EP3019803B1 - Procédé et dispositif permettant d'obtenir de l'oxygène par fractionnement cryogénique d'air avec une consommation variable d'énergie - Google Patents

Procédé et dispositif permettant d'obtenir de l'oxygène par fractionnement cryogénique d'air avec une consommation variable d'énergie Download PDF

Info

Publication number
EP3019803B1
EP3019803B1 EP14738741.9A EP14738741A EP3019803B1 EP 3019803 B1 EP3019803 B1 EP 3019803B1 EP 14738741 A EP14738741 A EP 14738741A EP 3019803 B1 EP3019803 B1 EP 3019803B1
Authority
EP
European Patent Office
Prior art keywords
condenser
pressure column
air
amount
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14738741.9A
Other languages
German (de)
English (en)
Other versions
EP3019803A2 (fr
Inventor
Lars Kirchner
Dimitri Goloubev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to PL14738741T priority Critical patent/PL3019803T3/pl
Publication of EP3019803A2 publication Critical patent/EP3019803A2/fr
Application granted granted Critical
Publication of EP3019803B1 publication Critical patent/EP3019803B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04836Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04418Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system with thermally overlapping high and low pressure columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04424Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system without thermally coupled high and low pressure columns, i.e. a so-called split columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • F25J3/04581Hot gas expansion of indirect heated nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/0483Rapid load change of the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • F25J3/0486Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04884Arrangement of reboiler-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04957Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipments upstream of the fractionation unit (s), i.e. at the "front-end"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/066Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/32Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/34Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as evaporative cooling tower to produce chilled water, e.g. evaporative water chiller [EWC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/62Purifying more than one feed stream in multiple adsorption vessels, e.g. for two feed streams at different pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • F25J2205/70Heating the adsorption vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/50Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/52Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen enriched compared to air ("crude oxygen")
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/70Steam turbine, e.g. used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen

