WO2005113959A1 - Optimierte ölkühlung für eine brennkraftmaschine - Google Patents

Optimierte ölkühlung für eine brennkraftmaschine Download PDF

Info

Publication number
WO2005113959A1
WO2005113959A1 PCT/EP2005/005417 EP2005005417W WO2005113959A1 WO 2005113959 A1 WO2005113959 A1 WO 2005113959A1 EP 2005005417 W EP2005005417 W EP 2005005417W WO 2005113959 A1 WO2005113959 A1 WO 2005113959A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
engine
oil
module
cooling
Prior art date
Application number
PCT/EP2005/005417
Other languages
English (en)
French (fr)
Inventor
Alexander Kanig
Torsten LÖHNERT
Jörg SCHIEFERSTEIN
Original Assignee
Gm Global Technology Operations, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gm Global Technology Operations, Inc. filed Critical Gm Global Technology Operations, Inc.
Priority to AT05750261T priority Critical patent/ATE487035T1/de
Priority to DE502005010485T priority patent/DE502005010485D1/de
Priority to EP05750261A priority patent/EP1751411B1/de
Priority to US11/569,219 priority patent/US7717070B2/en
Priority to CN2005800161712A priority patent/CN1957164B/zh
Publication of WO2005113959A1 publication Critical patent/WO2005113959A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/08Arrangements of lubricant coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/002Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/04Arrangements of liquid pipes or hoses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler

