei gleichzeitiger kompakter und kostengünstiger Gestaltung der Einrichtung zu erzielen, ist erfindungsgemäß vorgesehen, daß der Vorlaufstrom (1) eines einzigen Wasser/Öl-Wärmetauschers (5) in der Heizphase mittels einer Ventileinheit (3) im wesentlichen aus dem Hauptkühlkreislauf (12) der Brennkraftmaschine (17) abzweigbar ist und daß dessen Vorlaufstrom (1) in der Kühlphase mittels der gleichen Ventileinheit (3) im wesentlichen im Kühlmittelnebenstrom (13) aus dem Niedertemperaturbereich (14) des Wasserkühlers (4) oder einem separaten, dem Kühler (4; 4a) im Nebenstrom nachgeschalteten Niedertemperatur-Kühler (14a) entnehmbar ist. Das erfindungsgemäße Verfahren sieht vor, daß der Vorlaufstrom (1) des Wasser/Öl-Wärmetauschers (5) in der Heizphase im wesentlichen aus dem den Wasserkühler (4) nicht durchströmenden Hauptkühlmittelstrom (12) entnommen wird, daß bei einer etwas unterhalb des Schaltpunktes des Motor-Hauptthermostaten (9) liegenden Temperatur die Umschaltung auf Kühlbetrieb erfolgt und im Kühlbetrieb der Vorlaufstrom (1) des Wasser/Öl-Wärmetauschers (5) im wesentlichen aus dem Niedertemperaturbereich (14) des Wasserkühlers (4) oder aus einem weiteren zum Wasserkühler (4, 4a) im Nebenstrom nachgeschalteten Niedertemperatur-Kühler (14a) abgezweigt wird.

