EP0860014A1 - MAGNETMATERIAL UND DAUERMAGNET DES NdFeB-TYPS - Google Patents

MAGNETMATERIAL UND DAUERMAGNET DES NdFeB-TYPS

Info

Publication number
EP0860014A1
EP0860014A1 EP96938104A EP96938104A EP0860014A1 EP 0860014 A1 EP0860014 A1 EP 0860014A1 EP 96938104 A EP96938104 A EP 96938104A EP 96938104 A EP96938104 A EP 96938104A EP 0860014 A1 EP0860014 A1 EP 0860014A1
Authority
EP
European Patent Office
Prior art keywords
weight
magnetic material
ndfeb
material according
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP96938104A
Other languages
English (en)
French (fr)
Inventor
Bernd Grieb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magnetfabrik Schramberg & Co GmbH
Original Assignee
Magnetfabrik Schramberg & Co GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnetfabrik Schramberg & Co GmbH filed Critical Magnetfabrik Schramberg & Co GmbH
Publication of EP0860014A1 publication Critical patent/EP0860014A1/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Definitions

  • the invention relates to a magnetic material and a permanent magnet of the NdFeB type.
  • NdFeB materials can only be used today if the ambient conditions are not critical (room temperature, air humidity up to 50%, no condensation, see Vacuumschmelze GmbH product description PD-002, 04/95, p.32 ff).
  • the additional step of the polymeric or metallic coating causes additional costs and risks due to detachments, which can lead to failure.
  • the aim of the invention is to develop a corrosion-resistant magnetic material based on NdFeB materials for applications from room temperature to above 200 ° C. with good absolute magnetic properties at low temperatures and superior magnetic properties at higher temperatures.
  • the claimed materials or permanent magnets have coefficients of approx. -0.08% / K up to a room temperature of 100 ° C or -0.085% / K up to a room temperature of 150 ° C. This enables comparatively excellent flow values to be achieved at temperatures above 100 ° C.
  • the lower temperature coefficients result in a clear advantage since the temperature influence is lower and the system design is simpler.
  • the thumb magnet can be used in a damp environment without further protective measures.
  • the material can be coated using conventional and easy-to-implement methods without running the risk of the coating becoming detached under the influence of temperature and moisture.
  • TM 17 materials served as a benchmark in durability and high-temperature properties, but can only be used to a limited extent due to more expensive raw materials and more expensive manufacturing parameters.
  • the new material has comparable good corrosion resistance to Sm2 (TM) 17 materials. Its magnetic properties (magnetic flux) are higher than the Sm2 (TM) 17 materials at temperatures up to approx. 200 ° C. It is cheaper to manufacture. Compared to conventional NdFeB materials, its corrosion resistance is improved many times over. In the pressure cooker test (130 ° C, 3 bar, saturated water vapor), only slight material losses of an average of about 0.1 mg per cm 2 and day occur and continue to decrease, while the material loss occurs with commercially available ones Permanent magnets of the NdFeB type are in the range from 10 to 100 mg per cm 2 and day (factor 100 to 1000!).
  • the high corrosion resistance means that an additional coating is not required for standard applications. If protective layers are nevertheless required for application-technical reasons, the new material is characterized by a high level of insensitivity to that of, for example, galvanic Coating contacting media. As a result, these coatings become unproblematic and can be carried out in conventional galvanic plants as standard without special technological measures.
  • the applied coatings have a high stability against thermal stress and moisture.
  • the materials described can be produced in standard manufacturing plants in the magnet industry.
  • the process parameters differ only slightly from those of the previously known NdFeB materials.
  • compositions in parts by weight are:
  • test In the pressure cooker test (130 ° C, 3bar, saturated water vapor), the samples were tested in 10 steps for 24 h each. The corrosion products that occurred were then removed mechanically and the magnet weighed. The test size is the weight loss per surface per day.
  • Fig. 3 shows the demagnetization curves of this alloy. These are curves at 25, 50, 100 and 150 ° C.
  • the measured values and test parameters are as follows.
  • Nb can be replaced in whole or in part by other refractory metals such as Mo, V, Cr, Ta etc.
  • AI can be partially or completely replaced by Ga or Bi.
  • Cu can be replaced in whole or in part by Ag or Au.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

