EP1751411B1 - Optimierte ölkühlung für eine brennkraftmaschine - Google Patents

Optimierte ölkühlung für eine brennkraftmaschine Download PDF

Info

Publication number
EP1751411B1
EP1751411B1 EP05750261A EP05750261A EP1751411B1 EP 1751411 B1 EP1751411 B1 EP 1751411B1 EP 05750261 A EP05750261 A EP 05750261A EP 05750261 A EP05750261 A EP 05750261A EP 1751411 B1 EP1751411 B1 EP 1751411B1
Authority
EP
European Patent Office
Prior art keywords
engine
module
cooling medium
oil
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05750261A
Other languages
English (en)
French (fr)
Other versions
EP1751411A1 (de
Inventor
Alexander Kanig
Torsten LÖHNERT
Jörg SCHIEFERSTEIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of EP1751411A1 publication Critical patent/EP1751411A1/de
Application granted granted Critical
Publication of EP1751411B1 publication Critical patent/EP1751411B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/08Arrangements of lubricant coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/002Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/04Arrangements of liquid pipes or hoses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler

Definitions

  • the present invention relates to a radiator module for cooling an oil circulating in an oil circuit of an engine by means of a coolant comprising a housing, an oil-coolant heat exchanger, an oil filter and at least one through the module housing and the oil-refrigerant heat exchanger and the oil filter fluidly connecting module coolant channel for transporting the coolant.
  • the invention relates to an engine cooling module assembly for cooling an oil circulating in an oil circuit of an engine by means of a coolant comprising a motor having an engine block and a radiator module connected to the engine block, the radiator module being connected to the engine block such that in the engine extending channels and extending in the module channels are fluidly interconnected to form a closed cooling line system.
  • Such cooling devices for cooling an internal combustion engine of a motor vehicle are used today in all motor vehicles.
  • oil is cooled by means of a coolant.
  • Various types of cooling devices are distinguished, for example, with regard to the coolant.
  • a cooling device is the air-oil cooler. This is arranged on the motor vehicle front in the air flow generated during travel.
  • a disadvantage of this solution is that the coolant used - air - has a relatively small heat transfer coefficient. To realize a sufficient oil cooling is Therefore, a relatively large-scale air-oil cooler necessary. In addition, the cooling depends on the air flow and thus on the driving speed of the motor vehicle. At low driving speeds, the air-oil cooler does not provide sufficient cooling capacity. The oil must be directed to the air-oil cooler. For this purpose, flexible lines are used by the engine to the air-oil cooler due to the distances to be bridged and the flexible web guide of the oil. These usually designed as a hose flexible conduit tend to leaks after prolonged use.
  • Another cooling device is the oil-water heat exchanger.
  • This uses water or cooling water as the cooling medium. Due to the higher heat transfer coefficient of water, this heat exchanger has a higher cooling capacity with a smaller construction volume.
  • the coolant, more precisely the water, and oil are fed in a pipe system from hoses or pipes.
  • the use of pipes and hoses is disadvantageous in terms of the connections of the pipes and hoses with each other or with the engine or the oil-water heat exchanger, since the connection tend to leaks relatively quickly, especially at the joints.
  • the flow-mechanical properties of the compounds are disadvantageous, since the compounds sometimes lead to large resistances in the line system.
  • a third cooling device is the oil-water heat exchanger module with oil filter.
  • This solution overcomes some disadvantages of the previously listed cooling devices.
  • the advantage of the modular design is that the oil-water heat exchanger module has a compact design.
  • the oil filter is designed as a filter cartridge, which is flanged to the heat exchanger.
  • the oil line system is designed as a channel integrated into the module housing, whereby the risk of leaks in relation to the oil line is significantly reduced.
  • a disadvantage of this solution is that the coolant formed as water is guided and routed here via hoses. This can lead to leaks in the water pipe continue. In addition, due to the strong concentration of the components in a small space to vibration problems during operation of the motor vehicle come, which may lead to failure of the cooling device.
  • the flow of media flowing in the channels - coolant / oil - takes place behind one another, that is, in the manner of a series connection.
  • the channels build longer, resulting in a larger volume.
  • due to the length of the channels results in a larger total resistance of the conduit system, so that they must also be compensated by a larger dimensioning of the flow cross-sections of the conduit system without accepting a loss of power.
  • one goal of such cooling systems besides cooling is to keep the pressure difference in the cooling module as low as possible, since this adds to the total pressure drop in the entire engine system and a pressure drop is a loss of efficiency. The higher the pressure drop, the higher the loss of effectiveness.
  • the cooling medium flows at high speed through the cooling module, that is, it has a low residence time in the radiator module or radiator pack, whereby the cooling medium can absorb little heat energy and dissipate, and thus causes a little effective cooling .
  • the water cycle in the cylinder block and in the cylinder head must be set separately, that is, it is a reconfiguration of the water cycle in the cylinder block and the cylinder head required. This results in an additional effort on adjustment work.
  • the invention includes the technical teaching that the module coolant channel formed in the housing of the cooler module is at least partially formed as a channel section of the engine coolant channel (5) and partially as a bypass channel (2) fluidically connected to the oil coolant heat exchanger (8). is formed to the engine coolant passage (5) or the module coolant passage to divide the coolant flow into two partial flows, and thus to effect a parallel connection of the coolant flows.
  • the module coolant channel may have at least in one section an additional bypass channel or be formed completely as a bypass channel.
  • the diversion of the bypass passage may be from a portion of the engine coolant passage formed in the engine block or already branching from the water pump.
  • any other cooling unit suitable for oil cooling can be used in addition to the oil-coolant heat exchanger.
  • the coolant used for cooling no longer passes through the heat-emitting engine and is then fed to the heat exchanger, but is fed to the heat exchanger in parallel with the passage through the motor.
  • the coolant used is preferably water. This allows the cooling circuit to be connected directly to the internal water circuit.
  • the water is preferably taken directly behind the water pump. It is therefore advantageous that the bypass channel is arranged as close as possible to the water pump.
  • the water is still little heated due to the heat that is released from the engine to the cooling water, so that a relatively low water temperature is realized at the inlet of the water in the heat exchanger.
  • the temperature difference between incoming cooling water and oil to be cooled is greater than in conventional solutions, whereby the cooling performance is significantly improved.
  • the water circuit in the heat exchanger is connected in parallel to the water circuit through the engine block.
  • a high pressure difference is required to leave the engine water cycle unaffected. Due to the high pressure difference results in a longer residence time of the cooling medium in the cooler package or cooler module, whereby a larger amount of heat can be absorbed by the coolant or cooling medium and so a more effective cooling capacity can be realized. Due to the improved heat quantity absorption, fewer cooling plates are required in the cooler module compared to conventional cooling systems for the same cooling performance. As a result, space can be saved. Overall, the invention thus also results in an increase in the cooling efficiency and thus also a reduction of the cost expenditure.
  • a further measure improving the invention provides that the module coolant channel is designed to be fluidly connected to a corresponding motor coolant channel in a detachable manner, in order to guide the coolant stream flowing through an engine block of the engine through the cooler module. This way you can a part of the already existing engine coolant duct can be used to transport the cooling water.