Definitions

  • the present invention relates to a cooler module for cooling an oil circulating in an oil circuit of an engine by means of a coolant, comprising a housing, an oil-coolant heat exchanger, an oil filter and at least one fluidically running through the module housing and the oil-coolant heat exchanger and the oil filter connecting module coolant channel for transporting the coolant.
  • the invention further relates to an engine coolant channel running in an engine block for cooling an oil circulating in an oil circuit of an engine by means of a coolant comprising an engine block housing and at least one engine coolant channel running through it for transporting the coolant, an engine cooler module arrangement for cooling an in a Oil circuit of an engine circulating oil by means of a coolant comprising an engine with an engine block and a cooler module connected to the engine block, the cooler module being connected to the engine block such that the channels running in the engine and the channels running in the module are fluidly connected to one another are connected to form a closed cooling pipe system.
  • the invention also relates to a cooling method for cooling an oil circuit of an engine by means of a cooling circuit formed by channels in a cooling circuit
  • Oil-coolant heat exchanger flowing coolant comprising an engine block and / or a cooler module comprising the steps of directing the coolant through a first section of the cooling circuit that runs through the engine block, passing the coolant through a second section of the
  • BESTATIGUNGSKOPIE Cooling circuit which runs through the oil-coolant heat exchanger, and closing the cooling circuit.
  • Such cooling devices and methods for cooling an internal combustion engine of a motor vehicle are used today in all motor vehicles. Oil is cooled using a coolant. Different types of cooling devices are distinguished, for example with regard to the coolant.
  • a cooling device is the air-oil cooler. This is arranged on the front of the motor vehicle in the air flow generated when driving.
  • a disadvantage of this solution is that the coolant used - air - has a relatively small heat transfer coefficient. In order to achieve sufficient oil cooling, a relatively large air-oil cooler is therefore necessary. In addition, the cooling is dependent on the air flow and thus on the driving speed of the motor vehicle. At low
  • the air-oil cooler does not provide sufficient cooling power at driving speeds.
  • the oil must be directed to the air-oil cooler.
  • flexible lines from the engine to the air-oil cooler are used due to the distances to be bridged and the flexible path of the oil. These flexible lines, which are usually designed as a hose, tend to leak after prolonged use.
  • Another cooling device is the oil-water heat exchanger.
  • This uses water or cooling water as the cooling medium. Due to the higher heat transfer coefficient of water, this heat exchanger has a higher cooling capacity with a smaller construction volume.
  • the coolant, more precisely the water, and oil are carried in a pipe system made of hoses or pipes.
  • the use of pipes and hoses is with regard to the connections of the pipes and hoses to one another or to the engine or the Oil-water heat exchanger disadvantageous, since the connection tend to leak relatively quickly, especially at the connection points. Furthermore, the fluid mechanical properties of the connections are disadvantageous, since the connections sometimes lead to large resistances in the line system.
  • a third cooling device is the oil-water heat exchanger module with an oil filter.
  • This solution overcomes some disadvantages of the cooling devices listed above.
  • the advantage of the modular design is that the oil-water heat exchanger module has a compact design.
  • the oil filter is designed as a filter cartridge, which is flanged to the heat exchanger.
  • the oil line system is designed as a channel integrated in the module housing, which significantly reduces the risk of leaks with regard to the oil line.
  • the flow of the media - coolant / oil - flowing in the channels takes place one after the other, i.e. in the manner of a series connection.
  • the channels build longer, which leads to a larger construction volume.
  • the length of the channels results in a greater total resistance of the line system, so that these also have to be compensated for by a larger dimensioning of the flow cross sections of the line system without accepting a loss of performance.
  • a goal of such cooling systems in addition to cooling is to keep the pressure difference in the cooling module as low as possible, since this adds up to the total pressure drop in the entire engine system and a Pressure drop represents loss of effectiveness. The higher the pressure drop, the higher the loss of effectiveness.
  • the cooling medium flows through the cooling module at high speed, that is to say it has a short residence time in the cooler module or cooler package, as a result of which the cooling medium can absorb and transport little thermal energy, and thus results in less effective cooling .
  • the water circuit in the cylinder block and in the cylinder head must also be set separately, that is, it is necessary to readjust the water circuit in the cylinder block and the cylinder head. This creates an additional effort for adjustment work.
  • This object is based on a radiator module according to the preamble of claim 1, an engine block according to the preamble of claim 6, an engine cooler module arrangement according to the preamble of claim 7 and a cooling method according to the preamble of claim 10 in conjunction with its characterizing features solved .
  • Advantageous developments of the invention are specified in the claims dependent thereon.
  • the invention includes the technical teaching that the module coolant channel formed in the housing of the cooler module is at least partially designed as a bypass channel fluidly connected to the oil / coolant heat exchanger to the engine coolant channel in order to divide the coolant flow into two partial flows, and to effect a parallel connection of the coolant flows.
  • the module coolant channel can have an additional bypass channel in at least one section or can be designed entirely as a bypass channel.
  • the bypass channel can be branched off from a section of the engine coolant channel which is formed in the engine block or already branch off from the water pump.
  • any other cooling unit suitable for oil cooling can also be used as the cooling unit for oil cooling.
  • This solution has the advantage that the total length of the line system is shortened by the bypass channel and the associated parallel connection of the coolant.
  • the coolant used for cooling no longer passes through the heat-emitting engine and is then fed to the heat exchanger, but is fed to the heat exchanger parallel to the passage through the engine.
  • the temperature of the coolant when entering the heat exchanger is thus significantly lower, as a result of which a significantly improved cooling capacity is achieved in the heat exchanger.
  • Water is preferably used as the coolant. This allows the cooling circuit to be connected directly to the internal water circuit.
  • the water is preferably taken directly behind the water pump. It is therefore advantageous that the bypass channel is arranged as close as possible to the water pump.
  • the water is still little heated due to the heat that is given off by the engine to the cooling water, so that a relatively low water temperature is achieved when the water flows into the heat exchanger.
  • the temperature difference between the entering cooling water and the oil to be cooled is greater than in conventional solutions, which significantly improves the cooling performance.
  • the water circuit in the heat exchanger is connected in parallel to the water circuit through the engine block.
  • the high pressure difference results in a longer dwell time of the cooling medium in the cooler package or cooler module, as a result of which a larger amount of heat can be absorbed by the coolant or cooling medium and a more effective cooling capacity can thus be achieved.
  • the improved heat absorption means that fewer cooling plates are required in the cooler module compared to conventional cooling systems for the same cooling performance. This saves installation space. Overall, the invention thus also results in an increase in the cooling efficiency and thus also a reduction in the cost.
  • the module coolant channel is designed to be fluidly detachably connected to a corresponding engine coolant channel in order to guide the coolant flow flowing through an engine block of the engine through the cooler module.