Die Erfindung bezieht sich auf ein Magnetmaterial und einen Dauermagneten des NdFeB-Typs. Durch die gezielte Zugabe von Additiven wie Dy, Co, Nb, Al, Ga und Cu zur Basislegierung aus NdFeB wird eine intrinsische und gefügebedingte Korrosionsstabilität bewirkt. Für Standardanwendungen kann auf eine zusätzliche Beschichtung verzichtet werden. Der Werkstoff ist aber auch gegenüber den z.B. bei der galvanischen Beschichtung kontaktierenden Medien unempfindlicher und kann in einfacher Weise beschichtet werden. Verbesserte Temperaturkoeffizienten der Remanenz und bei geeigneter Legierungswahl hohe Koerzitivfeldstärken auch bei hohen Temperaturen ermöglichen einen Einsatz über 200 °C. Durch höhere magnetische Flußdichten im Temperaturbereich bis 200 °C können in einer Vielzahl von Anwendungen die bewährten, jedoch teureren Sm2(TM)17-Werkstoffe ersetzt werden.

Description

Magnetmaterial und Dauermagnet des IMdFeB-Typs
Die Erfindung bezieht sich auf ein Magnetmaterial und einen Dauermagneten des NdFeB-Typs.
Seit Bekanntheit der NdFeB - Werkstoffe wurde versucht, mittels Additiven die intrinsischen Eigenschaften wie Remanenz, Koerzitivfeldstärke oder Temperaturko¬ effizienten sowie extrinsische Eigenschaften wie Korrosionsbeständigkeit zu verbessern. Fortschritte wurden dabei durch Zugaben von z.B. Mo, Cu und AI (EP 0430278 B1 ), durch Mischen verschiedener Pulver (EP 0601943 A1 ), durch die mögliche Zugabe nahezu aller Metalle und anschließender Beschichtung (EP 0345 092 B1 ), durch Zugabe von Refraktärmetallen, Co und Ga (EP 0421 488 B1 ), durch die Einwirkung von Stickstoff (DE 90 18 099 U1 ), durch Zugabe von Ga oder Bi (DE 4135403 A1 ), sowie durch die Zugabe von Co und Cu (Crucible- Vortrag AD-08, Iπtermag 95/San Antonio) erreicht.
Die dabei erzielten Verbesserungen erhöhten zwar die Korrisionsbeständigkeit, konnten jedoch keinen wirklichen Durchbruch aufzeigen. Nach wie vor schränkt die Korrosionsempfindlichkeit der NdFeB- Werkstoffe ihre Anwendung stark ein, so sind nach wie vor Schutzbeschichtungen notwendig (EP 0345092 B1 ) . Ohne Beschichtungen können heute NdFe-B-Werkstoffe nur bei unkritischen Umge¬ bungsbedingungen (Raumtermperatur, Luftfeuchtigkeit bis 50 %, keine Betauung, vgl. Vacuumschmelze GmbH-Produktbeschreibung PD-002, 04/95, S.32 ff) einge¬ setzt werden. Der zusätzliche Schritt der polymeren oder metallischen Beschich¬ tung verursacht zusätzliche Kosten und Risiken durch Ablösungen, die bis zum Versagen führen können.
Materialien mit vergleichbaren absoluten magnetischen Eigenschaften bei höheren Temperaturen sind bekannt, beruhen jedoch auf anderen Zusammensetzungen. Die marktüblich angebotenen Werkstoffe für Hochtemeperatureinsätze starten mit relativ hohen Remanenzwerten, unterliegen aber einer stärkeren Temperatur¬ abhängigkeit (Koeffizienten mit betragsmäßig ≥0, 1 %/K, vgl. Vacuumschmelze GmbH-Produktbeschreibung PD-002,04/95, S.10f).
