WO1997004279A1 - Verfahren und vorrichtung zur variablen erzeugung eines gasförmigen druckprodukts - Google Patents

Verfahren und vorrichtung zur variablen erzeugung eines gasförmigen druckprodukts Download PDF

Info

Publication number
WO1997004279A1
WO1997004279A1 PCT/EP1996/003175 EP9603175W WO9704279A1 WO 1997004279 A1 WO1997004279 A1 WO 1997004279A1 EP 9603175 W EP9603175 W EP 9603175W WO 9704279 A1 WO9704279 A1 WO 9704279A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid fraction
heat exchanger
pressure
heat
product
Prior art date
Application number
PCT/EP1996/003175
Other languages
English (en)
French (fr)
Inventor
Horst Corduan
Horst Altmeyer
Original Assignee
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7767507&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1997004279(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde Aktiengesellschaft filed Critical Linde Aktiengesellschaft
Priority to MX9800557A priority Critical patent/MX9800557A/es
Priority to EP96927545A priority patent/EP0842385B2/de
Priority to AU67344/96A priority patent/AU719608B2/en
Priority to DE59606808T priority patent/DE59606808D1/de
Priority to US08/983,572 priority patent/US5953937A/en
Priority to BR9609781-7A priority patent/BR9609781A/pt
Priority to DK96927545T priority patent/DK0842385T4/da
Priority to JP50629897A priority patent/JP3947565B2/ja
Publication of WO1997004279A1 publication Critical patent/WO1997004279A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • F25J3/04503Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
    • F25J3/04509Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/912External refrigeration system
    • Y10S62/913Liquified gas

Definitions

  • the invention relates to a method and a device for the variable production of a gaseous pressure product by low-temperature separation of air by means of pressure increase in the liquid state and subsequent evaporation.
  • the invention is therefore based on the object of specifying a method and a device which can be operated as flexibly as possible and which in particular avoid the disadvantages described above. This object is achieved by the method according to claim 1.
  • the gaseous print product is withdrawn in liquid form from the or one of the rectification columns and buffered in a first storage tank.
  • the liquid level in the tank rises or falls depending on whether a below-average or an above-average amount of product is currently being produced.
  • the amount of liquid fraction generated in the rectification that cannot be vaporized or otherwise used (for example as a liquid product) at the moment can be introduced into the tank; Accordingly, liquid is evacuated from the tank when there is a high product requirement.
  • “Storage tank” here means any device for storing liquid. This can be, for example, an external tank with its own insulation, but also a different type of vessel, which is arranged within the low-temperature separation plant and is suitable for buffering liquid.
  • any known method can be used to increase the pressure in the liquid state, for example pressure build-up evaporation on the storage tank, utilization of a static height, pumps upstream or downstream of the storage tank, or combinations of these methods.
  • the liquid fraction is pressurized by a pump located downstream of the tank. The throughput of this pump can be controlled to vary the amount of product.
  • the method according to the invention also has a refrigeration cycle with a cycle compressor and an expansion machine.
  • a heat transfer medium in particular a process gas for air separation, is compressed therein, expanded to perform work, and returned to the circuit compressor.
  • cold is generated to compensate for insulation and exchange losses and, if necessary, for product liquefaction.
  • the circuit compressor also serves to compress the heat transfer medium, which condenses against the product to be evaporated and is buffered in a second storage tank (first partial flow of the heat transfer medium). It compresses the heat transfer medium to a pressure that corresponds to a condensation temperature that is at least approximately is equal to the vaporization temperature of the liquid pressurized fraction. At least a part of the heat transfer medium compressed in the circuit compressor is returned to the circuit compressor, in particular the second partial flow after its relaxation, or part of it. The second partial flow of the heat carrier compressed in the circuit compressor therefore does not need to be discarded or not completely, but is at least partially circulated. Refrigeration cycle and variable product evaporation are integrated in the invention; the same machine is used both for cooling and for generating the pressure required for the evaporation of the liquid fraction.
  • the first partial flow is also varied in accordance with the variable product quantity in the invention.
  • this variation can be implemented in different ways and can thus be flexibly adapted to the current needs.
  • the amount of heat carrier compressed in the circuit compressor is kept constant when there is an increased need for gaseous pressure product.
  • the variation of the first partial flow is absorbed by a corresponding variation of the second partial flow of the heat transfer medium.
  • the amount of the second partial flow is decreased / increased by the same amount by which the amount of the first partial flow is increased / decreased.
  • An increased amount of heat transfer medium liquefied in the second partial flow is temporarily stored in the second tank; an increased amount of gas in the second partial flow can be compensated for by a corresponding removal of gas (for example as a product) from the circuit; Conversely, if production is below average, a correspondingly smaller amount of gas is withdrawn from the cycle.
  • the system can be operated in a second operating mode.
  • the throughput of the second partial flow remains the same, while the variation of the first partial flow is followed up by the circuit compressor. If there is an increased need for gaseous pressure product, the amount of the second partial flow is kept constant and the amount of the heat carrier compressed in the circuit compressor is increased by the same amount as the amount of the first partial flow. Nevertheless, the The method according to the invention, even in this mode of operation, the relative fluctuations in the compressor throughput are comparatively small, since the circulation quantity can remain constant.