  • part of the existing engine coolant channel can be used to transport the cooling water.
  • the cooling water is then led through the module to the heat exchanger. This eliminates the need for an external hose line since the motor duct and the bypass duct are each integrated in the module housing.
  • the heat exchanger is preferably arranged in the immediate vicinity of the engine, as a result of which the bypass channel length is made relatively short and a compact engine cooling module arrangement is possible.
  • bypass channel transports a partial flow of the coolant to the oil cooler arranged on the housing and away from it again.
  • the oil cooler is arranged on the cooler module. By connecting the coolant flow in parallel, a partial flow is discharged through the bypass duct. This is led to the oil cooler.
  • Cooling water is preferably provided as the coolant. This can be branched off from existing cooling water pipes without having to provide an additional coolant circuit with an additional coolant for supplying the coolant circuit.
  • One measure which improves the invention particularly provides that the oil / coolant heat exchanger is at least partially integrated into the module housing.
  • a very compact cooler module is realized, which has a short channel length.
  • the compact module is easy to assemble and handle with little effort.
  • the at least partial integration of the heat exchanger in the cooler module ensures a safer and more reliable mounting, which also ensures an improved vibration behavior of the module.
  • the module housing preferably has at least one integrated oil channel for guiding the oil to and from it
  • Oil-coolant heat exchanger and / or the oil filter are also integrated in the housing means that external lines are no longer required, which further reduces the risk of leakages.
  • the invention further includes the technical teaching that an engine block for cooling an oil circulating in an oil circuit of an engine by means of a coolant comprising at least one integrated engine coolant channel for transporting the coolant is provided, the engine coolant channel being fluid at least in one section has bypass channel connected to the oil-coolant heat exchanger in order to transport or guide one of the two coolant partial flows connected in parallel to and away from the oil-coolant heat exchanger.
  • the bypass channel should be as close as possible to that
  • Branch coolant cooler from the engine coolant passage to branch a coolant with a temperature as low as possible.
  • This solution offers the advantage that the bypass duct is formed directly in the engine block or in the engine block housing, so that an additional module can be dispensed with. This means that fewer components are required overall.
  • an engine cooler module arrangement for cooling an oil circulating in an oil circuit of an engine by means of a coolant comprising an engine with an engine block, at least one engine coolant channel integrated in the engine block and one with the engine block comprises fluidically connected cooler module, wherein the cooler module is connected to the engine block such that the at least one engine coolant channel and the at least one module coolant channel or the engine coolant channels and the module coolant channels are fluidly connected to one another to form a closed cooling line system ,
  • the embodiment listed here is made in two parts, that is, with an engine and a cooler module.
  • the engine block or the engine block housing can be produced with less effort.
  • the cooler module can be integrated in the engine block, the cooler module or the channels formed in the cooler module replacing part of the channels otherwise located in the engine block. In this way, the installation space of the engine cooler module arrangement can be further reduced, so that an additional installation space is created.
  • An oil / coolant heat exchanger, through which the oil flows, can be arranged in this, for example, as a cooler plate pack.
  • the cooler module is at least partially integrated in the engine block, so that at least one area of the cooler module is in the engine block is designed to be integrated so that the at least one engine coolant channel can be at least partially replaced by the module coolant channel and / or the bypass channel.
  • the at least partial integration of the cooler module in the engine block ensures a reliable and secure mounting of the module.
  • This arrangement provides an engine cooling module arrangement that is optimized with regard to the vibration behavior. The cooler module vibrates less due to the partial integration, so that damage or functional impairments due to vibrations are largely avoided.
  • At least one control unit for regulating the oil flow in the oil circuit is additionally formed. So the amount of oil flowing through the oil channel can be controlled depending on the need and application.
  • the invention also includes the technical teaching that a cooling method for cooling an oil circuit of an engine by means of a coolant flowing in a cooling circuit formed by channels through an oil-coolant heat exchanger is provided, with an engine block and / or a cooler module comprising the steps: Directing the coolant through a first portion of the cooling circuit that passes through the engine block, directing the coolant through a second portion of the cooling circuit that passes through the oil cooler, and closing the cooling circuit, the steps of directing the coolant through a first portion and passing the Coolant through a second section in parallel.
  • FIG. 1 is a schematic representation of an engine with a bypass duct according to the invention
  • FIG. 2 shows a partial section of an engine cooler module arrangement in a perspective view from the front of the engine
  • Fig. 3 is a radiator module in a perspective view from the engine side
  • Fig. 4 shows an engine cooler module arrangement in a perspective view from the front.
  • the motor cooler module arrangement 1 or the motor comprises a bypass duct 2 for transporting cooling water.
  • the engine further comprises an engine block 3 and a water pump 4.
  • an engine coolant channel 5 is formed for the transport of cooling water (shown schematically here by white arrows).
  • Bypass channel 2 and engine coolant channel 5 are fed with cooling water in FIG. 1 via the water pump 4.
  • the cooling water at the water pump 4 is thus divided into two partial flows.
  • a cooling water partial flow flows through the engine coolant channel 5 and the other partial flow flows through the bypass channel 2. Both partial flows flow back through a common channel section back to the water pump 4.
  • the water pump 4 itself is fed (shown) by a cooler (not shown) with cooled cooling water by dot line).
  • a control unit 6 in the form of a thermostat is connected in the cooling water circuit. This causes cooling water, which is no longer used for cooling flows to the cooler (represented by a dotted line).
  • the oil circuit is only shown in part in FIG. 1.
  • the oil flows through an oil channel 7 through a control unit 6 designed as a throttle to the control unit 6 designed as a thermostat. From there the oil flows further into the oil-coolant heat exchanger 8, where it passes through the oil-coolant heat exchanger 8 flowing cooling water stream is cooled.
  • the bypass duct 2 can both be integrated in the engine block 3 and can also be separately connected to the engine in a cooler module shown in FIG. 2.
  • FIG. 2 shows a partial section of an engine cooler module arrangement 1 comprising a cooler module 9 which is fastened to an engine - more precisely to an engine block 3 - by means of a screw connection.
  • the cooler module 9 comprises a module housing 10 in which the bypass channel 2 (not visible here) and the oil channel 7 run.
  • An oil filter 11 is integrated in the cooler module 9. It is designed in the manner of a cartridge.
  • the cooler module 9 is shown in FIG. 3 when viewed from the engine side.
  • the cooler module 9 comprises an oil filter 11 and a housing 10, in which the bypass duct and the oil duct (both not shown) are arranged. A channel section for the outflow of the coolant or the oil is arranged on the housing 10.
  • FIG. 4 shows an engine cooler module arrangement with a cooler module 9 integrated in an engine.
  • the engine in FIG. 4 comprises an engine block 3, a water pump 4, a cover 12, a manifold with a heat shield 13, a cylinder block 14 with a cylinder head 15 and one Oil pan 16.
  • the cooler module 9 is largely integrated in the engine, only the
  • Engine cooler module arrangement bypass duct engine block water pump engine coolant duct control unit oil duct water-oil heat exchanger cooler module module housing oil filter cover manifold with heat shield cylinder block cylinder head oil pan