  • the cooling water is then passed through the module to the heat exchanger. This makes it possible to dispense with an external hose assembly, since the motor channel and the bypass channel are each integrated in the module housing.
  • the heat exchanger is preferably arranged in the immediate vicinity of the engine, whereby the bypass channel length is relatively short and a compact engine cooling module arrangement is possible.
  • bypass channel transports a partial flow of the coolant to the oil cooler arranged on the housing and away from it again.
  • the oil cooler is arranged on the radiator module. Due to the parallel connection of the coolant flow, a partial flow is discharged through the bypass channel. This is led to the oil cooler. By discharging the partial flow smaller flow cross-sections can be used in the channels.
  • cooling water is provided as the coolant. This can be branched off from existing cooling water lines, without having to provide an additional coolant circuit with an additional coolant for feeding the coolant circuit.
  • a particularly improving measure of the invention provides that the oil-refrigerant heat exchanger is at least partially integrated into the module housing.
  • the oil-refrigerant heat exchanger is at least partially integrated into the module housing.
  • a very compact radiator module is realized, which has a short channel length.
  • the compact module can be easily assembled and handled without much effort. Due to the at least partial integration of the heat exchanger in the radiator module a safer and more reliable support is ensured, which also ensures an improved vibration behavior of the module.
  • the module housing has at least one integrated oil passage for conducting the oil to and from the oil-refrigerant heat exchanger and / or the oil filter.
  • the oil channel is also integrated into the housing means that no external lines are required anymore, which further reduces the risk of leaks.
  • the radiator module according to the invention can be used with an engine block for cooling an oil circulating in an oil circuit of an engine by means of a coolant comprising at least one integrated engine coolant channel for transporting the coolant, wherein the engine coolant channel at least in a portion fluidly with the oil Coolant heat exchanger connected bypass channel to transport or lead one of the two parallel-connected coolant sub-streams to oil-refrigerant heat exchanger and away.
  • the bypass passage should branch as close as possible to the coolant radiator from the engine coolant channel in order to branch off a coolant with the lowest possible temperature.
  • Such an engine block has the advantage that the bypass channel is formed directly in the engine block or in the engine block housing, so that it is possible to dispense with an additional module. This will require fewer components overall.
  • the invention further includes the technical teaching that an engine radiator module assembly for cooling an oil circulating in an engine oil circuit by means of a coolant comprising a motor with an engine block, at least one engine coolant passage integrated into the engine block, and fluidly connected to the engine block Radiator module, wherein the radiator module is connected to the engine block, that the at least one engine coolant passage and the at least one module coolant passage or the engine coolant channels and the Module coolant channels are fluidly interconnected to form a closed cooling line system.
  • the embodiment listed here is designed in two parts, that is, with a motor and a radiator module.
  • the engine block or the engine block housing can be manufactured with less effort.
  • the radiator module can be integrated into the engine block, wherein the radiator module or the channels formed in the radiator module replaces a part of the otherwise located in the engine block channels. In this way, the space of the engine cooler module assembly can be further reduced, so that an additional space is created.
  • designed as a cooler plate package oil-refrigerant heat exchanger can be arranged through which the oil flows.
  • the cooler module is formed at least partially integrated in the engine block, so that at least a portion of the radiator module is integrated in the engine block, so that the at least one engine coolant passage at least partially through the module coolant channel and / or the bypass channel is replaceable. Due to the at least partial integration of the radiator module in the engine block a reliable and secure mounting of the module is guaranteed. By this arrangement, an optimized with respect to the vibration behavior engine cooling module assembly is realized. The cooler module vibrates less as a result of the partial integration, so that damage or functional impairments caused by vibrations are largely avoided.
  • a further improvement of the invention provides that in addition at least one control unit is designed to control the flow of oil in the oil circuit. Thus, depending on the need and application, the amount of oil flowing through the oil passage can be controlled.
  • radiator module results in a cooling method for cooling an oil circuit of an engine by means of a cooling channel formed in a cooling circuit through an oil-refrigerant heat exchanger coolant, comprising an engine block and / or a radiator module comprising the steps of: passing the coolant through a first portion of the refrigeration cycle passing through the engine block, passing the refrigerant through a second portion of the refrigeration cycle passing through the oil cooler and closing the refrigeration cycle, the steps passing the refrigerant through a first portion and passing the refrigerant through a second portion done in parallel. Due to the parallel connection results in a significant improved cooling efficiency, whereby the heat exchanger can be dimensioned with smaller dimensions, so that this effective cooling method can also be used in motor vehicles with little space especially in small cars.
  • Fig. 1 shows a schematic engine radiator module assembly 1 or a motor with integrated bypass channel 2.
  • the engine radiator module assembly 1 and the engine includes a bypass channel 2 for the transport of cooling water.
  • the engine further comprises an engine block 3 and a water pump 4.
  • an engine coolant passage 5 for transporting cooling water is formed (schematically represented by white arrows).
  • Bypass duct 2 and engine coolant duct 5 are in Fig. 1 fed via the water pump 4 with cooling water.
  • the cooling water is divided at the water pump 4 into two partial streams.
  • a partial cooling water flow flows through the engine coolant channel 5 and the other partial flow flows through the bypass channel 2. Both partial flows flow through a common channel section back to the water pump 4.
  • the water pump 4 itself is fed by a cooler (not shown) with cooled cooling water (shown by point line).
  • a control unit 6 is connected in the form of a thermostat. This causes cooling water, which is no longer used for cooling, to drain to the radiator (shown by dot line).
  • the oil circuit is in Fig. 1 only partially shown.
  • the oil flows through an oil passage 7 through a control unit formed as a throttle 6 to the formed as a thermostat control unit 6. From there, the oil flows further into the oil-refrigerant heat exchanger 8, where it also through the oil-refrigerant heat exchanger. 8 flowing cooling water flow is cooled.
  • the bypass channel 2 can be integrated both in the engine block 3 and separately in an in Fig. 2 shown cooler module integrated with the engine to be connected.
  • Fig. 2 shows a partial section of an engine-radiator module assembly 1 comprising a radiator module 9 which is attached to a motor - more precisely attached to an engine block 3 - by means of a screw connection.
  • the cooler module 9 comprises a module housing 10 in which the bypass channel 2 (not visible here) and the oil passage 7 extend.
  • an oil filter 11 Integrated into the cooler module 9 is an oil filter 11. This is designed in the manner of a cartridge.
  • the radiator module 9 is viewed from the engine side in Fig. 3 shown.
  • Fig. 3 shows the radiator module 9 in a perspective view.
  • the radiator module 9 includes an oil filter 11 and a housing 10 in which the bypass passage and the oil passage (both not shown) are arranged.
  • a channel portion section for discharging the coolant or the oil is arranged on the housing 10.
  • Fig. 4 shows a motor-cooler module assembly with a built-in motor cooler module 9.
  • the engine in Fig. 4 for example, an engine block 3 includes a water pump 4, a cover 12, a heat shield shield 13, a cylinder block 14 with a cylinder head 15, and an oil pan 16.
  • the radiator module 9 is largely integrated with the engine, with only the oil filter 11 and portions of the channels protrude from the engine.