  • the constant proportion of the gas compressed in the circuit compressor dampens the relative fluctuations in the compressor throughput.
  • the two modes of operation can also be combined by compensating for part of the fluctuations in the first partial flow by varying the second partial flow and for another part by changing the throughput on the circuit compressor. If there is an increased need for gaseous pressure product, both the amount of the heat carrier compressed in the circuit compressor is increased and the amount of the second partial stream is reduced.
  • the rectification system has a double column consisting of a pressure column and a low pressure column, for example liquid oxygen from the bottom of the low pressure column or liquefied nitrogen from the pressure column can be used as the liquid fraction.
  • further flow of the heat transfer medium is relaxed while performing work.
  • additional cooling can be generated in the circuit
  • the amount of further electricity that is supplied to the work-relieving relaxation can be reduced when there is an increased need for gaseous pressure product and an excess of cold can thus be at least partially compensated for.
  • the work-relieving expansion of the further stream leads approximately from the inlet pressure of the circuit compressor (lower level of the refrigeration circuit) to about atmospheric pressure, and the further work relieved of pressure is withdrawn as a pressureless gas product.
  • any process stream available in the process can be used as a heat carrier for the refrigeration cycle and the evaporation of the liquid fraction, for example air or another oxygen-nitrogen mixture.
  • nitrogen from the rectification system is preferably used as the heat carrier, in the case of a double column, for example, gaseous nitrogen which is obtained at the top of the pressure column.
  • the entire cycle nitrogen is produced in the plant itself.
  • a subset of the heat transfer medium can come from an external source, for example by feeding liquid nitrogen from another system or from a tanker truck into the second storage tank.
  • the second storage tank can thus be used in addition to its buffering effect for variable print product extraction as a safety reserve (backup) for a temporary failure of the system and / or as a buffer for liquid product.
  • the use of nitrogen as a heat transfer medium has the advantage that the refrigeration cycle and the evaporation of printed products have no negative effects on the rectification, as would be the case with the supply of air liquefied against the pressurized product and with the feeding of gaseous air from an expansion machine into a low-pressure column. Rectification can thus be optimal in the process according to the invention using nitrogen as the heat transfer medium be driven.
  • the process is therefore also suitable for high product purities and yields, as well as for the extraction of argon following air separation in the narrower sense (eg crude argon column connected to the low pressure column of a double column).
  • the main heat exchanger system has a heat exchanger block in which both the cooling of the feed air and the evaporation of the liquid fraction are carried out under increased pressure.
  • the main heat exchanger system has a plurality of heat exchanger blocks, in particular a first and a second heat exchanger block, the cooling of the feed air being carried out in the first heat exchanger block and the evaporation of the liquid fraction under increased pressure in the second heat exchanger block.
  • the two heat exchanger blocks are coupled by a compensating current which is taken from one of the two heat exchanger blocks between the warm and cold ends and fed to the other of the two heat exchanger blocks between the warm and cold ends.
  • the invention also relates to a device according to claim 8.
  • Compressed and cleaned feed air 10 is cooled under a pressure of 5 to 10 bar, preferably 5.5 to 6.5 bar in the heat exchanger 11, which forms the main heat exchanger system with the heat exchanger 12. Via line 13, it is introduced into a pressure column 14 at approximately dew point temperature.
  • the pressure column belongs to the rectification system, which also has a low pressure column 15, which is operated at a pressure of 1.3 to 2 bar, preferably 1.5 to 1.7 bar.
  • Pressure column 14 and Niederbuchklaie 15 are thermally coupled via a main capacitor 16.
  • Bottom liquid 17 from the pressure column 14 is subcooled in a counterflow 18 against product flows of the low pressure column and fed into the low pressure column 15 (line 19).
  • Gaseous nitrogen 20 from the top of the pressure column 14 is liquefied in the main condenser 16 against evaporating liquid in the bottom of the low pressure column 15.
  • Some of the condensate 21 is fed as a return to the pressure column 14 (line 22) and another part 23 is introduced into a separator 25 after supercooling 18 (FIG. 24).
  • the low-pressure column 15 is supplied with return liquid from the separator 25 (line 26).
  • Low pressure nitrogen 27 and impure nitrogen 28 are heated to approximately ambient temperature after removal from the low pressure column 15 in the heat exchangers 18 and 11.
  • the impure nitrogen 30 can be used to regenerate a molecular sieve (not shown) for air purification; the low-pressure nitrogen 29 is either discharged as a product or used in an evaporative cooler to cool cooling water.
  • Oxygen is withdrawn as a liquid fraction via line 31 from the bottom of the low-pressure column 15, supercooled (18) and introduced into a liquid oxygen tank (first storage tank) 33 (32).
  • the liquid oxygen tank 33 is preferably at about atmospheric pressure.
