EP3019803B1 - Verfahren und vorrichtung zur sauerstoffgewinnung durch tieftemperaturzerlegung von luft mit variablem energieverbrauch - Google Patents

Verfahren und vorrichtung zur sauerstoffgewinnung durch tieftemperaturzerlegung von luft mit variablem energieverbrauch Download PDF

Info

Publication number
EP3019803B1
EP3019803B1 EP14738741.9A EP14738741A EP3019803B1 EP 3019803 B1 EP3019803 B1 EP 3019803B1 EP 14738741 A EP14738741 A EP 14738741A EP 3019803 B1 EP3019803 B1 EP 3019803B1
Authority
EP
European Patent Office
Prior art keywords
condenser
pressure column
air
amount
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14738741.9A
Other languages
English (en)
French (fr)
Other versions
EP3019803A2 (de
Inventor
Lars Kirchner
Dimitri Goloubev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to PL14738741T priority Critical patent/PL3019803T3/pl
Publication of EP3019803A2 publication Critical patent/EP3019803A2/de
Application granted granted Critical
Publication of EP3019803B1 publication Critical patent/EP3019803B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04836Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04418Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system with thermally overlapping high and low pressure columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04424Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system without thermally coupled high and low pressure columns, i.e. a so-called split columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • F25J3/04581Hot gas expansion of indirect heated nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/0483Rapid load change of the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • F25J3/0486Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04884Arrangement of reboiler-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04957Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipments upstream of the fractionation unit (s), i.e. at the "front-end"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/066Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/32Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/34Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as evaporative cooling tower to produce chilled water, e.g. evaporative water chiller [EWC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/62Purifying more than one feed stream in multiple adsorption vessels, e.g. for two feed streams at different pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • F25J2205/70Heating the adsorption vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/50Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/52Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen enriched compared to air ("crude oxygen")
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/70Steam turbine, e.g. used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen