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Lubricants (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Abstract

Der Gegenstand der vorliegenden Erfindung betrifft eine Mo­tor-Kühlermodulanordnung (1), einen Motorblock (3), ein Küh­lermodul (9) sowie ein Verfahren zur Kühlung eines in einem Ölkreislauf eines Motors umlaufenden Öls mittels eines Kühl­mittels. Das Kühlmittel durchläuft einen Kühlmittelkanal, der sowohl in dem Motorblock (3) als auch in dem Kühlermodul (9) ausgebildet ist. Parallel zu dem Kühlmittelkanal ist ein By­passkanal (2) vorhanden, durch welchen ein Kühlmittelteilstrom - parallel zu einem durch den Motorblock (3) strömenden Kühlmittelteilstrom - zu einem Öl-Kühlmittel-Wärmetauscher (8) geführt wird. Das Kühlermodul (9) ist in den Motor zumindest teilweise integriert.

Description

Optimierte Ölkühlung für eine Brennkraftmaschine
Die vorliegende Erfindung betrifft ein Kühlermodul zur Kühlung eines in einem Olkreislauf eines Motors umlaufenden Öls mittels eines Kühlmittels umfassend ein Gehäuse, einen Öl-Kühlmittel-Wärmetauscher, einen Ölfilter und mindestens ein durch das Modulgehäuse verlaufenden und den Öl-Kühlmittel-Wärmetauscher und den Ölfilter fluidisch ver- bindenden Modul-Kühlmittelkanal zum Transport des Kühlmittels. Weiter betrifft die Erfindung einen in einem Motorblock verlaufenden Motor-Kühlmittelkanal zur Kühlung eines in einem Olkreislauf eines Motors umlaufenden Öls mittels eines Kühlmittels umfassend ein Motorblockgehäuse und mindestens einen dadurch verlaufenden Motor-Kühlmittelkanal zum Transport des Kühlmittels, eine Motor-Kühlermodulanordnung zur Kühlung eines in einem Olkreislauf eines Motors umlaufenden Öls mittels eines Kühlmittels umfassend einen Motor mit einem Motorblock und ein mit dem Motorblock verbundenes Kühlermodul, wobei das Küh- lermodul so mit dem Motorblock verbunden ist, dass die in dem Motor verlaufenden Kanäle und die in dem Modul verlaufenden Kanäle fluidisch miteinander verbunden sind, um ein geschlossenes Kühlleitungssystem zu bilden. Schließlich betrifft die Erfindung noch ein Kühlverfahren zur Kühlung eines Öl- kreislaufs eines Motors mittels eines in einem aus Kanälen gebildeten Kühlkreislaufs durch einen
Öl-Kühlmittel-Wärmetauscher fließenden Kühlmittels umfassend einen Motorblock und/oder ein Kühlermodul umfassend die Schritte Leiten des Kühlmittels durch einen ersten Abschnitt des Kühlkreislaufs, welcher durch den Motorblock verläuft, Weiterleiten des Kühlmittels durch einen zweiten Abschnitt des
BESTATIGUNGSKOPIE Kühlkreislaufs, welcher durch den Öl-Kühlmittel-Wärmetauscher verläuft, und Schließen des Kühlkreislaufs.
Derartige Kühlvorrichtungen und Verfahren zur Kühlung einer Brennkraftmaschine eines Kraftfahrzeugs kommen heutzutage in allen Kraftfahrzeugen zum Einsatz. Dabei wird Öl mittels eines Kühlmittels gekühlt. Es werden verschiedene Arten von Kühlvorrichtungen beispielsweise hinsichtlich des Kühlmittels unterschieden .
Eine Kühlvorrichtung gemäß dem Stand der Technik ist der Luft-Öl-Kühler. Dieser wird an der Kraftfahrzeugfront in dem bei Fahrt erzeugten Luftstrom angeordnet.
Nachteilig an dieser Lösung ist, dass das verwendete Kühlmittel - Luft - einen relativ kleinen Wärmeübergangskoeffizienten aufweist. Um eine ausreichende Ölkühlung zu realisieren, ist deshalb ein relativ groß bauender Luft-Öl-Kühler notwendig. Zudem ist die Kühlung abhängig von der Luftströmung und damit von der Fahrgeschwindigkeit des Kraftfahrzeugs. Bei niedrigen
Fahrgeschwindigkeiten liefert der Luft-Öl-Kühler keine ausreichende Kühlleistung. Das Öl muss zum Luft-Öl-Kühler geleitet werden. Hierzu werden aufgrund der zu überbrückenden Strecken und der flexiblen Bahnführung des Öls flexible Leitungen von dem Motor zum Luft-Öl-Kühler eingesetzt. Diese meist als Schlauch ausgebildeten flexiblen Leitung neigen nach längerem Gebrauch zu Leckagen.
Eine weitere Kühlvorrichtung gemäß dem Stand der Technik ist der Öl-Wasser-Wärmetauscher. Dieser verwendet Wasser oder auch Kühlwasser als Kühlmedium. Aufgrund des höheren Wärmeübergangskoeffizienten von Wasser weist dieser Wärmetauscher eine höhere Kühlleistung bei kleinerem Bauvolumen auf. Das Kühlmittel, genauer das Wasser, und Öl werden in einem Leitungssystem aus Schläuchen oder Rohren geführt. Die Verwendung von Rohren und Schläuchen ist hinsichtlich der Verbindungen der Rohre und Schläuche untereinander oder mit dem Motor oder dem Öl-Wasser-Wärmetauscher nachteilig, da die Verbindung insbesondere an den Verbindungsstellen relativ schnell zur Undichtigkeit neigen. Weiterhin sind die strömungsmechanischen Eigenschaften der Verbindungen nachteilig, da die Verbindungen teilweise zu großen Widerständen in dem Leitungssystem führen.
Eine dritte Kühlvorrichtung gemäß dem Stand der Technik ist der Öl-Wasser-Wärmetauschermodul mit Ölfilter. Diese Lösung ü- berwindet einige Nachteile der vorherig aufgeführten Kühl- Vorrichtungen. Der Vorteil an der Modulbauweise ist, dass das Öl-Wasser-Wärmetauschermodul eine kompakte Bauform aufweist. Der Ölfilter ist als Filterpatrone ausgebildet, welche an dem Wärmetauscher angeflanscht ist. Das Öl-Leitungssystem ist als in das Modulgehäuse integrierter Kanal ausgebildet, wodurch das Risiko von Leckagen bezüglich der Öl-Leitung deutlich reduziert ist.
Nachteilig an dieser Lösung ist, dass das als Wasser ausgebildete Kühlmittel auch hier über Schläuche geführt und geleitet wird. Dadurch kann es bei der Wasserleitung auch weiterhin zu Leckagen kommen. Zudem kann es aufgrund der starken Konzentrierung der Bauteile auf kleinem Bauraum zu Schwingungsproblemen während des Betriebs des Kraftfahrzeugs kommen, welche unter Umständen zum Versagen der Kühlvorrichtung führen.
Bei allen zuvor aufgeführten Lösungen erfolgt die Strömung der in den Kanälen strömenden Medien - Kühlmittel/ Öl - hintereinander, das heißt nach Art einer Reihenschaltung. Hierdurch bauen die Kanäle länger, was zu einem größeren Bauvolumen führt. Zudem ergibt sich aufgrund der Länge der Kanäle ein größerer Gesamtwiderstände des Leitungssystems, so dass diese ebenfalls durch eine größere Dimensionierung der Durchflussquerschnitte des Leitungssystems ausgeglichen werden müssen, ohne einen Leistungsverlust hinzunehmen. Ein Ziel von derartigen Kühl- Systemen neben der Kühlung ist es jedoch, die Druckdifferenz im Kühlungsmodul so gering wie möglich zu halten, da diese sich zu dem gesamten Druckabfall im gesamten Motorsystem addiert und ein Druckabfall Effektivitätseinbußen darstellt. Je höher der Druckabfall desto höher der Effektivitätsverlust. Um dies bei den herkömmlichen Systemen zu gewährleisten, strömt das Kühlmedium mit hoher Geschwindigkeit durch das Kühlmodul, das heißt es hat eine geringe Verweildauer im Kühlermodul oder Kühlerpaket, wodurch das Kühlmedium nur wenig an Wärmeenergie aufnehmen und abtransportieren kann, und somit eine wenig effektive Kühlung bewirkt. Durch die serielle Anordnung uss zudem der Wasserkreislauf im Zylinderblock und im Zylinderkopf separat ein- gestellt werden, das heißt, es ist eine Neuabstimmung des Wasserkreislaufs in dem Zylinderblock und dem Zylinderkopf erforderlich. Hierdurch entsteht eine Mehraufwand an Einstellarbeit.
Es ist daher die Aufgabe der vorliegenden Erfindung ein