  • Liquid oxygen 34 from the first storage tank 33 is brought to an increased pressure of, for example, 5 to 80 bar by means of a pump 35, depending on the product pressure required. (Of course, other methods for increasing the pressure in the liquid phase can also be used, for example by utilizing a hydrostatic potential or by pressure build-up evaporation in a storage tank.)
  • the liquid high-pressure oxygen 36 is evaporated in the heat exchanger 12 and removed as an internally compressed gaseous product 37.
  • the part of the gaseous nitrogen from the pressure column 14, which is not fed to the main condenser 16, is drawn off via the lines 38, 39 and 40 through the heat exchanger 11 and fed as a heat transfer medium to a cold circuit, which includes a two-stage cycle compressor 41, 42 and one Expansion turbine 43 includes.
  • the nitrogen from for example, compression stage pressure is compressed to a pressure that corresponds to a nitrogen condensation temperature that is at least approximately equal to the evaporation temperature of the liquid pressurized oxygen 36.
  • this pressure is, for example, 15 to 60 bar.
  • a first partial stream 45 of the highly compressed nitrogen 44 is liquefied at least partially, preferably completely or essentially completely, against the evaporating oxygen 36 and fed into a separator 46.
  • the second partial flow 59 of the nitrogen compressed in the circuit compressor is fed to the expansion turbine 43 at the high pressure and at a temperature which lies between the temperatures at the warm and at the cold end of the heat exchanger 12, and is expanded there to perform work at approximately pressure column pressure.
  • the relaxed second partial flow 60 is partly fed back through heat exchanger 12 (via 61, 62) and partly through heat exchanger 11 (via 63, 64, 39, 40) to the inlet of the circuit compressor 41, 42.
  • Liquid nitrogen from the separator 46 can be fed as a return line to the pressure column 14 via line 47 and / or introduced via line 48 into a second storage tank (liquid nitrogen tank 49) which is under a pressure of, for example, 1 to 5 bar, preferably below about atmospheric pressure .
  • the tank can also optionally be fed with excess liquid 50 from the separator 25, which is not required as a return for the low pressure column 15. If necessary, liquid nitrogen can be pressed into the separator 46 by means of a pump 51 (line 52).
  • Part of the nitrogen 53 from line 39 can be removed from the heat exchanger 11 at an intermediate temperature.
  • This part serves partly as a compensating flow 54, with the aid of which the efficiency of the main heat exchanger system 11, 12 can be improved, and partly as a further flow 55 of the heat transfer medium, which is expanded in a second expansion turbine 56 to slightly above atmospheric pressure while performing work.
  • the further stream 57 which is relaxed in terms of work, is heated in the heat exchanger 12 to approximately ambient temperature and leaves the system as a gaseous product 58.
  • Liquid oxygen and / or liquid nitrogen can be withdrawn as products from the storage tanks 33, 49 (the corresponding lines are not shown in the drawing).
  • the alternating storage has no disruptive effects on the rectification, in particular neither liquid air is fed to the rectification nor is low-pressure air fed directly into the low-pressure column.
  • a conventional argon rectification can be connected to an intermediate point 66 of the low-pressure column 15, as is indicated in the drawing by the lines shown there.
  • one of the methods and devices described in EP-B-377117 or in one of the European patent applications 95101844.9 or 95101845.6 with older seniority is preferably used.
  • the first stage 41 of the circuit compressor is also used as a product compressor in that a product stream 65 is drawn off under a pressure of preferably 8 to 35 bar, for example 20 bar, between the first and the second stage.
  • the two basic modes of operation of a method and a device according to the invention are now explained below.
  • the system is designed for a certain average amount of pressurized oxygen product. Production can fluctuate around this average value, between a minimum and a maximum value. To explain how this fluctuation is achieved, the two extreme operating cases ("Max.”, “Min.”) And the operating case of the average pressure oxygen production (“Average”) of a system that processes 190,000 NrrvVh feed air are presented in the following numerical examples .
  • the pressures are
  • Liquid oxygen tank 33 1.1 bar
  • Table 1 relates to the mode of operation in which the expansion turbine 43 for the second partial flow 59 is operated at a constant speed; in the table 2 the operating mode shown, the throughput is kept constant by the circuit compressor 41, 42. Of course, any transition between these two modes of operation is also possible in the exemplary embodiment.
  • the amounts of the respective flows for the three operating cases mentioned are given in 1000 Nm 3 / h.
  • the reference symbols in the first column of the table refer to the drawing.
  • the scheme in the drawing is divided in half by a dashed line.
  • the left half essentially contains the cold circuit and the storage tanks; the entire rectification is in the right half.
  • all flows in the right half of the drawing remain completely or essentially unchanged, the fluctuations in the production of pressurized oxygen only affect the circuit and the storage tanks. This is reflected in the first six lines of the two tables, in which all streams are mentioned that cross the dashed line; these have the same throughput in all operating cases, while the amount of evaporation changes (reference symbols 36, 37).
  • the second partial flow 59, 60 is kept constant.
  • the variation of the first partial stream 45 necessary for the evaporation is brought about by the corresponding change in the throughput through the circuit compressor (stream 44): if, for example, the production increases from the average to the maximum value, the throughput through the circuit compressor increases by approximately the same amount like the amount of product too.
