EP0842385B2 - Procede et dispositif de production variable d'un produit gazeux comprime - Google Patents

Procede et dispositif de production variable d'un produit gazeux comprime Download PDF

Info

Publication number
EP0842385B2
EP0842385B2 EP96927545A EP96927545A EP0842385B2 EP 0842385 B2 EP0842385 B2 EP 0842385B2 EP 96927545 A EP96927545 A EP 96927545A EP 96927545 A EP96927545 A EP 96927545A EP 0842385 B2 EP0842385 B2 EP 0842385B2
Authority
EP
European Patent Office
Prior art keywords
liquid fraction
heat exchanger
heat
liquid
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96927545A
Other languages
German (de)
English (en)
Other versions
EP0842385A1 (fr
EP0842385B1 (fr
Inventor
Horst Corduan
Horst Altmeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7767507&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0842385(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0842385A1 publication Critical patent/EP0842385A1/fr
Application granted granted Critical
Publication of EP0842385B1 publication Critical patent/EP0842385B1/fr
Publication of EP0842385B2 publication Critical patent/EP0842385B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • F25J3/04503Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
    • F25J3/04509Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/912External refrigeration system
    • Y10S62/913Liquified gas

Definitions

  • the invention relates to a method and a device for the variable production of a gaseous printed product by low-temperature separation of air by increasing the pressure in the liquid state and subsequent Evaporation.
  • the invention is therefore based on the object of specifying a method and a device which, if possible can be operated flexibly and in particular avoid the disadvantages described above.
  • the gaseous print product is obtained in liquid form from the or one of the rectification columns removed and buffered in a first storage tank.
  • the liquid level in the tank increases or decreases.
  • the amount of liquid fraction produced in the rectification that is not currently evaporating or otherwise can be introduced into the tank; accordingly if there is a high product requirement, liquid is evacuated from the tank.
  • “Storage tank” here means any device for storing liquid. there it can be, for example, an external tank with its own insulation, but also a different type of vessel, which is arranged within the cryogenic separation plant and suitable for buffering liquid is.
  • Any known method can be used to increase the pressure in the liquid state, for example Pressure build-up evaporation at the storage tank, utilization of a static height, pumps upstream or downstream the storage tank, or combinations of these methods.
  • the liquid fraction is preferably passed through pressurized a pump located downstream of the tank. The throughput of this pump can be controlled to cause variation in the amount of product.
  • the inventive method also has a refrigeration cycle with a cycle compressor and a relaxation machine.
  • a heat carrier in particular a process gas for air separation, is compressed therein, Relieved of work and returned to the circuit compressor.
  • This cycle Cold generated to compensate for insulation and exchange losses and possibly for product liquefaction.
  • the circuit compressor also serves to compress the heat carrier, which is against the one to be evaporated Product is condensed and buffered in a second storage tank (first partial flow of the heat transfer medium). It condenses the heat transfer medium to a pressure that corresponds to a condensation temperature that is at least approximately the same is the evaporation temperature of the liquid pressurized fraction. At least part of the in the rotary compressor compressed heat transfer medium is returned to the circuit compressor, in particular the second partial flow after his work relaxation or part of it. The second partial flow of the compressed in the circuit compressor The heat transfer medium does not need to be discarded or not at all, but at least becomes partially in a circle. Refrigeration cycle and variable product evaporation are integrated in the invention; the same The machine is used both for the generation of cold and for the production of the vaporization of the liquid fraction required pressure.
  • the first partial flow in the invention also corresponds to the variable product quantity varied.
  • this variation can be implemented in different ways and thus flexibly to the current one Needs to be adjusted.
  • the amount of heat carrier compressed in the circuit compressor is kept constant when there is an increased need for gaseous pressure product.
  • the variation of the first partial flow is absorbed by a corresponding variation of the second partial flow of the heat transfer medium.