Definitions

  • the invention relates to a method according to the preamble of patent claim 1.
  • the method and the device of the invention are particularly suitable for obtaining gaseous impure oxygen.
  • impure oxygen is meant herein a product having a purity of less than 98 mole percent.
  • the distillation column system can be designed as a two-column system (for example as a classic Linde double-column system), or as a three-column or multi-column system.
  • it can have further devices for obtaining highly pure products and/or other air components, in particular noble gases, for example argon extraction and/or krypton-xenon extraction.
  • the "low-pressure column” is understood here to mean a uniform distillation area in which the pressure is constant apart from the natural pressure loss at the mass transfer elements.
  • This distillation section can be arranged in one or more vessels.
  • the "main heat exchanger” serves to cool feed air in indirect heat exchange with return streams from the distillation column system. It can be formed from a single heat exchanger section or from several heat exchanger sections connected in parallel and/or in series, for example from one or more plate heat exchanger blocks.
  • a “condenser-evaporator” refers to a heat exchanger in which a first, condensing, fluid stream enters into indirect heat exchange with a second, evaporating fluid stream.
  • Each condenser-evaporator has one Condensation space and an evaporation space, which consist of liquefaction passages or evaporation passages.
  • the condensation (liquefaction) of a first fluid stream is carried out in the liquefaction chamber, and the evaporation of a second fluid stream is carried out in the evaporation chamber.
  • Evaporation and condensing spaces are formed by sets of passages that are in heat exchange relationship with each other.
  • a "secondary condenser” is to be understood as meaning a condenser-evaporator which is designed practically exclusively for the indirect transfer of latent heat from a condensing process stream evaporation to an evaporating process stream against a second, condensing process stream and is not or essentially not suitable for the transfer of sensible heat is. It is realized by a heat exchanger which is designed separately from other heat exchangers, in particular a main heat exchanger or a subcooling countercurrent, both of which are regularly used exclusively or predominantly for the heat exchange of purely gaseous streams.
  • Process parameters such as flow rates or pressures are described several times in this application, which are “smaller” or “larger” in one operating mode than in another operating mode.
  • a parameter is "larger” or “smaller” if the difference between the mean values of the parameter in the different operating modes is more than 2%, in particular more than 5%, in particular more than 10%.
  • the "first liquid oxygen stream” is that stream of liquid oxygen that is removed from the low-pressure column and introduced into the evaporation space of the secondary condenser. That can be the total amount of from the Be low-pressure column withdrawn liquid oxygen.
  • the first liquid oxygen stream can also consist of only part of the liquid oxygen taken from the low-pressure column, if, for example, a liquid oxygen product is additionally obtained from the low-pressure column and fed to a liquid tank. If a liquid oxygen product is withdrawn from the evaporation space of the secondary condenser, this is usually formed by part of the "first liquid oxygen stream".
  • additional liquid oxygen can be fed to the secondary condenser beyond the first liquid oxygen stream.
  • the "second liquid oxygen stream” represents the difference between the total amount of liquid oxygen introduced into the evaporation space of the secondary condenser and the first liquid oxygen stream.
  • This second liquid oxygen stream is taken from a liquid tank, for example.
  • This liquid tank can be filled exclusively from an external source, exclusively with liquid oxygen from the low-pressure column (as with Springmann, see below) or partly with external and partly with that formed in the distillation column system, in particular in the low-pressure column or in the evaporation space of the secondary condenser liquid oxygen.
  • liquid oxygen is fed into the tank and the equivalent amount of liquid air is fed from the corresponding tank into the distillation column system. Conversely, in times of high electricity prices, liquid oxygen is produced from the Tank fed into the system and liquid air stored. Practically only the stored oxygen molecules are available for energy storage; the main air compressor has to deliver correspondingly less decomposition air in times of high electricity prices.
  • the object of the invention is to improve the efficiency of such a method with regard to energy storage.
  • the main condenser is not designed as a bottom evaporator of the low-pressure column, but as an intermediate evaporator. It can be located within the low pressure column or in a separate vessel.
  • the bottom of the low-pressure column is heated with an additional condenser, which is heated with a stream of cold compressed nitrogen.
  • the first liquid oxygen stream to the secondary condenser is preferably taken from the evaporation space of the additional condenser (which at the same time represents the bottom of the low-pressure column when the additional condenser is installed in the column).
  • All condenser evaporators can be designed as bath evaporators, falling film evaporators or other types of condenser evaporators.
  • Such a capacitor configuration is off US6626008B1 or US2008115531A1 ( Figure 8) known per se, but only for internal compression processes in which the vaporization of the liquid oxygen stream takes place in the main heat exchanger, in which the feed air is also cooled, and not in a separate one secondary condenser.
  • US2008115531A1 there is a reference to operation with variable energy consumption.
  • the oxygen content in the liquid to be evaporated in the main condenser drops and the pressure in the high-pressure column (corresponds in principle to the outlet pressure of the main air compressor minus pressure losses) is reduced accordingly. Due to the lower pressure ratio on the main air compressor - in addition to the volume reduction - a particularly large amount of energy can be saved per stored LOX volume in the second operating mode.
  • control or adjustment measures for reducing the outlet pressure of the main air compressor are not absolutely necessary if the pressure between the outlet of the main air compressor and the inlet to the high-pressure column is not artificially reduced by one or more actuators such as a throttle valve.
  • the first stream of nitrogen is cooled in the main heat exchanger downstream of the cold compressor and upstream of the liquefaction chamber of the additional condenser.
  • the compression heat of the cold compressor is not dissipated in the additional evaporator, but in the main heat exchanger.