Ziel der Erfindung ist es, ein korrosionsbeständiges Magnetmaterial auf der Basis von NdFeB-Werkstoffeπ für Anwendungen von Raumtemperatur bis oberhalb 200° C mit guten absoluten Magneteigenschaften bei niederen Temperaturen und überlegenen magnetischen Eigenschaften bei höheren Temperaturen zu entwik- keln.
Diese Aufgabe wird mit den Merkmalen der Ansprüche 1 bzw. 1 1 gelöst. Vorteil¬ hafte Zusammensetzungen sind in den Unteransprüchen genannt. Bei den angegebenen Magnetmaterialien bzw. Dauermagneten sind die an sich bekannten Additive erstmals derart aufeinander abgestimmt, daß sich ent- scheidnde Verbesserungen sowohl bei den intrinsischen als auch bei den ex- trinsischen Eigenschaften ergeben, wobei ein stabiles Mikrogefüge erzeugt ist.
Die beanspruchten Materialien bzw. Dauermagnete besitzen Koeffizienten von ca -0,08 %/K bis zu einer Raumtemperatur von 100 °C bzw. -0,085 %/K bis zu einer Raumtemperatur von 150 °C. Damit werden vergleichsweise hervorragende Flußwerte bei Temperaturen oberhalb 100 °C erreicht. Die geringeren Temperatur¬ koeffizienten ergeben einen klaren Vorteil, da damit der Temperatureinfluß gerin¬ ger und die Systemauslegung einfacher ist.
Der Daumenmagnet ist in feuchter Umgebung ohne weitere Schutzmaßnahmen einsetzbar. Für spezifische Anwendungen ist der Werkstoff mit konventionellen und einfach zu realsierenden Methoden beschichtbar, ohne Gefahr zu laufen, daß sich die Beschichtung unter Temperatureinfluß und Feuchtigkeit ablöst.
Als Maßstab in Beständigkeit und Hochtemperatureigenschaften dienten die bekannten und bewährten, korrosionsbeständigen Sm2(TM) 17-Werkstoffe, die jedoch aufgrund teurerer Rohstoffe und kostenintensiveren Fertigungsparametern nur eingeschränkt einsetzbar sind.
Es kann klar gezeigt werden, daß der neue Werkstoff zu Sm2 (TM) 17-Werkstoffen vergleichbar gute Korrosionsbeständigkeit aufweist. Seine magnetischen Eigen¬ schaften (magn.Fluß) liegen bei Temperaturen bis ca. 200 °C höher als bei den Sm2(TM)17-Werkstoffen. Seine Fertigung ist kostengünstiger. Gegenüber konven¬ tionellen NdFeB-Werkstoffen ist seine Korrosionsbeständigkeit um ein Vielfaches verbessert. Im Pressure-Cooker-Test (130 °C, 3 bar, gesättigter Wasserdampf) treten nur geringe Materialverluste von im Durchschnitt etwa 0, 1 mg pro cm2 und Tag und weiter abnehmend auf, während der Materialverlust bei marktüblichen Dauermagneten des NdFeB-Typs im Bereich von 10 bis 100 mg pro cm2 und Tag liegen (Faktor 100 bis 1000!).
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen erläutert, wobei auf die in den Figuren 1 bis 3 gezeigten Kurvenverläufe Bezug genommen ist.
Beschrieben werden Legierungszusammensetzungen und das Verfahren zur Fertigung von Dauermagneten auf der Basis von Seltenerdmetallen (SE)- Über¬ gangsmetallen (TM)-Bor (B). Das Material zeichnet sich durch extrem hohe und für die Materialien aus dieser Gruppe ungewöhnliche Korrosionsbeständigkeit aus. Die erzielte Korrosionsbeständigkeit ist vergleichbar zu der von Sm2 (TM) 17-Werk- stoffen. Sie wird erreicht durch die gezielte Zugabe von Additiven wie Dy, Co, Nb, AI, Ga und Cu zur Basislegierung aus NdFeB, wodurch