  • the amount of the second partial flow is decreased / increased by the same amount by which the amount of the first partial flow is increased / decreased.
  • An increased amount of heat transfer medium liquefied in the second partial flow is temporarily stored in the second tank; an increased amount of gas in the second partial flow can be compensated for by a corresponding removal of gas (for example as a product) from the circuit; Conversely, if the production is below average, a correspondingly smaller amount of gas is withdrawn from the circuit.
  • the system can be operated in a second mode of operation.
  • the throughput remains of the second partial flow is the same, while the variation of the first partial flow is followed by the circuit compressor. If there is an increased need for gaseous pressure product, the amount of the second partial stream is kept constant and the amount of heat carrier compressed in the circuit compressor by the same amount as the amount of the first Partial flow increased. Nevertheless, in the method according to the invention, the relative ones are also in this operating mode Fluctuations in the compressor throughput are comparatively small since the circulating volume can remain constant. The constant proportion of the gas compressed in the circulation compressor dampens the relative deflections of the compressor throughput.
  • the two modes of operation can also be combined by the fluctuations of the first partial flow partly by varying the second partial flow and partly by changing the throughput be compensated on the circuit compressor. If there is an increased need for gaseous printed product, then both the amount of the heat carrier compressed in the circuit compressor and the amount of the second partial stream are increased reduced.
  • the rectification system has a double column consisting of a pressure column and a low pressure column
  • the amount of additional current that is supplied to the work-relieving relaxation can be reduced if there is an increased need for gaseous printed product and at least an excess of cold partially compensated.
  • the work-performing relaxation of the further current leads approximately to the inlet pressure of the circuit compressor (lower level of the refrigeration circuit) to about atmospheric pressure and the more power that is relaxed during work is drawn off as an unpressurized gas product.
  • This also allows fluctuations the amount of gas circulating in the circuit.
  • the first mode of operation by reducing the amount of the second partial flow a corresponding reduction in the amount of work-relaxed additional current can be compensated.
  • the second mode of operation constant throughput during the work relieving pressure of the second partial flow
  • an increase in the circulation compressor throughput can be compensated for by a reduction in the amount of gas that leaves the cycle as another stream.
  • any process stream available in the process can act as a heat transfer medium for the refrigeration cycle and the evaporation of the liquid fraction can be used, for example air or another oxygen-nitrogen mixture.
  • nitrogen from the rectification system is preferably used as the heat carrier, in the case a double column, for example gaseous nitrogen, which accumulates at the top of the pressure column.
  • the entire cycle nitrogen is produced in the plant itself.
  • a subset of the heat transfer medium come from an external source, for example by feeding liquid nitrogen from another plant or from a tank truck to the second storage tank.
  • the second storage tank can act in addition to its buffering effect for variable print product production also as a safety reserve (backup) for a temporary failure of the system and / or used as a buffer for liquid product.
  • the use of nitrogen as a heat transfer medium has the advantage that the refrigeration cycle and evaporation of the printed product does not have any negative effects on the rectification, as is the case when feeding in against Print product liquefied air and when feeding gaseous air from a relaxation machine in a low pressure column would be the case.
  • the rectification can thus be used in the method according to the invention optimally driven by nitrogen as a heat transfer medium.
  • the process is therefore also for high product purities and - exploit suitable, as well as for the extraction of argon after the air separation in the narrower sense (e.g. raw argon column connected to the low pressure column of a double column).
  • the main heat exchanger system has a heat exchanger block has in which both the cooling of the feed air and the evaporation of the liquid fraction below increased pressure.
  • the main heat exchanger system has a plurality of heat exchanger blocks has, in particular a first and a second heat exchanger block, wherein in the first heat exchanger block the cooling of the feed air and in the second heat exchanger block the evaporation of the liquid Fraction is carried out under increased pressure.