Definitions

  • the invention relates to a method according to the preamble of patent claim 1.
  • the method and the device of the invention are particularly suitable for obtaining gaseous impure oxygen.
  • impure oxygen is meant herein a product having a purity of less than 98 mole percent.
  • the distillation column system can be designed as a two-column system (for example as a classic Linde double-column system), or as a three-column or multi-column system.
  • it can have further devices for obtaining highly pure products and/or other air components, in particular noble gases, for example argon extraction and/or krypton-xenon extraction.
  • the "low-pressure column” is understood here to mean a uniform distillation area in which the pressure is constant apart from the natural pressure loss at the mass transfer elements.
  • This distillation section can be arranged in one or more vessels.
  • the "main heat exchanger” serves to cool feed air in indirect heat exchange with return streams from the distillation column system. It can be formed from a single heat exchanger section or from several heat exchanger sections connected in parallel and/or in series, for example from one or more plate heat exchanger blocks.
  • a “condenser-evaporator” refers to a heat exchanger in which a first, condensing, fluid stream enters into indirect heat exchange with a second, evaporating fluid stream.
  • Each condenser-evaporator has one Condensation space and an evaporation space, which consist of liquefaction passages or evaporation passages.
  • the condensation (liquefaction) of a first fluid stream is carried out in the liquefaction chamber, and the evaporation of a second fluid stream is carried out in the evaporation chamber.
  • Evaporation and condensing spaces are formed by sets of passages that are in heat exchange relationship with each other.
  • a "secondary condenser” is to be understood as meaning a condenser-evaporator which is designed practically exclusively for the indirect transfer of latent heat from a condensing process stream evaporation to an evaporating process stream against a second, condensing process stream and is not or essentially not suitable for the transfer of sensible heat is. It is realized by a heat exchanger which is designed separately from other heat exchangers, in particular a main heat exchanger or a subcooling countercurrent, both of which are regularly used exclusively or predominantly for the heat exchange of purely gaseous streams.
  • Process parameters such as flow rates or pressures are described several times in this application, which are “smaller” or “larger” in one operating mode than in another operating mode.
  • a parameter is "larger” or “smaller” if the difference between the mean values of the parameter in the different operating modes is more than 2%, in particular more than 5%, in particular more than 10%.
  • the "first liquid oxygen stream” is that stream of liquid oxygen that is removed from the low-pressure column and introduced into the evaporation space of the secondary condenser. That can be the total amount of from the Be low-pressure column withdrawn liquid oxygen.
  • the first liquid oxygen stream can also consist of only part of the liquid oxygen taken from the low-pressure column, if, for example, a liquid oxygen product is additionally obtained from the low-pressure column and fed to a liquid tank. If a liquid oxygen product is withdrawn from the evaporation space of the secondary condenser, this is usually formed by part of the "first liquid oxygen stream".
  • additional liquid oxygen can be fed to the secondary condenser beyond the first liquid oxygen stream.
  • the "second liquid oxygen stream” represents the difference between the total amount of liquid oxygen introduced into the evaporation space of the secondary condenser and the first liquid oxygen stream.
  • This second liquid oxygen stream is taken from a liquid tank, for example.
  • This liquid tank can be filled exclusively from an external source, exclusively with liquid oxygen from the low-pressure column (as with Springmann, see below) or partly with external and partly with that formed in the distillation column system, in particular in the low-pressure column or in the evaporation space of the secondary condenser liquid oxygen.
  • liquid oxygen is fed into the tank and the equivalent amount of liquid air is fed from the corresponding tank into the distillation column system. Conversely, in times of high electricity prices, liquid oxygen is produced from the Tank fed into the system and liquid air stored. Practically only the stored oxygen molecules are available for energy storage; the main air compressor has to deliver correspondingly less decomposition air in times of high electricity prices.
  • the object of the invention is to improve the efficiency of such a method with regard to energy storage.
  • the main condenser is not designed as a bottom evaporator of the low-pressure column, but as an intermediate evaporator. It can be located within the low pressure column or in a separate vessel.
  • the bottom of the low-pressure column is heated with an additional condenser, which is heated with a stream of cold compressed nitrogen.
  • the first liquid oxygen stream to the secondary condenser is preferably taken from the evaporation space of the additional condenser (which at the same time represents the bottom of the low-pressure column when the additional condenser is installed in the column).
  • All condenser evaporators can be designed as bath evaporators, falling film evaporators or other types of condenser evaporators.
  • Such a capacitor configuration is off US6626008B1 or US2008115531A1 ( Figure 8) known per se, but only for internal compression processes in which the vaporization of the liquid oxygen stream takes place in the main heat exchanger, in which the feed air is also cooled, and not in a separate one secondary condenser.
  • US2008115531A1 there is a reference to operation with variable energy consumption.
  • the oxygen content in the liquid to be evaporated in the main condenser drops and the pressure in the high-pressure column (corresponds in principle to the outlet pressure of the main air compressor minus pressure losses) is reduced accordingly. Due to the lower pressure ratio on the main air compressor - in addition to the volume reduction - a particularly large amount of energy can be saved per stored LOX volume in the second operating mode.
  • control or adjustment measures for reducing the outlet pressure of the main air compressor are not absolutely necessary if the pressure between the outlet of the main air compressor and the inlet to the high-pressure column is not artificially reduced by one or more actuators such as a throttle valve.
  • the first stream of nitrogen is cooled in the main heat exchanger downstream of the cold compressor and upstream of the liquefaction chamber of the additional condenser.
  • the compression heat of the cold compressor is not dissipated in the additional evaporator, but in the main heat exchanger.
  • the additional evaporator thus works particularly efficiently, especially in the second operating mode. Overall, even more energy can be saved in the second operating mode.
  • an expansion machine can be switched off or shut down in the second operating mode, as is described in claim 3 .
  • no liquid air is preferably generated and stored in a liquid tank in the second operating mode.
  • no fraction from the distillation column system is produced as liquid nitrogen and stored in a liquid tank, as is the case with other classic exchangeable storage methods.
  • the air compressed in the main air compressor is branched into a first and a second partial air flow upstream of its introduction into the main heat exchanger, with the second partial air flow being further compressed in a booster and the second compressed partial air flow being introduced into the condensing space of the secondary condenser and introduced there is at least partially liquefied.
  • the total air only needs to be compressed in the main air compressor to the operating pressure of the high-pressure column plus line losses.
  • the gaseous oxygen product can be recovered at a pressure significantly higher than that operating pressure of the low-pressure column.
  • the booster has an additional beneficial effect which occurs even when the oxygen product is recovered under a pressure not significantly higher than low pressure column pressure. Namely, it reduces the power of the cold compressor, which is required for the operation of the additional condenser.
  • the branching of the feed air can be performed upstream or downstream of an air purification device.
  • a special cleaning device with sub-units for the two pressure levels is required.
  • a system for air purification that is particularly favorable for use in a method according to the invention is in WO 2013053425 A2 described, which goes back to the same applicant.
  • a secondary stream of nitrogen may be withdrawn in gaseous form from the high pressure column, heated in the main heat exchanger and withdrawn as compressed gaseous nitrogen product. This means that compressed nitrogen can be obtained as an additional gaseous product with relatively little effort.
  • nitrogen from the high-pressure column can be used to obtain cold by taking a third stream of nitrogen in gaseous form from the high-pressure column, heating it to an intermediate temperature in the main heat exchanger and then expanding it to perform work, preferably in the above-mentioned variably operated expansion turbine .
  • the low-pressure column and the high-pressure column can be arranged next to one another.
  • a particularly compact arrangement results from the invention when the low-pressure column and the high-pressure column are arranged one above the other, ie form a classic double column.
  • the main condenser and additional condenser are preferably installed in the double column, in that the low-pressure column and the two condensers are arranged in a common container.
  • the invention also relates to a device for obtaining oxygen by cryogenic separation of air with variable energy consumption according to patent claim 11.
  • the device according to the invention can be supplemented by device features which correspond to the features of the dependent method claims.
  • the “means for switching between a first and a second operating mode” are complex regulating and control devices which interact to allow at least partially automatic switching between the two operating modes, for example an appropriately programmed operations control system.
  • FIG. 1 The procedure of figure 1 is first described below using the first operating mode (here: normal operation with a relatively low energy price).
  • the total air flow 4 compressed in the main air compressor is pre-cooled in a first direct contact cooler 5 by direct counterflow with water. Downstream of the first direct contact cooler 5 the overall air flow 6 is branched into a first partial air flow 10 and a second partial air flow 20 .
  • the first partial air stream 10 is cleaned in a first cleaning unit 11 and fed via line 12 to the warm end of a main heat exchanger at the outlet pressure of the main air compressor minus line losses.
  • the main heat exchanger is formed by two sections 32, 33 connected in parallel on the air side, which are preferably both formed by plate heat exchanger blocks.
  • the largest part 13 of the cleaned first partial stream 12 is fed to the first section 32, where it is cooled to about the dew point and fed via line 14 to the high-pressure column 34 of a distillation column system.
  • This also has a low-pressure column 35 and three condenser-evaporators, namely a main condenser 36, an additional condenser 37 and a secondary condenser 26.
  • the main and additional condenser are designed as falling-film evaporators, the secondary condenser as a bath evaporator.
  • the operating pressure of the high-pressure column 34 is approximately 3.27 bar, and that of the low-pressure column 35 is approximately 1.28 bar (in each case at the top).
  • the post-compressed second partial air flow 22 is pre-cooled in a second direct contact cooler 23 by direct counterflow with water.
  • the pre-cooled second partial air flow is cleaned in a second cleaning unit 24 downstream of the second direct contact cooler 23 .
  • the cleaned second partial air stream 25a is fed to the warm end of the main heat exchanger 32 under the outlet pressure of the booster 21 minus line losses and there cooled.
  • the cooled second partial flow 25b is at least partially, preferably completely or essentially completely liquefied in the secondary condenser 26 and a first part is introduced via a throttle valve 28 of the high-pressure column 34 at an intermediate point.
  • a second portion 29 flows through a counter-current subcooler 30 and is fed via throttle valve 31 to the low pressure column 35 at an intermediate point.
  • An oxygen-enriched bottom fraction 38 is removed in liquid form from the lower region of the high-pressure column 34 and fed into the low-pressure column 35 by means of a pump 39 through a supercooling countercurrent device 30 and via a throttle valve 40 .
  • Gaseous nitrogen is withdrawn via line 41 from the top of the high-pressure column 34 .
  • a first portion 42 thereof is fed into the liquefaction chamber of the main condenser 36 and is at least partially liquefied there against an evaporating intermediate fraction 43 from the low-pressure column 35 .
  • the liquid nitrogen 43 produced in this way is returned to the top of the high-pressure column 34 and used there as reflux.
  • a second portion of the gaseous nitrogen 41 from the top of the high-pressure column 34 is compressed as the "first nitrogen stream" 44 in a cold compressor 45 to about 4.8 bar.
  • the cold-compressed first stream of nitrogen 46 is cooled again in the main heat exchanger 32 to around the dew point and fed via line 47 into the liquefaction chamber of the additional condenser 37, where it is at least partially liquefied in indirect heat exchange with partially evaporating bottom liquid 66 of the low-pressure column 35.
  • the liquid nitrogen 48 produced in the process is a first portion 49 fed through the subcooling countercurrent flow 30 and via throttle valve 50 as return to the top of the low pressure column 35; to a second part 51 it is fed to the high-pressure column 34 as reflux.
  • a third portion of the gaseous nitrogen 41 from the top of the high pressure column 34 is sent to the cold end of the main heat exchanger 32 via line 53 .
  • a portion of this is warmed to ambient temperature and withdrawn via line 54 as "second stream nitrogen” and discharged as pressurized gaseous nitrogen (PGAN) product.
  • Another part 55 will also fully heated and used for auxiliary purposes within the plant, for example as a sealing gas. (The recovery of such a compressed nitrogen product and/or a nitrogen auxiliary gas is possible in all embodiments of the invention, but not necessary. This also applies to the systems of figures 2 and 3 .)
  • Another portion 56 of the gaseous nitrogen 41 from the top of the high-pressure column 34 is branched off in the main heat exchanger 32 at an intermediate temperature as a "third stream of nitrogen” and expanded to just above atmospheric pressure in an expansion machine 57, which is designed as a cold generator turbine.
  • the work-expanded third stream of nitrogen 58 is heated in the main heat exchanger 32 to about ambient temperature. If the warm third stream of nitrogen 59 is not blown off directly into the atmosphere (ATM) via lines 60 and 61, it is used in cleaning devices 11, 24 as regeneration gas 62, 63, if necessary after heating in one of the regeneration gas heaters 64, 65, which condensing water vapor (STEAM).
  • Residual gas 67 from the top of the low-pressure column is heated in the subcooling countercurrent flow 30 and in the main heat exchanger 32 and finally fed as a dry gas via line 68 into an evaporative cooler 69 which serves to cool cooling water.
  • Liquid oxygen is fed via line 70 as the "first liquid oxygen stream” under a pressure of about 1.5 bar into the evaporation space of the secondary condenser 26 and is almost completely evaporated there.
  • the vaporized oxygen 71 is heated in the main heat exchanger 32 and recovered via line 72 as gaseous oxygen product (GOX).
  • Flushing liquid 75 from the evaporation chamber of the secondary condenser 26 is brought to a supercritical pressure in a pump 76 and pseudo-evaporated against the air flow 14 and heated in section 33 of the main heat exchanger. Thereafter, the warmed stream 77 is throttled back and mixed with the warm gaseous oxygen product so that only a single oxygen product is delivered.
  • a plurality of parallel cold compressors e.g. two
  • the second cold compressor is switched on in the second operating mode, so that double the output is then available.
  • the main air compressor can go to minimum load, the smaller booster to its maximum. Since approximately 90% of the total energy consumption is required to drive the main air compressor, the further the capacity of the main air compressor can be reduced, the more the process becomes more efficient, even if the capacity of the cold compressor is increased.
  • the system can be designed for maximum oxygen production that is higher than that of the first or second operating mode, i.e. a smaller quantity of gaseous oxygen product 72 is obtained in the first and/or second operating mode than in the design case
  • the method of the invention is flexible here as long as the operating ranges of the machines used are not exceeded.
  • the cold compressor is operated with the lowest possible power in the first operating mode, but the main air compressor is designed in such a way that it runs at around 100% of its nominal power in the first operating mode.
  • Air boosters and nitrogen cold compressors are designed for the power that is required in the second operating case.
  • the total energy consumed in the process is reduced to approximately 86% of the value in the first operating mode, despite the same or only slightly lower production of gaseous oxygen 72 .
  • the corresponding range is available for energy storage if there is a sufficient supply of liquid oxygen.
  • figure 2 differs from figure 1 that no gaseous compressed nitrogen product is produced.
  • nitrogen product 254 obtained directly from the high-pressure column is brought to significantly above ambient temperature in a heater 255 and expanded in a warm expansion turbine (hot gas expander) 256 to perform work.
  • a warm expansion turbine hot gas expander
  • particularly valuable electrical energy can be obtained in a generator coupled to the expansion turbine 256 with the aid of residual heat coupled into the heater 255 in times of high energy prices.
  • waste heat e.g. from low-pressure steam
  • the heater 255 which otherwise cannot be used economically, in this case there is even a total reduction of about 76% in the energy required for the air separation process in the second operating mode relative to the first.
  • part of the nitrogen taken directly from the high-pressure column is used to produce gaseous compressed nitrogen product (see PGAN in figure 1 ), At least in the first operating mode, optionally also in the second operating mode.
  • the procedure of figure 3 differs from that of figure 1 through a heat integration between the compressor cooling and a steam cycle, the belongs, for example, to a power plant. Compression heat from the air compression is transferred to feed water for the power plant process (feed water to power plant) via the additional coolers 301 and 302 upstream of the two direct contact coolers.
  • figure 3 shown how the portion of the first liquid oxygen stream not vaporized in the secondary condenser is partially drawn off via line 303 in the first operating mode, optionally cooled in the supercooling countercurrent 30 and discharged as liquid oxygen product (LOX). All or part of this liquid oxygen product may be introduced into the liquid tank 74 . Also in all other embodiments of the invention (e.g. according to figure 1 or 2 ) In the first mode of operation, liquid oxygen can be obtained in this way, which later forms part or all of the liquid oxygen that is fed in via line 73 in the second mode of operation.
  • LOX liquid oxygen product
  • high-pressure column 34 and low-pressure column 35 arranged side by side.
  • the auxiliary condenser 37 (the bottom heater of the low-pressure column 35) is positioned above the high-pressure column 34.
  • the secondary condenser 26 is located between the high-pressure column 34 and the additional condenser 37.
  • figure 4 a part of already in figure 3 shown heat integration between the compressor cooling and a steam circuit, namely a cooler 301, which is operated with feed water (feed water) from the power plant process.