eine intrinsische und gefügebedingten Korrosionsstabilität bewirkt wird . Eine angepaßte Gesamtzusam¬ mensetzung führt einerseits zu einer Minimierung der korrosionsempfindlichen Korngrenzphase und schafft mit Hilfe der Additive eine Verbesserung deren Korrosionsbeständigkeit. Andererseits werden durch die Bildung von stabilen intermetallischen Phasen im Korngrenzbereich Barrieren geschaffen, die ein Ein¬ dringen von korrosionsverursachenden Stoffen in das Magnetinnere verhindern. Schon zu Beginn einer Korrosionsbelastung auftretende Materialverluste sind verschwindend gering und laufen durch Mechanismen, die einer Passivierung ähneln, degressiv gegen Null. Diese Mechanismen wirken auch noch bei höheren Temperaturen (siehe nachfolgend pressure-cooker-test). Es wird eine bisher nicht bekannte Korrosionsstabilität erreicht.
Durch die hohe Korrosionsbeständigkeit kann für Standardanwendungen auf eine zusätzliche Beschichtung verzichtet werden. Sind aus anweπdungstechnischen Gründen Schutzschichten trotzdem erforderlich, zeichnet sich der neue Werkstoff durch eine hohe Unempfindlichkeit gegenüber den bei der z.B. galvanischen Beschichtung kontaktierenden Medien aus. Diese Beschichtungen werden dadurch unproblematisch und können ohne besondere technologische Maßnahmen stan¬ dardmäßig in konventionellen galvanischen Betrieben durchgeführt werden. Die aufgebrachten Beschichtungen weisen eine hohe Stabilität gegenüber Temperatur¬ belastung und Feuchtigkeit auf.
Verbesserte Temperaturkoeffizienten der Remanenz und bei geeigneter Legie¬ rungswahl hohe Koerzitivfeldstarken auch bei hohen Temperaturen ermöglichen einen Einsatz bis über 200 °C. Durch höhere magnetische Flußdichten im Tempe¬ raturbereich bis 200 °C können in einer Vielzahl von Anwendungen die bewahr¬ ten, jedoch teureren Sm2(TM) 17-Werkstoffe ersetzt werden.
Die beschriebenen Materialien können in Standardfertigungsanlagen der Magnet- industrie hergestellt werden. Die Prozeßparameter unterscheiden sich nur gering von denen der bisher bekannten NdFeB-Werkstoffe.
Beispiele:
Es wurden Verbindungen erschmolzen, homogenisiert, gemahlen auf ca. 3,5 μm (FSSS), isostatisch (A) oder im Werkzeug axial (B) gepreßt, bei Temperaturen zwischen 1050 und 1 150 °C gesintert (Vakuum, 2,5 h), homogenisiert, warme- behandelt (600 °C, 3h) und anschließend magnetisiert. Die Enddichten liegen zwischen 7,4 und 7,7 g/cm3.
Zusammensetzungen in Gewichtsanteilen:
A1 - Nd20 Dy10 Co3 B0,95 Nb0,8 AI0.2 Ga0,2 Cu0, 1 FeRest A2 Nd29 Co3 B0,9 Nb0,8 AI0.2 Ga0, 1 5 Cu0, 1 FeRest A3- Nd25 Dy5 Co3 B1 Nb0,8 AI0,2 Ga0,2 Cu0, 1 FeRest Bl - Nd20 Dy1 1 Co3,3 B0,9 Nb0,7 AI0,3, Ga0, 1 Cu0, 1 5 FeRest B2: Nd21 Dy1 1 Co3 B1 Nb0,8 AI0, 1 Ga0,3 Cu0,2 FeRest B3: Nd21 Dy10 Co2 B0,9 Nb0,6 Ga0,4 CuO,05 FeRest.
Korrosionseigenschaften:
Im Pressure-Cooker-Test (130 °C, 3bar, gesättigter Wasserdampf) wurden die Proben in 10 Schritten für jeweils 24 h getestet. Danach wurden die auftretenden- Korrosionsprodukte mechanisch entfernt und der Magnet gewogen. Die Testgröße ist der Gewichtsverlust pro Oberfläche und Tag.