  • the two heat exchanger blocks are coupled by a compensating current that one of the two heat exchanger blocks between the removed warm and cold end and the other of the two heat exchanger blocks between the warm and cold end is fed.
  • the invention also relates to a device according to claim 7.
  • Compressed and cleaned feed air 10 is under a pressure of 5 to 10 bar, preferably 5.5 to 6.5 bar cooled in the heat exchanger 11, which forms the main heat exchanger system with the heat exchanger 12. about Line 13, it is introduced into a pressure column 14 at about dew point temperature.
  • the pressure column belongs to that Rectification system, which also has a low pressure column 15, preferably at a pressure of 1.3 to 2 bar 1.5 to 1.7 bar is operated. Pressure column 14 and low pressure column 15 are via a main condenser 16 thermally coupled.
  • Bottom liquid 17 from the pressure column 14 is in a counterflow 18 against product flows of the low pressure column supercooled and fed into the low pressure column 15 (line 19).
  • Gaseous nitrogen 20 from the head the pressure column 14 is in the main condenser 16 against evaporating liquid in the sump of the low pressure column 15 liquefied.
  • the condensate 21 is partly fed as a return to the pressure column 14 (line 22) and to another part 23 introduced after supercooling 18 in a separator 25 (24).
  • the low pressure column 15 will from the separator 25 supplied with return liquid (line 26).
  • Low pressure nitrogen 27 and impure nitrogen 28 are 15 in after removal from the low pressure column the heat exchangers 18 and 11 warmed to about ambient temperature.
  • the impure nitrogen 30 can be used for regeneration a molecular sieve, not shown, can be used for air purification; the low pressure nitrogen 29 is either discharged as a product or used in an evaporative cooler to cool cooling water.
  • Oxygen is withdrawn as a liquid fraction via line 31 from the bottom of the low-pressure column 15, supercooled (18) and introduced (32) into a liquid oxygen tank (first storage tank) 33.
  • the liquid oxygen tank 33 is preferably at about atmospheric pressure.
  • Liquid oxygen 34 from the first storage tank 33 is brought to an increased pressure of, for example, 5 to 80 bar by means of a pump 35, depending on what is required Product printing. (Of course, other methods for increasing the pressure in the liquid phase can also be used, for example by utilizing a hydrostatic potential or by pressure build-up evaporation on one Storage tank.)
  • the liquid high pressure oxygen 36 is evaporated in the heat exchanger 12 and as internally compressed deducted gaseous product 37.
  • the part of the gaseous nitrogen from the pressure column 14 that is not fed to the main condenser 16 is withdrawn via lines 38, 39 and 40 through the heat exchanger 11 and one as a heat carrier Refrigeration circuit supplied, which, among other things, a two-stage circuit compressor 41, 42 and an expansion turbine 43 includes.
  • the nitrogen is compressed from about pressure stage pressure to a pressure which corresponds to a nitrogen condensation temperature which is at least approximately equal to the evaporation temperature r of the liquid pressurized oxygen 36. This pressure is - depending on the given delivery pressure of the oxygen - For example 15 to 60 bar.
  • a first partial flow 45 of the highly compressed nitrogen 44 is against the evaporating Oxygen 36 at least partially, preferably completely or substantially completely liquefied and fed into a separator 46.
  • the second partial flow 59 of the nitrogen compressed in the circuit compressor is at the high pressure and at a temperature that lies between the temperatures at the warm and cold ends of the heat exchanger 12, fed to the expansion turbine 43 and relaxed there while performing work at about pressure column pressure.
  • the relaxed one second partial flow 60 becomes partly through heat exchanger 12 (via 61, 62), partly through heat exchanger 11 (via 63, 64, 39, 40) returned to the inlet of the circuit compressor 41, 42.
  • Liquid nitrogen from the separator 46 can be fed as a return line to the pressure column 14 via line 47 and / or are introduced via line 48 into a second storage tank (liquid nitrogen tank 49) which is under a pressure of, for example, 1 to 5 bar, preferably below about atmospheric pressure.
  • the tank can also if necessary, excess liquid 50 is fed from the separator 25, which is not used as a return is required for the low pressure column 15. If necessary, liquid nitrogen can be fed into the separator by means of a pump 51 46 are pressed (line 52).
  • Part of the nitrogen 53 from line 39 can exit the heat exchanger 11 at an intermediate temperature be removed.