Description

Einrichtung und Verfahren zum Kuhlen und Vorwarmen 5 Die Erfindung betrifft eine Einrichtung zum Kuhlen und Vorwarmen, insbesondere von Getriebeöl, einer Brennkraftmaschine. mit einem Ausgleichsbehälter, mit mindestens einem Wasserkuhler. der mittels Motorthermostat bei Erreichen einer vorbestimmten Temperatur in den Kuhlkreislauf einschaltbar ist und mit Wasser/Ol - Wärmetauscher Ferner betrifft die Erfindung ein Verfahren zum Kühlen und Vorwarmen in Oftmals erfolgt die Olkühlung mittels Öl/Luftkühlern unter Verwendung eines auf entsprechende Oltempcraturen ansprechenden Thermostaten Diese Losungen sind zwar bei kleineren Kühlergroßen recht effektiv, fuhren jedoch bei großer geforderter Kühlleistung und entsprechend größeren Kühlern dazu, daß in manchen Betriebszustanden zu niedrige 01- temperaturen vorliegen, die den Kraftstoffverbrauch und die Lebensdauer der Brennkraft-
1 maschine negativ beeinflussen
Deshalb ist man bereits vor geraumer Zeit dazu übergegangen, die Oltemperatur zu optimieren, d h je nach Bedarf zu kühlen oder auch aufzuheizen Dazu ist ein zusätzlicher Ol/Wasser-Wärmetauscher in dem Kuhlkreislauf integriert, der mittels eines auf die Oltemperatur ansprechenden Thermostaten je nach Bedarf zu - oder abgeschaltet wird Oftmals
20 sind diese Thermostaten mit einer elektrischen Ansteuerung zu aktivieren Diese Lösungsgruppe vermag zwar optimierte Öltemperaturen bereitzustellen, besitzt aber auch anlagen- seitig beträchtliche Kosten
Ferner wei den zur Getriebeόlkuhlung in den normalen Wasserkreislauf integrierte Ol/Wasser-Warmetauscher eingesetzt, die oftmals in einem Wasserkasten des Wasserkuh-
25 lers eingeschlossen angeordnet sind, aber auch separat vorgesehen sein können In dieser Lösungsgnippe wird nur die Kühlung aber nicht die Vorwarmung beziehungsweise die Aufheizung erzielt
In der DE-OS 41 04 093 ist das Problem angesprochen worden, daß es in der .Startphase des Verbrennungmotors sowohl um die schnelle Aufheizung des Passagierraumes als auch um ) die schnelle Erreichung der Betriebstemperarur des Motors und des Getriebeöles geht Um diesen sich teilweise entgegenstehenden Restriktionen besser entsprechen zu können, hat man hier quasi ein Kühl-Management-System vorgestellt, bei dem ein Microprozessor auf Grund von Signalen einer Reihe von Temperaturfühlern in den verschiedenen Kreislaufen 5 die Leistung der verschiedenen Wärmetauscher beeinflussen soll. Diese Anlage scheint recht teuer zu sein sowie eine komplizierte und deshalb auch anfällige technische Struktur zu besitzen Ausgehend von dem dargelegten Stand der Technik, besteht die Aufgabe der Erfindung darin, eine effizient arbeitende sowie kompakte und kostengünstige Einrichtung zum Kuhlen und Vorwarmen von Betriebsstoffen, insbesondere Getriebeöl, für Verbrennungskraftmaschinen vorzustellen, mit der sowohl eine zugige Aufwärmung des Getriebeöles in der Startphase des Motors ohne wesentliche Beeinträchtigung der Aufheizung des Passagierraumes erreicht werden kann ais auch eine effizientere Olkühlung möglich ist, ohne zusatzliche luft-oder wassergekühlte Ölkühler einsetzen zu müssen. Ferner soll ein dazugehöriges Verfahren zum Kuhlen und Aufheizen angegeben werden. Diese Aufgabe wird erfindungsgemaß mit den in den Patentansprüche angegebenen Merkmaien gelost
Die erfindungsgemaße Einrichtung weist nur einen einzigen Wasser/Ol-Warmetauscher auf, der sowohl zur Aufheizung als auch zur Kühlung von Betriebsstoffen, insbesondere Getriebeöl, verwendbar ist. Dazu ist eine Ventileinheit vorgesehen, die den Vorlaufstrom des ge- nannten Wärmetauschers steuert In der Heizphase erhält der Wärmetauscher einen aus dem durch den Betrieb des Verbrennungsmotors schnell angewärmten Hauptkuhlkreisiauf abgezweigten Kühlwasserstrom. Diese Menge ist jedoch so gering, daß die Anwarmung des Verbrennungsmotors selbst sowie die Aufheizung des Passagierraumes kaum beeinträchtigt werden. In der Kύhlphase hingegen wird der Vorlaufstrom mittels der gleichen Ventileinheit im Kühlmittelnebenstrom im wesentlichen aus dem Niedeπemperaturbereich des Wasserkϋhlers gebildet Alternativ oder zusätzlich zu dem Nierdertemperaturberich des Wasser uhlers kann mindestens ein weiterer Niedertemperatur-Kühler vorgesehen sein, der dem erstgenannten Wasserkühier im Nebenstrom liegend nachgeschaltet ist. Durch den Niedeπemperaturbereich, der mittels einer zusatzlichen Durchstromung eines Teiles des Wasserkühlers realisier- bar ist, erhält der Wasser/Ol- Wärmetauscher einen Kühlwasserstrom, der um etwa 10°C niedriger ist, wodurch die Temperaturdifferenz Ol zu Wasser vergrößeπ und die Kuhlwirkung verbesseπ wird Durch den separaten Niedeπemperatur-Kühler lassen sich noch höhere Temperaturdifferenzen realisieren. Femer ist hier die Möglichkeit einer von dem Wasserkühler unabhängigen und platzsparenden Anordnung gegeben Bei einer Temperatur von etwa 80 bis 90°C befindet sich ein Übergangsbereich zwischen Heizphase und Kühlphase, in dem der Vorlaufstrom des Wärmetauschers aus dem Aus- gleichsbehalter mit dem aus dem Niedeπemperaturbereich des Wasserkuhlers oder alternativ aus dem separaten Niedeπemperatur-Kühler gemischt ist. Somit ist sowohl die Getriebeöl- kuhlung in allen Betriebssituationen als auch die Aufheizung nur mittels dieses einen Wärmetauschers möglich