Als Vergleichswert dient eine Probe aus Sm2(TM) 17 (Dichte 8,3 g/cm3) und eine Probe aus konventionellem NdFeB-Material. Dieses läßt sich im Diagramm der Fig. 1 darstellen. Die Werte der neuen Materialien und von Sm2(TM)17 lassen sich dann allerdings nicht auflösen. Die Kurve für das konventionelle NdFeB-Material weist eine progressive Entwicklung auf, der Verlauf ist katastrophal.
Alle Beispiel der neuen Werkstoffe zeigen hervorragende Korrosionseigenschaften (Diagramm der Fig. 2). Gewichtsverluste in diesem Bereich lassen sich mit kon¬ ventionellen gravimetrischen Methoden fast nicht mehr auflösen. Es findet ein der Passivierung ähnlicher Schutzmechanismus statt. Legierung A1 zeigt schon kurz nach Versuchsbeginn eine bessere Beständigkeit als Sm2(TM) 17. Nach einigen Tagen ist auch bei allen ähnlichen Verbindungen praktisch keine weitere Korrosion mehr festzustellen. Die Startwerte sind extrem gering, so daß hier schon von extrem guter Stabilität gesprochen werden muß. Im Mikrogefüge treten in den Korngrenzbereichen intermetallische Phasen auf. Der Anteil an freiem Nd ist auf ein zum Sintern notwendiges Minimum reduziert. Die verbleibende Menge an Korngrenzphase ist stabilisiert. Dies alles wurde durch eine gezielte Abstimmung der Additive auf die Grundzusammensetzung erreicht. Magnetische Eigenschaften:
A1 : Remanenz (150 °C) = 1000 mT
Koerzitivfeldstärke (150 °C) = 1050kA/m Temperaturkoeffizient (RT bis 100 °C) = -0,08 %/K Temperaturkoeffizient (RT bis 150 °C) = -0,085 %/K.
In dem Diagramm gem. Fig. 3 sind die Entmagnetisierungskurven dieser Legierung gezeigt. Dabei handelt es sich um Kurven bei 25, 50, 100 und 150 °C. Die Meßwerte und Versuchsparameter sind wie folgt.
J* 25 50 100 !5C
A2: Remanenz (Raumtemperatur) = 1250 mT
Koerzitivfeldstärke (Raumtemperatur) = 900 kA/m
A3: Remanenz (Raumtemperatur) = 1 180 mT
Koerzitivfeldstärke (Raumtemperatur) = 1 500 kA/m Temperaturkoeffizient (RT bis 100 °C) = -0,08 %/K Temperaturkoeffizient (RT bis 1 50 °C) = -0,085 %/K. B1 : Remanenz (150 °C) = 910 mT
Koerzitivfeldstärke (150 °C) = 900 kA/m Temperaturkoeffizient (RT bis 100 °C) = -0,08 %/K Temperaturkoeffizient (RT bis 150 °C) = -0,085 %K
B2: Remanenz (150 °C) = 920 mT
Koerzitivfeldstärke (150 °C) = 800 kA/m Temperaturkoeffizient (RT bis 100 °C) - -0,08 %/K Temperaturkoeffizient (RT bis 150 °C) = -0,085 %/K
B3: Remanenz (150 °C) = 910 mT
Koerzitivfeldstärke (150 °C) = 900 kA/m Temperaturkoeffizient (RT bis 100 °C) = -0,08 %/K Temperaturkoeffizient (RT bis 150 °C) = -0,085 %K.
Für die Zusammensetzung kommen folgende Abwandlungen in Betracht:
Nb kann ganz oder teilweise durch andere Refraktärmetalle wie Mo, V, Cr, Ta usw. ersetzt sein.
AI kann teilweise oder ganz durch Ga oder Bi ersetzt sein.
Cu kann ganz oder teilweise durch Ag oder Au ersetzt sein.
Mit Dy-Gehalten > 5 Gew.-% können hervorragende Hochtemperatureigen¬ schaften und Temperaturkoeffizienten für Raumtemperaturen bis 100 °C oder bis 1 50 °C > - 0,09 erzielt werden.