Description

  • Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruchs 1. Das Verfahren und die Vorrichtung der Erfindung sind insbesondere zur Gewinnung von gasförmigem Unrein-Sauerstoff geeignet. Unter "Unrein-Sauerstoff" wird hier ein Produkt einer Reinheit von weniger als 98 mol-% verstanden.
  • Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337) bekannt.
  • Das Destillationssäulen-System kann als Zwei-Säulen-System (zum Beispiel als klassisches Linde-Doppelsäulensystem) ausgebildet sein, oder auch als Drei- oder Mehr-Säulen-System. Es kann zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung weitere Vorrichtungen zur Gewinnung hoch reiner Produkte und/oder anderer Luftkomponenten, insbesondere von Edelgasen aufweisen, beispielsweise eine Argongewinnung und/oder eine Krypton-Xenon-Gewinnung.
  • Unter der "Niederdrucksäule" wird hier ein einheitlicher Destillationsbereich verstanden, in dem der Druck konstant ist bis auf den natürlichen Druckverlust an den Stoffaustauschelementen. Dieser Destillationsbereich kann in einem oder mehreren Behältern angeordnet sein.
  • Der "Hauptwärmetauscher" dient zur Abkühlung von Einsatzluft in indirektem Wärmeaustausch mit Rückströmen aus dem Destillationssäulen-System. Er kann aus einem einzelnen oder mehreren parallel und/oder seriell verbundenen Wärmetauscherabschnitten gebildet sein, zum Beispiel aus einem oder mehreren Plattenwärmetauscher-Blöcken.
  • Als "Kondensator-Verdampfer" wird ein Wärmetauscher bezeichnet, in dem ein erster, kondensierender Fluidstrom in indirekten Wärmeaustausch mit einem zweiten, verdampfenden Fluidstrom tritt. Jeder Kondensator-Verdampfer weist einen Verflüssigungsraum und einen Verdampfungsraum auf, die aus Verflüssigungspassagen beziehungsweise Verdampfungspassagen bestehen. In dem Verflüssigungsraum wird die Kondensation (Verflüssigung) eines ersten Fluidstroms durchgeführt, in dem Verdampfungsraum die Verdampfung eines zweiten Fluidstroms. Verdampfungs- und Verflüssigungsraum werden durch Gruppen von Passagen gebildet, die untereinander in Wärmeaustauschbeziehung stehen.
  • Unter einem "Nebenkondensator" ist ein Kondensator-Verdampfer zu verstehen, der praktisch ausschließlich zur indirekten Übertragung latenter Wärme von einem kondensierenden Prozessstrom Verdampfung auf einen verdampfenden Prozessstroms gegen einen zweiten, kondensierenden Prozessstrom ausgebildet ist und nicht oder im Wesentlichen nicht zur Übertragung von fühlbarer Wärme geeignet ist. Er ist durch einen Wärmetauscher realisiert, der separat von anderen Wärmetauschern, insbesondere einem Hauptwärmetauscher oder einem Unterkühlungs-Gegenströmer ausgebildet ist, die beide regelmäßig ausschließlich oder überwiegend zum Wärmeaustausch von rein gasförmigen Ströme dienen.
  • "Mengen" von Strömen beziehen sich hier auf den Massenstrom, gemessen beispielsweise in Nm3/h.
  • In dieser Anmeldung werden mehrfach Prozessparameter wie Mengenströme oder Drücke beschrieben, die in einem Betriebsmodus "kleiner" oder "größer" als in einem anderen Betriebsmodus sind. Damit sind hier gezielte Veränderungen des entsprechenden Parameters durch Regel- und/oder Stelleinrichtungen gemeint und nicht natürliche Schwankungen innerhalb eines stationären Betriebszustands. Diese gezielten Veränderungen können direkt durch Einstellung des Parameters selbst bewirkt werden oder indirekt durch Einstellung anderer Parameter, die Einfluss auf den zu verändernden Parameter haben. Insbesondere ist ein Parameter dann "größer" beziehungsweise "kleiner", wenn der Unterschied zwischen den Mittelwerten des Parameters in den verschiedenen Betriebsmodi mehr als 2 %, insbesondere mehr als 5 %, insbesondere mehr als 10 % beträgt.
  • Der "erste Flüssigsauerstoffstrom" ist derjenige Mengenstrom an Flüssigsauerstoff, der aus der Niederdrucksäule entnommen und in den Verdampfungsraum des Nebenkondensators eingeführt wird. Das kann die Gesamtmenge des aus der Niederdrucksäule entnommenen Flüssigsauerstoffs sein. Der erste Flüssigsauerstoffstrom kann aber auch nur aus einem Teil des aus der Niederdrucksäule entnommenen Flüssigsauerstoffs bestehen, wenn beispielsweise zusätzlich ein Flüssigsauerstoffprodukt aus der Niederdrucksäule gewonnen und einem Flüssigtank zugeführt wird. Wird ein Flüssigsauerstoffprodukt aus dem Verdampfungsraum des Nebenkondensators abgezogen, wird dieses in der Regel durch einen Teil des "ersten Flüssigsauerstoffstroms" gebildet. Umgekehrt kann dem Nebenkondensator grundsätzlich über den ersten Flüssigsauerstoffstrom hinaus zusätzlicher Flüssigsauerstoff zugeführt werden.
  • Der "zweite Flüssigsauerstoffstrom" stellt die Differenz zwischen der in den Verdampfungsraum des Nebenkondensators eingeleiteten Gesamtmenge flüssigen Sauerstoffs und dem ersten Flüssigsauerstoffstrom dar. Dieser zweite Flüssigsauerstoffstrom wird zum Beispiel aus einem Flüssigtank entnommen. Dieser Flüssigtank kann ausschließlich aus einer externen Quelle befüllt werden, ausschließlich mit Flüssigsauerstoff aus der Niederdrucksäule (wie bei Springmann, siehe unten) oder auch teilweise mit externem und teilweise mit in dem Destillationssäulen-System, insbesondere in der Niederdrucksäule beziehungsweise in dem Verdampfungsraum des Nebenkondensators gebildetem Flüssigsauerstoff.
  • Ein Verfahren der eingangs genannten Art und eine entsprechende Vorrichtung sind bekannt aus Springmann, "Energieeinsparung", Linde-Symposium "Luftzerlegungsanlagen", 4. Arbeitstagung der Linde AG vom 15.-17.10.1980, Artikel H. Dort wird ein Wechselspeicherprozess mit zwei Flüssigtanks gezeigt. Dieser wird jedoch nicht mit konstantem Durchsatz durch das Destillationssäulen-System bei variierender Produktmenge, sondern mit variierendem Betrieb in Abhängigkeit von variierenden Energiekosten betrieben. Bei niedrigem Energiepreis wird Sauerstoff auf Vorrat produziert und in einem Flüssigtank gespeichert. Bei hohem Energiepreis wird die Luftmenge reduziert und ein Teil des Sauerstoffprodukts aus dem Vorrat entnommen. Damit steht die an dem gespeicherten Sauerstoff verrichtete Trennarbeit zur Energiespeicherung zur Verfügung. Nach dieser Lehre wird in Zeiten mit billiger Energie die flüssige Luft gegen Flüssigsauerstoff in der Anlage ausgetauscht, das heißt Flüssigsauerstoff wird in den Tank gefahren und die äquivalente Menge an flüssiger Luft wird aus dem entsprechenden Tank in das Destillationssäulen-System eingespeist. In Zeiten hohen Strompreises wird umgekehrt Flüssigsauerstoff aus dem Tank in das System eingespeist und flüssige Luft gespeichert. Für die Energiespeicherung zur Verfügung stehen damit praktisch nur die gespeicherten Sauerstoff-Moleküle; der Hauptluftverdichter muss in Zeiten hohen Strompreises entsprechend weniger Zerlegungsluft nachliefern.
  • Der Erfindung liegt die Aufgabe zugrunde, den Wirkungsgrad eines derartigen Verfahrens hinsichtlich der Energiespeicherung zu verbessern.
  • Diese Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.
  • Der Hauptkondensator ist in Abweichung von der klassischen Linde-Doppelsäule, wie sie auch bei Springmann verwendet wird, nicht als Sumpfverdampfer der Niederdrucksäule ausgestaltet, sondern als Zwischenverdampfer. Er kann innerhalb der Niederdrucksäule oder in einem separaten Behälter angeordnet sein. Der Sumpf der Niederdrucksäule wird mit einem Zusatzkondensator ausgeheizt, der mit einem kaltverdichteten Stickstoffstrom beheizt wird. Der Sauerstoffstrom aus dem unteren Bereich der Niederdrucksäule, der im Zusatzkondensator verdampft wird, stammt vorzugsweise von der untersten Schicht von Stoffaustauschelementen (Packung oder Austauschböden), dann ist der Zusatzkondensator in den Behälter der Niederdrucksäule eingebaut; alternativ kann er aus dem Sumpf der Niederdrucksäule abgezogen werden, insbesondere dann, wenn der Zusatzkondensator in einem separaten Behälter angeordnet ist. In beiden Fällen wird der erste Flüssigsauerstoffstrom zum Nebenkondensator vorzugsweise aus dem Verdampfungsraum des Zusatzkondensators entnommen (der bei in die Säule eingebautem Zusatzkondensator gleichzeitig den Sumpf der Niederdrucksäule darstellt). Alle Kondensator-Verdampfer können dabei als Badverdampfer, Fallfilmverdampfer oder auch als Kondensator-Verdampfer anderer Art ausgeführt werden.