Description

  • Die vorliegende Erfindung betrifft ein Kühlermodul zur Kühlung eines in einem Ölkreislauf eines Motors umlaufenden Öls mittels eines Kühlmittels umfassend ein Gehäuse, einen Öl-Kühlmittel-Wärmetauscher, einen Ölfilter und mindestens ein durch das Modulgehäuse verlaufenden und den Öl-Kühlmittel-Wärmetauscher und den Ölfilter fluidisch verbindenden Modul-Kühlmittelkanal zum Transport des Kühlmittels. Weiter betrifft die Erfindung eine Motor-Kühlermodulanordnung zur Kühlung eines in einem Ölkreislauf eines Motors umlaufenden Öls mittels eines Kühlmittels umfassend einen Motor mit einem Motorblock und ein mit dem Motorblock verbundenes Kühlermodul, wobei das Kühlermodul so mit dem Motorblock verbunden ist, dass die in dem Motor verlaufenden Kanäle und die in dem Modul verlaufenden Kanäle fluidisch miteinander verbunden sind, um ein geschlossenes Kühlleitungssystem zu bilden.
  • Derartige Kühlvorrichtungen zur Kühlung einer Brennkraftmaschine eines Kraftfahrzeugs kommen heutzutage in allen Kraftfahrzeugen zum Einsatz. Dabei wird Öl mittels eines Kühlmittels gekühlt. Es werden verschiedene Arten von Kühlvorrichtungen beispielsweise hinsichtlich des Kühlmittels unterschieden.
  • Eine Kühlvorrichtung gemäß dem Stand der Technik ist der Luft-Öl-Kühler. Dieser wird an der Kraftfahrzeugfront in dem bei Fahrt erzeugten Luftstrom angeordnet.
  • Nachteilig an dieser Lösung ist, dass das verwendete Kühlmittel - Luft - einen relativ kleinen Wärmeübergangskoeffizienten aufweist. Um eine ausreichende Ölkühlung zu realisieren, ist deshalb ein relativ groß bauender Luft-Öl-Kühler notwendig. Zudem ist die Kühlung abhängig von der Luftströmung und damit von der Fahrgeschwindigkeit des Kraftfahrzeugs. Bei niedrigen Fahrgeschwindigkeiten liefert der Luft-Öl-Kühler keine ausreichende Kühlleistung. Das Öl muss zum Luft-Öl-Kühler geleitet werden. Hierzu werden aufgrund der zu überbrückenden Strecken und der flexiblen Bahnführung des Öls flexible Leitungen von dem Motor zum Luft-Öl-Kühler eingesetzt. Diese meist als Schlauch ausgebildeten flexiblen Leitung neigen nach längerem Gebrauch zu Leckagen.
  • Eine weitere Kühlvorrichtung gemäß dem Stand der Technik ist der Öl-Wasser-Wärmetauscher. Dieser verwendet Wasser oder auch Kühlwasser als Kühlmedium. Aufgrund des höheren Wärmeübergangskoeffizienten von Wasser weist dieser Wärmetauscher eine höhere Kühlleistung bei kleinerem Bauvolumen auf. Das Kühlmittel, genauer das Wasser, und Öl werden in einem Leitungssystem aus Schläuchen oder Rohren geführt. Die Verwendung von Rohren und Schläuchen ist hinsichtlich der Verbindungen der Rohre und Schläuche untereinander oder mit dem Motor oder dem Öl-Wasser-Wärmetauscher nachteilig, da die Verbindung insbesondere an den Verbindungsstellen relativ schnell zur Undichtigkeit neigen. Weiterhin sind die strömungsmechanischen Eigenschaften der Verbindungen nachteilig, da die Verbindungen teilweise zu großen Widerständen in dem Leitungssystem führen.
  • Eine dritte Kühlvorrichtung gemäß dem Stand der Technik ist der Öl-Wasser-Wärmetauschermodul mit Ölfilter. Diese Lösung überwindet einige Nachteile der vorherig aufgeführten Kühlvorrichtungen. Der Vorteil an der Modulbauweise ist, dass das Öl-Wasser-Wärmetauschermodul eine kompakte Bauform aufweist. Der Ölfilter ist als Filterpatrone ausgebildet, welche an dem Wärmetauscher angeflanscht ist. Das Öl-Leitungssystem ist als in das Modulgehäuse integrierter Kanal ausgebildet, wodurch das Risiko von Leckagen bezüglich der Öl-Leitung deutlich reduziert ist.
  • Nachteilig an dieser Lösung ist, dass das als Wasser ausgebildete Kühlmittel auch hier über Schläuche geführt und geleitet wird. Dadurch kann es bei der Wasserleitung auch weiterhin zu Leckagen kommen. Zudem kann es aufgrund der starken Konzentrierung der Bauteile auf kleinem Bauraum zu Schwingungsproblemen während des Betriebs des Kraftfahrzeugs kommen, welche unter Umständen zum Versagen der Kühlvorrichtung führen.
  • Bei allen zuvor aufgeführten Lösungen erfolgt die Strömung der in den Kanälen strömenden Medien - Kühlmittel/ Öl - hintereinander, das heißt nach Art einer Reihenschaltung. Hierdurch bauen die Kanäle länger, was zu einem größeren Bauvolumen führt. Zudem ergibt sich aufgrund der Länge der Kanäle ein größerer Gesamtwiderstände des Leitungssystems, so dass diese ebenfalls durch eine größere Dimensionierung der Durchflussquerschnitte des Leitungssystems ausgeglichen werden müssen, ohne einen Leistungsverlust hinzunehmen. Ein Ziel von derartigen Kühlsystemen neben der Kühlung ist es jedoch, die Druckdifferenz im Kühlungsmodul so gering wie möglich zu halten, da diese sich zu dem gesamten Druckabfall im gesamten Motorsystem addiert und ein Druckabfall Effektivitätseinbußen darstellt. Je höher der Druckabfall desto höher der Effektivitätsverlust. Um dies bei den herkömmlichen Systemen zu gewährleisten, strömt das Kühlmedium mit hoher Geschwindigkeit durch das Kühlmodul, das heißt es hat eine geringe Verweildauer im Kühlermodul oder Kühlerpaket, wodurch das Kühlmedium nur wenig an Wärmeenergie aufnehmen und abtransportieren kann, und somit eine wenig effektive Kühlung bewirkt. Durch die serielle Anordnung muss zudem der Wasserkreislauf im Zylinderblock und im Zylinderkopf separat eingestellt werden, das heißt, es ist eine Neuabstimmung des Wasserkreislaufs in dem Zylinderblock und dem Zylinderkopf erforderlich. Hierdurch entsteht eine Mehraufwand an Einstellarbeit.
  • Aus dem Stand der Technik sind ferner die US 5,758,608 sowie die EP 0 243 138 A1 bekannt.
  • Es ist daher die Aufgabe der vorliegenden Erfindung ein Kühlsystem zu schaffen, bei der unter optimaler Bauraumausnutzung eine effiziente Kühlung eines umlaufenden Öls realisiert ist.
  • Diese Aufgabe wird ausgehend von einem Kühlermodul gemäß dem Oberbegriff des Anspruchs 1, , einer Motor-Kühlermodulanordnung gemäß dem Oberbegriff des Anspruchs 6 in Verbindung mit dessen kennzeichnenden Merkmalen gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den hierauf abhängigen Ansprüchen angegeben. Die Erfindung schließt die technische Lehre ein, dass der in dem Gehäuse des Kühlermoduls ausgebildete Modul-Kühlmittelkanal zumindest teilweise als Kanalteilabschnitt des Motor-Kühlmittelkanals (5) und teilweise als ein fluidisch mit dem Öl-Kühlmittel-Wärmetauscher (8) verbundener Bypasskanal (2) zum Motor-Kühlmittelkanal (5) bzw. dem Modul-Kühlmittelkanal ausgebildet ist, um den Kühlmittelstrom in zwei Teilströme zu teilen, und so eine Parallelschaltung der Kühlmittelströme zu bewirken.
  • Der Modulkühlmittelkanal kann dabei zumindest in einem Abschnitt einen zusätzlichen Bypasskanal aufweisen oder komplett als Bypasskanal ausgebildet sein. Die Abzweigung des Bypasskanals kann von einem Abschnitt des Motor-Kühlmittel-Kanals erfolgen, der in dem Motorblock ausgebildet ist oder bereits von der Wasserpumpe abzweigen.