  • the additional evaporator thus works particularly efficiently, especially in the second operating mode. Overall, even more energy can be saved in the second operating mode.
  • an expansion machine can be switched off or shut down in the second operating mode, as is described in claim 3 .
  • no liquid air is preferably generated and stored in a liquid tank in the second operating mode.
  • no fraction from the distillation column system is produced as liquid nitrogen and stored in a liquid tank, as is the case with other classic exchangeable storage methods.
  • the air compressed in the main air compressor is branched into a first and a second partial air flow upstream of its introduction into the main heat exchanger, with the second partial air flow being further compressed in a booster and the second compressed partial air flow being introduced into the condensing space of the secondary condenser and introduced there is at least partially liquefied.
  • the total air only needs to be compressed in the main air compressor to the operating pressure of the high-pressure column plus line losses.
  • the gaseous oxygen product can be recovered at a pressure significantly higher than that operating pressure of the low-pressure column.
  • the booster has an additional beneficial effect which occurs even when the oxygen product is recovered under a pressure not significantly higher than low pressure column pressure. Namely, it reduces the power of the cold compressor, which is required for the operation of the additional condenser.
  • the branching of the feed air can be performed upstream or downstream of an air purification device.
  • a special cleaning device with sub-units for the two pressure levels is required.
  • a system for air purification that is particularly favorable for use in a method according to the invention is in WO 2013053425 A2 described, which goes back to the same applicant.
  • a secondary stream of nitrogen may be withdrawn in gaseous form from the high pressure column, heated in the main heat exchanger and withdrawn as compressed gaseous nitrogen product. This means that compressed nitrogen can be obtained as an additional gaseous product with relatively little effort.
  • nitrogen from the high-pressure column can be used to obtain cold by taking a third stream of nitrogen in gaseous form from the high-pressure column, heating it to an intermediate temperature in the main heat exchanger and then expanding it to perform work, preferably in the above-mentioned variably operated expansion turbine .
  • the low-pressure column and the high-pressure column can be arranged next to one another.
  • a particularly compact arrangement results from the invention when the low-pressure column and the high-pressure column are arranged one above the other, ie form a classic double column.
  • the main condenser and additional condenser are preferably installed in the double column, in that the low-pressure column and the two condensers are arranged in a common container.
  • the invention also relates to a device for obtaining oxygen by cryogenic separation of air with variable energy consumption according to patent claim 11.
  • the device according to the invention can be supplemented by device features which correspond to the features of the dependent method claims.
  • the “means for switching between a first and a second operating mode” are complex regulating and control devices which interact to allow at least partially automatic switching between the two operating modes, for example an appropriately programmed operations control system.
  • FIG. 1 The procedure of figure 1 is first described below using the first operating mode (here: normal operation with a relatively low energy price).
  • the total air flow 4 compressed in the main air compressor is pre-cooled in a first direct contact cooler 5 by direct counterflow with water. Downstream of the first direct contact cooler 5 the overall air flow 6 is branched into a first partial air flow 10 and a second partial air flow 20 .
  • the first partial air stream 10 is cleaned in a first cleaning unit 11 and fed via line 12 to the warm end of a main heat exchanger at the outlet pressure of the main air compressor minus line losses.
  • the main heat exchanger is formed by two sections 32, 33 connected in parallel on the air side, which are preferably both formed by plate heat exchanger blocks.
  • the largest part 13 of the cleaned first partial stream 12 is fed to the first section 32, where it is cooled to about the dew point and fed via line 14 to the high-pressure column 34 of a distillation column system.
  • This also has a low-pressure column 35 and three condenser-evaporators, namely a main condenser 36, an additional condenser 37 and a secondary condenser 26.
  • the main and additional condenser are designed as falling-film evaporators, the secondary condenser as a bath evaporator.
  • the operating pressure of the high-pressure column 34 is approximately 3.27 bar, and that of the low-pressure column 35 is approximately 1.28 bar (in each case at the top).
  • the post-compressed second partial air flow 22 is pre-cooled in a second direct contact cooler 23 by direct counterflow with water.
  • the pre-cooled second partial air flow is cleaned in a second cleaning unit 24 downstream of the second direct contact cooler 23 .
  • the cleaned second partial air stream 25a is fed to the warm end of the main heat exchanger 32 under the outlet pressure of the booster 21 minus line losses and there cooled.
  • the cooled second partial flow 25b is at least partially, preferably completely or essentially completely liquefied in the secondary condenser 26 and a first part is introduced via a throttle valve 28 of the high-pressure column 34 at an intermediate point.
  • a second portion 29 flows through a counter-current subcooler 30 and is fed via throttle valve 31 to the low pressure column 35 at an intermediate point.
  • An oxygen-enriched bottom fraction 38 is removed in liquid form from the lower region of the high-pressure column 34 and fed into the low-pressure column 35 by means of a pump 39 through a supercooling countercurrent device 30 and via a throttle valve 40 .
  • Gaseous nitrogen is withdrawn via line 41 from the top of the high-pressure column 34 .
  • a first portion 42 thereof is fed into the liquefaction chamber of the main condenser 36 and is at least partially liquefied there against an evaporating intermediate fraction 43 from the low-pressure column 35 .
  • the liquid nitrogen 43 produced in this way is returned to the top of the high-pressure column 34 and used there as reflux.
  • a second portion of the gaseous nitrogen 41 from the top of the high-pressure column 34 is compressed as the "first nitrogen stream" 44 in a cold compressor 45 to about 4.8 bar.