  • This part serves in part as equalizing flow 54, with the aid of which the efficiency of the main heat exchanger system is increased 11, 12 can be improved, and in part as a further stream 55 of the heat carrier, which in a second expansion turbine 56 is expanded to work slightly above atmospheric pressure.
  • the working relaxed further stream 57 is heated in the heat exchanger 12 to about ambient temperature and leaves the plant as a gaseous product 58.
  • Liquid oxygen and / or liquid nitrogen can be withdrawn as products from the storage tanks 33, 49 (the corresponding lines are not shown in the drawing).
  • the alternating storage has no disruptive influences on the rectification, in particular, neither liquid air is fed to the rectification nor is low-pressure air directly into the low-pressure column fed.
  • a conventional one can be located at an intermediate point 66 of the low-pressure column 15 Argon rectification connected, as indicated in the drawing by the lines shown there.
  • the first stage 41 of the cycle compressor is also used as a product compressor by between the first and the second stage a product stream 65 under a pressure of preferably 8 to 35 bar, for example, 20 bar is withdrawn.
  • the two basic operating modes of a method and a device according to the invention are now explained below.
  • the system is designed for a certain average amount of pressurized oxygen product. Production can fluctuate around this average value, and between a minimum and a maximum value. To explain how this fluctuation is achieved, the two extreme operating cases ("Max.”, "Min.”) And the operating case of the average pressure oxygen production (“Average”) of a system are presented in the following numerical examples, the 190,000 Nm 3 / h Process air processed.
  • the pressures are Pressure column 14 5.1 bar Low pressure column 15 1.3 bar Pressurized oxygen 37 26 bar Entry of the circuit compressor 4.8 bar Outlet of the circuit compressor 42 bar Liquid oxygen tank 33 1.1 bar Liquid nitrogen tank 1.1 bar
  • Table 1 relates to the mode of operation in which the expansion turbine 43 for the second partial flow 59 is operated at a constant speed; in the operating mode shown in Table 2, the throughput through the circuit compressor 41, 42 is kept constant. Of course, any transition between these two modes of operation is also possible in the exemplary embodiment.
  • the amounts of the respective currents for the three operating cases mentioned are given in 1000 Nm 3 / h.
  • the reference symbols in the first column of the table refer to the drawing. (Constant throughput by turbine 43) Max. Avg.
  • the scheme in the drawing is divided in half by a dashed line.
  • the left half essentially contains the refrigeration cycle and the storage tanks; the entire rectification is in the right half.
  • all flows in the right half of the drawing remain completely or essentially unchanged, the fluctuations in the production of pressurized oxygen only affect the circuit and the storage tanks. This is reflected in the first six lines of the two tables, in which all currents are mentioned that cross the dashed line; these have the same throughput in all operating cases, while the amount of evaporation changes (reference symbols 36, 37).
  • the second partial flow 59, 60 is kept constant.
  • the one for evaporation necessary variation of the first partial flow 45 is achieved by the corresponding change in the throughput the circulation compressor (stream 44) causes:
  • the production increases from the average the maximum value
  • the throughput through the circuit compressor increases by approximately the same amount as the product quantity to.
  • the additional gas is made available by a corresponding reduction in the amount of gas, which is taken as a further stream 55, 57, 58 through the turbine 56 from the circuit.
  • the fluctuating amounts of liquefied heat transfer medium (first partial flow 45) are buffered by that with above-average production via line 48 excess liquid to the second storage tank 49th is fed; conversely, the missing liquid is removed from the liquid nitrogen tank via line 52 with a small amount of product tracked to keep the return flow rate for the pressure column 14 constant.
  • Table 1 The numerical example of Table 1 is designed so that an average excess of liquid of 1500 Nm 3 / h oxygen and nitrogen is generated. This can be removed continuously, intermittently or in variable amounts in the form of liquid products. In addition, it is also possible with the method to change the average cooling capacity of the circuit and thus the average amount of liquid products during operation by adjusting the average speeds of the turbines accordingly.
  • the system can be operated particularly flexibly not only with regard to the internally compressed printed product, but also with regard to liquid production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