  • the additional gas is made available by a corresponding reduction in the amount of gas which is withdrawn from the circuit as a further stream 55, 57, 58 through the turbine 56.
  • the fluctuating amounts of liquefied heat transfer medium (first partial flow 45) are buffered in that excess liquid is fed to the second storage tank 49 via line 48 when production is above average; Conversely, the missing liquid is fed from the liquid nitrogen tank via line 52 in the case of a small amount of product, in order to keep the return flow for the pressure column 14 constant.
  • Table 1 The numerical example of Table 1 is designed so that an average excess of liquid of 1500 NrrvVh of oxygen and nitrogen is generated. This can be continuous, intermittent or in variable form be carried away from liquid products. In addition, it is also possible with the method to change the average cooling capacity of the circuit and thus the average amount of liquid products during operation by adapting the average speeds of the turbines accordingly. The system can thus be operated particularly flexibly not only with regard to the internally compressed printed product, but also with regard to liquid production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Einsatzluft wird einem Rektifiziersystem (14, 15) zur Tieftemperaturzerlegung zugeführt, aus dem eine flüssige Fraktion (31, 32) entnommen und in einen ersten Speichertank (33) eingeleitet wird. Der Druck einer variablen Menge der flüssigen Fraktion (34) wird erhöht (35). Die flüssige Fraktion (36) wird unter dem erhöhten Druck durch indirekten Wärmeaustausch (12) verdampft und als gasförmiges Druckprodukt (37) gewonnen. In einem Kältekreislauf, der einen Kreislaufverdichter (41, 42) aufweist, zirkuliert ein Wärmeträger. Ein erster Teilstrom (45) von im Kreislaufverdichter (41, 42) verdichtetem Wärmeträger (44) wird dem indirekten Wärmeaustausch (12) zur Verdampfung der flüssigen Fraktion (36) zugeführt und dabei mindestens teilweise verflüssigt. Ein zweiter Teilstrom (59) von im Kreislaufverdichter (41, 42) verdichtetem Wärmeträger (44) wird arbeitsleistend entspannt (43). Verflüssigter Wärmeträger (45, 48) wird in einem zweiten Speichertank (49) gepuffert.

Description

Verfahren und Vorrichtung zur variablen Erzeugung eines gasförmigen Druckprodukts
Beschreibung
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur variablen Erzeugung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft mittels Druckerhöhung im flüssigen Zustand und anschließender Verdampfung.
Die Methode, ein Flüssigprodukt eines Luftzerlegers auf Druck zu bringen und anschließend zu verdampfen, wird häufig auch als "Innenverdichtung" bezeichnet. Derartige Prozesse sind für die Gewinnung einer konstanten Menge eines unter Druck stehenden Gases altbekannt (beispielsweise DE-C-752439) und bieten gegenüber der gasförmigen Produktverdichtung den Vorteil geringerer Apparatekosten.
Ebenfalls bekannt sind "Wechselspeicherverfahren" mit mindestens zwei Speichertanks, bei denen variable Mengen eines Luftgases unter Atmosphärendruck gewonnen werden können und trotzdem ein stationärer Betrieb der Rektifikation möglich ist (siehe beispielsweise W. Rohde, Linde-Berichte aus Technik und Wissenschaft, 54/1984, Seiten 18 bis 20).
Die Druckschriften DE-B-1056633, EP-A-422974, EP-A-524785 und EP-A-556861 zeigen Prozesse, die Innenverdichtung und Wechselspeicherung kombinieren, indem sowohl das zu verdampfende Flüssigprodukt als auch bei der Verdampfung verflüssigter Wärmeträger (Luft oder Stickstoff) in Speichertanks gepuffert werden. Das Problem des variierenden Bedarfs an Wärmeträger für die Verdampfung des Flüssigprodukts wird in DE-B-1056633 dadurch gelöst, daß der jeweils nicht für die Verdampfung benötigte Anteil des Wärmeträgers arbeitsleistend entspannt und verworfen wird. Davon ist man später abgekommen und verdichtet statt dessen variable Mengen an Wärmeträger (EP-A-422974, EP-A-524785 und EP-A-556861). Während im ersten Fall ein gereinigtes Gas ungenutzt verlorengeht, treten im zweiten Fall große relative Schwankungen des Verdichterdurchsatzes auf. Beide Arten von Anlagen können nur in der jeweiligen Betriebsweise gefahren werden.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung anzugeben, die möglichst flexibel betrieben werden können und die insbesondere die oben beschriebenen Nachteile vermeiden. Diese Aufgabe wird durch das Verfahren gemäß Anspruch 1 gelöst.