  • the cold-compressed first stream of nitrogen 46 is cooled again in the main heat exchanger 32 to around the dew point and fed via line 47 into the liquefaction chamber of the additional condenser 37, where it is at least partially liquefied in indirect heat exchange with partially evaporating bottom liquid 66 of the low-pressure column 35.
  • the liquid nitrogen 48 produced in the process is a first portion 49 fed through the subcooling countercurrent flow 30 and via throttle valve 50 as return to the top of the low pressure column 35; to a second part 51 it is fed to the high-pressure column 34 as reflux.
  • a third portion of the gaseous nitrogen 41 from the top of the high pressure column 34 is sent to the cold end of the main heat exchanger 32 via line 53 .
  • a portion of this is warmed to ambient temperature and withdrawn via line 54 as "second stream nitrogen” and discharged as pressurized gaseous nitrogen (PGAN) product.
  • Another part 55 will also fully heated and used for auxiliary purposes within the plant, for example as a sealing gas. (The recovery of such a compressed nitrogen product and/or a nitrogen auxiliary gas is possible in all embodiments of the invention, but not necessary. This also applies to the systems of figures 2 and 3 .)
  • Another portion 56 of the gaseous nitrogen 41 from the top of the high-pressure column 34 is branched off in the main heat exchanger 32 at an intermediate temperature as a "third stream of nitrogen” and expanded to just above atmospheric pressure in an expansion machine 57, which is designed as a cold generator turbine.
  • the work-expanded third stream of nitrogen 58 is heated in the main heat exchanger 32 to about ambient temperature. If the warm third stream of nitrogen 59 is not blown off directly into the atmosphere (ATM) via lines 60 and 61, it is used in cleaning devices 11, 24 as regeneration gas 62, 63, if necessary after heating in one of the regeneration gas heaters 64, 65, which condensing water vapor (STEAM).
  • Residual gas 67 from the top of the low-pressure column is heated in the subcooling countercurrent flow 30 and in the main heat exchanger 32 and finally fed as a dry gas via line 68 into an evaporative cooler 69 which serves to cool cooling water.
  • Liquid oxygen is fed via line 70 as the "first liquid oxygen stream” under a pressure of about 1.5 bar into the evaporation space of the secondary condenser 26 and is almost completely evaporated there.
  • the vaporized oxygen 71 is heated in the main heat exchanger 32 and recovered via line 72 as gaseous oxygen product (GOX).
  • Flushing liquid 75 from the evaporation chamber of the secondary condenser 26 is brought to a supercritical pressure in a pump 76 and pseudo-evaporated against the air flow 14 and heated in section 33 of the main heat exchanger. Thereafter, the warmed stream 77 is throttled back and mixed with the warm gaseous oxygen product so that only a single oxygen product is delivered.
  • a plurality of parallel cold compressors e.g. two
  • the second cold compressor is switched on in the second operating mode, so that double the output is then available.
  • the main air compressor can go to minimum load, the smaller booster to its maximum. Since approximately 90% of the total energy consumption is required to drive the main air compressor, the further the capacity of the main air compressor can be reduced, the more the process becomes more efficient, even if the capacity of the cold compressor is increased.
  • the system can be designed for maximum oxygen production that is higher than that of the first or second operating mode, i.e. a smaller quantity of gaseous oxygen product 72 is obtained in the first and/or second operating mode than in the design case
  • the method of the invention is flexible here as long as the operating ranges of the machines used are not exceeded.
  • the cold compressor is operated with the lowest possible power in the first operating mode, but the main air compressor is designed in such a way that it runs at around 100% of its nominal power in the first operating mode.
  • Air boosters and nitrogen cold compressors are designed for the power that is required in the second operating case.
  • the total energy consumed in the process is reduced to approximately 86% of the value in the first operating mode, despite the same or only slightly lower production of gaseous oxygen 72 .
  • the corresponding range is available for energy storage if there is a sufficient supply of liquid oxygen.
  • figure 2 differs from figure 1 that no gaseous compressed nitrogen product is produced.
  • nitrogen product 254 obtained directly from the high-pressure column is brought to significantly above ambient temperature in a heater 255 and expanded in a warm expansion turbine (hot gas expander) 256 to perform work.
  • a warm expansion turbine hot gas expander
  • particularly valuable electrical energy can be obtained in a generator coupled to the expansion turbine 256 with the aid of residual heat coupled into the heater 255 in times of high energy prices.
  • waste heat e.g. from low-pressure steam
  • the heater 255 which otherwise cannot be used economically, in this case there is even a total reduction of about 76% in the energy required for the air separation process in the second operating mode relative to the first.
  • part of the nitrogen taken directly from the high-pressure column is used to produce gaseous compressed nitrogen product (see PGAN in figure 1 ), At least in the first operating mode, optionally also in the second operating mode.
  • the procedure of figure 3 differs from that of figure 1 through a heat integration between the compressor cooling and a steam cycle, the belongs, for example, to a power plant. Compression heat from the air compression is transferred to feed water for the power plant process (feed water to power plant) via the additional coolers 301 and 302 upstream of the two direct contact coolers.
  • figure 3 shown how the portion of the first liquid oxygen stream not vaporized in the secondary condenser is partially drawn off via line 303 in the first operating mode, optionally cooled in the supercooling countercurrent 30 and discharged as liquid oxygen product (LOX). All or part of this liquid oxygen product may be introduced into the liquid tank 74 . Also in all other embodiments of the invention (e.g. according to figure 1 or 2 ) In the first mode of operation, liquid oxygen can be obtained in this way, which later forms part or all of the liquid oxygen that is fed in via line 73 in the second mode of operation.
  • LOX liquid oxygen product
  • high-pressure column 34 and low-pressure column 35 arranged side by side.
  • the auxiliary condenser 37 (the bottom heater of the low-pressure column 35) is positioned above the high-pressure column 34.
  • the secondary condenser 26 is located between the high-pressure column 34 and the additional condenser 37.
  • figure 4 a part of already in figure 3 shown heat integration between the compressor cooling and a steam circuit, namely a cooler 301, which is operated with feed water (feed water) from the power plant process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (12)