L'invention concerne un procédé selon lequel l'air utilisé est acheminé jusqu'à un système de rectification (14, 15) en vue d'une décomposition à température cryogénique, d'où une fraction liquide (31, 32) est prélevée pour être introduite dans un premier réservoir de stockage (33). La pression d'un volume variable de la fraction liquide (34) est augmentée. La fraction liquide (36) est vaporisée par échange de chaleur (12) indirect sous l'effet de l'élévation de la pression et est obtenue sous forme de produit gazeux comprimé (37). Un caloporteur circule dans un circuit frigorifique qui comporte un compresseur (41, 42). Un premier courant partiel (45) du caloporteur (44) comprimé dans le compresseur (41, 42) est acheminé jusqu'au système d'échange de chaleur indirect (12) en vue de la vaporisation de la fraction liquide (36), et est de ce fait liquéfié, au moins en partie. Un second courant partiel (5) du caloporteur (44) comprimé dans le compresseur (41, 42) est détendu (43), produisant ainsi de l'énergie. Le caloporteur liquide (45, 48) est tamponné dans un second réservoir de stockage (49).

Claims (7)

  1. Procédé de production variable d'un produit gazeux comprimé (37) par fractionnement à basse température d'air, lors duquel l'air de charge (10, 13) est acheminé dans un système de rectification (14, 15)
    une fraction liquide (31, 32, 34) en provenance du système de rectification (14, 15) étant tamponnée dans un premier réservoir (33),
    la pression de la fraction liquide (34) étant augmentée (35), et
    une quantité variable de la fraction liquide (36) s'évaporant sous la pression accrue par échange thermique indirect (12) et étant extraite en tant que produit gazeux comprimé (37) ; en outre
    un agent caloporteur étant acheminé dans un circuit fermé de refroidissement, qui présente un condenseur en circuit fermé (41, 42),
    un premier courant partiel (44, 45) de l'agent caloporteur comprimé dans le condenseur en circuit fermé (41, 42) étant acheminé, en vue de l'évaporation de la fraction liquide (36), à l'échange thermique indirect et étant de ce fait au moins partiellement liquéfié,
    un deuxième courant partiel (44, 59) de l'agent caloporteur (44), comprimé dans le condenseur en circuit fermé (41, 42), étant détendu en fournissant du travail (43) et
    l'agent caloporteur liquéfié (45, 48, 52) étant tamponné dans un deuxième réservoir (49),
    caractérisé en ce qu'un courant supplémentaire (55) de l'agent caloporteur est détendu en fournissant du travail (56).
  2. Procédé selon la revendication 1, caractérisé en ce que la quantité du courant supplémentaire (55), qui est acheminé à la détente fournissant du travail (56), est réduite en cas de demande plus élevée de produit gazeux comprimé (37).
  3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que l'azote (31) en provenance du système de rectification (14, 15) est utilisé en tant qu'agent caloporteur.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'air de charge (10) pour le système de rectification (14, 15) est refroidi dans un système principal d'échange thermique (11, 12), dans lequel est également effectuée sous pression élevée l'évaporation (12) de la fraction liquide (36).
  5. Procédé selon la revendication 4, caractérisé en ce que le système principal d'échange thermique présente un bloc d'échangeur thermique, dans lequel l'on effectue non seulement le refroidissement de l'air de charge, mais aussi l'évaporation sous pression élevée de la fraction liquide.
  6. Procédé selon la revendication 4, caractérisé en ce que le système principal d'échangeur thermique présente un premier et un deuxième bloc d'échangeur thermique, le refroidissement de l'air de charge (10) étant effectué dans le premier bloc d'échangeur thermique (11) et l'évaporation de la fraction liquide (36) étant effectuée sous pression élevée dans le bloc d'échangeur thermique (12), et les deux blocs d'échangeur thermique (11, 12) étant couplés par l'intermédiaire d'un courant de compensation (54), qui est prélevé de l'un (11) des deux blocs d'échangeur thermique, entre les extrémités chaude et froide, et de l'autre (12) des deux blocs d'échangeur thermique, entre les extrémités chaude et froide.
  7. Dispositif de production variable d'un produit gazeux comprimé par fractionnement à basse température d'air,
    à l'aide d'un système de rectification (14, 15), dans lequel est conduit un conduit d'air de charge (10, 13),
    à l'aide d'un conduit de liquide (31, 32) en vue du prélèvement d'une fraction liquide en provenance du système de rectification (14, 15) et en vue de son introduction dans un premier réservoir (33),
    à l'aide de moyens (35) en vue de l'augmentation de la pression de la fraction liquide (34),
    à l'aide d'un échangeur thermique (12) en vue de l'évaporation sous pression élevée de la fraction liquide (36),
    à l'aide d'un conduit de produit (37) en vue du prélèvement de la fraction liquide évaporée en tant que produit gazeux comprimé,
    à l'aide d'un circuit fermé de refroidissement, qui présente un condenseur en circuit fermé (41, 42),
    à l'aide d'un premier conduit de courant partiel (44, 45), qui est raccordé du condenseur en circuit fermé (41, 42) en direction de l'échangeur thermique (12) en vue de l'évaporation de la fraction liquide (36),
    à l'aide d'un deuxième conduit de courant partiel (44, 59), qui conduit du condenseur en circuit fermé (41, 42) à une machine de détente (43) et
    à l'aide d'un deuxième réservoir (49) en vue du tamponnage de l'agent caloporteur liquéfié (45, 48),
    caractérisé par
    un troisième conduit de courant partiel (55), qui conduit du condenseur de circuit formé (41, 42) à une machine de détente (56) supplémentaire.
EP96927545A 1995-07-21 1996-07-18 Procede et dispositif de production variable d'un produit gazeux comprime Expired - Lifetime EP0842385B2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19526785 1995-07-21
DE19526785A DE19526785C1 (de) 1995-07-21 1995-07-21 Verfahren und Vorrichtung zur variablen Erzeugung eines gasförmigen Druckprodukts
PCT/EP1996/003175 WO1997004279A1 (fr) 1995-07-21 1996-07-18 Procede et dispositif de production variable d'un produit gazeux comprime