  • Eine derartige Kondensator-Konfiguration ist zwar aus US 6626008 B1 oder US 2008115531 A1 (Figur 8) an sich bekannt, aber nur für Innenverdichtungsprozesse, bei denen die Verdampfung des Flüssigsauerstoffstroms im Hauptwärmetauscher stattfindet, in dem auch die Einsatzluft abgekühlt wird, und nicht in einem separaten Nebenkondensator. Bei US 2008115531 A1 findet sich ein Hinweis auf einen Betrieb mit variablem Energieverbrauch.
  • Zunächst würde der Fachmann vor einer Variation der ersten Stickstoffmenge, die in dem Kaltverdichter verdichtet wird, zurückschrecken, weil dies ja einen variablen Betrieb des Zusatzkondensators und damit der Destillation in der Niederdrucksäule bedeutet, die grundsätzlich einen Trennprozess weniger effizient macht und unter ungünstigen Umständen den Stoffaustausch in der Kolonne stark stören kann.
  • Erst im Rahmen der Erfindung hat sich herausgestellt, dass es durch eine Variation der im Kaltverdichter verdichteten und zur Ausheizung des Niederdrucksäulensumpfs eingesetzten Stickstoffmenge möglich ist, nicht nur die im einzuspeisenden Flüssigsauerstoff enthaltene Trennarbeit, sondern auch die darin erhaltene Kälte effektiv zu nutzen (um auch den damit verbundenen Verfiüssigungsaufwand zum Teil zurückzugewinnen). Dies ist dadurch zu erklären, dass in dem zweiten Betriebsmodus die Verdampfungsleistung des Zusatzkondensators erhöht und diejenige des Hauptkondensators entsprechend vermindert wird. Die Erhöhung der Verdampfungsleistung des Zusatzkondensators erhöht die Gasbelastung und reduziert das Rücklaufverhältnis im letzten (unteren) Abschnitt der Niederdrucksäule. Dies führt dazu, dass der Sauerstoffgehalt in der im Hauptkondensator zu verdampfenden Flüssigkeit sinkt und der Druck in der Hochdrucksäule (entspricht im Prinzip dem Austrittsdruck des Hauptluftverdichters abzüglich Druckverlusten) entsprechend reduziert wird. Wegen des geringeren Druckverhältnisses am Hauptluftverdichter - zusätzlich zu der Mengenreduzierung - kann im zweiten Betriebsmodus besonders viel Energie pro gespeicherter LOX-Menge gespart werden.
  • In US 2008115531 A1 wird dagegen weder das Rücklaufverhältnis noch die Verdampfungsleistung des Hauptkondensators beeinflusst. Zwar wird die Verdampfungsleistung des Nebenkondensators variiert, allerdings dient dies nur zur Verdampfung des gegebenenfalls von außen eingespeisten Flüssigsaueεstoffs und kann damit weder die Verdampfungsleistung des Hauptkondensators noch den Betriebsdruck der Hochdrucksäule und damit den Austrittsdruck des Hauptluftverdichters vermindern.
  • Im Rahmen der Erfindung sind besondere Regel- oder Einstellmaßnahmen für die Verringerung des Austrittsdrucks des Hauptluftverdichters nicht unbedingt erforderlich, wenn der Druck zwischen Austritt des Hauptluftverdichters und Eintritt in die Hochdrucksäule nicht künstlich durch ein oder mehrere Stellglieder wie zum Beispiel ein Drosselventil vermindert wird.
  • Im Rahmen einer weiteren Ausgestaltung der Erfindung wird der erste Stickstoffstrom stromabwärts des Kaltverdichters und stromaufwärts des Verflüssigungsraums des Zusatzkondensators in dem Hauptwärmetauscher abgekühlt. Hierdurch wird die Kompressionswärme des Kaltverdichters nicht im Zusatzverdampfer, sondern im Hauptwärmetauscher abgebaut. Der Zusatzverdampfer arbeitet damit besonders effizient, insbesondere n dem zweiten Betriebsmodus. Insgesamt kann im zweiten Betriebsmodus noch mehr Energie gespart werden.
  • Außerdem kann in dem zweiten Betriebsmodus eine Entspannungsmaschine abgeschaltet oder heruntergefahren werden, wie es im Patentanspruch 3 beschrieben ist.
  • Vorzugsweise wird bei der Erfindung im Gegensatz zum Verfahren nach Springmann in dem zweiten Betriebsmodus keine Flüssigluft erzeugt und in einem Flüssigtank gespeichert. Außerdem ist es günstig, wenn in dem zweiten Betriebsmodus auch keine Fraktion aus dem Destillationssäulen-System als Flüssigstickstoff erzeugt und in einem Flüssigtank gespeichert wird, wie es bei anderen klassischen Wechselspeicherverfahren der Fall ist.
  • Gemäß einer weiteren Ausgestaltung der Erfindung wird die im Hauptluftverdichter verdichtete Luft stromaufwärts ihrer Einführung in den Hauptwärmetauscher in einen ersten und einen zweiten Teilluftstrom verzweigt, wobei der zweite Teilluftstrom in einem Nachverdichter weiter verdichtet wird und der nachverdichtete zweite Teilluftstrom in den Verflüssigungsraum des Nebenkondensators eingeleitet und dort mindestens teilweise verflüssigt wird. Die Gesamtluft braucht dabei im Hauptluftverdichter lediglich auf den Betriebsdruck der Hochdrucksäule plus Leitungsverlusten komprimiert werden.
  • Durch den Einsatz des Nachverdichters für Luft kann das gasförmige Sauerstoffprodukt unter einem Druck gewonnen werden, der deutlich höher als der Betriebsdruck der Niederdrucksäule ist. Bei der Erfindung hat der Nachverdichter jedoch eine weitere vorteilhafte Wirkung, die auch dann eintritt, wenn das Sauerstoffprodukt unter einem Druck gewonnen wird, der nicht deutlich höher als der Niederdrucksäulendruck ist. Er vermindert nämlich die Leistung des Kaltverdichters, die für den Betrieb des Zusatzkondensators erforderlich ist.
  • Die Verzweigung der Einsatzluft kann stromaufwärts oder stromabwärts einer Reinigungsvorrichtung für die Luft durchgeführt werden. Im ersten Fall wird spezielle eine Reinigungsvorrichtung mit Teileinheiten für die beiden Druckniveaus benötigt. Ein für die Anwendung in einem erfindungsgemäßen Verfahren besonders günstiges System für die Luftreinigung ist in WO 2013053425 A2 beschrieben, die auf die gleiche Anmelderin zurückgeht.
  • Bei der Erfindung kann ein zweiter Stickstoffstrom gasförmig aus der Hochdrucksäule entnommen, im Hauptwärmetauscher angewärmt und als gasförmiges Druckstickstoffprodukt entnommen werden. Damit kann mit relativ geringem Aufwand Druckstickstoff als zusätzliches gasförmiges Produkt gewonnen werden.
  • Alternativ oder zusätzlich kann im ersten Betriebsmodus oder in beiden Betriebsmodi Stickstoff aus der Hochdrucksäule zur Kältegewinnung eingesetzt werden, indem ein dritter Stickstoffstrom gasförmig aus der Hochdrucksäule entnommen, im Hauptwärmetauscher auf eine Zwischentemperatur angewärmt und anschließend arbeitsleistend entspannt wird, vorzugsweise in der oben erwähnten variabel betriebenen Entspannungsturbine. Statt dessen ist es auch möglich, Kälte in einer Einblaseturbine zu erzeugen, in der ein Teil der Einsatzluft arbeitsleistend auf Niederdrucksäulendruck entspannt und direkt in die Niederdrucksäule eingespeist wird.
  • Grundsätzlich können Niederdrucksäule und Hochdrucksäule nebeneinander angeordnet werden. Eine besonders kompakte Anordnung ergibt sich bei der Erfindung, wenn die Niederdrucksäule und die Hochdrucksäule übereinander angeordnet sind, also eine klassische Doppelsäule bilden. Hauptkondensator und Zusatzkondensator sind dabei vorzugsweise in die Doppelsäule eingebaut, indem die Niederdrucksäule und die beiden Kondensatoren in einem gemeinsamen Behälter angeordnet sind.