  • Als Kühlaggregat zur Ölkühlung kann neben dem Öl-Kühlmittel-Wärmetauscher auch jedes andere zur Ölkühlung geeignete Kühlaggregat verwendet werden.
  • Diese Lösung bietet den Vorteil, dass durch den Bypasskanal und die damit verbundene Parallelschaltung des Kühlmittels die Gesamtlänge des Leitungssystems verkürzt wird. Das zur Kühlung verwendete Kühlmittel durchläuft nicht mehr erst den wärmeabgebenden Motor und wird dann dem Wärmetauscher zugeführt, sondern wird parallel zum Durchlauf durch den Motor dem Wärmetauscher zugeführt. Somit ist die Temperatur des Kühlmittels bei Eintritt in den Wärmetauscher deutlich geringer, wodurch eine deutliche verbesserte Kühlleistung in dem Wärmetauscher erzielt wird. Als Kühlmittel wird vorzugsweise Wasser verwendet. Dadurch kann der Kühlkreislauf direkt an den internen Wasserkreislauf angeschlossen werden. Das Wasser wird vorzugsweise direkt hinter der Wasserpumpe entnommen. Es ist deshalb vorteilhaft, dass der Bypasskanal so nah wie möglich an der Wasserpumpe angeordnet ist. Dadurch ist das Wasser noch wenig aufgrund der Wärme, die von dem Motor an das Kühlwasser abgegeben wird erhitzt, so dass eine relativ geringe Wassertemperatur bei Einlauf des Wassers in den Wärmetauscher realisiert ist. Dadurch ist die Temperaturdifferenz zwischen eintretendem Kühlwasser und zu kühlendem Öl größer als in herkömmlichen Lösungen, wodurch die Kühlleistung deutlich verbessert ist.
  • Im Gegensatz zu den herkömmlichen Kühlsystemen ist der Wasserkreislauf im Wärmetauscher parallel zum Wasserkreislauf durch den Motorblock geschaltet. Dies bedeutet, dass hier im Gegensatz zu den herkömmlichen Kühlsystemen eine hohe Druckdifferenz erforderlich ist, um den Wasserkreislauf des Motors unbeeinflusst zu lassen. Durch die hohe Druckdifferenz ergibt sich eine größere Verweildauer des Kühlmediums im Kühlerpaket oder Kühlermodul, wodurch eine größere Wärmemenge von dem Kühlmittel oder Kühlmedium aufgenommen werden kann und so eine effektivere Kühlleistung realisierbar ist. Durch die verbesserte Wärmemengenaufnahme werden im Vergleich zu herkömmlichen Kühlsystemen für gleiche Kühlleistungen weniger Kühlplatten im Kühlermodul benötigt. Hierdurch lässt sich Bauraum einsparen. Insgesamt resultiert aus der Erfindung somit auch eine Erhöhung des Kühlungs-Wirkungsgrads und damit auch eine Reduzierung des Kostenaufwands.
  • Eine weitere die Erfindung verbessernde Maßnahme sieht vor, dass der Modul-Kühlmittelkanal fluidisch mit einem korrespondierenden Motor-Kühlmittelkanal lösbar verbunden ausgebildet ist, um den durch einen Motorblock des Motors strömenden Kühlmittelstrom durch das Kühlermodul zu leiten. Auf diese Weise kann ein Teil des bereits vorhandenen Motor-Kühlmittelkanals zum Transport des Kühlwassers verwendet werden. Im Bereich, in dem der Wärmetauscher angeordnet ist, wird dann das Kühlwasser durch das Modul zu dem Wärmetauscher geführt. Hierdurch kann auf eine externe Schlauchleitung verzichtet werden, da der Motorkanal und der Bypasskanal jeweils in das Modulgehäuse integriert sind. Der Wärmetauscher ist vorzugsweise in unmittelbarer Nähe zu dem Motor angeordnet, wodurch die Bypasskanallänge relativ kurz ausgebildet ist und eine kompakte Motor-Kühlmodulanordnung möglich ist.
  • Es ist vorteilhaft, dass der Bypasskanal einen Teilstrom des Kühlmittels zu dem an dem Gehäuse angeordneten Ölkühler und von diesem wieder weg transportiert. Der Ölkühler ist an dem Kühlermodul angeordnet. Durch die Parallelschaltung des Kühlmittelflusses wird ein Teilstrom durch den Bypasskanal abgeführt. Dieser wird zu dem Ölkühler geführt. Durch das Abführen des Teilstroms können kleinere Durchflussquerschnitte in den Kanälen verwendet werden.
  • Vorzugsweise ist als Kühlmittel Kühlwasser vorgesehen. Dieses kann aus bereits existierenden Kühlwasserleitungen abgezweigt werden, ohne dass ein zusätzlicher Kühlmittelkreislauf mit einem zusätzlichen Kühlmittel zur Speisung des Kühlmittelkreislaufes vorgesehen werden muss.
  • Eine die Erfindung besonders verbessernde Maßnahme sieht vor, dass der Öl-Kühlmittel-Wärmetauscher zumindest teilweise in das Modulgehäuse integriert ist. Auf diesem Wege ist ein sehr kompaktes Kühlermodul realisiert, welches eine kurze Kanallänge aufweist. Das kompakte Modul lässt sich leicht und ohne großen Aufwand montieren und handhaben. Durch die zumindest teilweise Integration des Wärmetauschers in das Kühlermodul ist eine sicherere und zuverlässigere Halterung gewährleistet, welche auch ein verbessertes Schwingungsverhalten des Moduls gewährleistet.
  • Vorzugsweise weist das Modulgehäuse mindestens einen integrierten Ölkanal zur Leitung des Öls zu und von dem Öl-Kühlmittel-Wärmetauscher und/oder dem Ölfilter auf. Dadurch dass auch der Ölkanal in das Gehäuse integriert ist, werden keine externen Leitungen mehr benötigt, wodurch das Risiko von Leckagen weiter reduziert ist.
  • Das erfindungsgemäße Kühlermodul kann eingesetzt werden mit einem Motorblock zur Kühlung eines in einem Ölkreislauf eines Motors umlaufenden Öls mittels eines Kühlmittels umfassend mindestens einen integrierten Motor-Kühlmittelkanal zum Transport des Kühlmittels vorgesehen ist, wobei der Motor-Kühlmittelkanal zumindest in einem Abschnitt ein fluidisch mit dem Öl-Kühlmittel-Wärmetauscher verbundenen Bypasskanal aufweist, um einen der zwei parallel geschalteten Kühlmittelteilströme zu Öl-Kühlmittel-Wärmetauscher und von diesem weg zu transportieren oder führen. Der Bypasskanal sollte möglichst nahe an dem Kühlmittelkühler von dem Motor-Kühlmittelkanal abzweigen, um ein Kühlmittel mit einer möglichst niedrigen Temperatur abzuzweigen.
  • Ein derartiger Motorblock bietet den Vorteil, dass der Bypasskanal direkt in dem Motorblock beziehungsweise in dem Motorblockgehäuse ausgebildet ist, so dass auf ein zusätzliches Modul verzichtet werden kann. Damit werden insgesamt weniger Komponenten benötigt.
  • Die Erfindung schließt weiter die technische Lehre ein, dass eine Motor-Kühlermodulanordnung zur Kühlung eines in einem Ölkreislauf eines Motors umlaufenden Öls mittels eines Kühlmittels umfassend einen Motor mit einem Motorblock, mindestens einen in den Motorblock integrierten Motor-Kühlmittelkanal und ein mit dem Motorblock fluidisch verbundenes Kühlermodul umfasst, wobei das Kühlermodul so mit dem Motorblock verbunden ist, dass der mindestens eine Motor-Kühlmittelkanal und der mindestens eine Modul-Kühlmittelkanal oder die Motor-Kühlmittelkanäle und die Modul-Kühlmittelkanäle fluidisch miteinander verbunden sind, um ein geschlossenes Kühlleitungssystem zu bilden.