Publications (3)

Publication Number Publication Date
EP0842385A1 EP0842385A1 (fr) 1998-05-20
EP0842385B1 EP0842385B1 (fr) 2001-04-18
EP0842385B2 true EP0842385B2 (fr) 2003-12-03

Family

ID=7767507

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96927545A Expired - Lifetime EP0842385B2 (fr) 1995-07-21 1996-07-18 Procede et dispositif de production variable d'un produit gazeux comprime

Country Status (15)

Country Link
US (1) US5953937A (fr)
EP (1) EP0842385B2 (fr)
JP (1) JP3947565B2 (fr)
KR (1) KR100421071B1 (fr)
CN (1) CN1134638C (fr)
AU (1) AU719608B2 (fr)
BR (1) BR9609781A (fr)
CA (1) CA2227050A1 (fr)
DE (2) DE19526785C1 (fr)
DK (1) DK0842385T4 (fr)
ES (1) ES2158336T5 (fr)
MX (1) MX9800557A (fr)
TW (1) TW318882B (fr)
WO (1) WO1997004279A1 (fr)
ZA (1) ZA966146B (fr)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295840B1 (en) 2000-11-15 2001-10-02 Air Products And Chemicals, Inc. Pressurized liquid cryogen process
DE10249383A1 (de) * 2002-10-23 2004-05-06 Linde Ag Verfahren und Vorrichtung zur variablen Erzeugung von Sauerstoff durch Tieftemperatur-Zerlegung von Luft
US7409835B2 (en) * 2004-07-14 2008-08-12 Air Liquide Process & Construction, Inc. Backup system and method for production of pressurized gas
US20070251267A1 (en) * 2006-04-26 2007-11-01 Bao Ha Cryogenic Air Separation Process
US20080115531A1 (en) * 2006-11-16 2008-05-22 Bao Ha Cryogenic Air Separation Process and Apparatus
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
US20090320520A1 (en) * 2008-06-30 2009-12-31 David Ross Parsnick Nitrogen liquefier retrofit for an air separation plant
US9714789B2 (en) * 2008-09-10 2017-07-25 Praxair Technology, Inc. Air separation refrigeration supply method
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (fr) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Procédé et dispositif de production d'oxygène sous pression et de crypton/xénon
CN103080678B (zh) * 2010-09-09 2015-08-12 乔治洛德方法研究和开发液化空气有限公司 用于通过低温蒸馏分离空气的方法和装置
CN102072612B (zh) * 2010-10-19 2013-05-29 上海加力气体有限公司 N型模式节能制气方法
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
CN102322727A (zh) * 2011-09-08 2012-01-18 罗良宜 空气能空气液化分离装置
EP2600090B1 (fr) 2011-12-01 2014-07-16 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102012006746A1 (de) 2012-04-03 2013-10-10 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung elektrischer Energie
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
PL2963370T3 (pl) 2014-07-05 2018-11-30 Linde Aktiengesellschaft Sposób i urządzenie do kriogenicznego rozdziału powietrza
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
PL2963369T3 (pl) 2014-07-05 2018-10-31 Linde Aktiengesellschaft Sposób i urządzenie do niskotemperaturowej separacji powietrza