  • Insbesondere bei der Übereinanderanordnung der Säulen ist es vorteilhaft, wenn mindestens ein Teil, insbesondere die Gesamtheit, der Rücklaufflüssigkeit, die am Kopf der Niederdrucksäule eingespeist wird, durch einen Teil des in dem Zusatzkondensator erzeugten flüssigen Stickstoffs gebildet wird. Dieser hat einen höheren Druck als der im Hauptkondensator gebildete Stickstoff und kann daher ohne Pumpe zum Kopf der Niederdrucksäule strömen. Vorzugsweise wird dann trotz der Übereinanderanordnung der Säulen nur eine einzige kryogene Prozesspumpe benötigt, nämlich für den Transport der Hochdrucksäulen-Sumpfflüssigkeit zur passenden Einspeisestelle an der Niederdrucksäule. (Eine Pumpe, die möglicherweise zur Druckerhöhung des Flüssigsauerstoffs stromaufwärts den Nebenkondensators eingesetzt wird, zählt hier nicht zur den "Prozesspumpen".)
  • Die Erfindung betrifft außerdem eine Vorrichtung zur Sauerstoffgewinnung durch Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch gemäß dem Patentanspruch 11. Die erfindungsgemäße Vorrichtung kann durch Vorrichtungsmerkmale ergänzt werden, die den Merkmalen der abhängigen Verfahrensansprüche entsprechen.
  • Bei den "Mitteln zum Umschalten zwischen einem ersten und einem zweiten Betriebsmodus" handelt es sich um komplexe Regel- und Steuerungsvorrichtungen, die im Zusammenwirken ein mindestens teilweise automatisches Umschalten zwischen den beiden Betriebsmodi ermöglichen, beispielsweise um ein entsprechend programmiertes Betriebsleitsystem.
  • Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
  • Figur 1
    ein erstes Ausführungsbeispiel der Erfindung mit Druckstoffstickstoffgewinnung,
    Figur 2
    eine Abwandlung des ersten Ausführungsbeispiels mit mindestens zeitweise betriebener arbeitsleistender Entspannung des Druckstickstoffs in einer warmen Turbine (Hot Gas Expander),
    Figur 3
    ein weiteres Ausführungsbeispiel mit Wärmeintegration und
    Figur 4
    ein viertes Ausführungsbeispiel mit nebeneinander angeordneten Säulen und Umschaltung einer Passagengruppe des Hauptwärmetauschers.
  • Das Verfahren von Figur 1 wird im Folgenden zunächst anhand des ersten Betriebsmodus (hier: Normalbetrieb bei relativ niedrigem Energiepreis) beschrieben. Atmosphärische Luft 1 (AIR) wird über ein Filter 2 von einem Hauptluftverdichter (MAC = Main Air Compressor) 3 angesaugt und auf einen Druck von beispielsweise 3,6 bar verdichtet. Der im Hauptluftverdichter verdichtete Gesamtluftstrom 4 wird in einem ersten Direktkontaktkühler 5 durch direkten Gegenstrom mit Wasser vorgekühlt. Stromabwärts des ersten Direktkontaktkühlers 5 wird der Gesamtluftstrom 6 in einen ersten Teilluftstrom 10 und einen zweiten Teilluftstrom 20 verzweigt.
  • Der erste Teilluftstrom 10 wird in einer ersten Reinigungseinheit 11 gereinigt und über Leitung 12 unter dem Austrittsdruck des Hauptluftverdichters minus Leitungsverlusten dem warmen Ende eines Hauptwärmetauschers zugeführt. Der Hauptwärmetauscher wird in dem Beispiel durch zwei luftseitig parallel geschaltete Abschnitte 32, 33 gebildet, die vorzugsweise beide durch Plattenwärmetauscherblöcke gebildet sind. Der größte Teil 13 des gereinigten ersten Teilstroms 12 wird dem ersten Abschnitt 32 zugeführt, dort auf etwa Taupunkt abgekühlt und über Leitung 14 der Hochdrucksäule 34 eines Destillationssäulen-Systems zugeleitet. Dieses weist außerdem eine Niederdrucksäule 35 auf, sowie drei Kondensator-Verdampfer, nämlich einen Hauptkondensator 36, einen Zusatzkondensator 37 und einen Nebenkondensator 26. Haupt- und Zusatzkondensator sind als Fallfilmverdampfer ausgeführt, der Nebenkondensator als Badverdampfer. Der Betriebsdruck der Hochdrucksäule 34 beträgt in dem Beispiel ca. 3,27 bar, derjenige der Niederdrucksäule 35 ca. 1,28 bar (jeweils am Kopf).
  • Der zweite Teilluftstrom 20 umfasst etwa ein Viertel der Gesamtluftmenge 6 und wird in einem Nachverdichter (BAC = Booster Air Compressor) 21 auf beispielsweise 5,1 bar nachverdichtet. Der nachverdichtete zweite Teilluftstrom 22 wird in einem zweiten Direktkontaktkühler 23 durch direkten Gegenstrom mit Wasser vorgekühlt. Stromabwärts des zweiten Direktkontaktkühlers 23 wird der vorgekühlte zweite Teilluftstrom in einer zweiten Reinigungseinheit 24 gereinigt. Der gereinigte zweite Teilluftstrom 25a wird unter dem Austrittsdruck des Nachverdichters 21 minus Leitungsverlusten dem warmen Ende des Hauptwärmetauschers 32 zugeführt und dort abgekühlt. Der abgekühlte zweite Teilstrom 25b wird in dem Nebenkondensator 26 mindestens teilweise, vorzugsweise vollständig oder im Wesentlichen vollständig verflüssigt und zu einem ersten Teil über ein Drosselventil 28 der Hochdrucksäule 34 an einer Zwischenstelle eingeführt. Ein zweiter Teil 29 strömt durch einen Unterkühlungs-Gegenströmer 30 und wird über Drosselventil 31 der Niederdrucksäule 35 an einer Zwischenstelle zugeführt.
  • Aus dem unteren Bereich der Hochdrucksäule 34 wird eine sauerstoffangereicherte Sumpffraktion 38 flüssig entnommen und mittels einer Pumpe 39 durch einen Unterkühlungs-Gegenströmer 30 und über Drosselventil 40 in die Niederdrucksäule 35 eingespeist.
  • Vom Kopf der Hochdrucksäule 34 wird gasförmiger Stickstoff über Leitung 41 abgezogen. Ein erster Teil 42 davon wird in den Verflüssigungsraum des Hauptkondensators 36 geführt und dort gegen eine verdampfende Zwischenfraktion 43 aus der Niederdrucksäule 35 mindestens teilweise verflüssigt. Der dabei erzeugte flüssige Stickstoff 43 wird zum Kopf der Hochdrucksäule 34 zurückgeführt und dort als Rücklauf eingesetzt.
  • Ein zweiter Teil des gasförmigen Stickstoffs 41 vom Kopf der Hochdrucksäule 34 wird als "erster Stickstoffstrom" 44 in einem Kaltverdichter 45 auf etwa 4,8 bar verdichtet. Der kaltverdichtete erste Stickstoffstrom 46 wird im Hauptwärmetauscher 32 wieder auf etwa Taupunkt abgekühlt und über Leitung 47 in den Verflüssigungsraum des Zusatzkondensators 37 geführt und dort mindestens teilweise verflüssigt in indirektem Wärmeaustausch mit teilweise verdampfender Sumpfflüssigkeit 66 der Niederdrucksäule 35. Der dabei erzeugte flüssige Stickstoff 48 wird zu einem ersten Teil 49 durch den Unterkühlungs-Gegenströmer 30 und über Drosselventil 50 als Rücklauf auf den Kopf der Niederdrucksäule 35 aufgegeben; zu einem zweiten Teil 51 wird er als Rücklauf auf die Hochdrucksäule 34 aufgegeben.
  • Ein dritter Teil des gasförmigen Stickstoffs 41 vom Kopf der Hochdrucksäule 34 wird über Leitung 53 zum kalten Ende des Hauptwärmetauschers 32 geleitet. Ein Teil davon wird bis auf Umgebungstemperatur angewärmt und über Leitung 54 als "zweiter Stickstoffstrom" abgezogen und als gasförmiges Druckstickstoffprodukt (PGAN - Pressurized Gaseous Nitrogen) abgegeben. Ein anderer Teil 55 wird ebenfalls vollständig angewärmt und zu Hilfszwecken innerhalb der Anlage genutzt, beispielsweise als Dichtgas. (Die Gewinnung eines derartigen Druckstickstoffprodukts und/oder eines Stickstoff-Hilfsgases ist in allen Ausführungsformen der Erfindung möglich aber nicht notwendig. Dies gilt auch für die Systeme der Figuren 2 und 3.)
  • Ein weiterer Teil 56 des gasförmigen Stickstoffs 41 vom Kopf der Hochdrucksäule 34 wird in dem Hauptwärmetauscher 32 bei einer Zwischentemperatur als "dritter Stickstoffstrom" abgezweigt und in einer Entspannungsmaschine 57, die als kalte Generatorturbine ausgebildet ist, auf knapp über Atmosphärendruck entspannt. Der arbeitsleistend entspannte dritte Stickstoffstrom 58 wird im Hauptwärmetauscher 32 auf etwa Umgebungstemperatur angewärmt. Soweit der warme dritte Stickstoffstrom 59 nicht über die Leitungen 60 und 61 direkt in die Atmosphäre (ATM) abgeblasen wird, dient er in den Reinigungseinrichtungen 11, 24 als Regeneriergas 62, 63, gegebenenfalls nach Erhitzung in einem der Regeneriergaserhitzer 64, 65, die mit kondensierendem Wasserdampf (STEAM) betrieben werden.
  • Restgas 67 vom Kopf der Niederdrucksäule wird im Unterkühlungs-Gegenströmer 30 und im Hauptwärmetauscher 32 angewärmt und schließlich über Leitung 68 als trockenes Gas in einen Verdunstungskühler 69 eingespeist, der zur Abkühlung von Kühlwasser dient.