Zusatzlich wird zur Optimierung der Oltemperatur dadurch beigetragen, daß einem minimalen Dauerstrom aus dem Ausgleichsbehälter, also einem Strom höherer Temperatur, ein Vorlaufstrom aus dem Niedeπemperaturbereich des Wasserkuhlers oder aus dem separaten Niedeπemperatur-Kühler beigemischt wird Zu niedrige Oltemperaturen mit ihren negativen Folgeerscheinungen, wie sie insbesondere bei Ol/Luftkuhlung über große Fahrbereiche auftreten, werden vermieden Der Niedeπemperaturbereich des Wasserkühlers wird, wie an sich bekannt, dadurch reali- sieπ, daß in mindestens einem Wasserkasten mindestens eine Trennwand angeordnet ist, die einen Teil des den Wasserkühler durchströmenden Wassers zu einer u-formigen oder maan- deraπigen Durchstromung des Wasserkuhlers veranlaßt. Im Wasserkasten, innerhalb des Niedeπemperaturbereiches, ist ferner ein zusatzlicher Anschluß vorgesehen, der mit den Vorlaufkanalen zum Ol-Wasser- Wärmetauscher über eine Ventileinheit verbunden ist Die Ventileinheit ist in einem Gehäuse untergebracht, das stromungsmechanisch in Verbindung mit dem Ausgleichsbehälter bringbar ist und an dem zwei Vorlaufkanale für den Wärmetauscher angeformt sind, von denen einer in Verbindung mit dem Niedeπemperaturbereich des Wasserkühlers oder mit dem separaten Niedeπempeπur-Kühler schaltbar ist und der andere in Verbindung zum Ausgleichsbehalter ist. Vorzugsweise besteht das Gehäuse, wel- ches die Ventileinheit einschließt, aus einem oberen und einem unteren Aufnahmestutzen, die mittels Schnell-Steck-Anschluß zusammengefügt sind. Dabei ist der obere Aufnahmestutzen direkt im Bodenbereich des Ausgleichsbehaiters angeformt und der untere Aufhahrnestutzen bildet mit den Vorlaufkanalen des Wärmetauschers ein einziges Spritzgußteil aus Kunststoff. Außerdem sind der Rücklaufkanal des Wärmetauschers und der Rücklaufanschluß des Aus- gieichsbehälters sowie der zur Kühlmittelpumpe fuhrende Rücklaufstutzen ebenfalls als einheitliches Spritzgußbauteil konzipieπ. All diese Merkmale führen dazu, daß eine kompakte Bauweise erzielt wird, denn die genannten Bauteile sind in unmittelbarer Nähe, beispielsweise an der den Wasserkühler einschließenden Ventilatorhaube zu befestigen. Raumbedarf erfordernde Leitungen sind somit entbehrlich. Samtliche Medienanschlüsse sind als Schnell-Steck- Anschlüsse ausgeführt, die sich gunstig auf die Montage und Demontage auswirken
Die Ansprüche 13 bis 16 richten sich auf ein Verfahren zum Kühlen und Vorwarmen, mit dem die Effizienz der Kühlung und Vorwarmung zu verbessern ist Als besonders wirkungsvoll hat es sich herausgestellt, wenn der Schaltpunkt der Ventileinheit auf Kühlbetrieb gering- fugig, etwa 5°C, unterhalb des Schaltpunktes des Motor-Hauptthermostaten eingestellt wird Insgesamt hat sich gezeigt, daß der dynamische Regelungsprozeß durch die Zu ischung kuhleren oder wärmeren Kuhlwassers über den gesamten Regelungsbereich in bester Weise beeinflußt wird
Wegen weiterer erf.ndungswesentlicher Merkmale wird auf die Patentansprüche verwiesen Weitere Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschre.bung von Aus¬ fuhrungsbeispielen Dazu wird auf die Fig Bezug genommen Es zeigen
Fig 1 schematisches Schaltbild der Kuhlphase eines Getriebeolkuhlers Fig. 2 schematisches Schaltbild der Heiz-oder Vorwarmphase Fig. 3 schematisches Schaltbild in einer Ubergangsphase
Fig 4 Wasserkuhler (schematisch) der in einem Wasserkasten eine Trennwand zur Bildung eines Niedertemperaturbereiches aufweist.
Fig 5 Ausgleichsbehalter mit Aufnahmestutzen mit eingesetztem Thermostatventii und Ka¬ nälen zum angedeuteten Getriebeolkuhler und zum Niedertemperaturbereich des Wasserkuh- lers
Fig 6 Gehäuse bildende Aufnahmestutzen als Einzelheit Fig. 7 schematisiertes Schaltbild mit einem separaten Niedertemperatur-Kuhler In den Fig 1 bis 3 ist der prinzipielle Kuhlwasserkreislauf abgebildet, wie er beispielswe.se zur Kühlung einer Brennkraftmaschine 17 in einem Fahrzeug anzutreffen ist. Bestandteile des Kreislaufes sind der Wasserkuhler 4, der Ausgleichsbehalter 2, der Motorthermostat 9 und die Kuhlmittelpumpe 8 Beim Start der kalten Brennkraftmaschine 17 wird der Hauptkuhl¬ mittelstrom 12 mittels dem Motorthermostat 9 auf kurzem Weg, unter Ausschaltung des Wasserkuhlers 4, direkt zur Brennkraftmaschine 17 zurückgeführt Im rechten Teil der Fig.2 und 3 ist das abgebildet Dabei erwärmt die Brennkraftmaschine 17 das Kühlwasser in kurzer Zeit. Die Wärmeenergie des Kuhlwassers kann beispielsweise zur Aulheizung des Passagier¬ raumes benutzt werden, worauf vorliegend nicht eingegangen werden soll Zusatzlich ist in dem Kreislauf ein einziger Ol/Wasser-Warmetauscher 5, beispielsweise ein Getriebeolkuhler, eingebunden, dessen Vorlaufstrom 1 mittels einer Ventileinheit 3 regelbar ist. Die Ventileinheit 3 besitzt einen Anschluß zum Niedeπemperaturbereich 14 des Wasser¬ kuhlers 4 und einen weiteren Anschluß zum Ausgleichsbehalter 2 In der Kuhlphase, wie in Fig. I abgebildet, beispielsweise bei einer Kühlwasseπemperatur von 110°C, hat der Motor¬ thermostat 9 den kurzen Weg bereits abgesperπ, so daß der Hauptkühlkreislauf 12 durch den Wasserkuhler 4 und zurück zur Kuhlmittelpumpe 8 verlauft Da auch die Ventileinheit 3 den Weg zum Ausgleichsbehalter 2 abgesperπ hat - bis auf einen geringen Dauerstrom - kommt der Vorlaufstrom 1 des Wärmetauschers 5 im wesentlichen aus dem Niedeπemperaturbereich 14 des Wasserkühlers 4. Durch diesen Niedeπemperaturbereich 14 kann die Wassertemperatur beispielsweise um 10°C weiter abgekühlt werden, was für die Getriebeölkühiung von Vorteil ist. Die Fig. 4 zeigt in einer Abbildung, wie dieser Niedertemperaturbereich gebildet ist, worauf weiter unten näher eingegangen wird.
Die Fig. 2 zeigt die reine Vorwärmphase des Wärmetauschers 5, in der der Vorlaufstrom 1 aus dem Ausgleichsbehälter 2 entnommen wird, der von einem Teil des Hauptkühlmittelstromes 12 durchflössen wird. Die Ventileinheit 3 hat den im Bild linken Eingang geöffnet und den rechten, zum Niedertemperaturbereich !4 führenden Eingang, geschlossen. Ein Teil des durch die Brennkraftmaschine 17 schnell aufgewärmten Kühlwassers wird somit zur zügigen Aufwärmung des Getriebeöles bereitgestellt.
Beispielsweise in einem Temperaturbereich zwischen 80 und 85°C, etwas vor der Aktionstemperatur des Motorthermostaten 9, die bei 90°C liegen könnte, hat sich ein Übergangsbereich eingestellt, wie er in Fig. 3 abgebildet ist. In diesem Temperaturbereich kommt der Vorlaufstrom 1 des Wärmetauschers 5 sowohl aus dem Ausgleichsbehälter 2 als aus dem Niedertemperaturbereich 14, was wiederum der Optimierung der Öltemperatur dienlich ist. Eine weitere nicht abgebildete Betriebssituation stellt sich bei weiter steigender Temperatur ein, wenn auch bereits der Motorthermostat 9 teilweise geöffnet ist, wobei der Niedeπemperaturbereich 14 dann nur noch von einer Teilmenge des den Wasserkühler 4 durchströmen- den Wassers durchflössen ist, wie es prinzipiell auch aus Fig. 1 erkennbar ist.