Das gasförmig zu gewinnende Druckprodukt wird in flüssiger Form aus der oder einer der Rektifiziersäulen abgezogen und in einem ersten Speichertank gepuffert. Je nachdem, ob momentan eine unterdurchschnittliche oder eine überdurchschnittliche Produktmenge erzeugt wird, steigt oder sinkt der Flüssigkeitsstand im Tank. Beispielsweise kann diejenige Menge an in der Rektifikation erzeugter flüssiger Fraktion, die momentan nicht verdampft oder anderweitig (beispielsweise als Flüssigprodukt) verwendet werden kann, in den Tank eingeführt werden; entsprechend wird bei hohem Produktbedarf Flüssigkeit aus dem Tank zur Verdampfung geführt. Es ist aber auch möglich, die gesamte flüssige Fraktion in den Speichertank einzuleiten und jeweils die aktuell benötigte Menge zu entnehmen und der Verdampfung zuzuführen. Unter "Speichertank" ist hier jede Vorrichtung zur Flüssigkeitsspeicherung zu verstehen. Dabei kann es sich beispielsweise um einen externen Tank mit eigener Isolierung handeln, aber auch um eine andere Art von Gefäß, das innerhalb der Tieftemperaturzerlegungsanlage angeordnet und zur Pufferung von Flüssigkeit geeignet ist.
Zur Druckerhöhung im flüssigen Zustand kann jede bekannte Methode angewandt werden, beispielsweise Druckaufbauverdampfung am Speichertank, Ausnutzung einer statischen Höhe, Pumpen stromaufwärts oder stromabwärts des Speichertanks, oder auch Kombinationen dieser Methoden. Vorzugsweise wird die flüssige Fraktion durch eine stromabwärts des Tanks angeordnete Pumpe auf Druck gebracht. Der Durchsatz dieser Pumpe kann gesteuert werden, um die Variation der Produktmenge zu bewirken.
Das erfindungsgemäße Verfahren weist außerdem einen Kältekreislauf mit einem Kreislaufverdichter und einer Entspannungsmaschine auf. Darin wird ein Wärmeträger, insbesondere ein Prozeßgas der Luftzerlegung, verdichtet, arbeitsleistend entspannt und wieder zum Kreislaufverdichter zurückgeführt. Mit Hilfe dieses Kreislaufs wird Kälte zum Ausgleich von Isolations- und Austauschverlusten und gegebenenfalls zur Produktverflüssigung erzeugt.
Der Kreislaufverdichter dient gleichzeitig zur Verdichtung des Wärmeträgers, der gegen das zu verdampfende Produkt kondensiert und in einem zweiten Speichertank gepuffert wird (erster Teilstrom des Wärmeträgers). Er verdichtet den Wärmeträger auf einen Druck, der einer Kondensationstemperatur entspricht, die mindestens etwa gleich der Verdampfungstemperatur der flüssig auf Druck gebrachten Fraktion ist. Mindestens ein Teil des im Kreislaufverdichter verdichteten Wärmeträgers wird zum Kreislaufverdichter zurückgeleitet, insbesondere der zweite Teilstrom nach seiner arbeitsleistenden Entspannung oder ein Teil davon. Der zweite Teilstrom des im Kreislaufverdichter komprimierten Wärmeträgers braucht also nicht oder nicht vollständig verworfen zu werden, sondern wird mindestens teilweise im Kreis geführt. Kältekreislauf und variable Produktverdampfung sind bei der Erfindung integriert; dieselbe Maschine dient sowohl zur Kälteerzeugung als auch zur Erzeugung des für die Verdampfung der flüssigen Fraktion benötigten Drucks.
Selbstverständlich wird auch bei der Erfindung der erste Teilstrom entsprechend der variablen Produktmenge variiert. Diese Variation kann jedoch hier auf unterschiedliche Weise realisiert und damit flexibel an die jeweils aktuellen Bedürfnisse angepaßt werden.
In einer ersten Betriebsweise wird bei erhöhtem Bedarf an gasförmigem Druckprodukt die Menge des im Kreislaufverdichter verdichteten Wärmeträgers konstant gehalten. Die Variation des ersten Teilstroms wird durch eine entsprechende Variation des zweiten Teilstroms des Wärmeträgers aufgefangen. Bei Erhöhung/Verringerung der Produktion wird die Menge des zweiten Teilstroms um denselben Betrag verringert/erhöht, um den die Menge des ersten Teilstroms erhöht/verringert wird. (Mit "Menge" werden hier molare Mengen pro Zeiteineinheit bezeichnet, die z.B. in NnrWh angegeben werden können.) Damit kann der Kreislaufverdichter konstant gefahren werden, beispielsweise mit seiner Ausiegungskapazität, eine Steuerung in Abhängigkeit von der Produktmenge ist nicht nötig. Eine erhöhte Menge an im zweiten Teilstrom verflüssigtem Wärmeträger wird im zweiten Tank zwischengespeichert; eine erhöhte Gasmenge im zweiten Teilstrom kann durch eine entsprechende Entnahme von Gas (beispielsweise als Produkt) aus dem Kreislauf kompensiert werden; umgekehrt wird bei unterdurchschnittlicher Produktion eine entsprechend geringere Menge an Gas aus dem Kreislauf entnommen.