  • Über Leitung 70 wird flüssiger Sauerstoff als "erster Flüssigsauerstoffstrom" unter einem Druck von etwa 1,5 bar in den Verdampfungsraum des Nebenkondensators 26 geleitet und dort fast vollständig verdampft. Der verdampfte Sauerstoff 71 wird im Hauptwärmetauscher 32 angewärmt und über Leitung 72 als gasförmiges Sauerstoffprodukt (GOX) gewonnen. Spülflüssigkeit 75 aus dem Verdampfungsraum des Nebenkondensators 26 wird in einer Pumpe 76 auf einen überkritischen Druck gebracht und im Abschnitt 33 des Hauptwärmetauschers gegen den Luftstrom 14 pseudo-verdampft und angewärmt. Anschließend wird der angewärmte Strom 77 abgedrosselt und dem warmen gasförmigen Sauerstoffprodukt zugemischt, sodass nur ein einziges Sauerstoffprodukt geliefert wird.
  • Die Leitung 73 von einem Flüssigsauerstofftank 74 zum Verdampfungsraum des Nebenkondensators 26 wird in dem ersten Betriebsmodus nicht durchströmt.
  • In dem zweiten Betriebsmodus wird dagegen flüssiger Sauerstoff aus einem Flüssigtank 74 über Leitung 73 als "zweiter Flüssigsauerstoffstrom" in den Nebenkondensator eingeleitet. Darüber hinaus werden die folgenden Prozessparameter im Vergleich zu dem ersten Betriebsmodus auf die folgende Weise verändert:
    • Die Leistung des Kaltverdichters 45 wird von 70 % auf 100 % erhöht. (Die im Kaltverdichter verdichtete Stickstoff-Menge erhöht sich dabei nur um etwa 8 %. Die deutlich stärkere Leistungserhöhung ergibt sich dadurch, dass sich der Ansaugdruck des Kaltverdichters entsprechend dem Betriebsdruck der Hochdrucksäule verringert.)
    • Die Leistung des Hauptluftverdichters geht auf ca. 80% zurück.
    • Der Gesamtluftdruck am Austritt des Hauptluftverdichters 3 wird um etwa 14 % reduziert, zum Beispiel von ca. 3,65 bar auf ca. 3,15 bar.
    • Die Leistung des Nachverdichters 21 wird von ca. 80% auf 100% erhöht.
    • Stickstoffmenge durch Expansionsturbine 57 wird von 100% auf 0 % vermindert (das heißt, die Expansionsturbine ist im zweiten Betriebsmodus außer Betrieb).
  • Verwendet man in einem abweichenden Ausführungsbeispiel eine Mehrzahl paralleler Kaltverdichter (z. B. zwei) an der gleichen Stelle, so kann man noch effizienter fahren. Der zweite Kaltverdichter wird im zweiten Betriebsmodus zugeschaltet, so dass eine dann doppelte Leistung zur Verfügung steht. Der Hauptluftverdichter kann in diesem Fall auf minimale Last gehen, der kleinere Nachverdichter auf seine maximale. Da ca. 90 % des Gesamt-Energieverbrauchs für den Antrieb des Hauptluftverdichters benötigt werden, wird der Prozess immer effizienter je weiter die Leistung des Hauptluftverdichters vermindert werden kann, auch wenn dabei die Leistung des Kaltverdichters erhöht wird.
  • (Abweichend von dem hier dargestellten Ausführungsbeispiel kann die Anlage auf eine maximale Sauerstoffgewinnung ausgelegt ist, die höher als diejenige des ersten oder zweiten Betriebsmodus ist, das heißt es wird im ersten und/oder zweiten Betriebsmodus eine gegenüber dem Auslegungsfall geringere Menge an gasförmigem Sauerstoffprodukt 72 gewonnen. Das Verfahren der Erfindung ist hier flexibel, solange die Betriebsbereiche der eingesetzten Maschinen nicht überschritten werden.)
  • Allgemein ist es bei der Erfindung günstig, wenn im ersten Betriebsmodus der Kaltverdichter mit einer möglichst geringen Leistung betrieben wird, aber der Hauptluftverdichter so ausgelegt ist, dass er im ersten Betriebsmodus mit etwa 100 % seiner Nennleistung läuft. Luft-Nachverdichter und Stickstoff-Kaltverdichter sind dagegen beispielsweise auf die Leistung ausgelegt, die im zweiten Betriebsfall benötigt wird.
  • Durch diese Maßnahmen wird im zweiten Betriebsmodus trotz gleich bleibender oder nur geringfügig geringerer Produktion an gasförmigem Sauerstoff 72 die Gesamtenergie, die bei dem Prozess verbraucht wird auf ca. 86 % des Wertes im ersten Betriebsmodus gesenkt. Die entsprechende Spanne steht bei ausreichendem Flüssigsauerstoffvorrat zur Energiespeicherung zur Verfügung.
  • Figur 2 unterscheidet sich dadurch von Figur 1, dass kein gasförmiges Druckstickstoffprodukt erzeugt wird. Im zweiten Betriebsmodus wird stattdessen direkt aus der Hochdrucksäule gewonnenes Stickstoffprodukt 254 in einem Erhitzer 255 auf deutlich über Umgebungstemperatur gebracht und in einer warmen Expansionsturbine (Hot Gas Expander) 256 arbeitsleistend entspannt. Dadurch kann mit Hilfe von in den Erhitzer 255 eingekoppelter Restwärme in Zeiten hohen Energiepreises in einem an die Expansionsturbine 256 gekoppelten Generator besonders wertvolle elektrische Energie gewonnen werden. Wenn für den Erhitzer 255 Abwärme (zum Beispiel aus Niederdruck-Dampf) eingesetzt wird, die ansonsten nicht wirtschaftlich nutzbar ist, ergibt sich in diesem Fall sogar eine Gesamtreduktion um etwa 76 % der für den Luftzerlegungsprozess benötigten Energie im zweiten Betriebsmodus relativ zum ersten.
  • In einem gegenüber Figur 2 abgewandelten Ausführungsbeispiel wird im ersten Betriebsmodus ein Teil des direkt aus der Hochdrucksäule entnommenen Stickstoffs zur Erzeugung von gasförmigem Druckstickstoffprodukt genutzt (siehe PGAN in Figur 1), mindestens im ersten Betriebsmodus, gegebenenfalls auch im zweiten Betriebsmodus.
  • Das Verfahren der Figur 3 unterscheidet sich von demjenigen der Figur 1 durch eine Wärmeintegration zwischen der Verdichterkühlung und einem Dampfkreislauf, der beispielsweise zu einem Kraftwerk gehört. Über die zusätzlichen Kühler 301 und 302 stromaufwärts der beiden Direktkontaktkühler wird Kompressionswärme aus der Luftverdichtung auf Speisewasser (Feed water) für den Kraftwerksprozess übertragen (Feed water to power plant).
  • Außerdem ist in Figur 3 dargestellt, wie der im Nebenkondensator nicht verdampfte Teil des ersten Flüssigsauerstoffstroms im ersten Betriebsmodus zum Teil über Leitung 303 abgezogen, gegebenenfalls im Unterkühlungs-Gegenströmer 30 abgekühlt und als Flüssigsauerstoffprodukt (LOX) abgeführt wird. Dieses Flüssigsauerstoffprodukt kann vollständig oder teilweise in den Flüssigtank 74 eingeleitet werden. Auch bei allen anderen Ausführungsformen der Erfindung (zum Beispiel nach Figur 1 oder 2) kann im ersten Betriebsmodus Flüssigsauerstoff auf diese Weise gewonnen werden, der später einen Teil oder die Gesamtheit des Flüssigsauerstoffs bildet, der im zweiten Betriebsmodus über Leitung 73 eingespeist wird.
  • In dem System von Figur 4 sind Hochdrucksäule 34 und Niederdrucksäule 35 nebeneinander angeordnet. Außerdem ist der Zusatzkondensator 37 (die Sumpfheizung der Niederdrucksäule 35) oberhalb der Hochdrucksäule 34 positioniert. In dem speziellen Beispiel befindet sich der Nebenkondensator 26 zwischen Hochdrucksäule 34 und Zusatzkondensator 37.
  • Außerdem zeigt Figur 4 einen Teil der schon in Figur 3 dargestellten Wärmeintegration zwischen der Verdichterkühlung und einem Dampfkreislauf, nämlich einen Kühler 301, der mit Speisewasser (Feed water) aus dem Kraftwerksprozess betrieben wird.
  • In Figur 4 ist diese Wärmeintegration kombiniert mit einer warmen Expansionsturbine (Hot Gas Expander) 256, wie sie in Figur 2 im Detail erläutert ist. Außerdem ist eine Leitung 401 mit Abblaseventil vorgesehen.
  • Im Gegensatz zu Figur 2 werden in dem Verfahren von Figur 4 keine separaten Wärmetauscherpassagen im Hauptwärmetauscher 32a, 32b für den Strom 447, 453, 454 benötigt. Vielmehr wird dieser im Wechselbetrieb durch dieselbe Passagengruppe geleitet wie der turbinenentspannte Strom 58. Dazu ist im ersten Betriebsmodus das Ventil 402 geöffnet, während das Ventil 403 geschlossen ist. Umgekehrt steht im zweiten Betriebsmodus die Turbine 57 still, das Ventil 402 ist geschlossen und das Ventil 403 geöffnet. Dadurch ergibt sich ein besonders kompakter Aufbau des Hauptwärmetauschers 32a, 32b.
  • Alle übrigen Merkmale der Figur 4 sind bei den Figuren 1 und 3 beschrieben.