Der schematisieπe Wasserkühler 4 geht aus Fig. 4 hervor. Bei diesem Wasserkühler 4 ist ein Niedeπemperaturbereich 14 abgetrennt, indem im linken Wasserkasten 15 eine Trennwand 16 eingesetzt wurde, die das Wasser oder einen Teil des Wassers veranlaßt, den Wasserkühler 4 in entgegengesetzter Richtung noch einmal zu durchströmen und sich dabei um einen zusätzlichen Betrag abzukühlen. Der Hauptkühlmittelstrom 12 oder ein Teil desselben tritt oben links am Einlaufstutzen 22 in den Wasserkuhler 4 ein und verläßt diesen nach Durchströmen auf der rechten Seite am Auslaufstutzen 23 gemäß dem eingezeichneten Pfeil. Der den Niedertemperaturbereich 14 durchströmende Anteil bildet den Kühlmittelnebenstrom 13, der den Wasserkühler 4 unten links verläßt, um in den mit 10 bezeichneten Vorlaufkanal ein- zutreten, der zum Wärmetauscher 5 führt. Am Wasserkasten 15, innerhalb des Niedertemperaturbereiches 14, ist ein Anschlußstutzen 24 zum Anschluß an den Vorlaufkanal 10 in schematisierter Form dargestellt.
Der Vorlaufkanal 10 ist auch in den Fig. 5 und 6 eingezeichnet, die einen Ausgleichsbehälter 2 mit im Boden 21 befindlicher schematisierter Ventileinheit 3 zeigen. Die Ventileinheit 3 befindet sich in einem Einsatzgehäuse 19, das aus einem unteren 18 und einem oberen Aufnahmestutzen 20 besteht. Diese Stutzen sind vorzugsweise aus Kunststoff hergestellt. Dabei bildet der untere Aufnahmestutzen 18 ein einziges Bauteil gemeinsam mit dem Vorlaufkanal 10, der vom Niedertemperaturbereich 14 kommt und dem Vorlaufkanal 1 1 , der vom Auf- nahmestutzen 18 zum Vorlaufanschluß des Wärmetauschers 5 führt. In gleicher Weise bildet der Rücklaufkanal 28 vom Wärmetauscher 5 mit dem Rücklaufanschluß 29 des Ausgleichsbehälters 2 und dem Rücklaufstutzen 30, der den Anschluß zum Rücklauf zur Kühlwasserpumpe 8 darstellt, ein einziges Spritzgußteil aus Kunststoff. Die in Fig. 5 eingezeichneten Pfeile deuten die Durchströmung des Ausgleichsbehälters 2 und der Kanäle 10; 1 1 ; 28;29 an. In der Heizphase tritt der mit dem oberen horizontalen Pfeil deutlich gemachte Teil des
Hauptkühlmittelstromes 12 in den Ausgleichsbehälter 2 ein. Mittels der Ventileinheit 3 wird ein Teil dessen abgezweigt und über den Vorlaufkanal 1 1 dem Getriebeölkühler 5 zugeführt. Über den Rücklaufkanal 28 verläßt das Wasser den Getriebeölkühler 5 und geht in den Kreislauf zurück. In der Kühlphase kommt das Kühlwasser aus dem Niedertemperaturbereich 14 über den Vorlaufkanal 10, in den Vorlaufkanal 11, in den Getriebeölkühler 5 und verläßt diesen wie beschrieben. Im Übergangsbereich wird der Vorlaufstrom 1 mittels der Ventileinheit 3 so gesteuert, daß ein Teil des Kühlwassers über den Kanal 10 aus dem Niedertemperaturbereich 14 und ein anderer Teil aus dem Ausgleichsbehälter 2 in den Vorlaufkanal 11 eingespeist wird. Die Fig. 6 zeigt die bereits beschriebenen wesentlichen Einzelheiten des die Ventileinheit 3 aufnehmenden Gehäuses 19, wobei die Ventileinheit 3 selbst, der besseren Übersichtlichkeit halber, nicht gezeichnet sondern lediglich durch die Bezugsziffer 3 angedeutet wurde. Die beiden Teiie des Gehäuses 19, der untere Aufnahmestutzen 18 und der obere Aufnahmestutzen 20, der Teil des Ausgleichsbehälters 2 ist, sind nach außen hin mittels geeigneter Dich- tung 32 abgedichtet. Die Verbindung erfolgt durch wandseitige Schlitze oder Nut 31, in der sich eine Federklammer befindet, die zeichnerisch nicht dargestellt wurde. Die Pfeile deuten die Strömung des Wassers an. Erkennbar ist aus dieser Darstellung ebenfalls die auf separate Leitungen verzichtende kompakte Gestaltung, bei der der untere Aufnahmestutzen 18 und die Vorlaufkanäle 10 und 11 als einheitliches Spritzgußteil ausgebildet sind. Da der obere Aufnahmestutzen 20, wie bereits beschrieben, direkt im Boden 21 des Ausgleichsbehälters 2 angeformt ist, ist die Zahl der Einzelteile äußerst gering, was zur Montagefreundlichkeit beiträgt.
In der Variante nach Fig.7, bei der der Niedertemperaturbereich 14 entfallen ist und durch den separaten Niedertemperatur-Kühler 14a ersetzt wurde, stellt sich der Vorteil ein, daß größere Temperaturdifferenzen für die Olkühlung erzielt werden können. Ebenso kann diese Variante vorteilhaft sein, wenn aus Platzgründen der Wasserkuhler 4 mit dem Niedeπemperaturbereich 14 nicht untergebracht werden kann Dafür kann ein kleinerer Wasserkuhler 4a vorgesehen werden, wobei die Anordnung des separaten Niedeπemperatur-Kühlers 14a dort erfolgen kann, wo es die Platzverhaltnisse, beispielsweise in einem Kraftfahrzeug, gestatten Die Fig 7 stellt, wie auch die bereits erlauteπe Fig 1. die reine Kühlphase dar, bei der der Hauptkühlmittelstrom 12 durch den Wasserkuhler 4a geleitet wird. Die etwas kraftiger gezeichneten Pfeile zeigen den in dieser Phase vorherrschenden Stromungsweg des Kühlwassers Der Niedertemperatur-Kühler 14a ist dem Wasserkühler 4a nachgeschaltet und liegt zu diesem parallel. Das in diesen Kühler 14a einströmende Wasser gelangt zur Ventileinheit 3 und von dort in den Getriebeolkuhler 5, wo auf Grund der großen Temperaturdifferenz eine effiziente Olkühlung möglich ist.
Liste der verwendeten Bezugszeichen
1 Vorlaufstrom von 5
2 Ausgleichsbehalter
Thermostatregelventileinheit
4 Wasserkuhler
4a Wasserkuhler
5 Wärmetauscher (Ol-Wasser-Kuhler)
6 Rucklaufstrom von 5
7 Kühlmittelleitung
8 Kuhlmittelpumpe
9 Motor-Haupthermostat
10 Vorlaufkanal von 4 (14) nach 5
1 1 Vorlaufkanal von 2 nach 5
12 Hauptkuhlkreislauf
13 Kuhlmittelnebenstrom
14 Niedertemperaturbereich von 4
14a Niedertemperatur-Kuhler
15 Wasserkasten von 4
16 Trennwand in 15
17 B rennkraftmaschine
18 Aufnahmestutzen, unten
19 Einsatzgehause für 3
20 Aufnahmestutzen, oben am Ausgleichsbehalter 2
21 Boden des Ausgleichsbehaiters 2
22 Einlaufstutzen an 4
23 Auslaufstutzen an 4
24 Anschlußstutzen an 14
25 Flachrohre
26 Lamellen
27 Trennlinie für Niedertemperaturbereich 14
28 Rucklaufkanal von 5
29 Rucklaufanschluß an 2 Rücklaufstutzen Nut für Federklammer Dichtung