Alternativ dazu kann die Anlage in einer zweiten Betriebsweise gefahren werden. Dabei bleibt der Durchsatz des zweiten Teilstroms gleich, während die Variation des ersten Teilstroms vom Kreislaufverdichter nachgefahren wird. Bei erhöhtem Bedarf an gasförmigem Druckprodukt wird also die Menge des zweiten Teilstroms konstant gehalten und die Menge des im Kreislaufverdichter verdichteten Wärmeträgers um denselben Betrag wie die Menge des ersten Teilstroms erhöht. Dennoch sind beim erfindungsgemäßen Verfahren auch bei dieser Betriebsweise die relativen Schwankungen des Verdichterdurchsatzes vergleichweise gering, da die Kreislaufmenge konstant bleiben kann. Der gleichbleibende Anteil des im Kreislaufverdichter komprimierten Gases dämpft die relativen Ausschläge des Verdichterdurchsatzes.
Die beiden Betriebsweisen können aber auch kombiniert werden, indem die Schwankungen des ersten Teilstroms zu einem Teil durch Variation des zweiten Teilstroms und zu einem anderen Teil durch Veränderung des Durchsatzes am Kreislaufverdichter kompensiert werden. Bei erhöhtem Bedarf an gasförmigem Druckprodukt werden dann sowohl die Menge des im Kreislaufverdichter verdichteten Wärmeträgers erhöht als auch die Menge des zweiten Teilstroms verringert.
Je nach Bedarf kann zwischen diesen Betriebsweisen gewechselt werden, beispielsweise um Flüssigproduktentnahmen aus dem Tank zu kompensieren oder für bestimmte Zeit eine erhöhte Menge an Flüssigprodukt(en) zu liefern. Je nach Menge des zweiten Teilstroms wird bei dessen arbeitsleistender Entspannung unterschiedlich viel Kälte erzeugt.
In jedem Fall können bei dem erfindungsgemäßen Verfahren sämtliche Ströme, die in die Rektifiziersäule(n) eingespeist oder daraus entnommen werden, konstant bleiben. Schwankungen in der Produktmenge haben damit keinerlei Auswirkungen auf die Rektifikation. Insbesondere können in jedem betriebsfall gleichbleibend hohe Reinheiten und Ausbeuten erzielt werden.
Falls das Rektifiziersystem eine aus Drucksäule und Niederdrucksäule bestehende Doppelsäule aufweist, kann beispielsweise flüssiger Sauerstoff vom Sumpf der Niederdrucksäule oder verflüssigter Stickstoff aus der Drucksäule als flüssige Fraktion verwendet werden.
In einer günstigen Ausführungsform wird weiterer Strom des Wärmeträgers arbeitsleistend entspannt. Dadurch kann einerseits zusätzlich Kälte in dem Kreislauf erzeugt werden, andererseits ist eine weitere Möglichkeit zur genaueren Anpassung der Kälteleistung an den momentanen Bedarf gegeben, die unabhängig von der Regelung des Kreislaufverdichters und des zweiten Teilstroms ist. Insbesondere kann die Menge des weiteren Stroms, die der arbeitsleistenden Entspannung zugeführt wird, bei erhöhtem Bedarf an gasförmigem Druckprodukt erniedrigt werden und damit ein Überschuß an Kälte mindestens teilweise kompensiert werden. Vorzugsweise führt die arbeitsleistende Entspannung des weiteren Stroms etwa von dem Eintrittsdruck des Kreislaufverdichters (unteres Niveau des Kältekreislaufs) auf etwa Atmosphärendruck und der arbeitsleistend entspannte weitere Strom wird als druckloses Gasprodukt abgezogen. Damit lassen sich auch Schwankungen der im Kreislauf zirkulierenden Gasmenge auffangen. Insbesondere kann beispielsweise bei der ersten Betriebsweise (konstanter Durchsatz am Kreislaufverdichter) eine Verringerung der Menge des zweiten Teilstroms durch eine entsprechende Erniedrigung der Menge des arbeitsleistend entspannten weiteren Stroms ausgeglichen werden. Bei der zweiten Betriebsweise (konstanter Durchsatz bei der arbeitsleistenden Entspannung des zweiten Teilstroms) kann zum Beispiel eine Erhöhung des Kreislaufverdichterdurchsatzes durch eine Veringerung der Gasmenge kompensiert werden, die als weiterer Strom den Kreislauf verläßt.
Grundsätzlich kann jeder in dem Verfahren verfügbare Prozeßstrom als Wärmeträger für den Kältekreislauf und die Verdampfung der flüssigen Fraktion verwendet werden, beispielsweise Luft oder auch ein anderes Sauerstoff-Stickstoff-Gemisch. Bevorzugt wird jedoch Stickstoff aus dem Rektifiziersystem als Wärmeträger eingesetzt, im Falle einer Doppelsäule beispielsweise gasförmiger Stickstoff, der am Kopf der Drucksäule anfällt. In der Regel wird der gesamte Kreislaufstickstoff in der Anlage selbst produziert. Zusätzlich kann jedoch eine Teilmenge des Wärmeträgers aus einer äußeren Quelle stammen, beispielsweise durch Einspeisung von Flüssigstickstoff aus einer anderen Anlage oder aus einem Tankwagen in den zweiten Speichertank.