  1. Procédé permettant d'obtenir de l'oxygène par fractionnement cryogénique de l'air avec une consommation variable d'énergie dans un système de colonnes de distillation, qui présente une colonne haute pression (34), une colonne basse pression (35) ainsi qu'un condenseur principal (36) et un condenseur secondaire (26), qui sont tous deux conçus comme condenseur-évaporateur et le condenseur secondaire (26) est conçu comme un condenseur-évaporateur séparé d'autres échangeurs de chaleur et conçu quasiment exclusivement pour le transfert indirect de chaleur latente, dans lequel, dans le procédé
    - de l'air atmosphérique (1) est comprimé dans un compresseur d'air principal (3) à une pression totale d'air, refroidi dans un échangeur de chaleur principal (32, 33) et guidé au moins partiellement dans la colonne haute pression (34),
    - dans le condenseur principal (36), de l'azote gazeux (41, 42) provenant de la colonne haute pression (34) est liquéfié au moins partiellement,
    - au moins une partie de l'azote liquide (43) produit dans le condenseur principal est utilisée dans au moins l'une des colonnes du système de colonnes de distillation en tant que reflux,
    - un premier flux d'oxygène liquide provenant du fond de la colonne basse pression est introduit dans le condenseur secondaire (26) et y est évaporé au moins partiellement en échange de chaleur indirect avec au moins une partie (25b) de l'air d'alimentation comprimé et refroidi,
    - au moins une partie du premier flux d'oxygène liquide évaporé (71) est obtenue en tant que produit oxygéné gazeux (72),
    - dans un premier mode de fonctionnement avec une consommation élevée d'énergie
    - une première quantité du premier flux d'oxygène liquide (70) provenant du fond de la colonne basse pression (35) est introduite dans le condenseur secondaire (26) et
    - une première quantité d'air est comprimée dans le compresseur d'air principal (3),
    - dans un deuxième mode de fonctionnement
    - une deuxième quantité d'air est comprimée dans le compresseur d'air principal (3), laquelle deuxième quantité est inférieure à la première quantité d'air,
    - une deuxième quantité du premier flux d'oxygène liquide (70) provenant du fond de la colonne basse pression (35) est introduite dans le condenseur secondaire (26), laquelle deuxième quantité est inférieure à la première quantité,
    - un deuxième flux d'oxygène liquide (73) est guidé vers le condenseur secondaire (26) en plus du premier flux d'oxygène liquide (70) et
    - dans les deux modes de fonctionnement
    - un liquide intermédiaire (43) est introduit à partir d'un site intermédiaire de la colonne basse pression (35) dans la chambre d'évaporation du condenseur principal (36) et la vapeur produite dans le condenseur principal est introduite au moins partiellement dans la colonne basse pression (35),
    - un flux d'oxygène (66) est prélevé de la zone inférieure de la colonne basse pression (35) et guidé dans l'espace d'évaporation d'un condenseur supplémentaire (37) qui est conçu comme condenseur-évaporateur,
    - au moins une partie du gaz formé dans l'espace d'évaporation du condenseur supplémentaire est introduite en tant que vapeur montante dans la colonne basse pression (35),
    - l'oxygène évaporé (71) dans le condenseur secondaire (26) est réchauffé dans l'échangeur de chaleur principal (32) et obtenu en tant que produit oxygéné gazeux (72),
    - un premier flux d'azote (44) provenant du système de colonnes de distillation est comprimé dans un compresseur à froid (45) et ensuite introduit au moins partiellement dans l'espace de liquéfaction du condenseur supplémentaire (37) et
    - au moins une partie de l'azote liquide produit dans le condenseur supplémentaire (37) est utilisée dans au moins l'une des colonnes (34, 35) du système de colonnes de distillation en tant que reflux, dans lequel
    - dans le premier mode de fonctionnement
    - une première quantité d'azote est comprimée dans le compresseur à froid (45),
    - une première quantité d'azote gazeux (41, 42) provenant de la colonne haute pression (34) est introduite dans le condenseur principal (36) et
    - la première quantité d'air est comprimée dans le compresseur d'air principal (3) à une première pression totale d'air et
    - dans le deuxième mode de fonctionnement
    - une deuxième quantité d'azote est comprimée dans le compresseur à froid (45), laquelle deuxième quantité est supérieure à la première quantité d'azote,
    - une deuxième quantité d'azote gazeux (41, 42) provenant de la colonne haute pression (34) est introduite dans le condenseur principal (36), laquelle deuxième quantité est inférieure à la première quantité et
    - la deuxième quantité d'air est comprimée dans le compresseur d'air principal (3) à une deuxième pression totale d'air qui est inférieure à la première pression totale d'air.
  2. Procédé selon la revendication 1, caractérisé en ce que le premier flux d'azote (44) est refroidi dans l'échangeur de chaleur principal (32) en aval du compresseur à froid (45) et en amont de l'espace de liquéfaction du condenseur supplémentaire (37).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que
    - dans le premier mode de fonctionnement, une première quantité de flux de turbine (56) est détendue dans une machine de détente (57) avec production de travail et ensuite réchauffée dans l'échangeur de chaleur principal (32) et/ou introduite dans le système de colonnes de distillation et
    - dans le deuxième mode de fonctionnement, la machine de détente (57) est hors fonctionnement ou une deuxième quantité de flux de turbine est introduite dans la machine de détente, laquelle deuxième quantité est inférieure à la première quantité de flux de turbine.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que, dans le deuxième mode de fonctionnement, aucun air liquide n'est produit ni accumulé dans un réservoir à liquide.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que, dans le deuxième mode de fonctionnement, aucune fraction n'est évacuée du système de colonnes de distillation en tant qu'azote liquide ni accumulée dans un réservoir à liquide.
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'air (4, 6) comprimé dans le compresseur d'air principal (3) est ramifié, en amont de son introduction dans l'échangeur de chaleur principal (32, 33), en un premier et en un deuxième flux d'air partiel (10, 20), le deuxième flux d'air partiel (20) étant comprimé davantage dans un post-compresseur (21) et le deuxième flux d'air partiel post-comprimé (22, 25a, 25b) étant introduit au moins partiellement dans l'espace de liquéfaction du condenseur secondaire (26) et y étant au moins partiellement liquéfié.
  7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'un deuxième flux d'azote (53) est prélevé sous forme gazeuse de la colonne haute pression (34), réchauffé dans l'échangeur de chaleur principal (32) et prélevé en tant que produit d'azote gazeux sous pression (54).