TR201808162T4 (tr) 2014-07-05 2018-07-23 Linde Ag Havanın düşük sıcaklıkta ayrıştırılması vasıtasıyla bir basınçlı gaz ürününün kazanılmasına yönelik yöntem ve cihaz.
FR3066809B1 (fr) * 2017-05-24 2020-01-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil pour la separation de l'air par distillation cryogenique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3216206A (en) 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
JPH02293575A (ja) 1989-05-08 1990-12-04 Kobe Steel Ltd 空気分離装置
JPH0455682A (ja) 1990-06-22 1992-02-24 Kobe Steel Ltd 空気分離装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE752439C (de) * 1943-02-11 1953-01-05 Messer & Co G M B H Verfahren zur Erzeugung von komprimiertem Sauerstoff
US2708831A (en) * 1953-04-09 1955-05-24 Air Reduction Separation of air
GB890458A (en) * 1959-12-14 1962-02-28 British Oxygen Co Ltd Low temperature separation of gas mixtures
FR1479561A (fr) * 1966-03-25 1967-05-05 Air Liquide Procédé de preoduction d'un gaz en débit variable
DE6910083U (de) * 1969-03-13 1969-12-04 Merk Gmbh Telefonbau Fried Elektromagnetisches schauzeichen
GB2125949B (en) * 1982-08-24 1985-09-11 Air Prod & Chem Plant for producing gaseous oxygen
DE3913880A1 (de) * 1989-04-27 1990-10-31 Linde Ag Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
US5252149B1 (en) * 1989-08-04 1998-09-29 Warman Int Ltd Ferrochromium alloy and method thereof
FR2670278B1 (fr) * 1990-12-06 1993-01-22 Air Liquide Procede et installation de distillation d'air en regime variable de production d'oxygene gazeux.
US5152149A (en) * 1991-07-23 1992-10-06 The Boc Group, Inc. Air separation method for supplying gaseous oxygen in accordance with a variable demand pattern
CN1071444C (zh) * 1992-02-21 2001-09-19 普拉塞尔技术有限公司 生产气体氧的低温空气分离系统
FR2703140B1 (fr) * 1993-03-23 1995-05-19 Air Liquide Procédé et installation de production d'oxygène gazeux et/ou d'azote gazeux sous pression par distillation de l'air.
US5386692A (en) * 1994-02-08 1995-02-07 Praxair Technology, Inc. Cryogenic rectification system with hybrid product boiler
FR2723184B1 (fr) * 1994-07-29 1996-09-06 Grenier Maurice Procede et installation de production d'oxygene gazeux sous pression a debit variable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3216206A (en) 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
JPH02293575A (ja) 1989-05-08 1990-12-04 Kobe Steel Ltd 空気分離装置
JPH0455682A (ja) 1990-06-22 1992-02-24 Kobe Steel Ltd 空気分離装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Schönpflug et al., "Recent Advances in Air Separation Technology", 13th ICEC Proceedings, Beijing, China, 24.-27.04.90, in: Cryogenics 1990, vol. 30, September Supplement, S. 17-22
W.ROHDE: "Luftzerlegungsanlage mit Wechselspeicherung für variable Sauerstofflieferung", no. 54, 1 January 1984 (1984-01-01), pages 18 - 20, XP002019668