Claims

PATENTANSPRÜCHE
1. Einrichtung zum Kühlen und Vorwärmen, insbesondere von Getriebeöl, bei Brennkraftmaschinen für Fahrzeuge , mit einem Ausgleichsbehälter, mit mindestens einem Wasserkühler, der mittels Motorthermostat bei Erreichen einer vorbestimmten Temperatur in den Kühlkreis- lauf einschaltbar ist und mit Wasser/Öl - Wärmetauscher, dadurch gekennzeichnet, daß der Vorlaufstrom (1) eines einzigen Wasser/Öl-Wärmetauschers (5) in der Heizphase mittels einer Ventileinheit (3) im wesentlichen aus dem Hauptkühlkreislauf (12) der Brennkraftmaschine (17) abzweigbar ist und, daß dessen Vorlaufstrom (1) in der Kühlphase mittels der gleichen Ventileinheit (3) im wesentlichen im Kühlmittelnebenstrom (13) aus dem Niedertemperaturbereich (14) des Wasserkühlers (4) entnehmbar ist.
2. Einrichtung zum Kühlen und Vorwärmen, insbesondere von Getriebeöl, bei Brennkraftmaschinen für Fahrzeuge , mit einem Ausgleichsbehälter, mit mindestens einem Wasserkühler, der mittels Motorthermostat bei Erreichen einer vorbestimmten Temperatur in den Kühlkreislauf einschaltbar ist und mit Wasser/Öl - Wärmetauscher, dadurch gekennzeichnet, daß der Vorlaufstrom (1) eines einzigen Wasser/Öl-Wärmetauschers (5) in der Heizphase mittels einer Ventileinheit (3) im wesentlichen aus dem Hauptkühlkreislauf (12) der Brennkraftma- schine (17) abzweigbar ist und, daß dessen Vorlaufstrom (1) in der Kühlphase mittels der gleichen Ventileinheit (3) im wesentlichen aus dem im Kühlmittelnebenstrom (13) des Wasserkühlers (4 oder 4a) angeordneten Niedertemperatur-Kühler (14a) entnehmbar ist.
3. Einrichtung zum Kühlen und Vorwärmen nach Anspruch 1, dadurch gekennzeichnet, daß ein Teil des Hauptkühlkreislaufes (12) in der Heizphase durch den Ausgleichsbehälter (2) geführt ist, von dort eine Teilmenge mittels Veπtileinheit (3) abzweigbar und als Vorlaufstrom (1) dem Wärmetauscher (5) zuleitbar ist, daß in der Kühiphase der Hauptkühlkreislauf (12) durch den Wasserkühler (4) geführt ist, der in mindestens einem seiner Wasserkästen (15) mindestens eine einen Niedertemperaturbereich (14) bildende Trennwand (16) aufweist und, daß das den Niedertemperaturbereich (14) durchströmende Wasser mittels der Ventileinheit (3) als Vorlaufstrom (1) dem Wärmetauscher (5) zuleitbar ist, und daß der Rücklaufstrom (6) des Wärmetauschers (5) in beiden Phasen in die Leitung (7) zur KühJmittel- pumpe (8) eingespeist ist.
4. Einrichtung zum Kühlen und Vorwärmen nach Anspruch 2, dadurch gekennzeichnet, daß ein Teil des Hauptkühlkreislaufes (12) in der Heizphase durch den Ausgleichsbehälter (2) geführt ist, von dort eine Teilmenge mittels Ventileinheit (3) abzweigbar und als Vorlaufstrom (1) dem Wärmetauscher (5) zuleitbar ist, daß in der Kühlphase der Hauptkühlkreislauf (12) durch den Wasserkühler (4a) geführt ist, dem ein Niedertemperatur-Kühler ( 14a) im Nebenstrom liegend nachgeordnet ist, aus dem mittels der Ventileinheit (3) der Vorlaufstrom (1) dem Wärmetauscher (5) zuleitbar ist, und daß der Rücklaufstrom (6) des Wärmetauschers (5) in beiden Phasen in die Leitung (7) zur Kühlmittelpumpe (8) eingespeist ist.
5. Einrichtung zum Kühlen und Vorwärmen nach einem der Ansprüche 1 bis 4 , dadurch gekennzeichnet, daß in einem Temperaturbereich zwischen Heizphase und Kühlphase einem aus dem Ausgleichsbehälter (2) entnehmbaren Vorlaufstrom (1) ein Vorlaufstrom (1) aus dem Niedertemperaturbereich (14) des Wasserkühlers (4) oder aus dem Niedertemperatur-Kühler (14a) zumischbar ist.
6. Einrichtung zum Kühlen und Vorwärmen nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß die Reaktionstemperatur der Ventileinheit (3) unterhalb der Reaktionstemperatur des Motor-Hauptthermostaten (9) eingestellt ist.
7. Einrichtung zum Kühlen und Vorwärmen nach einem der Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß sich die Ventileinheit (3) in einem Einsatzgehäuse (19) befindet, das in Verbindung zum Ausgleichsbehälter (2) steht und das zwei Vorlaufkanäle (10; 1 1) zum Wärmetauscher (5) aufweist, von denen der eine Vorlaufkanal (10) in Verbindung mit dem Nie- dertemperaturbereich (14) des Wasserkühlers (4) oder mit dem Niedertemperatur-Kühler ( 14a) und der andere Vorlaufkanal ( 11 ) in Verbindung mit dem Ausgleichsbehälter (2) ist.
8. Einrichtung zum Kühlen und Vorwärmen nach Anspruch 7, dadurch gekennzeichnet, daß das Einsatzgehäuse (19) aus einem unteren (18) und einem oberen (20) Aufhah estutzen gebildet ist, die abdichtend ineinandersteckbar sind, daß der obere Aufnahmestutzen (20) vorzugsweise direkt am Boden (21) des Ausgleichsbehälters (2) angeformt ist und, daß der untere Aufhahmestutzen (18) gemeinsam mit den Vorlaufkanälen (10;11) ein einziges Bauteil, vorzugsweise ein Kunststoff-Spritzgußteii, darstellen.
9 Einrichtung zum Kuhlen und Vorwarmen nach Anspruch 8, dadurch gekennzeichnet, daß die die Ventileinheit (3) aufnehmenden unteren und oberen Aufnahmestutzen (18,20) als m- einandersteckbare und abdichtende Schnell-Steck-Stutzen ausgebildet sind
10 Einπchtung zum Kuhlen und Vorwarmen nach den Ansprüchen 8 und 9, dadurch gekennzeichnet, daß der Aufnahmestutzen (20) am Ausgleichsbehalter (2) innen eine einen O- Ring aufnehmende Nut aufweist und an seinem Umfang Schlitze (31 ) zur Aufnahme einer Federklammer besitzt und, daß der Aufnahmestutzen (18) eine konische Mantelfläche zeigt, die an dem O-Ring abdichtend anliegt sowie eine die Federklammer aufnehmende umlaufen- de Nut ( 1 ) besitzt
11 Einrichtung zum Kuhlen und Vorwarmen nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Rucklaufkanal (28) des Wärmetauschers (5) mit dem Rucklaufanschluß (29) des Ausgleichsbehalters (2) in einem gemeinsamen Rύcklaufstut- zen (30) munden, der zur Kuhi ittelpumpe (8) führt
12. Einrichtung zum Kuhlen und Vorwarmen nach Anspruch 9, dadurch gekennzeichnet, daß der Rucklaufkanal (28), der Rucklaufanschluß (29) und der Rücklaufstutzen (30) ein einziges Bauteil, vorzugsweise ein Kunststoff-Spritzgußteil, darstellen
13 Verfahren zum Kuhlen und Vorwarmen, insbesondere von Getriebeöl, einer Brennkraftmaschine, dadurch gekennzeichnet, daß der Vorlaufstrom (1) des Wasser/Ol- Warmetauschers (5) in der Heizphase im wesentlichen aus dem den Wasserkuhler (4oder 4a) nicht durchströmenden Hauptkühlmittelstrom (12) entnommen wird, daß bei einer etwas unterhalb des Schaltpunktes des Motor-Hauptthermostaten (9) liegenden Temperatur die Umschaltung auf Kühlbetrieb erfolgt und im Kuhlbetrieb der Vorlaufstrom (1) des Wasser/Ol-Warmetauschers (5) im wesentlichen aus dem Niedertemperaturbereich (14) des Wasserkuhlers (4) oder aus einem dem Wasserkühler (4 oder 4a) nachgeschalteten Niedertemperatur-Kuhler (14a) abgezweigt wird
14 Verfahren zum Kuhlen und Vorwarmen nach Anspruch 13, dadurch gekennzeichnet, daß aus dem durch den Ausgleichsbehalter (2) geführten Strom ein minimaler Dauervorlaufstrom entnommen wird, dem in der Kühlphase mit steigender Temperatur ein großer werdender Strom aus dem Niedertemperaturbereich ( 14) des Wasserkuhlers (4) oder aus dem nachgeschalteten Niedertemperatur-Kuhler (14a) zugemischt wird
15 Verfahren zum Kuhlen und Vorwarmen nach den Ansprüchen 13 und 14, dadurch ge- kennzeichnet, daß nach Erreichen der Schalttemperatur bei weiter steigender Temperatur des Kuhlwassers, der .Anteil des den Vorlaufstrom (1) bildenden Kuhlwassers aus dem Niedertemperaturbereich (14) des Wasserkuhlers (4) oder dem Niedertemperatur-Kuhier (14a) erhöht und bei fallender Temperatur verringert wird
16 Verfahren zum Kuhlen und Vorwarmen nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß nach Erreichen der Schalttemperatur bei weiter steigender Temperatur des Kuhlwassers, der Anteil des den Vorlaufstrom (1) bildenden Kuhlwassers aus dem Ausgleichsbehalter (2) bzw dem den Wasserkuhler (4) nicht durchströmenden Haupt- kuhliruttelstrom (12) verringert und bei fallender Temperatur erhöht wird
EP97940120A 1996-09-17 1997-08-23 Kühlkreislauf einer brennkraftmaschine sowie verfahren zum betrieb des kühlkreislaufes Expired - Lifetime EP0861368B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19637817A DE19637817A1 (de) 1996-09-17 1996-09-17 Einrichtung und Verfahren zum Kühlen und Vorwärmen
DE19637817 1996-09-17
PCT/EP1997/004604 WO1998012425A1 (de) 1996-09-17 1997-08-23 Einrichtung und verfahren zum kühlen und vorwärmen