Claims (12)

  1. Verfahren zur Sauerstoffgewinnung durch Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch in einem Destillationssäulen-System, das eine Hochdrucksäule (34), eine Niederdrucksäule (35) sowie einen Hauptkondensator (36) und einen Nebenkondensator (26) aufweist, die beide als Kondensator-Verdampfer ausgebildet sind und der Nebenkondensator (26) als ein von anderen Wärmetauschern separater Kondensator-Verdampfer ausgebildet ist und praktisch ausschließlich zur indirekten Übertragung latenter Wärme ausgebildet ist, wobei bei dem Verfahren
    - atmosphärische Luft (1) in einem Hauptluftverdichter (3) auf einen Gesamtluftdruck verdichtet, in einem Hauptwärmetauscher (32, 33) abgekühlt und mindestens teilweise der Hochdrucksäule (34) zugeleitet wird,
    - in dem Hauptkondensator (36) gasförmiger Stickstoff (41, 42) aus der Hochdrucksäule (34) mindestens teilweise verflüssigt wird,
    - mindestens ein Teil des in dem Hauptkondensator erzeugten flüssigen Stickstoffs (43) in mindestens einer der Säulen des Destillationssäulen-Systems als Rücklauf eingesetzt wird,
    - ein erster Flüssigsauerstoffstrom aus dem Sumpf der Niederdrucksäule in den Nebenkondensator (26) eingeleitet und dort in indirektem Wärmeaustausch mit mindestens einem Teil (25b) der verdichteten und abgekühlten Einsatzluft mindestens teilweise verdampft wird,
    - mindestens ein Teil des verdampften ersten Flüssigsauerstoffstroms (71) als gasförmiges Sauerstoffprodukt (72) gewonnen wird,
    - in einem ersten Betriebsmodus mit höherem Energieverbrauch
    - eine erste Menge des ersten Flüssigsauerstoffstroms (70) aus dem Sumpf der Niederdrucksäule (35) in den Nebenkondensator (26) eingeleitet und
    - eine erste Luftmenge in dem Hauptluftverdichter (3) verdichtet wird,
    - in einem zweiten Betriebsmodus
    - eine zweite Luftmenge in dem Hauptluftverdichter (3) verdichtet wird, die geringer als die erste Luftmenge ist,
    - eine zweite Menge des ersten Flüssigsauerstoffstroms (70) aus dem Sumpf der Niederdrucksäule (35) in den Nebenkondensator (26) eingeleitet wird, die geringer ist als die erste Menge,
    - dem Nebenkondensator (26) zusätzlich zu dem ersten Flüssigsauerstoffstrom (70) ein zweiter Flüssigsauerstoffstrom (73) zugeleitet wird und
    - in beiden Betriebsmodi
    - eine Zwischenflüssigkeit (43) von einer Zwischenstelle der Niederdrucksäule (35) in den Verdampfungsraum des Hauptkondensators (36) eingeleitet wird und der im Hauptkondensator erzeugte Dampf mindestens teilweise in die Niederdrucksäule (35) eingeleitet wird,
    - ein Sauerstoffstrom (66) aus dem unteren Bereich der Niederdrucksäule (35) entnommen und in den Verdampfungsraum eines Zusatzkondensators (37) geleitet wird, der als Kondensator-Verdampfer ausgebildet ist,
    - mindestens ein Teil des in dem Verdampfungsraum des Zusatzkondensators gebildeten Gases als aufsteigender Dampf in die Niederdrucksäule (35) eingeleitet wird,
    - der in dem Nebenkondensator (26) verdampfte Sauerstoff (71) in dem Hauptwärmetauscher (32) angewärmt und als gasförmiges Sauerstoffprodukt (72) gewonnen wird,
    - ein erster Stickstoffstrom (44) aus dem Destillationssäulen-System in einem Kaltverdichter (45) verdichtet und anschließend mindestens teilweise in den Verflüssigungsraum des Zusatzkondensators (37) eingeleitet wird und
    - mindestens ein Teil des in dem Zusatzkondensator (37) erzeugten flüssigen Stickstoffs in mindestens einer der Säulen (34, 35) des Destillationssäulen-Systems als Rücklauf eingesetzt wird, wobei
    - in dem ersten Betriebsmodus
    - eine erste Stickstoffmenge in dem Kaltverdichter (45) verdichtet wird,
    - eine erste Menge gasförmigen Stickstoffs (41, 42) aus der Hochdrucksäule (34) in den Hauptkondensator (36) eingeleitet wird und
    - die erste Luftmenge in dem Hauptluftverdichter (3) auf einen ersten Gesamtluftdruck verdichtet wird, und
    - in dem zweiten Betriebsmodus
    - eine zweite Stickstoffmenge in dem Kaltverdichter (45) verdichtet wird, die größer als die erste Stickstoffmenge ist,
    - eine zweite Menge gasförmigen Stickstoffs (41, 42) aus der Hochdrucksäule (34) in den Hauptkondensator (36) eingeleitet wird, die kleiner als die erste Menge ist, und
    - die zweite Luftmenge in dem Hauptluftverdichter (3) auf einen zweiten Gesamtluftdruck verdichtet wird, der niedriger als der erste Gesamtluftdruck ist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der erste Stickstoffstrom (44) stromabwärts des Kaltverdichters (45) und stromaufwärts des Verflüssigungsraums des Zusatzkondensators (37) in dem Hauptwärmetauscher (32) abgekühlt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass
    - in dem ersten Betriebsmodus eine erste Turbinenstrommenge (56) in einer Entspannungsmaschine (57) arbeitsleistend entspannt und anschließend im Hauptwärmetauscher (32) angewärmt und/oder in das Destillationssäulen-System eingeleitet wird und
    - in dem zweiten Betriebsmodus die Entspannungsmaschine (57) außer Betrieb ist oder eine zweite Turbinenstrommenge in die Entspannungsmaschine eingeleitet wird, die geringer als die erste Turbinenstrommenge ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in dem zweiten Betriebsmodus keine Flüssigluft erzeugt und in einem Flüssigtank gespeichert wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in dem zweiten Betriebsmodus keine Fraktion aus dem Destillationssäulen-System als Flüssigstickstoff abgeführt und in einem Flüssigtank gespeichert wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die im Hauptluftverdichter (3) verdichte Luft (4, 6) stromaufwärts ihrer Einführung in den Hauptwärmetauscher (32, 33) in einen ersten und einen zweiten Teilluftstrom (10, 20) verzweigt wird, wobei der zweite Teilluftstrom (20) in einem Nachverdichter (21) weiter verdichtet wird und der nachverdichtete zweite Teilluftstrom (22, 25a, 25b) mindestens teilweise in den Verflüssigungsraum des Nebenkondensators (26) eingeleitet und dort mindestens teilweise verflüssigt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein zweiter Stickstoffstrom (53) gasförmig aus der Hochdrucksäule (34) entnommen, im Hauptwärmetauscher (32) angewärmt und als gasförmiges Druckstickstoffprodukt (54) entnommen wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass ein dritter Stickstoffstrom (254) gasförmig aus der Hochdrucksäule (34) entnommen, im Hauptwärmetauscher (32) auf eine Zwischentemperatur angewärmt und anschließend arbeitsleistend entspannt (256) wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Niederdrucksäule (35) und die Hochdrucksäule (34) übereinander angeordnet sind.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass mindestens ein Teil, insbesondere die Gesamtheit der Rücklaufflüssigkeit, die am Kopf der Niederdrucksäule (35) eingespeist wird, durch einen Teil (49) des in dem Zusatzkondensator (37) erzeugten flüssigen Stickstoffs (48) gebildet wird.
  11. Vorrichtung zur Sauerstoffgewinnung durch Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch mit
    - einem Destillationssäulen-System, das eine Hochdrucksäule (34), eine Niederdrucksäule (35) sowie einen Hauptkondensator (36) und einen Nebenkondensator (26) aufweist, die beide als Kondensator-Verdampfer ausgebildet sind, wobei der Nebenkondensator (26) als ein von anderen Wärmetauschern separater Kondensator-Verdampfer ausgebildet ist und praktisch ausschließlich zur indirekten Übertragung latenter Wärme ausgebildet ist,
    - mit einem Hauptluftverdichter (3) zum Verdichten atmosphärischer Luft (1),
    - mit einem Hauptwärmetauscher (32, 33) zum Abkühlen der verdichteten Luft,
    - mit Mitteln zum Einleiten der abgekühlten Luft in die Hochdrucksäule (34),
    - mit Mitteln zum Einleiten gasförmigen Stickstoffs (41, 42) aus der Hochdrucksäule (34) in den Verflüssigungsraum des Hauptkondensators (36),
    - mit Mitteln zum Einleiten des in dem Hauptkondensator erzeugten flüssigen Stickstoffs (43) in mindestens eine der Säulen des Destillationssäulen-Systems als Rücklauf,
    - mit Mitteln zum Einleiten eines ersten Flüssigsauerstoffstroms (70) aus dem Sumpf der Niederdrucksäule (35) in den Verdampfungsraum des Nebenkondensators (26),
    - mit Mitteln zum Einleiten von verdichteter und abgekühlter Einsatzluft in den Verflüssigungsraum des Nebenkondensators (26),
    - mit Mitteln zum Gewinnen mindestens eines Teils des verdampften ersten Flüssigsauerstoffstroms (71) als gasförmiges Sauerstoffprodukt (72),
    - und mit Mitteln zum Umschalten zwischen einem ersten und einem zweiten Betriebsmodus, wobei
    - in einem ersten Betriebsmodus mit höherem Energieverbrauch
    - eine erste Menge des ersten Flüssigsauerstoffstroms (70) aus dem Sumpf der Niederdrucksäule (35) in den Nebenkondensator (26) eingeleitet und
    - eine erste Luftmenge in dem Hauptluftverdichter (3) verdichtet wird,
    - in einem zweiten Betriebsmodus mit niedrigerem Energieverbrauch
    - eine zweite Luftmenge in dem Hauptluftverdichter (3) verdichtet wird, die geringer als die erste Luftmenge ist,
    - eine zweite Menge des ersten Flüssigsauerstoffstroms (70) aus dem Sumpf der Niederdrucksäule (35) in den Nebenkondensator (26) eingeleitet wird, die geringer ist als die erste Menge,
    - dem Nebenkondensator (26) zusätzlich zu dem ersten Flüssigsauerstoffstrom (70) ein zweiter Flüssigsauerstoffstrom (73) zugeleitet wird, sowie mit
    - Mitteln zum Einleiten einer Zwischenflüssigkeit (43) von einer Zwischenstelle der Niederdrucksäule (35) in den Verdampfungsraum des Hauptkondensators (36),
    - Mitteln zum Einleiten des im Hauptkondensator (36) erzeugten Dampfs in die Niederdrucksäule (35),
    - einem Zusatzkondensator (37), der als Kondensator-Verdampfer ausgebildet ist,
    - Mitteln zum Einleiten eines Sauerstoffstroms (66) aus dem unteren Bereich der Niederdrucksäule (35) in den Verdampfungsraum des Zusatzkondensators (37),
    - Mitteln zum Einleiten mindestens eines Teils des in dem Verdampfungsraum des Zusatzkondensators gebildeten Gases als aufsteigenden Dampf in die Niederdrucksäule (35),
    - Mitteln zum Einleiten des in dem Nebenkondensator (26) verdampften Sauerstoffs (71) in den Hauptwärmetauscher (32, 33),
    - Mitteln zum Gewinnen des im Hauptwärmetauscher (32, 33) angewärmten Sauerstoffs als gasförmiges Sauerstoffprodukt (72),
    - einem Kaltverdichter (45) zum Verdichten eines ersten Stickstoffstroms (44) aus dem Destillationssäulen-System,
    - Mitteln zum Einleiten mindestens eines Teils des in dem Kaltverdichter (45) verdichteten Stickstoffs in den Verflüssigungsraum des Zusatzkondensators (37) und
    - Mitteln zum Einleiten mindestens eines Teils des in dem Zusatzkondensator (37) erzeugten flüssigen Stickstoffs in mindestens einer der Säulen (34, 35) des Destillationssäulen-Systems als Rücklauf,
    wobei
    - die Mittel zum Umschalten so ausgebildet sind, dass
    - in dem ersten Betriebsmodus
    - eine erste Stickstoffmenge in dem Kaltverdichter (45) verdichtet wird,
    - eine erste Menge gasförmigen Stickstoffs (41, 42) aus der Hochdrucksäule (34) in den Hauptkondensator (36) eingeleitet wird und
    - die erste Luftmenge in dem Hauptluftverdichter (3) auf einen ersten Gesamtluftdruck verdichtet wird, und
    - in dem zweiten Betriebsmodus
    - eine zweite Stickstoffmenge in dem Kaltverdichter (45) verdichtet wird, die größer als die erste Stickstoffmenge ist,
    - eine zweite Menge gasförmigen Stickstoffs (41, 42) aus der Hochdrucksäule (34) in den Hauptkondensator (36) eingeleitet wird, die kleiner als die erste Menge ist, und
    - die zweite Luftmenge in dem Hauptluftverdichter (3) auf einen zweiten Gesamtluftdruck verdichtet wird, der niedriger als der erste Gesamtluftdruck ist.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Niederdrucksäule (35) und die Hochdrucksäule (34) übereinander angeordnet sind.
EP14738741.9A 2013-07-11 2014-07-10 Verfahren und vorrichtung zur sauerstoffgewinnung durch tieftemperaturzerlegung von luft mit variablem energieverbrauch Active EP3019803B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL14738741T PL3019803T3 (pl) 2013-07-11 2014-07-10 Sposób i urządzenie do pozyskiwania tlenu przez rozkład niskotemperaturowy powietrza ze zmiennym zużyciem energii