Wenn Stickstoff als Produkt gewonnen wird, kann somit der zweite Speichertank neben seiner Pufferwirkung für die variable Druckproduktgewinnung auch als Sicherheitsreserve (Backup) für einen zeitweisen Ausfall der Anlage und/oder als Puffer für Flüssigprodukt eingesetzt werden.
Außerdem hat die Verwendung von Stickstoff als Wärmeträger den Vorteil, daß Kältekreislauf und Druckproduktverdampfung keinerlei negative Auswirkungen auf die Rektifikation hat, wie es bei der Zuspeisung von gegen Druckprodukt verflüssigter Luft und bei der Einspeisung von gasförmiger Luft aus einer Entspannungsmaschine in eine Niederdrucksäule der Fall wäre. Die Rektifikation kann also bei dem erfindungsgemäßen Verfahren mit Einsatz von Stickstoff als Wärmeträger optimal gefahren werden. Das Verfahren ist damit auch für hohe Produktreinheiten und - ausbeuten geeignet, ebenso wie für die Gewinnung von Argon im Anschluß an die Luftzerlegung im engeren Sinne (z.B. an die Niederdrucksäule einer Doppelsäule angeschlossene Rohargonsäule).
Es ist günstig, wenn die Einsatzluft für das Rektifiziersystem in einem Hauptwärmetauschersystem abgekühlt wird, in dem auch die Verdampfung der flüssigen Fraktion unter erhöhtem Druck durchgeführt wird. Durch diese Integraton der Wärmeaustauschvorgänge können die Austauschverluste gering gehalten werden.
Dies kann zum einen dadurch realisiert werden, daß das Hauptwärmetauschersystem einen Wärmetauscherblock aufweist, in dem sowohl die Abkühlung der Einsatzluft als auch die Verdampfung der flüssigen Fraktion unter erhöhtem Druck durchgeführt werden.
Apparativ weniger aufwendig ist es jedoch, wenn das Hauptwärmetauschersystem mehrere Waärmetauscherblöcke aufweist, insbesondere einen ersten und einen zweiten Wärmetauscherblock, wobei in dem ersten Wärmetauscherblock die Abkühlung der Einsatzluft und in dem zweiten Wärmetauscherblock die Verdampfung der flüssigen Fraktion unter erhöhtem Druck durchgeführt wird. In diesem Fall ist es günstig, wenn die beiden Wärmetauscherblöcke durch einen Ausgleichsstrom gekoppelt sind, der einem der beiden Wärmetauscherblöcke zwischen dem warmen und kalten Ende entnommen und dem anderen der beiden Wärmetauscherblöcke zwischen dem warmen und kalten Ende zugeführt wird.
Die Erfindung betrifft außerdem eine Vorrichtung gemäß Anspruch 8.
Die Erfindung sowie weitere Einzelheiten der Erfindung werden im folgenden anhand des Ausführungsbeispiels des Linde-VARIPOX®-Verfahrens (VARiable Internal Pressurization of OXygen) und der entsprechenden Anlage näher erläutert, die in den Zeichnungen schematisch dargestellt sind.
Verdichtete und gereinigte Einsatzluft 10 wird unter einem Druck von 5 bis 10 bar, vorzugsweise 5,5 bis 6,5 bar im Wärmetauscher 11 abgekühlt, der mit dem Wärmetauscher 12 das Hauptwärmetauschersystem bildet. Über Leitung 13 wird sie bei etwa Taupunktstemperatur in eine Drucksäule 14 eingeleitet. Die Drucksäule gehört zu dem Rektifiziersystem, das außerdem eine Niederdrucksäule 15 aufweist, die bei einem Druck von 1 ,3 bis 2 bar, vorzugsweise 1 ,5 bis 1 ,7 bar betrieben wird. Drucksäule 14 und Niederdrucksäuie 15 sind über einen Hauptkondensator 16 thermisch gekoppelt.
Sumpfflüssigkeit 17 aus der Drucksäule 14 wird in einem Gegenströmer 18 gegen Produktströme der Niederdrucksäule unterkühlt und in die Niederdrucksäule 15 eingespeist (Leitung 19). Gasförmiger Stickstoff 20 vom Kopf der Drucksäule 14 wird im Hauptkondensator 16 gegen verdampfende Flüssigkeit im Sumpf der Niederdrucksäule 15 verflüssigt. Das Kondensat 21 wird zu einem Teil als Rücklauf auf die Drucksäule 14 aufgegeben (Leitung 22) und zu einem anderen Teil 23 nach Unterkühlung 18 in einen Abscheider 25 eingeführt (24). Die Niederdrucksäule 15 wird aus dem Abscheider 25 mit Rücklaufflüssigkeit versorgt (Leitung 26).
Niederdruckstickstoff 27 und unreiner Stickstoff 28 werden nach Entnahme aus der Niederdrucksäule 15 in den Wärmetauschern 18 und 11 auf etwa Umgebungstemperatur angewärmt. Der unreine Stickstoff 30 kann zur Regenerierung eines nicht dargestellten Molekularsiebs für die Luftreinigung eingesetzt werden; der Niederdruckstickstoff 29 wird entweder als Produkt abgeführt oder in einem Verdunstungskühler zur Abkühlung von Kühlwasser verwendet.