Publications (2)

Publication Number Publication Date
EP0861368A1 true EP0861368A1 (de) 1998-09-02
EP0861368B1 EP0861368B1 (de) 2000-04-12

Family

ID=7805856

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97940120A Expired - Lifetime EP0861368B1 (de) 1996-09-17 1997-08-23 Kühlkreislauf einer brennkraftmaschine sowie verfahren zum betrieb des kühlkreislaufes

Country Status (5)

Country Link
US (1) US6196168B1 (de)
EP (1) EP0861368B1 (de)
DE (2) DE19637817A1 (de)
ES (1) ES2146115T3 (de)
WO (1) WO1998012425A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017219939A1 (de) 2017-11-09 2019-05-09 Volkswagen Aktiengesellschaft Kühlkreislauf für eine Antriebseinheit eines Kraftfahrzeuges
DE102018202476A1 (de) 2018-02-19 2019-08-22 Volkswagen Aktiengesellschaft Kühlkreislauf für eine Antriebseinheit eines Kraftfahrzeuges

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19715324A1 (de) 1997-04-12 1998-10-15 Bayerische Motoren Werke Ag Wärmetauscher für flüssige Wärmetauschmittel
DE19942727A1 (de) * 1999-09-08 2001-03-15 Zahnradfabrik Friedrichshafen Kühlkreislauf
DE10019029C5 (de) * 2000-04-18 2017-11-23 Mahle International Gmbh Vorrichtung zum Kühlen und/oder Temperieren von Öl
US6427640B1 (en) * 2000-10-11 2002-08-06 Ford Global Tech., Inc. System and method for heating vehicle fluids
FR2815402B1 (fr) * 2000-10-13 2006-07-07 Renault Dispositif, systeme et procede de refroidissement d'un fluide caloporteur
FR2815401A1 (fr) * 2000-10-13 2002-04-19 Renault Dispositif, systeme et procede de refroidissement d'un fluide caloporteur
FR2815299B1 (fr) * 2000-10-13 2003-01-24 Renault Systeme et procede de refroidissement pour vehicule a propulsion hybride
DE10065002A1 (de) * 2000-12-23 2002-07-11 Bosch Gmbh Robert Anordnung und Verfahren zum Kühlen
WO2002079621A1 (fr) * 2001-01-05 2002-10-10 Renault S.A.S Dispositif, systeme et procede de refroidissement d'un fluide caloporteur
DE10202613A1 (de) * 2002-01-24 2003-07-31 Zahnradfabrik Friedrichshafen Vorrichtung zum Kühlen eines Getriebes
EP1348846B1 (de) * 2002-03-27 2008-12-24 Calsonic Kansei Corporation Kühlungseinrichtung einer wassergekühlten Brennkraftmascine und Getriebeölkühlermodul
DE10226928A1 (de) * 2002-06-17 2004-01-08 Siemens Ag Verfahren zum Betrieb einer flüssigkeitsgekühlten Brennkraftmaschine
GB0220480D0 (en) * 2002-09-04 2002-10-09 Ford Global Tech Inc A motor vehicle and a thermostatically controlled valve therefor
DE10241228B4 (de) * 2002-09-06 2005-12-08 Robert Bosch Gmbh Kühlsystem für ein Kraftfahrzeug
DE10258504A1 (de) * 2002-12-14 2004-07-08 Zf Friedrichshafen Ag Getriebe mit Getriebeölkanälen
DE10301564A1 (de) 2003-01-16 2004-08-12 Behr Gmbh & Co. Kg Kühlkreislauf einer Brennkraftmaschine mit Niedertemperaturkühler
DE10305914A1 (de) * 2003-02-13 2004-08-26 Zf Friedrichshafen Ag Getriebe mit Getriebeölkanälen
US7082905B2 (en) * 2003-02-24 2006-08-01 Honda Motor Co., Ltd. Cooling apparatus for hybrid vehicle
FR2852678B1 (fr) * 2003-03-21 2005-07-15 Valeo Thermique Moteur Sa Systeme de refroidissement a basse temperature d'un equipement, notamment d'un equipement de vehicule automobile, et echangeurs de chaleur associes
GB0310120D0 (en) * 2003-05-02 2003-06-04 Ford Global Tech Llc Engine cooling systems
GB0310122D0 (en) * 2003-05-02 2003-06-04 Ford Global Tech Llc Temperature responsive flow control valves for engine cooling systems
DE10332949A1 (de) 2003-07-19 2005-02-10 Daimlerchrysler Ag Vorrichtung zum Kühlen und Vorwärmen
DE102004004975B4 (de) * 2004-01-31 2015-04-23 Modine Manufacturing Co. Plattenwärmeübertrager
US20080190597A1 (en) * 2004-07-26 2008-08-14 Behr Gmbh & Kg. Coolant Cooler With A Gearbox-Oil Cooler Integrated Into One Of The Cooling Water Reservoirs
FR2879044B1 (fr) * 2004-12-03 2007-03-02 Renault Sas Systeme de refroidissement pour chaine de traction hybride de vehicule automobile
FR2883806B1 (fr) * 2005-03-31 2008-08-08 Valeo Systemes Thermiques Installation et procede de refroidissement d'un equipement de vehicule automobile
US8418487B2 (en) * 2006-04-17 2013-04-16 Martin P. King Water chiller economizer system
SE530241C2 (sv) * 2006-10-03 2008-04-08 Scania Cv Ab Arrangemang för att kyla olja i en växellåda i ett fordon
DE102006048527B4 (de) * 2006-10-13 2016-12-22 Volkswagen Ag Kühlkreislauf für eine Brennkraftmaschine
DE102006054223A1 (de) * 2006-11-15 2008-05-21 Behr Gmbh & Co. Kg Kühlsystem für ein Kraftfahrzeug