Also Published As

Publication number Publication date
CN1191600A (zh) 1998-08-26
JPH11509615A (ja) 1999-08-24
DE19526785C1 (de) 1997-02-20
ES2158336T5 (es) 2004-07-01
AU6734496A (en) 1997-02-18
ZA966146B (en) 1997-02-04
DK0842385T4 (da) 2004-03-22
CN1134638C (zh) 2004-01-14
KR100421071B1 (ko) 2004-04-17
ES2158336T3 (es) 2001-09-01
CA2227050A1 (fr) 1997-02-06
JP3947565B2 (ja) 2007-07-25
WO1997004279A1 (fr) 1997-02-06
DE59606808D1 (de) 2001-05-23
KR19990035798A (ko) 1999-05-25
BR9609781A (pt) 1999-12-21
EP0842385A1 (fr) 1998-05-20
AU719608B2 (en) 2000-05-11
US5953937A (en) 1999-09-21
DK0842385T3 (da) 2001-08-06
EP0842385B1 (fr) 2001-04-18
MX9800557A (es) 1998-04-30
TW318882B (fr) 1997-11-01

Similar Documents

Publication Publication Date Title
EP0842385B2 (fr) Procede et dispositif de production variable d'un produit gazeux comprime
EP0949471B1 (fr) Unité de séparation de l'air à deux modes de fonctionnement
EP0399197B1 (fr) Procédé et dispositif pour la séparation d'air à basse température
DE3146335C2 (de) Verfahren zum Erzeugen von Sauerstoff-Produktgas
EP1134525B1 (fr) Procédé de production d'azote liquide et gazeux avec une quantité variable de liquide
EP0093448A2 (fr) Procédé et dispositif pour obtenir de l'oxygène gazeux sous pression élevée
DE2920270C2 (de) Verfahren zum Erzeugen von Sauerstoff
EP1284404A1 (fr) Procédé et dispositif pour la production d'un produit sous pression par séparation cryogénique de l'air
EP1845323A1 (fr) Procédé et dispositif de production d'un produit sous haute pression par séparation cryogénique d'air
EP1067345A1 (fr) Procédé et dispositif pour la séparation cryogénique des constituants de l'air
EP0716280A2 (fr) Procédés et dispositifs de séparation d'air à basse température
EP1146301A1 (fr) Procédé et dispositif de production d'azote à haute pression par séparation d'air
EP0948730A1 (fr) Procede et dispositif de production d'azote comprime
EP3019803B1 (fr) Procédé et dispositif permettant d'obtenir de l'oxygène par fractionnement cryogénique d'air avec une consommation variable d'énergie
EP0768503B1 (fr) Procédé de séparation d'air à triple colonne
DE4415747C2 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE4030749A1 (de) Verfahren zur tieftemperaturzerlegung von luft
EP2647934A1 (fr) Procédé et dispositif de génération d'énergie électrique
DE10153919A1 (de) Verfahren und Vorrichtung zur Gewinnung hoch reinen Sauerstoffs aus weniger reinem Sauerstoff
DE1250848B (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft bei Sauerstoffabnahmeschwankungen
EP1134524A2 (fr) Procédé de production d'azote gazeux
DE60020791T2 (de) Verfahren zur Zufuhr einer kryogenisch-getrennten Komponente aus einem Gasgemisch mit variablen Durchflussgeschwindigkeiten
EP1022530B1 (fr) Procédé et dispositif pour produire de l'azote sous pression
EP1050728B1 (fr) Procedé et installation de séparation des gaz de l'air à une seule colonne
EP1209431A1 (fr) Procédé et dispositif de production d'oxygène et d'azote

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES FR GB IT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000904

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES FR GB IT SE

REF Corresponds to:

Ref document number: 59606808

Country of ref document: DE

Date of ref document: 20010523

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010713

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2158336

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

Effective date: 20020117

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20031203

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE DK ES FR GB IT SE

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20040211

Kind code of ref document: T5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20040715

Year of fee payment: 9

ET3 Fr: translation filed ** decision concerning opposition
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050801

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140611

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140716

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140711

Year of fee payment: 19

Ref country code: FR

Payment date: 20140708

Year of fee payment: 19

Ref country code: GB

Payment date: 20140716

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140716

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59606808

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150718

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150718

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150719

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150719