Claims

Ansprüche
1 . Magnetmaterial mit 27 bis 33 Gew.-% SE, wobei SE für Pr, Nd, Dy oder Tb oder Kombinationen daraus steht, anderen SE als unvermeidlichen Ver¬ unreinigungen und mit mindestens zwei Elementen aus der folgenden Gruppe und mit den folgenden Anteilen
0 bis 6 Gew.-% Co 0,8 bis 1 1 ,3 Gew.-% B 0 bis 2,0 Gew.-% Nb 0 bis 1 ,5 Gew.-% AI 0 bis 1 ,5 Gew.-% Ga
0 bis 1 ,0 Gew.-% Cu
sowie mit unvermeidlichen Verunreinigungen und Fe als Rest.
2. Magnetmaterial nach Anspruch 1 , dadurch gekennzeichnet, daß die Anteile der Elemente der Gruppe
1 bis 4 Gew.% Co 0,9 bis 1 ,0 Gew.-% B 0, 1 bis 1 ,0 Gew.-% Nb 0,1 bis 0,5 Gew.-% AI 0, 1 bis 0,5 Gew.-% Ga und 0,05 bis 0,5 Gew.-% Cu
betragen.
Magnetmaterial nach Anspruch 2, dadurch gekennzeichnet, daß die Anteile der Elemente der Gruppe
2,5 bis 3,5 Gew.-% Co 0,95 bis 1 ,0 Gew.-% B 0,5 bis 0,9 Gew.-% Nb 0,1 bis 0,
3 Gew.-% AI 0,1 bis 0,
4 Gew.-% Ga und 0,05 bis 0,2 Gew.% Cu
betragen.
Magnetmaterial nach Anspruch 3, dadurch gekennzeichnet, daß die Anteile der Elemente der Gruppe
3,0 Gew.-% Co 0,95 Gew.-% B 0,8 Gew.% Nb 0,2 Gew.-% AI 0,2 Gew.-% Ga und 0, 1 Gew. % Cu
betragen.
5. Magnetmaterial nach einem der vorhergehenden Ansprüche, wobei Nb ganz oder teilweise durch andere Refraktärmetalle ersetzt ist.
6. Magnetmaterial nach Anspruch 5, dadurch gekennzeichnet, daß die Refraktärmetalle Mo, V, Cr oder Ta oder eine Kombination daraus sind.
7. Magnetmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß AI durch Ga und/oder Bi ganz oder teilweise ersetzt ist.
8. Magnetmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Ga durch AI und/oder Bi ganz oder teilweise ersetzt ist.
9. Magnetmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Cu durch Ag und/oder Au ganz oder teilweise ersetzt ist.
10. Magnetmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Dy-Gehalt mindestens 5 Gew.% beträgt.
1 1 . Dauermagnet aus einem Magnetmaterial nach einem der vorhergehenden Ansprüche.
12. Dauermagnet nach Anspruch 1 1 , dadurch gekennzeichnet, daß er beschichtet ist.
EP96938104A 1995-11-10 1996-11-06 MAGNETMATERIAL UND DAUERMAGNET DES NdFeB-TYPS Ceased EP0860014A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19541948 1995-11-10
DE1995141948 DE19541948A1 (de) 1995-11-10 1995-11-10 Magnetmaterial und Dauermagnet des NdFeB-Typs
PCT/EP1996/004836 WO1997017709A1 (de) 1995-11-10 1996-11-06 MAGNETMATERIAL UND DAUERMAGNET DES NdFeB-TYPS