US8116953B2 (en) * 2008-01-10 2012-02-14 GM Global Technology Operations LLC Active thermal management system and method for transmissions
US7669558B2 (en) * 2007-07-16 2010-03-02 Gm Global Technology Operations, Inc. Integrated vehicle cooling system
SE531791C2 (sv) * 2007-10-05 2009-08-04 Scania Cv Ab Arrangemang för att kyla olja i en växellåda i ett fordon
DE102007052927A1 (de) * 2007-11-07 2009-05-14 Daimler Ag Kühlmittelkreislauf für eine Brennkraftmaschine
DE102007052926A1 (de) 2007-11-07 2009-05-14 Daimler Ag Kühlmittelkreislauf für eine Brennkraftmaschine
SE532929C2 (sv) * 2007-12-13 2010-05-11 Scania Cv Abp Kylsystem hos motorfordon
US20100269800A1 (en) * 2008-01-03 2010-10-28 Mack Trucks, Inc. Exhaust gas recirculation cooling circuit
FR2927416A1 (fr) * 2008-02-11 2009-08-14 Renault Sas Echangeur thermique pour un vehicule automobile et vehicule associe
JP5191792B2 (ja) * 2008-05-07 2013-05-08 ヤンマー株式会社 定置式エンジンの冷却水回路
DE102009000777A1 (de) 2009-02-11 2010-08-12 Zf Friedrichshafen Ag Verfahren und Einrichtung zur Verbesserung des Wirkungsgrades von Getrieben in Landwirtschaftsfahrzeugen
EP2308708B1 (de) * 2009-09-16 2016-08-17 swissauto powersport llc Elektrofahrzeug mit Reichweitenverlängerung
US9187083B2 (en) 2009-09-16 2015-11-17 Polaris Industries Inc. System and method for charging an on-board battery of an electric vehicle
DE102010003146A1 (de) * 2010-03-23 2011-09-29 Ford Global Technologies, Llc Verfahren zum Abkühlen einer Fahrzeugkabine
US8205709B2 (en) 2010-05-21 2012-06-26 Ford Global Technologies, Llc. Transmission fluid warming and cooling system
US8631772B2 (en) * 2010-05-21 2014-01-21 Ford Global Technologies, Llc Transmission fluid warming and cooling method
KR20120036134A (ko) * 2010-10-07 2012-04-17 현대자동차주식회사 하이브리드 차량의 냉각시스템
US8463495B2 (en) * 2010-12-01 2013-06-11 GM Global Technology Operations LLC Method for controlling exhaust gas heat recovery systems in vehicles
US8485932B2 (en) * 2011-01-06 2013-07-16 Chrysler Group Llc Axle system
FR2982935B1 (fr) * 2011-11-22 2014-01-10 Peugeot Citroen Automobiles Sa Dispositif de gestion thermique d'une chaine de traction d'un vehicule hybride ou electrique
US8991339B2 (en) * 2012-03-30 2015-03-31 Ford Global Technologies, Llc Multi-zone vehicle radiators
DE102012210054A1 (de) * 2012-06-14 2013-12-19 Bayerische Motoren Werke Aktiengesellschaft Kühlmittelkreislauf für eine Brennkraftmaschine und Verfahren zum Betrieb der Brennkraftmaschine
KR101339257B1 (ko) * 2012-09-24 2013-12-09 현대자동차 주식회사 차량의 엔진 냉각 시스템 및 방법
KR101410650B1 (ko) * 2012-12-07 2014-06-24 현대자동차주식회사 Atf의 리저버
JP2014227921A (ja) * 2013-05-23 2014-12-08 ヤマハ発動機株式会社 内燃機関の冷却装置およびそれを備えた自動二輪車
DE102013209965A1 (de) * 2013-05-28 2014-12-04 Behr Thermot-Tronik Gmbh Thermostatventil
US10378421B2 (en) 2014-09-19 2019-08-13 Ford Global Technologies, Llc Automatic transmission fluid thermal conditioning system
US10300786B2 (en) 2014-12-19 2019-05-28 Polaris Industries Inc. Utility vehicle
US10619530B2 (en) 2015-01-26 2020-04-14 Modine Manufacturing Company Thermal management unit for vehicle powertrain
US10087793B2 (en) 2015-01-26 2018-10-02 Modine Manufacturing Company Thermal management unit for vehicle powertrain
AU2017284964B2 (en) 2016-06-14 2020-07-02 Polaris Industries, Inc. Hybrid utility vehicle
US10520075B2 (en) * 2017-05-31 2019-12-31 Mahle International Gmbh Apparatus for controlling the temperature of an oil cooler in a motor vehicle
US10844760B2 (en) 2018-01-30 2020-11-24 Cumming Power Generation IP, Inc. Oil heater for a generator set
FR3080443B1 (fr) * 2018-04-18 2020-06-19 Renault S.A.S. Radiateur de refroidissement avec by-pass integre et circuit de refroidissement
DE102018117136A1 (de) * 2018-07-16 2020-01-16 Claas Tractor Sas Kühlsystem für eine landwirtschaftliche Maschine
DE102018213067B4 (de) * 2018-08-03 2022-06-23 Audi Ag Verfahren zum Betreiben eines Antriebsstrangs eines Kraftfahrzeugs, insbesondere eines Kraftwagens
US10780770B2 (en) 2018-10-05 2020-09-22 Polaris Industries Inc. Hybrid utility vehicle
CN109488438B (zh) * 2018-11-19 2020-10-09 安徽江淮汽车集团股份有限公司 一种带dct冷却大循环回路的冷却系统
US11370266B2 (en) 2019-05-16 2022-06-28 Polaris Industries Inc. Hybrid utility vehicle
RU2755418C1 (ru) * 2020-12-28 2021-09-15 Виктор Эдуардович Шефер Автоматизированная система регулирования температурного режима силовой установки танка