  8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'un troisième flux d'azote (254) est prélevé sous forme gazeuse de la colonne haute pression (34), réchauffé à une température intermédiaire dans l'échangeur de chaleur principal (32) et ensuite détendu (256) avec production de travail.
  9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la colonne basse pression (35) et la colonne haute pression (34) sont disposées l'une au-dessus de l'autre.
  10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'au moins une partie, en particulier la totalité, du liquide de reflux, qui est injecté en tête de la colonne basse pression (35), est formée par une partie (49) de l'azote liquide (48) produit dans le condenseur supplémentaire (37).
  11. Dispositif permettant d'obtenir de l'oxygène par fractionnement cryogénique de l'air avec une consommation variable d'énergie présentant
    - un système de colonnes de distillation, qui présente une colonne haute pression (34), une colonne basse pression (35) ainsi qu'un condenseur principal (36) et un condenseur secondaire (26), qui sont tous deux conçus comme condenseur-évaporateur, le condenseur secondaire (26) étant conçu comme un condenseur-évaporateur séparé d'autres échangeurs de chaleur et conçu quasiment exclusivement pour le transfert indirect de chaleur latente,
    - présentant un compresseur d'air principal (3) pour la compression d'air atmosphérique (1),
    - présentant un échangeur de chaleur principal (32, 33) pour le refroidissement de l'air comprimé,
    - présentant des moyens pour l'introduction de l'air refroidi dans la colonne haute pression (34),
    - présentant des moyens pour l'introduction d'azote gazeux (41, 42) provenant de la colonne haute pression (34) dans l'espace de liquéfaction du condenseur principal (36),
    - présentant des moyens pour l'introduction de l'azote liquide (43) produit dans le condenseur principal dans au moins l'une des colonnes du système de colonnes de distillation en tant que reflux,
    - présentant des moyens pour l'introduction d'un premier flux d'oxygène liquide (70) provenant du fond de la colonne basse pression (35) dans l'espace d'évaporation du condenseur secondaire (26),
    - présentant des moyens pour l'introduction d'air d'alimentation comprimé et refroidi dans l'espace de liquéfaction du condenseur secondaire (26),
    - présentant des moyens pour l'obtention d'au moins une partie du premier flux d'oxygène liquide évaporé (71) en tant que produit oxygéné gazeux (72),
    - et présentant des moyens pour commuter entre un premier et un deuxième mode de fonctionnement, dans lequel
    - dans un premier mode de fonctionnement avec une consommation élevée d'énergie
    - une première quantité du premier flux d'oxygène liquide (70) provenant du fond de la colonne basse pression (35) est introduite dans le condenseur secondaire (26) et
    - une première quantité d'air est comprimée dans le compresseur d'air principal (3),
    - dans un deuxième mode de fonctionnement avec une basse consommation d'énergie
    - une deuxième quantité d'air est comprimée dans le compresseur d'air principal (3), laquelle deuxième quantité est inférieure à la première quantité d'air,
    - une deuxième quantité du premier flux d'oxygène liquide (70) provenant du fond de la colonne basse pression (35) est introduite dans le condenseur secondaire (26), laquelle deuxième quantité est inférieure à la première quantité,
    - un deuxième flux d'oxygène liquide (73) est guidé vers le condenseur secondaire (26) en plus du premier flux d'oxygène liquide (70) et présentant
    - des moyens pour l'introduction d'un liquide intermédiaire (43) à partir d'un site intermédiaire de la colonne basse pression (35) dans l'espace d'évaporation du condenseur principal (36),
    - des moyens pour l'introduction de la vapeur produite dans le condenseur principal (36) dans la colonne basse pression (35),
    - un condenseur supplémentaire (37), qui est conçu comme condenseur-évaporateur,
    - des moyens pour l'introduction d'un flux d'oxygène (66) provenant de la zone inférieure de la colonne basse pression (35) dans l'espace d'évaporation du condenseur supplémentaire (37),
    - des moyens pour l'introduction d'au moins une partie du gaz formé dans l'espace d'évaporation du condenseur supplémentaire en tant que vapeur montante dans la colonne basse pression (35),
    - des moyens pour l'introduction de l'oxygène évaporé (71) dans le condenseur secondaire (26) dans l'échangeur de chaleur principal (32, 33),
    - des moyens pour l'obtention de l'oxygène réchauffé dans l'échangeur de chaleur principal (32, 33) en tant que produit oxygéné gazeux (72),
    - un compresseur à froid (45) pour la compression d'un premier flux d'azote (44) provenant du système de colonnes de distillation,
    - des moyens pour l'introduction d'au moins une partie de l'azote comprimé dans le compresseur à froid (45) dans l'espace de liquéfaction du condenseur supplémentaire (37) et
    - des moyens pour l'introduction d'au moins une partie de l'azote liquide produit dans le condenseur supplémentaire (37) dans au moins l'une des colonnes (34, 35) du système de colonnes de distillation en tant que reflux, dans lequel
    - les moyens pour la commutation sont conçus de manière telle que
    - dans le premier mode de fonctionnement
    - une première quantité d'azote est comprimée dans le compresseur à froid (45),
    - une première quantité d'azote gazeux (41, 42) provenant de la colonne haute pression (34) est introduite dans le condenseur principal (36) et
    - la première quantité d'air est comprimée dans le compresseur d'air principal (3) à une première pression totale d'air et
    - dans le deuxième mode de fonctionnement
    - une deuxième quantité d'azote est comprimée dans le compresseur à froid (45), laquelle deuxième quantité est supérieure à la première quantité d'azote,
    - une deuxième quantité d'azote gazeux (41, 42) provenant de la colonne haute pression (34) est introduite dans le condenseur principal (36), laquelle deuxième quantité est inférieure à la première quantité et
    - la deuxième quantité d'air est comprimée dans le compresseur d'air principal (3) à une deuxième pression totale d'air qui est inférieure à la première pression totale d'air.
  12. Dispositif selon la revendication 11, caractérisé en ce que la colonne basse pression (35) et la colonne haute pression (34) sont disposées l'une au-dessus de l'autre.
EP14738741.9A 2013-07-11 2014-07-10 Procédé et dispositif permettant d'obtenir de l'oxygène par fractionnement cryogénique d'air avec une consommation variable d'énergie Active EP3019803B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL14738741T PL3019803T3 (pl) 2013-07-11 2014-07-10 Sposób i urządzenie do pozyskiwania tlenu przez rozkład niskotemperaturowy powietrza ze zmiennym zużyciem energii