Kühlsystem und ein Kühlverfahren zu schaffen, bei der unter optimaler Bauraumausnutzung eine effiziente Kühlung eines umlaufenden Öls realisiert ist.
Diese Aufgabe wird ausgehend von einem Kühlermodul gemäß dem Oberbegriff des Anspruchs 1, einem Motorblock gemäß dem 0- berbegriff des Anspruchs 6, einer Motor-Kühlermodulanordnung gemäß dem Oberbegriff des Anspruchs 7 sowie einem Kühlverfahren gemäß dem Oberbegriff des Anspruchs 10 in Verbindung mit dessen kennzeichnenden Merkmalen gelöst . Vorteilhafte Weiterbildungen der Erfindung sind in den hierauf abhängigen Ansprüchen angegeben.
Die Erfindung schließt die technische Lehre ein, dass der in dem Gehäuse des Kühlermoduls ausgebildete Modul-Kühlmittelkanal zumindest teilweise als ein fluidisch mit dem Öl-Kühlmittel-Wärmetauscher verbundener Bypasskanal zum Motor-Kühlmittelkanal ausgebildet ist, um den Kühlmittelstrom in zwei Teilströme zu teilen, und so eine Parallelschaltung der Kühlmittelströme zu bewirken. Der Modulkühlmittelkanal kann dabei zumindest in einem Abschnitt einen zusätzlichen Bypasskanal aufweisen oder komplett als Bypasskanal ausgebildet sein. Die Abzweigung des Bypasskanals kann von einem Abschnitt des Motor-Kühlmittel-Kanals erfolgen, der in dem Motorblock ausgebildet ist oder bereits von der Wasserpumpe abzweigen.
Als Kühlaggregat zur Ölkühlung kann neben dem Öl-Kühlmittel-Wärmetauscher auch jedes andere zur Ölkühlung geeignete Kühlaggregat verwendet werden.
Diese Lösung bietet den Vorteil, dass durch den Bypasskanal und die damit verbundene Parallelschaltung des Kühlmittels die Gesamtlänge des Leitungssystems verkürzt wird. Das zur Kühlung verwendete Kühlmittel durchläuft nicht mehr erst den wärmeabgebenden Motor und wird dann dem Wärmetauscher zugeführt, sondern wird parallel zum Durchlauf durch den Motor dem Wärmetauscher zugeführt. Somit ist die Temperatur des Kühlmittels bei Eintritt in den Wärmetauscher deutlich geringer, wodurch eine deutliche verbesserte Kühlleistung in dem Wärmetauscher erzielt wird. Als Kühlmittel wird vorzugsweise Wasser verwendet. Dadurch kann der Kühlkreislauf direkt an den internen Wasserkreislauf angeschlossen werden. Das Wasser wird vorzugsweise direkt hinter der Wasserpumpe entnommen. Es ist deshalb vorteilhaft, dass der Bypasskanal so nah wie möglich an der Wasserpumpe angeordnet ist. Dadurch ist das Wasser noch wenig aufgrund der Wärme, die von dem Motor an das Kühlwasser abgegeben wird erhitzt, so dass eine relativ geringe Wassertemperatur bei Einlauf des Wassers in den Wärmetauscher realisiert ist. Dadurch ist die Temperaturdif- ferenz zwischen eintretendem Kühlwasser und zu kühlendem Öl größer als in herkömmlichen Lösungen, wodurch die Kühlleistung deutlich verbessert ist.
Im Gegensatz zu den herkömmlichen Kühlsystemen ist der Was- serkreislauf im Wärmetauscher parallel zum Wasserkreislauf durch den Motorblock geschaltet. Dies bedeutet, das hier im Gegensatz zu den herkömmlichen Kühlsystemen eine hohe Druckdifferenz erforderlich ist, um den Wasserkreislauf des Motors unbeein- flusst zu lassen. Durch die hohe Druckdifferenz ergibt sich eine größere Verweildauer des Kühlmediums im Kühlerpaket oder Kühlermodul, wodurch eine größere Wärmemenge von dem Kühlmittel oder Kühlmedium aufgenommen werden kann und so eine effektivere Kühlleistung realisierbar ist. Durch die verbesserte Wärmemengenaufnahme werden im Vergleich zu herkömmlichen Kühlsystemen für gleiche Kühlleistungen weniger Kühlplatten im Kühlermodul benötigt. Hierdurch lässt sich Bauraum einsparen. Insgesamt resultiert aus der Erfindung somit auch eine Erhöhung des Kühlungs-Wirkungsgrads und damit auch eine Reduzierung des Kostenaufwands .
Eine weitere die Erfindung verbessernde Maßnahme sieht vor, dass der Modul-Kühlmittelkanal fluidisch mit einem korrespondierenden Motor-Kühlmittelkanal lösbar verbunden ausgebildet ist, um den durch einen Motorblock des Motors strömenden Kühlmittelstrom durch das Kühlermodul zu leiten. Auf diese Weise kann ein Teil des bereits vorhandenen Motor-Kühlmittelkanals zum Transport des Kühlwassers verwendet werden. Im Bereich, in dem der Wärmetauscher angeordnet ist, wird dann das Kühlwasser durch das Modul zu dem Wärmetauscher geführt. Hierdurch kann auf eine externe Schlauchleitung verzichtet werden, da der Motorkanal und der Bypasskanal jeweils in das Modulgehäuse integriert sind. Der Wärmetauscher ist vorzugsweise in unmittelbarer Nähe zu dem Motor angeordnet, wodurch die Bypasskanallänge relativ kurz ausgebildet ist und eine kompakte Motor-Kühlmodulanordnung möglich ist .
Es ist vorteilhaft, dass der Bypasskanal einen Teilstrom des Kühlmittels zu dem an dem Gehäuse angeordneten Ölkühler und von diesem wieder weg transportiert. Der Ölkühler ist an dem Kühlermodul angeordnet. Durch die Parallelschaltung des Kühlmittelflusses wird ein Teilstrom durch den Bypasskanal abgeführt. Dieser wird zu dem Ölkühler geführt. Durch das
Abführen des Teilstroms können kleinere Durchflussquerschnitte in den Kanälen verwendet werden. Vorzugsweise ist als Kühlmittel Kühlwasser vorgesehen. Dieses kann aus bereits existierenden Kühlwasserleitungen abgezweigt werden, ohne dass ein zusätzlicher Kühlmittelkreislauf mit einem zusätzlichen Kühlmittel zur Speisung des Kühlmittelkreislaufes vorgesehen werden muss.
Ein die Erfindung besonders verbessernde Maßnahme sieht vor, dass der Öl-Kühlmittel-Wärmetauscher zumindest teilweise in das Modulgehäuse integriert ist. Auf diesem Wege ist ein sehr kompaktes Kühlermodul realisiert, welches eine kurze Kanallänge aufweist. Das kompakte Modul lässt sich leicht und ohne großen Aufwand montieren und handhaben. Durch die zumindest teilweise Integration des Wärmetauschers in das Kühlermodul ist eine sicherere und zuverlässigere Halterung gewährleistet, welche auch ein verbessertes Schwingungsverhalten des Moduls gewährleistet .
Vorzugsweise weist das Modulgehäuse mindestens einen integ- rierten Ölkanal zur Leitung des Öls zu und von dem
Öl-Kühlmittel-Wärmetauscher und/oder dem Ölfilter auf. Dadurch dass auch der Ölkanal in das Gehäuse integriert ist, werden keine externen Leitungen mehr benötigt, wodurch das Risiko von Leckagen weiter reduziert ist.
Die Erfindung schließt weiter die technische Lehre ein, dass ein Motorblock zur Kühlung eines in einem Olkreislauf eines Motors umlaufenden Öls mittels eines Kühlmittels umfassend mindestens einen integrierten Motor-Kühlmittelkanal zum Transport des Kühlmittels vorgesehen ist, wobei der Motor-Kühlmittelkanal zumindest in einem Abschnitt ein fluidisch mit dem Öl-Kühlmittel-Wärmetauscher verbundenen Bypasskanal aufweist, um einen der zwei parallel geschalteten Kühlmittelteilströme zu Öl-Kühlmittel-Wärmetauscher und von diesem weg zu transportieren oder führen. Der Bypasskanal sollte möglichst nahe an dem
Kühlmittelkühler von dem Motor-Kühlmittelkanal abzweigen, um ein Kühlmittel mit einer möglichst niedrigen Temperatur abzuzweigen. Diese Lösung bietet den Vorteil, dass der Bypasskanal direkt in dem Motorblock beziehungsweise in dem Motorblockgehäuse ausgebildet ist, so dass auf ein zusätzliches Modul verzichtet werden kann. Damit werden insgesamt weniger Komponenten benötigt .