  • Gegenüber einem Motorblock, der einen integrierten Bypasskanal aufweist, ist die hier aufgeführte Ausführung zweiteilig ausgebildet, das heißt mit einem Motor und einem Kühlermodul. Der Motorblock beziehungsweise das Motorblockgehäuse ist mit weniger Aufwand zu fertigen. Zudem kann das Kühlermodul in den Motorblock integriert werden, wobei das Kühlermodul beziehungsweise die in dem Kühlermodul ausgebildeten Kanäle einen Teil der sonst in dem Motorblock befindlichen Kanäle ersetzt. Auf diese Weise lässt sich der Bauraum der Motor-Kühlermodulanordnung weiter reduzieren, so dass ein zusätzlicher Bauraum entsteht. In diesem kann beispielsweise ein als Kühlerplattenpaket ausgebildeter Öl-Kühlmittel-Wärmetauscher angeordnet werden, durch den das Öl fließt.
  • Aus diesem Grund ist es vorteilhaft, dass das Kühlermodul zumindest teilintegriert in den Motorblock ausgebildet ist, so dass zumindest ein Bereich des Kühlermoduls in den Motorblock integriert ausgebildet ist, so dass der mindestens eine Motor-Kühlmittelkanal zumindest teilweise durch den Modul-Kühlmittelkanal und/oder den Bypasskanal ersetzbar ist. Durch die zumindest teilweise Integration des Kühlermoduls in den Motorblock ist eine zuverlässige und sicher Halterung des Moduls gewährleistet. Durch diese Anordnung ist ein hinsichtlich des Schwingungsverhaltens optimierte Motor-Kühlmodulanordnung realisiert. Das Kühlermodul schwingt durch die Teilintegration weniger, so dass Schädigungen oder Funktionsbeeinträchtigungen durch Schwingungen weitestgehend vermieden werden.
  • Eine die Erfindung weiter verbessernde Maßnahme sieht vor, dass zusätzlich mindestens eine Regeleinheit zur Regelung des Ölstroms in dem Ölkreislauf ausgebildet ist. So kann je nach Bedarf und Einsatzfall die Ölmenge die durch den Ölkanal strömt gesteuert werden.
  • Im praktischen Einsatz des Kühlermoduls ergibt sich ein Kühlverfahren zur Kühlung eines Ölkreislaufs eines Motors mittels eines in einem aus Kanälen gebildeten Kühlkreislaufs durch einen Öl-Kühlmittel-Wärmetauscher fließenden Kühlmittels, mit einem Motorblock und/oder einem Kühlermodul umfassend die Schritte: Leiten des Kühlmittels durch einen ersten Abschnitt des Kühlkreislaufs, welcher durch den Motorblock verläuft, Weiterleiten des Kühlmittels durch einen zweiten Abschnitt des Kühlkreislaufs, welcher durch den Ölkühler verläuft, und Schließen des Kühlkreislaufs, wobei die Schritte Leiten des Kühlmittels durch einen ersten Abschnitt und Weiterleiten des Kühlmittels durch einen zweiten Abschnitt parallel erfolgen. Durch die Parallelschaltung ergibt sich eine deutliche verbesserte Kühlungseffektivität, wodurch der Wärmetauscher mit kleineren Abmaßen dimensionierbar ist, so dass dieses effektive Kühlverfahren auch in Kraftfahrzeugen mit wenig Bauraum insbesondere in Kleinwagen zur einsetzbar ist.
  • Weitere die Erfindung verbessernde Maßnahmen sind in den Unteransprüchen angegeben oder werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung anhand der Figuren dargestellt. Es zeigt:
  • Fig. 1
    eine schematische Darstellung eines Motor mit einem erfindungsgemäßen Bypasskanal,
    Fig. 2
    einen Teilausschnitt einer Mo- tor-Kühlermodulanordnung in einer perspektivischen Ansicht von vorne auf den Motor gesehen,
    Fig. 3
    ein Kühlermodul in perspektivischer Ansicht von der Motorseite und
    Fig. 4
    zeigt eine Motor-Kühlermodulanordnung in einer perspektivischen Ansicht von vorne.
  • Fig. 1 zeigt eine schematische Motor-Kühlermodulanordnung 1 oder einen Motor mit integriertem Bypasskanal 2. Die Motor-Kühlermodulanordnung 1 beziehungsweise der Motor umfasst einen Bypasskanal 2 zum Transport von Kühlwasser. Der Motor umfasst weiter einen Motorblock 3 und eine Wasserpumpe 4. In dem Motorblock 3 ist ein Motor-Kühlmittelkanal 5 zum Transport von Kühlwasser ausgebildet (hier schematisch dargestellt durch weiße Pfeile). Bypasskanal 2 und Motor-Kühlmittelkanal 5 werden in Fig. 1 über die Wasserpumpe 4 mit Kühlwasser gespeist. Somit wird das Kühlwasser an der Wasserpumpe 4 in zwei Teilströme geteilt. Ein Kühlwasserteilstrom fließt durch den Motor-Kühlmittelkanal 5 und der andere Teilstrom fließt durch den Bypasskanal 2. Beide Teilströme strömen durch einen gemeinsamen Kanalabschnitt wieder zurück zur Wasserpumpe 4. Die Wasserpumpe 4 selber wird von einem Kühler (nicht dargestellt) mit gekühltem Kühlwasser gespeist (dargestellt durch Punkt-Linie). In dem Kühlwasserkreislauf ist eine Regeleinheit 6 in Form eines Thermostaten geschaltet. Dieser bewirkt, dass Kühlwasser, welches nicht mehr zur Kühlung verwendet wird, zum Kühler abfließt (dargestellt durch Punkt-Linie). Der Ölkreislauf ist in Fig. 1 nur Ausschnittsweise dargestellt. Das Öl strömt über einen Ölkanal 7 durch eine als Drossel ausgebildete Regeleinheit 6 zu der als Thermostat ausgebildeten Regeleinheit 6. Von dort fließt das Öl weiter in den Öl-Kühlmittel-Wärmetauscher 8, wo es durch das ebenfalls durch den Öl-Kühlmittel-Wärmetauscher 8 fließenden Kühlwasserstrom gekühlt wird. Der Bypasskanal 2 kann sowohl in dem Motorblock 3 integriert sein als auch separat in einem in Fig. 2 dargestellten Kühlermodul integriert mit dem Motor verbunden sein.
  • Fig. 2 zeigt einen Teilausschnitt einer Motor-Kühlermodulanordnung 1 umfassend ein Kühlermodul 9 welches an einem Motor - genauer an einem Motorblock 3 -mittels einer Schraubverbindung befestigt ist. Das Kühlermodul 9 umfasst ein Modulgehäuse 10 in dem der Bypasskanal 2 (hier nicht sichtbar) und der Ölkanal 7 verlaufen. In das Kühlermodul 9 integriert ist ein Ölfilter 11. Dieser ist nach Art einer Patrone ausgebildet.
  • Das Kühlermodul 9 ist von der Motorseite betrachtet in Fig. 3 dargestellt.
  • Fig. 3 zeigt das Kühlermodul 9 in einer perspektivischen Ansicht. Das Kühlermodul 9 umfasst einen Ölfilter 11 und ein Gehäuse 10, in welchem der Bypasskanal und der Ölkanal (beide nicht dargestellt) angeordnet sind. An dem Gehäuse 10 ist ein Kanalteilabschnitt zum Abströmen des Kühlmittels beziehungsweise des Öls angeordnet.
  • Fig. 4 zeigt eine Motor-Kühlermodulanordnung mit einem in einem Motor integrierten Kühlermodul 9. Der Motor in Fig. 4 umfasst einen Motorblock 3 eine Wasserpumpe 4, eine Abdeckung 12, eine Krümmer mit Hitzeschutzschild 13, einen Zylinderblock 14 mit einem Zylinderkopf 15 und eine Ölwanne 16. Das Kühlermodul 9 ist in den Motor größtenteils integriert, wobei lediglich der Ölfilter 11 und Teile der Kanäle aus dem Motor hervorragen.
  • Bezugszeichenliste
  • 1
    Motor-Kühlermodulanordnung
    2
    Bypasskanal
    3
    Motorblock
    4
    Wasserpumpe
    5
    Motor-Kühlmittelkanal
    6
    Regeleinheit
    7
    Ölkanal
    8
    Wasser-Öl-Wärmetauscher
    9
    Kühlermodul
    10
    Modulgehäuse
    11
    Ölfilter
    12
    Abdeckung
    13
    Krümmer mit Hitzeschutzschild
    14
    Zylinderblock
    15
    Zylinderkopf
    16
    Ölwanne