Publications (1)

Publication Number Publication Date
EP0860014A1 true EP0860014A1 (de) 1998-08-26

Family

ID=7777137

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96938104A Ceased EP0860014A1 (de) 1995-11-10 1996-11-06 MAGNETMATERIAL UND DAUERMAGNET DES NdFeB-TYPS

Country Status (3)

Country Link
EP (1) EP0860014A1 (de)
DE (1) DE19541948A1 (de)
WO (1) WO1997017709A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19945942C2 (de) * 1999-09-24 2003-07-17 Vacuumschmelze Gmbh Verfahren zur Herstellung von Dauermagneten aus einer borarmen Nd-Fe-B-Legierung
CN100461308C (zh) * 2005-05-22 2009-02-11 横店集团东磁有限公司 一种超高矫顽力烧结钕铁硼磁性材料及其制备方法
CN110428947B (zh) * 2019-07-31 2020-09-29 厦门钨业股份有限公司 一种稀土永磁材料及其原料组合物、制备方法和应用
CN110517838A (zh) * 2019-08-16 2019-11-29 厦门钨业股份有限公司 一种钕铁硼永磁材料及其原料组合物、制备方法和应用

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247454A (ja) * 1985-08-23 1987-03-02 Toshiba Corp 永久磁石合金
JPS62213102A (ja) * 1986-03-13 1987-09-19 Shin Etsu Chem Co Ltd 希土類永久磁石の製造方法
US5230751A (en) * 1986-07-23 1993-07-27 Hitachi Metals, Ltd. Permanent magnet with good thermal stability
DE3750661T2 (de) * 1986-07-23 1995-04-06 Hitachi Metals Ltd Dauermagnet mit guter thermischer Stabilität.
JPS63119205A (ja) * 1986-11-06 1988-05-23 Shin Etsu Chem Co Ltd 焼結永久磁石
EP0302947B1 (de) * 1987-03-02 1994-06-08 Seiko Epson Corporation Seltene-erden-eisen-typ-dauermagnet und sein herstellungsverfahren
JPS63272009A (ja) * 1987-04-30 1988-11-09 Daido Steel Co Ltd 希土類−Fe−B系磁石の製造方法
US5015307A (en) * 1987-10-08 1991-05-14 Kawasaki Steel Corporation Corrosion resistant rare earth metal magnet
JP2520450B2 (ja) * 1988-06-02 1996-07-31 信越化学工業株式会社 耐食性希土類磁石の製造方法
US5200001A (en) * 1989-12-01 1993-04-06 Sumitomo Special Metals Co., Ltd. Permanent magnet
FR2655355B1 (fr) * 1989-12-01 1993-06-18 Aimants Ugimag Sa Alliage pour aimant permanent type fe nd b, aimant permanent fritte et procede d'obtention.
US5162064A (en) * 1990-04-10 1992-11-10 Crucible Materials Corporation Permanent magnet having improved corrosion resistance and method for producing the same
DE4015683C2 (de) * 1990-05-16 1994-01-13 Schramberg Magnetfab Verfahren zum Herstellen von hoch- oder niederkoerzitiven Permanentmagneten
GB9022033D0 (en) * 1990-10-10 1990-11-21 Lee Victor C A method of making a material with permanent magnetic properties
DE69202515T2 (de) * 1991-06-04 1995-09-21 Shinetsu Chemical Co Verfahren zur Herstellung von zweiphasigen Dauermagneten auf der Basis von Seltenen Erden.
DE4135403C2 (de) * 1991-10-26 1994-06-16 Vacuumschmelze Gmbh SE-Fe-B-Dauermagnet und Verfahren zu seiner Herstellung
CN1053988C (zh) * 1991-11-11 2000-06-28 住友特殊金属株式会社 稀土磁体和稀土磁体用的合金粉末及其制造方法
DE4331563A1 (de) * 1992-09-18 1994-03-24 Hitachi Metals Ltd Nd-Fe-B-Sintermagnete
US5482575A (en) * 1992-12-08 1996-01-09 Ugimag Sa Fe-Re-B type magnetic powder, sintered magnets and preparation method thereof
US5472525A (en) * 1993-01-29 1995-12-05 Hitachi Metals, Ltd. Nd-Fe-B system permanent magnet
JP3298219B2 (ja) * 1993-03-17 2002-07-02 日立金属株式会社 希土類―Fe−Co−Al−V−Ga−B系焼結磁石
JPH0794311A (ja) * 1993-09-21 1995-04-07 Hitachi Metals Ltd Nd−Fe−Co−B型焼結磁石
US5480471A (en) * 1994-04-29 1996-01-02 Crucible Materials Corporation Re-Fe-B magnets and manufacturing method for the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9717709A1 *