Die Erfindung schließt weiter die technische Lehre ein, dass eine Motor-Kühlermodulanordnung zur Kühlung eines in einem Öl- kreislauf eines Motors umlaufenden Öls mittels eines Kühlmittels umfassend einen Motor mit einem Motorblock, mindestens einen in den Motorblock integrierten Motor-Kühlmittelkanal und ein mit dem Motorblock fluidisch verbundenes Kühlermodul umfasst, wobei das Kühlermodul so mit dem Motorblock verbunden ist, dass der mindestens eine Motor-Kühlmittelkanal und der mindestens eine Modul-Kühlmittelkanal oder die Motor-Kühlmittelkanäle und die Modul-Kühlmittelkanäle fluidisch miteinander verbunden sind, um ein geschlossenes Kühlleitungssystem zu bilden.
Gegenüber der zuvor aufgeführten einteiligen Lösung mit einem Motorblock, der einen integrierten Bypasskanal aufweist, ist die hier aufgeführte Ausführung zweiteilig ausgebildet, das heißt mit einem Motor und einem Kühlermodul. Der Motorblock beziehungsweise das Motorblockgehäuse ist mit weniger Aufwand zu fertigen. Zudem kann das Kühlermodul in den Motorblock integriert werden, wobei das Kühlermodul beziehungsweise die in dem Kühlermodul ausgebildeten Kanäle einen Teil der sonst in dem Motorblock befindlichen Kanäle ersetzt. Auf diese Weise lässt sich der Bauraum der Motor-Kühlermodulanordnung weiter redu- zieren, so dass ein zusätzlicher Bauraum entsteht . In diesem kann beispielsweise ein als Kühlerplattenpaket ausgebildeter Öl-Kühlmittel-Wärmetauscher angeordnet werden, durch den das Öl fließt.
Aus diesem Grund ist es vorteilhaft, dass das Kühlermodul zumindest teilintegriert in den Motorblock ausgebildet ist, so dass zumindest ein Bereich des Kühlermoduls in den Motorblock integriert ausgebildet ist, so dass der mindestens eine Motor-Kühlmittelkanal zumindest teilweise durch den Modul-Kühlmittelkanal und/oder den Bypasskanal ersetzbar ist. Durch die zumindest teilweise Integration des Kühlermoduls in den Motorblock ist eine zuverlässige und sicher Halterung des Moduls gewährleistet. Durch diese Anordnung ist ein hinsichtlich des Schwingungsverhaltens optimierte Motor-Kühlmodulanordnung realisiert. Das Kühlermodul schwingt durch die Teilintegration weniger, so dass Schädigungen oder Funktionsbeeinträchtigungen durch Schwingungen weitestgehend vermieden werden.
Eine die Erfindung weiter verbessernde Maßnahme sieht vor, dass zusätzlich mindestens eine Regeleinheit zur Regelung des Öl- stroms in dem Olkreislauf ausgebildet ist. So kann je nach Bedarf und Einsatzfall die Ölmenge die durch den Ölkanal strömt gesteuert werden.
Die Erfindung schließt auch die technische Lehre ein, dass ein Kühlverfahren zur Kühlung eines Ölkreislaufs eines Motors mittels eines in einem aus Kanälen gebildeten Kühlkreislaufs durch einen Öl-Kühlmittel-Wärmetauscher fließenden Kühlmittels vorgesehen ist, mit einem Motorblock und/oder einem Kühlermodul umfassend die Schritte: Leiten des Kühlmittels durch einen ersten Abschnitt des Kühlkreislaufs, welcher durch den Motorblock verläuft, Weiterleiten des Kühlmittels durch einen zweiten Abschnitt des Kühlkreislaufs, welcher durch den Ölkühler verläuft, und Schließen des Kühlkreislaufs, wobei die Schritte Leiten des Kühlmittels durch einen ersten Abschnitt und Weiterleiten des Kühlmittels durch einen zweiten Abschnitt parallel erfolgen.
Durch die Parallelschaltung ergibt sich eine deutliche verbesserte Kühlungseffektivität, wodurch der Wärmetauscher mit kleineren Abmaßen dimensionierbar ist, so dass dieses effektive Kühlverfahren auch in Kraftfahrzeugen mit wenig Bauraum ins- besondere in Kleinwagen zur einsetzbar ist. Weitere die Erfindung verbessernde Maßnahmen sind in den Unteransprüchen angegeben oder werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung anhand der Figuren dargestellt. Es zeigt:
Fig. 1 eine schematische Darstellung eines Motor mit einem erfindungsgemäßen Bypasskanal,
Fig. 2 einen Teilausschnitt einer Mo- tor-Kühlermodulanordnung in einer perspektivischen Ansicht von vorne auf den Motor gesehen,
Fig. 3 ein Kühlermodul in perspektivischer Ansicht von der Motorseite und
Fig. 4 zeigt eine Motor-Kühlermodulanordnung in einer perspektivischen Ansicht von vorne.
Fig. 1 zeigt eine schematische Motor-Kühlermodulanordnung 1 oder einen Motor mit integriertem Bypasskanal 2. Die Motor-Kühlermodulanordnung 1 beziehungsweise der Motor umfasst einen Bypasskanal 2 zum Transport von Kühlwasser. Der Motor umfasst weiter einen Motorblock 3 und eine Wasserpumpe 4. In dem Motorblock 3 ist ein Motor-Kühlmittelkanal 5 zum Transport von Kühlwasser ausgebildet (hier schematisch dargestellt durch weiße Pfeile) . Bypasskanal 2 und Motor-Kühlmittelkanal 5 werden in Fig. 1 über die Wasserpumpe 4 mit Kühlwasser gespeist. Somit wird das Kühlwasser an der Wasserpumpe 4 in zwei Teilströme geteilt. Ein Kühlwasserteilstrom fließt durch den Motor-Kühlmittelkanal 5 und der andere Teilstrom fließt durch den Bypasskanal 2. Beide Teilströme strömen durch einen gemeinsamen Kanalabschnitt wieder zurück zur Wasserpumpe 4. Die Wasserpumpe 4 selber wird von einem Kühler (nicht dargestellt) mit gekühltem Kühlwasser gespeist (dargestellt durch Punkt-Linie) . In dem Kühlwasserkreislauf ist eine Regeleinheit 6 in Form eines Thermostaten geschaltet. Dieser bewirkt, dass Kühlwasser, welches nicht mehr zur Kühlung verwendet wird, zum Kühler abfließt (dargestellt durch Punkt-Linie) . Der Olkreislauf ist in Fig. 1 nur Ausschnittsweise dargestellt. Das Öl strömt über einen Ölkanal 7 durch eine als Drossel ausgebildete Regeleinheit 6 zu der als Thermostat ausgebildeten Regeleinheit 6. Von dort fließt das Öl weiter in den Öl-Kühlmittel-Wärmetauscher 8, wo es durch das ebenfalls durch den Öl-Kühlmittel-Wärmetauscher 8 fließenden Kühlwasserstrom gekühlt wird. Der Bypasskanal 2 kann sowohl in dem Motorblock 3 integriert sein als auch separat in einem in Fig. 2 dargestellten Kühlermodul integriert mit dem Motor verbunden sein.
Fig. 2 zeigt einen Teilausschnitt einer Motor-Kühlermodulanordnung 1 umfassend ein Kühlermodul 9 welches an einem Motor - genauer an einem Motorblock 3 -mittels einer Schraubverbindung befestigt ist. Das Kühlermodul 9 umfasst ein Modulgehäuse 10 in dem der Bypasskanal 2 (hier nicht sichtbar) und der Ölkanal 7 verlaufen. In das Kühlermodul 9 integriert ist ein Ölfilter 11. Dieser ist nach Art einer Patrone ausgebildet. Das Kühlermodul 9 ist von der Motorseite betrachtet in Fig. 3 dargestellt .
Fig. 3 zeigt das Kühlermodul 9 in einer perspektivischen Ansicht . Das Kühlermodul 9 umfasst einen Ölfilter 11 und ein Gehäuse 10, in welchem der Bypasskanal und der Ölkanal (beide nicht dargestellt) angeordnet sind. An dem Gehäuse 10 ist ein Kanalteilabschnitt zum Abströmen des Kühlmittels beziehungsweise des Öls angeordnet.
Fig. 4 zeigt eine Motor-Kühlermodulanordnung mit einem in einem Motor integrierten Kühlermodul 9. Der Motor in Fig. 4 umfasst einen Motorblock 3 eine Wasserpumpe 4, eine Abdeckung 12, eine Krümmer mit Hitzeschutzschild 13, einen Zylinderblock 14 mit einem Zylinderkopf 15 und eine Ölwanne 16. Das Kühlermodul 9 ist in den Motor größtenteils integriert, wobei lediglich der
Ölfilter 11 und Teile der Kanäle aus dem Motor hervorragen. B e z u g s z e i c h e n l i s t e
Motor-Kühlermodulanordnung Bypasskanal Motorblock Wasserpumpe Motor-Kühlmittelkanal Regeleinheit Ölkanal Wasser-Öl-Wärmetauscher Kühlermodul Modulgehäuse Ölfilter Abdeckung Krümmer mit Hitzeschutzschild Zylinderblock Zylinderkopf Ölwanne