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13003509 2013-07-11
PCT/EP2014/001892 WO2015003809A2 (fr) 2013-07-11 2014-07-10 Procédé et dispositif permettant d'obtenir de l'oxygène par fractionnement cryogénique d'air avec une consommation variable d'énergie

Publications (2)

Publication Number Publication Date
EP3019803A2 EP3019803A2 (fr) 2016-05-18
EP3019803B1 true EP3019803B1 (fr) 2022-04-20

Family

ID=48792937

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14738741.9A Active EP3019803B1 (fr) 2013-07-11 2014-07-10 Procédé et dispositif permettant d'obtenir de l'oxygène par fractionnement cryogénique d'air avec une consommation variable d'énergie

Country Status (8)

Country Link
US (1) US9797654B2 (fr)
EP (1) EP3019803B1 (fr)
KR (1) KR102240251B1 (fr)
CN (1) CN105473968B (fr)
AU (1) AU2014289592B2 (fr)
PL (1) PL3019803T3 (fr)
TW (1) TWI628401B (fr)
WO (1) WO2015003809A2 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018114052A2 (fr) * 2016-12-23 2018-06-28 Linde Aktiengesellschaft Procédé de séparation cryogénique d'air et système de séparation de l'air
JP7060108B2 (ja) 2018-10-02 2022-04-26 日本製鉄株式会社 マルテンサイト系ステンレス継目無鋼管
CN112805524B (zh) * 2018-10-23 2022-12-06 林德有限责任公司 用于低温分离空气的方法和设备
US11460246B2 (en) * 2019-12-18 2022-10-04 Air Products And Chemicals, Inc. Recovery of krypton and xenon from liquid oxygen
FR3119226B1 (fr) 2021-01-25 2023-05-26 Lair Liquide Sa Pour Letude Et Lexploitation De Procede et appareil de separation d’air par distillation cryogenique