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2188172A (en) * 1937-01-06 1940-01-23 Gen Electric Heat transfer system
DE766237C (de) * 1938-02-17 1952-04-21 Sueddeutsche Kuehler Behr Fluessigkeitsgekuehlter OElkuehler fuer Brennkraftmaschinen mit Heisskuehlung
US2435041A (en) * 1945-02-10 1948-01-27 Frederic W Hild Regulating device for cooling systems
US2670933A (en) * 1950-02-24 1954-03-02 Thomas J Bay Engine cooling apparatus
US3134371A (en) * 1962-10-29 1964-05-26 Cooper Bessemer Corp Cooling system for internal combustion engines
BE795230A (fr) * 1972-02-10 1973-05-29 Bayerische Motoren Werke Ag Dispositif de refroidissement par ciculation pour des moteurs a combustion interne a pistons
FR2341041A1 (fr) * 1976-02-10 1977-09-09 Chausson Usines Sa Dispositif pour la regulation de la temperature d'un moteur diesel suralimente
DE3047672A1 (de) * 1980-12-18 1982-07-22 Aktiengesellschaft Adolph Saurer, 9320 Arbon Kuehleinrichtung zur kuehlung einer brennkraftmaschine und der ladeluft
DD158415A1 (de) * 1981-04-16 1983-01-12 Hans Berg Kuehlsystem einer brennkraftmaschine mit abgasturboaufladung und ladeluftkuehlung
US4517929A (en) * 1983-09-23 1985-05-21 International Harvester Company Self-adjusting cooling system for diesel engines
DE3517567A1 (de) * 1984-05-29 1985-12-05 Volkswagenwerk Ag, 3180 Wolfsburg Antriebsanlage fuer geraete und fahrzeuge, insbesondere kraftfahrzeuge
DE3527020A1 (de) * 1985-07-27 1987-01-29 Porsche Ag Fluessigkeitsgekuehlte antriebseinheit fuer ein fahrzeug
DE3622378A1 (de) * 1986-07-03 1988-01-14 Kloeckner Humboldt Deutz Ag Kuehlfluessigkeitssystem fuer eine brennkraftmaschine
DE3708351A1 (de) * 1987-03-14 1988-06-01 Mtu Friedrichshafen Gmbh Umlaufkuehlsystem
JPS6419157A (en) * 1987-07-10 1989-01-23 Kubota Ltd Waste heat recovering device for water cooled engine
US4883225A (en) * 1988-03-18 1989-11-28 S.T.C., Inc. Fail-safe thermostat for vehicular cooling systems
DE4104093A1 (de) 1991-02-11 1992-08-13 Behr Gmbh & Co Kuehlanlage fuer ein fahrzeug mit verbrennungsmotor
FR2682160B1 (fr) * 1991-10-07 1995-04-21 Renault Vehicules Ind Systeme de refroidissement pour moteur a combustion interne comportant deux parties distinctes de radiateur.
DE4308002C1 (de) * 1993-03-13 1994-08-25 Iav Gmbh Verteilereinrichtung für das Kühl- bzw. Heizsystem von Fahrzeugen mit Verbrennungsmotoren
DE4324749A1 (de) * 1993-07-23 1995-01-26 Freudenberg Carl Fa Regelventil
US5558055A (en) * 1994-04-27 1996-09-24 Schatz Thermo System Gmbh Method and an assembly for operating sensible heat storages
JP3602599B2 (ja) * 1995-03-02 2004-12-15 本田技研工業株式会社 車両用油圧作動式変速機の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9812425A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017219939A1 (de) 2017-11-09 2019-05-09 Volkswagen Aktiengesellschaft Kühlkreislauf für eine Antriebseinheit eines Kraftfahrzeuges
DE102018202476A1 (de) 2018-02-19 2019-08-22 Volkswagen Aktiengesellschaft Kühlkreislauf für eine Antriebseinheit eines Kraftfahrzeuges

Also Published As

Publication number Publication date
DE19637817A1 (de) 1998-03-19
DE59701435D1 (de) 2000-05-18
US6196168B1 (en) 2001-03-06
WO1998012425A1 (de) 1998-03-26
ES2146115T3 (es) 2000-07-16
EP0861368B1 (de) 2000-04-12

Similar Documents

Publication Publication Date Title
EP0861368A1 (de) Einrichtung und verfahren zum kühlen und vorwärmen
EP1588034B1 (de) Kühlkreislauf einer brennkraftmaschine mit niedertemperaturkühler
DE102012113213B4 (de) Wärmetauscher für ein Fahrzeug
DE102012105644B4 (de) Wärmetauscher für ein fahrzeug
DE102012105047B4 (de) Wärmetauschereinheit des Kerntyps mit variabler Kapazität
EP0751877B1 (de) Zusatzheizungs-anordnung
EP3747074B1 (de) Kühlsystem für brennstoffzellenstacks
EP0054792A2 (de) Kühleinrichtung zur Kühlung einer Brennkraftmaschine und der Ladeluft
DE19741861B4 (de) Vorrichtung zur Regelung des Kühlwasserkreislaufes für einen Verbrennungsmotor
WO2005113959A1 (de) Optimierte ölkühlung für eine brennkraftmaschine
DE19540591A1 (de) Kühlmittelkreislauf für Kraftfahrzeuge
DE102016214122A1 (de) Wärmeleitsystem für ein Fahrzeug und Verfahren zu dessen Verwendung und Herstellung
EP2345803A1 (de) Kühlkreislauf einer Brennkraftmaschine sowie ein Arbeitsverfahren zum Betrieb eines Kühlkreislaufs
DE19506935C1 (de) Kühlmittelkreislauf für einen Verbrennungsmotor eines Kraftfahrzeugs
EP0826874B1 (de) Einrichtung zur Kühlung des einem Verbrennungsmotor zugeführten Kraftstoffes
DE2841249A1 (de) Anordnung zum filtrieren von kraftstoff fuer dieselmotoren
DE2916691A1 (de) Kuehlvorrichtung fuer fluessigkeitsgekuehlte brennkraftmaschinen, insbesondere fuer wasserfahrzeuge mit kombinierter suesswasser-seewasser-kuehlung der brennkraftmaschine
WO2005125295A2 (de) Vorrichtung zum kühlen zumindest einer elektrischen und/oder elektronischen leistungskomponente
EP1083308A2 (de) Kühleinrichtung für eine Brennkraftmaschine
DE19712479B4 (de) Kühleinrichtung für den Kraftstoff der Einspritzanlage von Verbrennungsmotoren
EP1008471B1 (de) Kühl- und Heizungskreislauf sowie Wärmetauscher für Kraftfahrzeuge mit zusätzlicher Kühlmittel-Heizeinrichtung
DE102004030153A1 (de) Kühlkreislauf für eine Brennkraftmaschine
DE10010078C2 (de) Kühlvorrichtung für ein flüssiges Betriebsmittel einer Brennkraftmaschine
EP1348070A1 (de) Kühlsystem für ein kraftfahrzeug
DE10340908A1 (de) Brennkraftmaschine für Kraftfahrzeuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 19981110

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MODINE MANUFACTURING COMPANY

Owner name: BAYERISCHE MOTOREN WERKE AKTIENGESELLSCHAFT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: INTERNAL COMBUSTION ENGINE COOLING SYSTEM AND METHOD FOR OPERATING SAID SYSTEM

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 59701435

Country of ref document: DE

Date of ref document: 20000518

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000519

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2146115

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160831

Year of fee payment: 20

Ref country code: IT

Payment date: 20160831

Year of fee payment: 20

Ref country code: GB

Payment date: 20160830

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160825

Year of fee payment: 20

Ref country code: FR

Payment date: 20160825

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160819

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59701435

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170822

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170822

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170824