Claims (8)

  1. Kühlermodul (9) zur Kühlung eines in einem Ölkreislauf eines Motors umlaufenden Öls mittels eines durch einen Motor-Kühlmittelkanal (5) strömenden Kühlmittelstroms umfassend ein Modulgehäuse (10), einen mit dem Modulgehäuse (10) verbundenen Öl-Kühlmittel-Wärmetauscher (8), einen mit dem Modulgehäuse (10) verbundenen Ölfilter (11) und mindestens ein durch das Modulgehäuse (10) verlaufenden und zu dem Öl-Kühlmittel-Wärmetauscher (8) und dem Ölfilter (11) führenden Modul-Kühlmittelkanal zum Transport des Kühlmittels durch das Modulgehäuse (10), dadurch gekennzeichnet,
    dass der Modul-Kühlmittelkanal zumindest teilweise als Kanalteilabschnitt des Motor-Kühlmittelkanals (5) und teilweise als ein fluidisch mit dem Öl-Kühlmittel-Wärmetauscher (8) verbundener Bypasskanal (2) zum Motor-Kühlmittelkanal (5) bzw. dem Modul-Kühlmittelkanal ausgebildet ist, um den Kühlmittelstrom in zwei Teilströme zu teilen, und so eine Parallelschaltung der Kühlmittelströme zu bewirken.
  2. Kühlermodul (9) nach Anspruch 1, dadurch gekennzeichnet, dass der Modul-Kühlmittelkanal fluidisch mit einem korrespondierenden Motor-Kühlmittelkanal (5) des Motors lösbar verbunden ausgebildet ist, um den durch einen Motorblock (3) des Motors strömenden Kühlmittelstrom durch das Kühlermodul (9) zu leiten.
  3. Kühlermodul (9) nach Anspruch 1 oder 2, dadurch gekennzeichnet,
    dass als. Kühlmittel Kühlwasser vorgesehen ist.
  4. Kühlermodul (9) nach Anspruch 1, dadurch gekennzeichnet, dass der Öl-Kühlmittel-Wärmetauscher (8) zumindest teilweise in einem Modulgehäuse (10) integriert ist.
  5. Kühlermodul (9) nach Anspruch 4, dadurch gekennzeichnet, dass das Modulgehäuse (10) mindestens einen integrierten Ölkanal (7) zur Leitung des Öls zu und von dem Öl-Kühlmittel-Wärmetauscher (8) und/oder dem Ölfilter (11) aufweist.
  6. Motor-Kühlermodulanordnung (1) zur Kühlung eines in einem Ölkreislauf eines Motors umlaufenden Öls mittels eines Kühlmittels umfassend einen Motor mit einem Motorblock (3), mindestens einen in den Motorblock (3) integrierten Motor-Kühlmittelkanal (5) und ein mit dem Motorblock (3) fluidisch verbundenes Kühlermodul (9) nach einem der Ansprüche 1 bis 5, wobei das Kühlermodul (9) so mit dem Motorblock (3) verbunden ist, dass der mindestens eine Motor-Kühlmittelkanal (5) und der mindestens eine Modul-Kühlmittelkanal fluidisch miteinander verbunden sind, um ein geschlossenes Kühlmittelleitungssystem zu bilden.
  7. Motor-Kühlermodulanordnung (1) nach Anspruch 6, dadurch gekennzeichnet,
    dass zumindest ein Bereich des Kühlermoduls (9) in den Motorblock (3) integriert ausgebildet ist, so dass der mindestens eine Motor-Kühlmittelkanal (5) zumindest teilweise durch den Modul-Kühlmittelkanal und/oder den Bypasskanal (2) ersetzbar ist.
  8. Motor-Kühlermodulanordnung (1) nach Anspruch 6 oder 7, dadurch gekennzeichnet,
    dass zusätzlich mindestens eine Regeleinheit (6) zur Regelung des Ölstroms in dem Ölkreislauf ausgebildet ist.
EP05750261A 2004-05-18 2005-05-18 Optimierte ölkühlung für eine brennkraftmaschine Not-in-force EP1751411B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004024516A DE102004024516A1 (de) 2004-05-18 2004-05-18 Optimierte Ölkühlung für eine Brennkraftmaschine
PCT/EP2005/005417 WO2005113959A1 (de) 2004-05-18 2005-05-18 Optimierte ölkühlung für eine brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1751411A1 EP1751411A1 (de) 2007-02-14
EP1751411B1 true EP1751411B1 (de) 2010-11-03