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006139A (en) * 1990-03-09 1991-04-09 Air Products And Chemicals, Inc. Cryogenic air separation process for the production of nitrogen
US5934104A (en) * 1998-06-02 1999-08-10 Air Products And Chemicals, Inc. Multiple column nitrogen generators with oxygen coproduction
US7228715B2 (en) * 2003-12-23 2007-06-12 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process and apparatus
US20080115531A1 (en) * 2006-11-16 2008-05-22 Bao Ha Cryogenic Air Separation Process and Apparatus
WO2009136077A2 (fr) 2008-04-22 2009-11-12 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil de separation d'air par distillation cryogenique
FR2930330B1 (fr) * 2008-04-22 2013-09-13 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
FR2930331B1 (fr) 2008-04-22 2013-09-13 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
DE102010056560A1 (de) * 2010-08-13 2012-02-16 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Drucksauerstoff und Druckstickstoff durch Tieftemperaturzerlegung von Luft
KR101947112B1 (ko) * 2011-09-20 2019-02-12 린데 악티엔게젤샤프트 정화된 두 개의 부분 공기 스트림을 발생시키기 위한 방법 및 장치

Also Published As

Publication number Publication date
CN105473968A (zh) 2016-04-06
TWI628401B (zh) 2018-07-01
PL3019803T3 (pl) 2022-05-30
EP3019803A2 (fr) 2016-05-18
AU2014289592B2 (en) 2018-07-19
US20160123662A1 (en) 2016-05-05
TW201520498A (zh) 2015-06-01
WO2015003809A2 (fr) 2015-01-15
AU2014289592A1 (en) 2015-12-24
KR20160030400A (ko) 2016-03-17
US9797654B2 (en) 2017-10-24
KR102240251B1 (ko) 2021-04-13
CN105473968B (zh) 2018-06-05
WO2015003809A3 (fr) 2015-09-24

Similar Documents

Publication Publication Date Title
EP1067345B1 (fr) Procédé et dispositif pour la séparation cryogénique des constituants de l'air
EP3019803B1 (fr) Procédé et dispositif permettant d'obtenir de l'oxygène par fractionnement cryogénique d'air avec une consommation variable d'énergie
EP1284404A1 (fr) Procédé et dispositif pour la production d'un produit sous pression par séparation cryogénique de l'air
WO1997004279A1 (fr) Procede et dispositif de production variable d'un produit gazeux comprime
EP3410050B1 (fr) Procédé de production d'un ou de plusieurs produits pneumatiques et installation de séparation d'air
EP2520886A1 (fr) Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
WO2014019698A2 (fr) Procédé et dispositif pour produire de l'énergie électrique
WO2012019753A2 (fr) Procédé et dispositif permettant d'obtenir de l'oxygène sous pression et de l'azote sous pression par fractionnement cryogénique de l'air
EP2963369B1 (fr) Procede et dispositif cryogeniques de separation d'air
WO2015003808A2 (fr) Procédé de production d'au moins un produit dérivé de l'air, installation de décomposition d'air, procédé et dispositif de production d'énergie électrique
EP1227288A1 (fr) Système à trois colonnes pour la séparation cryogénique de l'air
EP2979051A2 (fr) Procédé et dispositif permettant de produire avec une consommation d'énergie variable de l'oxygène sous pression sous forme gazeuse
EP1239246B2 (fr) Procédé et dispositif de séparation d'un mélange de gaz avec système à sûreté
EP2551619A1 (fr) Procédé et dispositif destinés à l'obtention d'oxygène pressurisé et d'azote pressurisé par la décomposition à basse température de l'air
WO2020244801A1 (fr) Procédé et installation de décomposition d'air à basse température
WO2014154339A2 (fr) Procédé de séparation d'air et installation de séparation d'air
EP1750074A1 (fr) Procédé et dispositif pour la séparation cryogénique d'air
EP3696486A1 (fr) Procédé et installation de fourniture d'un ou d'une pluralité de produits dérivés de l'air gazeux, riches en oxygène
EP3027988A2 (fr) Procédé et dispositif de production d'azote comprimé
EP2647934A1 (fr) Procédé et dispositif de génération d'énergie électrique
EP2824407A1 (fr) Procédé de génération d'au moins un produit de l'air, installation de décomposition de l'air, procédé et dispositif de production d'énergie électrique
WO2021129948A1 (fr) Procédé et installation pour fournir un produit oxygène
WO2020187449A1 (fr) Procédé et installation de décomposition d'air à basse température
WO2019214847A9 (fr) Procédé pour produire un ou plusieurs produit(s) formés à partir d'air et installation de séparation d'air
DE10045128A1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151203

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE GMBH

17Q First examination report despatched

Effective date: 20200529

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211115

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014016205

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1485438

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220822

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220721

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220820

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014016205

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20230123

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220710

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220710

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1485438

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230724

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230702

Year of fee payment: 10

Ref country code: DE

Payment date: 20230720

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420