Claims

P a t e n t a n s p r ü c h e
1. Kühlermodul (9) zur Kühlung eines in einem Olkreislauf eines Motors umlaufenden Öls mittels eines durch einen Motor-Kühlmittelkanal (5) strömenden Kühlmittelstroms umfassend ein Modulgehäuse (10), einen mit dem Modulgehäuse (10) verbundenen Öl-Kühlmittel-Wärmetauscher (8) und mindestens ein durch das Modulgehäuse (10) verlaufenden und zu dem Öl-Kühlmittel-Wärmetauscher (8) führenden Modul-Kühlmittelkanal zum Transport des Kühlmittels durch das Modulgehäuse (10), dadurch gekennzeichnet, dass der Modul-Kühlmittelkanal zumindest teilweise als ein fluidisch mit dem Öl-Kühlmittel-Wärmetauscher (8) verbundener Bypasskanal (2) zum Motor-Kühlmittelkanal (5) ausgebildet ist, um den Kühlmittelstrom in zwei Teilströme zu teilen, und so eine Parallelschaltung der Kühlmittelströme zu bewirken.
2. Kühlermodul (9) nach Anspruch 1, dadurch gekennzeichnet, dass der Modul-Kühlmittelkanal fluidisch mit einem korrespondierenden Motor-Kühlmittelkanal (5) des Motors lösbar verbunden ausgebildet ist, um den durch einen Motorblock (3) des Motors strömenden Kühlmittelstrom durch das Kühlermodul (9) zu leiten.
3. Kühlermodul (9) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Kühlmittel Kühlwasser vorgesehen ist.
Kühlermodul (9) nach Anspruch 1, dadurch gekennzeichnet, dass der Öl-Kühlmittel-Wärmetauscher (8) zumindest teilweise in einem Modulgehäuse (10) integriert ist.
5. Kühlermodul (9) nach Anspruch 4, dadurch gekennzeichnet, dass das Modulgehäuse (10) mindestens einen integrierten Ölkanal (7) zur Leitung des Öls zu und von dem Öl-Kühlmittel-Wärmetauscher (8) und/oder dem Ölfilter (11) aufweist.
6. Motorblock (3) zur Kühlung eines in einem Olkreislauf des Motors umlaufenden Öls mittels eines Kühlmittelstroms umfassend mindestens einen integrierten Motor-Kühlmittelkanal (5) zum Transport des Kühlmittels, dadurch gekennzeichnet, dass der Motor-Kühlmittelkanal (5) zumindest in einem Abschnitt einen fluidisch mit dem Öl-Kühlmittel-Wärmetauscher (8) verbundenen Bypasskanal (2) aufweist, um einen der zwei parallel geschalteten Kühlmittelteilströme zu dem Öl-Kühlmittel-Wärmetauscher (8) und von diesem weg zu führen.
7. Motor-Kühlermodulanordnung (1) zur Kühlung eines in einem Olkreislauf eines Motors umlaufenden Öls mittels eines Kühlmittels umfassend einen Motor mit einem Motorblock (3 ) , mindestens einen in den Motorblock (3) integrierten Motor-Kühlmittelkanal (5) und ein mit dem Motorblock (3) fluidisch verbundenes Kühlermodul (9) nach einem der Ansprüche 1 bis 5, wobei das Kühlermodul (9) so mit dem Motorblock (3) verbunden ist, dass der mindestens eine Motor-Kühlmittelkanal (5) und der mindestens eine Modul-Kühlmittelkanal fluidisch miteinander verbunden sind, um ein geschlossenes Kühlmittelleitungssystem zu bilden.
8. Motor-Kühlermodulanordnung (1) nach Anspruch 7, dadurch gekennzeichnet, dass zumindest ein Bereich des Kühlermoduls (9) in den Motorblock (3) integriert ausgebildet ist, so dass der mindestens eine Motor-Kühlmittelkanal (5) zumindest teilweise durch den Modul-Kühlmittelkanal und/oder den Bypasskanal (2) ersetzbar ist.
9. Motor-Kühlermodulanordnung (1) nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass zusätzlich mindestens eine Regeleinheit (β) zur Regelung des Ölstroms in dem Olkreislauf ausgebildet ist.
10. Kühlverfahren zur Kühlung eines in einem Olkreislauf des Motors umlaufenden Öls mittels eines in einem aus Kanälen und/oder Leitungen gebildeten Kühlkreislaufs durch einen Öl-Kühlmittel-Wärmetauscher (8) fließenden Kühlmittelstroms umfassend einen Motorblock (3) und/oder ein Kühlermodul (9) umfassend die Schritte: - Leiten des Kühlmittelstroms durch einen ersten Abschnitt des Kühlkreislaufs, welcher durch den Motorblock (3) verläuft, Weiterleiten des Kühlmittelstroms durch einen zweiten Abschnitt des Kühlkreislaufs, welcher durch den Öl-Kühlmittel-Wärmetauscher verläuft, und Schließen des Kühlkreislaufs, um einen geschlossenen Kühlkreislauf zu realisieren, dadurch gekennzeichnet, dass die Schritte Leiten des Kühlmittelstroms durch einen ersten Abschnitt und Weiterleiten des Kühlmittelstroms durch einen zweiten Abschnitt parallel erfolgen.
PCT/EP2005/005417 2004-05-18 2005-05-18 Optimierte ölkühlung für eine brennkraftmaschine WO2005113959A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT05750261T ATE487035T1 (de) 2004-05-18 2005-05-18 Optimierte ölkühlung für eine brennkraftmaschine
DE502005010485T DE502005010485D1 (de) 2004-05-18 2005-05-18 Optimierte ölkühlung für eine brennkraftmaschine
EP05750261A EP1751411B1 (de) 2004-05-18 2005-05-18 Optimierte ölkühlung für eine brennkraftmaschine
US11/569,219 US7717070B2 (en) 2004-05-18 2005-05-18 Optimized cooling system for a motorized vehicle
CN2005800161712A CN1957164B (zh) 2004-05-18 2005-05-18 机动车辆的优化冷却系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004024516.9 2004-05-18
DE102004024516A DE102004024516A1 (de) 2004-05-18 2004-05-18 Optimierte Ölkühlung für eine Brennkraftmaschine

Publications (1)

Publication Number Publication Date
WO2005113959A1 true WO2005113959A1 (de) 2005-12-01

Family

ID=34969959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/005417 WO2005113959A1 (de) 2004-05-18 2005-05-18 Optimierte ölkühlung für eine brennkraftmaschine

Country Status (8)

Country Link
US (1) US7717070B2 (de)
EP (1) EP1751411B1 (de)
KR (1) KR20070012454A (de)
CN (1) CN1957164B (de)
AT (1) ATE487035T1 (de)
DE (2) DE102004024516A1 (de)
RU (1) RU2384713C2 (de)
WO (1) WO2005113959A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211185A1 (fr) * 2017-05-19 2018-11-22 Psa Automobiles Sa Procédé de régulation d'une température d'huile de lubrification d'un moteur thermique à deux flux de sortie

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006007446U1 (de) * 2006-05-10 2007-09-13 Hengst Gmbh & Co.Kg Ölmodul mit integriertem Kühlwasserkanal
KR100862441B1 (ko) * 2006-11-13 2008-10-08 현대자동차주식회사 자동차용 오일쿨러의 냉각회로
DE102010003146A1 (de) * 2010-03-23 2011-09-29 Ford Global Technologies, Llc Verfahren zum Abkühlen einer Fahrzeugkabine
US8601997B2 (en) * 2010-05-17 2013-12-10 GM Global Technology Operations LLC Water pump with integrated oil cooler
CN102337957B (zh) * 2011-08-12 2013-11-06 廖勇 一种新型液冷摩托车冷却器
RU2507404C1 (ru) * 2012-06-26 2014-02-20 Открытое акционерное общество "Автодизель" (Ярославский моторный завод) Модуль двигателя внутреннего сгорания, корпус модуля и двигатель внутреннего сгорания
GB2503512B (en) * 2012-06-29 2016-06-01 Ford Global Tech Llc Apparatus and method for heating engine oil in a pump by use of friction
US9353999B2 (en) 2012-07-30 2016-05-31 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling apparatuses and electronics modules having branching microchannels
US9016245B2 (en) 2012-12-31 2015-04-28 Caterpillar Inc. Engine fluid cooling assembly
CN104791073A (zh) * 2015-04-28 2015-07-22 湖南南方安美消防设备有限公司 一种柴油机冷却水管路系统
US11092064B2 (en) 2019-02-25 2021-08-17 Schaeffler Technologies AG & Co. KG Vehicular thermal management system arrangement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0243138A2 (de) * 1986-04-19 1987-10-28 Perkins Engines Group Limited Oehlkuehler
US5503117A (en) * 1993-10-29 1996-04-02 Yamaha Hatsudoki Kabushiki Kaisha Engine cooling system
US5758608A (en) * 1996-01-09 1998-06-02 Mercedes-Benz Ag Engine block for a multi-cylinder internal combustion engine
EP0900924A2 (de) * 1997-09-09 1999-03-10 Toyota Jidosha Kabushiki Kaisha Kühlwasserrückführungseinrichtung für eine Brennkraftmaschine
EP1411215A1 (de) * 2002-10-16 2004-04-21 Ford Global Technologies, LLC Brennkraftmaschinenölkühlung