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13003509 2013-07-11
PCT/EP2014/001892 WO2015003809A2 (de) 2013-07-11 2014-07-10 Verfahren und vorrichtung zur sauerstoffgewinnung durch tieftemperaturzerlegung von luft mit variablem energieverbrauch

Publications (2)

Publication Number Publication Date
EP3019803A2 EP3019803A2 (de) 2016-05-18
EP3019803B1 true EP3019803B1 (de) 2022-04-20

Family

ID=48792937

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14738741.9A Active EP3019803B1 (de) 2013-07-11 2014-07-10 Verfahren und vorrichtung zur sauerstoffgewinnung durch tieftemperaturzerlegung von luft mit variablem energieverbrauch

Country Status (8)

Country Link
US (1) US9797654B2 (de)
EP (1) EP3019803B1 (de)
KR (1) KR102240251B1 (de)
CN (1) CN105473968B (de)
AU (1) AU2014289592B2 (de)
PL (1) PL3019803T3 (de)
TW (1) TWI628401B (de)
WO (1) WO2015003809A2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018114052A2 (de) * 2016-12-23 2018-06-28 Linde Aktiengesellschaft Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage
US11970759B2 (en) 2018-10-02 2024-04-30 Nippon Steel Corporation Martensitic stainless seamless steel pipe
CN112805524B (zh) * 2018-10-23 2022-12-06 林德有限责任公司 用于低温分离空气的方法和设备
US11460246B2 (en) * 2019-12-18 2022-10-04 Air Products And Chemicals, Inc. Recovery of krypton and xenon from liquid oxygen
FR3119226B1 (fr) 2021-01-25 2023-05-26 Lair Liquide Sa Pour Letude Et Lexploitation De Procede et appareil de separation d’air par distillation cryogenique

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006139A (en) * 1990-03-09 1991-04-09 Air Products And Chemicals, Inc. Cryogenic air separation process for the production of nitrogen
US5934104A (en) * 1998-06-02 1999-08-10 Air Products And Chemicals, Inc. Multiple column nitrogen generators with oxygen coproduction
US7228715B2 (en) 2003-12-23 2007-06-12 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process and apparatus
US20080115531A1 (en) * 2006-11-16 2008-05-22 Bao Ha Cryogenic Air Separation Process and Apparatus
FR2930331B1 (fr) * 2008-04-22 2013-09-13 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
WO2009136077A2 (fr) * 2008-04-22 2009-11-12 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil de separation d'air par distillation cryogenique
FR2930330B1 (fr) * 2008-04-22 2013-09-13 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
DE102010056560A1 (de) * 2010-08-13 2012-02-16 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Drucksauerstoff und Druckstickstoff durch Tieftemperaturzerlegung von Luft
US10222120B2 (en) * 2011-09-20 2019-03-05 Linde Aktiengesellschaft Method and device for generating two purified partial air streams

Also Published As

Publication number Publication date
CN105473968B (zh) 2018-06-05
WO2015003809A2 (de) 2015-01-15
US20160123662A1 (en) 2016-05-05
EP3019803A2 (de) 2016-05-18
TWI628401B (zh) 2018-07-01
US9797654B2 (en) 2017-10-24
CN105473968A (zh) 2016-04-06
KR102240251B1 (ko) 2021-04-13
KR20160030400A (ko) 2016-03-17
TW201520498A (zh) 2015-06-01
WO2015003809A3 (de) 2015-09-24
PL3019803T3 (pl) 2022-05-30
AU2014289592B2 (en) 2018-07-19
AU2014289592A1 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
EP1067345B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP3019803B1 (de) Verfahren und vorrichtung zur sauerstoffgewinnung durch tieftemperaturzerlegung von luft mit variablem energieverbrauch
EP1284404A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
WO1997004279A1 (de) Verfahren und vorrichtung zur variablen erzeugung eines gasförmigen druckprodukts
EP3410050B1 (de) Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
EP2520886A1 (de) Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2880267A2 (de) Verfahren und vorrichtung zur erzeugung elektrischer energie
EP2603754A2 (de) Verfahren und vorrichtung zur gewinnung von drucksauerstoff und druckstickstoff durch tieftemperaturzerlegung von luft
EP2963369B1 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
WO2015003808A2 (de) Verfahren zur erzeugung zumindest eines luftprodukts, luftzerlegungsanlage, verfahren und vorrichtung zur erzeugung elektrischer energie
EP1227288A1 (de) Drei-Säulen-System zur Tieftemperaturzerlegung von Luft
EP2979051A2 (de) Verfahren und vorrichtung zur erzeugung von gasförmigem drucksauerstoff mit variablem energieverbrauch
EP1239246B2 (de) Verfahren und Vorrichtung zur Zerlegung eines Gasgemischs mit Notbetrieb
EP2551619A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff und Drucksauerstoff durch Tieftemperaturzerlegung von Luft
EP3980705A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
WO2014154339A2 (de) Verfahren zur luftzerlegung und luftzerlegungsanlage
EP1750074A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP3696486A1 (de) Verfahren und anlage zur bereitstellung eines oder mehrerer sauerstoffreicher, gasförmiger luftprodukte
WO2015014485A2 (de) Verfahren und vorrichtung zur erzeugung von druckstickstoff
EP2647934A1 (de) Verfahren und Vorrichtung zur Erzeugung elektrischer Energie
EP2824407A1 (de) Verfahren zur Erzeugung zumindest eines Luftprodukts, Luftzerlegungsanlage, Verfahren und Vorrichtung zur Erzeugung elektrischer Energie
WO2021129948A1 (de) Verfahren und anlage zur bereitstellung eines sauerstoffprodukts
WO2020187449A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
WO2019214847A9 (de) Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
DE10045128A1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151203

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE GMBH

17Q First examination report despatched

Effective date: 20200529

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211115

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014016205

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1485438

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220822

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220721

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220820

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014016205

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20230123

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220710

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220710

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1485438

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230724

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230702

Year of fee payment: 10

Ref country code: DE

Payment date: 20230720

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420