Family

ID=34969959

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05750261A Not-in-force EP1751411B1 (de) 2004-05-18 2005-05-18 Optimierte ölkühlung für eine brennkraftmaschine

Country Status (8)

Country Link
US (1) US7717070B2 (de)
EP (1) EP1751411B1 (de)
KR (1) KR20070012454A (de)
CN (1) CN1957164B (de)
AT (1) ATE487035T1 (de)
DE (2) DE102004024516A1 (de)
RU (1) RU2384713C2 (de)
WO (1) WO2005113959A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006007446U1 (de) * 2006-05-10 2007-09-13 Hengst Gmbh & Co.Kg Ölmodul mit integriertem Kühlwasserkanal
KR100862441B1 (ko) * 2006-11-13 2008-10-08 현대자동차주식회사 자동차용 오일쿨러의 냉각회로
DE102010003146A1 (de) * 2010-03-23 2011-09-29 Ford Global Technologies, Llc Verfahren zum Abkühlen einer Fahrzeugkabine
US8601997B2 (en) * 2010-05-17 2013-12-10 GM Global Technology Operations LLC Water pump with integrated oil cooler
CN102337957B (zh) * 2011-08-12 2013-11-06 廖勇 一种新型液冷摩托车冷却器
RU2507404C1 (ru) * 2012-06-26 2014-02-20 Открытое акционерное общество "Автодизель" (Ярославский моторный завод) Модуль двигателя внутреннего сгорания, корпус модуля и двигатель внутреннего сгорания
GB2503512B (en) * 2012-06-29 2016-06-01 Ford Global Tech Llc Apparatus and method for heating engine oil in a pump by use of friction
US9353999B2 (en) 2012-07-30 2016-05-31 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling apparatuses and electronics modules having branching microchannels
US9016245B2 (en) 2012-12-31 2015-04-28 Caterpillar Inc. Engine fluid cooling assembly
CN104791073A (zh) * 2015-04-28 2015-07-22 湖南南方安美消防设备有限公司 一种柴油机冷却水管路系统
FR3066537B1 (fr) * 2017-05-19 2019-06-21 Peugeot Citroen Automobiles Sa Procede de regulation d’une temperature d’huile de lubrification d’un moteur thermique a deux flux de sortie
US11092064B2 (en) 2019-02-25 2021-08-17 Schaeffler Technologies AG & Co. KG Vehicular thermal management system arrangement