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2067421A (en) * 1933-05-29 1937-01-12 Reo Motor Car Co Cooling apparatus
US2369105A (en) * 1942-07-22 1945-02-06 Continental Motors Corp Engine
US2365166A (en) * 1943-04-06 1944-12-19 Thomas J Bay Internal-combustion engine cooling system
US2392723A (en) * 1945-03-15 1946-01-08 Edward F Chandler Cooling system for diesel engines
DE7615571U1 (de) * 1976-05-15 1976-10-07 K. & H. Eppensteiner Gmbh & Co Kg, 6834 Ketsch Flüssigkeitseinbaufilter
DE3608294A1 (de) * 1986-03-13 1987-09-17 Kloeckner Humboldt Deutz Ag Fluessigkeitskuehlsystem fuer eine brennkraftmaschine
SU1716180A1 (ru) * 1990-05-07 1992-02-28 Ульяновский моторный завод Система охлаждени двигател внутреннего сгорани
DE4322979A1 (de) * 1993-07-09 1995-01-12 Laengerer & Reich Gmbh & Co Ölkühler
DE4400952C1 (de) * 1994-01-14 1995-05-24 Daimler Benz Ag Gehäusedeckel für eine Brennkraftmaschine
GB2294091B (en) * 1994-10-14 1999-05-26 Perkins Ltd An assembly of auxiliary apparatus for an internal combustion engine
GB9600677D0 (en) * 1996-01-12 1996-03-13 Rover Group Engine cooling system incorporating oil cooler
US5606937A (en) * 1996-01-17 1997-03-04 Cummins Engine Company, Inc. In-block cooling arrangement
DE19715324A1 (de) * 1997-04-12 1998-10-15 Bayerische Motoren Werke Ag Wärmetauscher für flüssige Wärmetauschmittel
DE19750814C5 (de) * 1997-11-17 2005-08-18 Modine Manufacturing Co., Racine Wärmetauscher, insbesondere Ölkühler
JP3999340B2 (ja) * 1997-12-10 2007-10-31 ヤマハ発動機株式会社 シリンダブロック構造
US6182616B1 (en) * 1997-12-24 2001-02-06 Isuzu Motors Limited Cooling water circulating structure for engines
DE19823254C5 (de) * 1998-05-26 2007-10-18 Daimlerchrysler Ag Brennkraftmaschine
GB2338514A (en) * 1998-06-20 1999-12-22 Cummins Engine Co Ltd I.c. engine cylinder block with optimizes stiffness
JP3852255B2 (ja) * 1999-11-10 2006-11-29 いすゞ自動車株式会社 Egr及びオイルの冷却装置
DE10226928A1 (de) * 2002-06-17 2004-01-08 Siemens Ag Verfahren zum Betrieb einer flüssigkeitsgekühlten Brennkraftmaschine
DE10241228B4 (de) * 2002-09-06 2005-12-08 Robert Bosch Gmbh Kühlsystem für ein Kraftfahrzeug
JP4196802B2 (ja) * 2003-10-07 2008-12-17 株式会社デンソー 冷却水回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0243138A2 (de) * 1986-04-19 1987-10-28 Perkins Engines Group Limited Oehlkuehler
US5503117A (en) * 1993-10-29 1996-04-02 Yamaha Hatsudoki Kabushiki Kaisha Engine cooling system
US5758608A (en) * 1996-01-09 1998-06-02 Mercedes-Benz Ag Engine block for a multi-cylinder internal combustion engine
EP0900924A2 (de) * 1997-09-09 1999-03-10 Toyota Jidosha Kabushiki Kaisha Kühlwasserrückführungseinrichtung für eine Brennkraftmaschine
EP1411215A1 (de) * 2002-10-16 2004-04-21 Ford Global Technologies, LLC Brennkraftmaschinenölkühlung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211185A1 (fr) * 2017-05-19 2018-11-22 Psa Automobiles Sa Procédé de régulation d'une température d'huile de lubrification d'un moteur thermique à deux flux de sortie
FR3066537A1 (fr) * 2017-05-19 2018-11-23 Peugeot Citroen Automobiles Sa Procede de regulation d’une temperature d’huile de lubrification d’un moteur thermique a deux flux de sortie

Also Published As

Publication number Publication date
DE102004024516A1 (de) 2005-12-15
RU2006144857A (ru) 2008-06-27
CN1957164B (zh) 2011-11-23
EP1751411B1 (de) 2010-11-03
US7717070B2 (en) 2010-05-18
RU2384713C2 (ru) 2010-03-20
EP1751411A1 (de) 2007-02-14
US20070227474A1 (en) 2007-10-04
DE502005010485D1 (de) 2010-12-16
KR20070012454A (ko) 2007-01-25
CN1957164A (zh) 2007-05-02
ATE487035T1 (de) 2010-11-15

Similar Documents

Publication Publication Date Title
EP1751411B1 (de) Optimierte ölkühlung für eine brennkraftmaschine
DE102005031300B4 (de) Brennkraftmaschine mit Kühlsystem und Abgasrückführsystem
EP1588034B1 (de) Kühlkreislauf einer brennkraftmaschine mit niedertemperaturkühler
EP0177025A2 (de) Kühlsystem
DE102008007766A1 (de) Vorrichtung zum Kühlen einer Verbrennungskraftmaschine
DD149920A5 (de) Heizeinrichtung
EP0816645A1 (de) An ein Kurbelgehäuse eines Verbrennungsmotors anflanschbares Trägerteil für Aggregate der Schmier-Ölversorgung und -behandlung
DE19741861B4 (de) Vorrichtung zur Regelung des Kühlwasserkreislaufes für einen Verbrennungsmotor
EP2016259B1 (de) Ölmodul mit integriertem kühlwasserkanal
DE3803546A1 (de) Kuehlsystem zur wasserkuehlung von motoroel eines kraftfahrzeugs
DE102004021551A1 (de) Kühlsystem, insbesondere für ein Kraftfahrzeug
DE2623621B1 (de) Einrichtung zum beheizen der bedienungskabine einer maschine
DE4030200A1 (de) Motorkuehlsystem
DE19907267B4 (de) Kühlermodul für eine Brennkraftmaschine
DE3430456A1 (de) Kuehlvorrichtung fuer hydraulisches arbeitsmittel einer hydrodynamischen bremse und schmieroel eines wechselgetriebes
DE19854389A1 (de) Kühlkreislauf
DE102005048019A1 (de) Verfahren zur Ölversorgung eines Flugzeugtriebwerks
DE102008060224B4 (de) Öl-Abgas-Kühlmodul für eine Verbrennungskraftmaschine
DE10021526C2 (de) Anordnung zur Kühlung einer mehrzylindrigen Brennkraftmaschine
DE102020100895B3 (de) Ausgleichsbehälter für einen Kühlkreislauf einer Antriebseinrichtung eines Kraftfahrzeugs sowie entsprechende Antriebseinrichtung
DE102004030153A1 (de) Kühlkreislauf für eine Brennkraftmaschine
DE102008013675B4 (de) Innere Gestaltung des Gehäuses einer Kühlmittelpumpe mit mehreren Auslasskanälen
DE60316077T2 (de) Modul für einen Kühlungskreislauf und Kreislauf mit solchem Modul
DE102018222407B4 (de) Strömungsoptimierte Komponente eines Kühlsystems in einem Fahrzeug
DE102009057802B4 (de) Kühlkreislauf für eine Brennkraftmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005750261

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067023212

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11569219

Country of ref document: US

Ref document number: 2007227474

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580016171.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006144857

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 1020067023212

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005750261

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11569219

Country of ref document: US