Also Published As

Publication number Publication date
DE19541948A1 (de) 1997-05-15
WO1997017709A1 (de) 1997-05-15

Similar Documents

Publication Publication Date Title
DE69909569T2 (de) Korrosionsbeständiger dauermagnet und verfahren zu seiner herstellung
DE3879195T2 (de) Weichmagnetischer rostfreier stahl mit guter kaltschmiedbarkeit.
DE69219936T2 (de) Magnetowiderstandseffekt-Element
DE3035433C2 (de) Verwendung einer glasartigen Legierung
DE4402783B4 (de) Nd-Fe-B-System-Dauermagnet
EP2416329B1 (de) Magnetkern für Niederfrequenzanwendungen und Verfahren zur Herstellung eines Magnetkerns für Niederfrequenzanwendungen
DE68905987T2 (de) Korrosionsfester dauermagnet und herstellungsverfahren.
DE112018008152T5 (de) Seltenerdmagnet, Seltenerd-Sputtermagnet, Seltenerddiffusionsmagnet und Verfahren zur Herstellung
DE3935698A1 (de) Legierungsscheibe, verwendbar zur herstellung eines magneto-optischen aufzeichnungsmediums
DE69630283T2 (de) Dauermagnet für ultra-hoch-vakuum anwendung und herstellung desselben
DE68926768T2 (de) Supermagnetostriktive Legierung
DE102017222062A1 (de) Permanentmagnet auf R-T-B-Basis
WO2009013711A2 (de) Verfahren zur herstellung von magnetkernen, magnetkern und induktives bauelement mit einem magnetkern
DE3624969C2 (de) Verwendung eines rostfreien weichmagnetischen Stahls
DE60029364T2 (de) Automatenlegierung
DE19945942A1 (de) Borarme Nd-Fe-B-Legierung und Verfahren zur Herstellung von Dauermagneten aus dieser Legierung
DE69503957T3 (de) SE-Fe-B Magneten und ihrer Herstellungsverfahren
EP0860014A1 (de) MAGNETMATERIAL UND DAUERMAGNET DES NdFeB-TYPS
DE102014105778B4 (de) R-t-b-basierter permanentmagnet
DE69014049T2 (de) Magnetostriktive Kobalt-Eisenlegierungen und ihre Produktanwendungen.
DE3841748C2 (de)
EP0396880A1 (de) NdFeB-Magnet und Verfahren zur Oberflächenpassivierung von NdFeB-Magneten
DE2747703B2 (de) Ferromagnetisches Filmmaterial und Verfahren zu seiner Herstellung
DE69733926T2 (de) Magnetostriktives Verbundmaterial und Verfahren zu dessen Herstellung
DE29521549U1 (de) Magnetmaterial und Dauermagnet des NdFeB-typs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980610

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FI FR GB IT LI NL PT SE

17Q First examination report despatched

Effective date: 19991130

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20010518