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2067421A (en) * 1933-05-29 1937-01-12 Reo Motor Car Co Cooling apparatus
US2369105A (en) * 1942-07-22 1945-02-06 Continental Motors Corp Engine
US2365166A (en) * 1943-04-06 1944-12-19 Thomas J Bay Internal-combustion engine cooling system
US2392723A (en) * 1945-03-15 1946-01-08 Edward F Chandler Cooling system for diesel engines
DE7615571U1 (de) * 1976-05-15 1976-10-07 K. & H. Eppensteiner Gmbh & Co Kg, 6834 Ketsch Flüssigkeitseinbaufilter
DE3608294A1 (de) * 1986-03-13 1987-09-17 Kloeckner Humboldt Deutz Ag Fluessigkeitskuehlsystem fuer eine brennkraftmaschine
GB2189292B (en) 1986-04-19 1989-11-29 Perkins Engines Group Engine cooling system
SU1716180A1 (ru) * 1990-05-07 1992-02-28 Ульяновский моторный завод Система охлаждени двигател внутреннего сгорани
DE4322979A1 (de) * 1993-07-09 1995-01-12 Laengerer & Reich Gmbh & Co Ölkühler
US5503117A (en) * 1993-10-29 1996-04-02 Yamaha Hatsudoki Kabushiki Kaisha Engine cooling system
DE4400952C1 (de) * 1994-01-14 1995-05-24 Daimler Benz Ag Gehäusedeckel für eine Brennkraftmaschine
GB2294091B (en) * 1994-10-14 1999-05-26 Perkins Ltd An assembly of auxiliary apparatus for an internal combustion engine
DE19600566C1 (de) * 1996-01-09 1997-04-10 Daimler Benz Ag Zylinderkurbelgehäuse einer mehrzylindrigen Brennkraftmaschine
GB9600677D0 (en) * 1996-01-12 1996-03-13 Rover Group Engine cooling system incorporating oil cooler
US5606937A (en) * 1996-01-17 1997-03-04 Cummins Engine Company, Inc. In-block cooling arrangement
DE19715324A1 (de) * 1997-04-12 1998-10-15 Bayerische Motoren Werke Ag Wärmetauscher für flüssige Wärmetauschmittel
JP3374715B2 (ja) 1997-09-09 2003-02-10 トヨタ自動車株式会社 内燃機関の冷却水循環装置
DE19750814C5 (de) * 1997-11-17 2005-08-18 Modine Manufacturing Co., Racine Wärmetauscher, insbesondere Ölkühler
JP3999340B2 (ja) * 1997-12-10 2007-10-31 ヤマハ発動機株式会社 シリンダブロック構造
US6182616B1 (en) * 1997-12-24 2001-02-06 Isuzu Motors Limited Cooling water circulating structure for engines
DE19823254C5 (de) * 1998-05-26 2007-10-18 Daimlerchrysler Ag Brennkraftmaschine
GB2338514A (en) * 1998-06-20 1999-12-22 Cummins Engine Co Ltd I.c. engine cylinder block with optimizes stiffness
JP3852255B2 (ja) * 1999-11-10 2006-11-29 いすゞ自動車株式会社 Egr及びオイルの冷却装置
DE10226928A1 (de) * 2002-06-17 2004-01-08 Siemens Ag Verfahren zum Betrieb einer flüssigkeitsgekühlten Brennkraftmaschine
DE10241228B4 (de) * 2002-09-06 2005-12-08 Robert Bosch Gmbh Kühlsystem für ein Kraftfahrzeug
GB0224068D0 (en) 2002-10-16 2002-11-27 Ford Global Tech Inc Engine oil cooling
JP4196802B2 (ja) * 2003-10-07 2008-12-17 株式会社デンソー 冷却水回路

Also Published As

Publication number Publication date
US20070227474A1 (en) 2007-10-04
CN1957164A (zh) 2007-05-02
DE502005010485D1 (de) 2010-12-16
RU2006144857A (ru) 2008-06-27
RU2384713C2 (ru) 2010-03-20
CN1957164B (zh) 2011-11-23
WO2005113959A1 (de) 2005-12-01
KR20070012454A (ko) 2007-01-25
EP1751411A1 (de) 2007-02-14
US7717070B2 (en) 2010-05-18
DE102004024516A1 (de) 2005-12-15
ATE487035T1 (de) 2010-11-15

Similar Documents

Publication Publication Date Title
EP1751411B1 (de) Optimierte ölkühlung für eine brennkraftmaschine
DE102015014830B4 (de) Wärmemanagementeinheit für Fahrzeugantriebsstrang
DE102005031300B4 (de) Brennkraftmaschine mit Kühlsystem und Abgasrückführsystem
DE112007001140B4 (de) Fahrzeug-Kühlungssystem mit gelenkten Strömen
EP0177025A2 (de) Kühlsystem
DD149920A5 (de) Heizeinrichtung
EP0816645A1 (de) An ein Kurbelgehäuse eines Verbrennungsmotors anflanschbares Trägerteil für Aggregate der Schmier-Ölversorgung und -behandlung
EP1588034A2 (de) Kühlkreislauf einer brennkraftmaschine mit niedertemperaturkühler
DE102008007766A1 (de) Vorrichtung zum Kühlen einer Verbrennungskraftmaschine
DE19741861B4 (de) Vorrichtung zur Regelung des Kühlwasserkreislaufes für einen Verbrennungsmotor
EP2016259B1 (de) Ölmodul mit integriertem kühlwasserkanal
DE112014000492T5 (de) Doppel-Kühler-Maschinenkühlmodul mit Einzelkühlmittelschleife
DE102008029322A1 (de) Schmiersystem und Ölkühler mit Nebenleitung
DE3803546A1 (de) Kuehlsystem zur wasserkuehlung von motoroel eines kraftfahrzeugs
DE102006048714A1 (de) Kühlkreislauf
EP0376150A2 (de) Brennkraftmaschine mit zwei hydraulischen Flüssigkeitskreisläufen
DE102007027719A1 (de) Brennkraftmaschine mit einem Heizungskreislauf und einem Kühlkreislauf
DE19856770B4 (de) Kühlsystem für einen Verbrennungsmotor
DE4030200A1 (de) Motorkuehlsystem
EP2383443B1 (de) Modul für eine Brennkraftmaschine
DE19907267B4 (de) Kühlermodul für eine Brennkraftmaschine
DE102013201109A1 (de) Wärmeübertragungseinrichtung
DE19854389A1 (de) Kühlkreislauf
EP2532848B1 (de) Filter- und Kühlvorrichtung
DE10021526C2 (de) Anordnung zur Kühlung einer mehrzylindrigen Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100325

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005010485

Country of ref document: DE

Date of ref document: 20101216

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101103

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005010485

Country of ref document: DE

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC (N. D. GES, US

Free format text: FORMER OWNER: GM GLOBAL TECHNOLOGY OPERATIONS, INC., DETROIT, US

Effective date: 20110323

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005010485

Country of ref document: DE

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC (N. D. GES, US

Free format text: FORMER OWNER: GM GLOBAL TECHNOLOGY OPERATIONS, INC., DETROIT, MICH., US

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110203

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110303

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110303

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110204

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC

Free format text: GM GLOBAL TECHNOLOGY OPERATIONS, INC.#300 RENAISSANCE CENTER#DETROIT, MI 48265-3000 (US) -TRANSFER TO- GM GLOBAL TECHNOLOGY OPERATIONS LLC#300 RENAISSANCE CENTER#DETROIT, MI 48265-3000 (US)

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110214

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110804

BERE Be: lapsed

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC.

Effective date: 20110531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005010485

Country of ref document: DE

Effective date: 20110804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 487035

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101103

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170517

Year of fee payment: 13

Ref country code: FR

Payment date: 20170413

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180518

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210421

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005010485

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201