Sauerstoff wird als flüssige Fraktion über Leitung 31 aus dem Sumpf der Niederdrucksäule 15 abgezogen, unterkühlt (18) und in einen Flüssigsauerstofftank (ersten Speichertank) 33 eingeführt (32). Der Flüssigsauerstofftank 33 steht vorzugsweise unter etwa Atmosphärendruck . Flüssiger Sauerstoff 34 aus dem ersten Speichertank 33 wird mittels einer Pumpe 35 auf einen erhöhten Druck von beispielsweise 5 bis 80 bar gebracht, je nach benötigtem Produktdruck . (Selbstverständlich sind auch andere Methoden zur Druckerhöhung in der flüssigen Phase anwendbar, beispielsweise durch Ausnutzung eines hydrostatischen Potentials oder durch Druckaufbauverdampfung an einem Speichertank.) Der flüssige Hochdrucksauerstoff 36 wird im Wärmetauscher 12 verdampft und als innenverdichtetes gasförmiges Produkt 37 abgezogen.
Der Teil des gasförmigen Stickstoffs aus der Drucksäule 14, der nicht dem Hauptkondensator 16 zugeführt wird, wird über die Leitungen 38, 39 und 40 durch den Wärmetauscher 11 abgezogen und als Wärmeträger einem Kaltekreislauf zugeführt, der unter anderem einen zweistufigen Kreislaufverdichter 41 , 42 und eine Entspannungsturbine 43 umfaßt. Im Kreislaufverdichter 41 , 42 wird der Stickstoff von etwa Druckstufendruck auf einen Druck komprimiert, der einer Stickstoff- Kondensationstemperatur entspricht, die mindestens etwa gleich der Verdampfungstemperatur des flüssigen Drucksauerstoffs 36 ist. Dieser Druck beträgt - je nach vorgegebenem Abgabedruck des Sauerstoffs - beispielsweise 15 bis 60 bar. Ein erster Teilstrom 45 des hochverdichteten Stickstoffs 44 wird gegen den verdampfenden Sauerstoff 36 mindestens teilweise, vorzugsweise vollständig oder im wesentlichen vollständig verflüssigt und in einen Abscheider 46 eingespeist.
Der zweite Teilstrom 59 des im Kreislaufverdichter komprimierten Stickstoffs wird bei dem hohen Druck und bei einer Temperatur, die zwischen den Temperaturen am warmen und am kalten Ende des Wärmetauschers 12 liegt, der Entspannungsturbine 43 zugeleitet und dort auf etwa Drucksäulendruck arbeitsleistend entspannt. Der entspannte zweite Teilstrom 60 wird zum einen Teil durch Wärmetauscher 12 (über 61, 62), zum anderen Teil durch Wärmetauscher 11 (über 63, 64, 39, 40) zum Eintritt des Kreislaufverdichters 41 , 42 zurückgeführt.
Flüssiger Stickstoff aus dem Abscheider 46 kann über Leitung 47 als Rücklauf auf die Drucksäule 14 aufgegeben und/oder über Leitung 48 in einen zweiten Speichertank (Flüssigstickstofftank 49) eingeführt werden, der unter einem Druck von beispielsweise 1 bis 5 bar, vorzugsweise unter etwa Atmosphärendruck steht. Der Tank kann außerdem gegebenenfalls von überschüssiger Flüssigkeit 50 aus dem Abscheider 25 gespeist werden, die nicht als Rücklauf für die Niederdrucksäule 15 benötigt wird. Bei Bedarf kann flüssiger Stickstoff mittels einer Pumpe 51 in den Abscheider 46 gedrückt werden (Leitung 52).
Ein Teil des Stickstoffs 53 aus Leitung 39 kann bei einer Zwischentemperatur aus dem Wärmetauscher 11 entnommen werden. Dieser Teil dient teilweise als Ausgleichsstrom 54, mit dessen Hilfe die Effizienz des Hauptwärmetauschersystems 11, 12 verbessert werden kann, und teilweise als weiterer Strom 55 des Wärmeträgers, der in einer zweiten Entspannungsturbine 56 arbeitsleistend auf etwas über Atmosphärendruck entspannt wird. Der arbeitsleistend entspannte weitere Strom 57 wird im Wärmetauscher 12 auf etwa Umgebungstemperatur angewärmt und verläßt die Anlage als gasförmiges Produkt 58.
Aus den Speichertanks 33, 49 können flüssiger Sauerstoff und/oder flüssiger Stickstoff als Produkte abgezogen werden (die entsprechenden Leitungen sind in der Zeichnung nicht dargestellt). Die Wechselspeicherung hat bei dem erfindungsgemäßen Verfahren keinerlei störende Einflüsse auf die Rektifikation, insbesondere wird weder Flüssigluft der Rektifikation zugeführt, noch wird Niederdruckluft direkt in die Niederdrucksäule eingespeist. Dadurch eignet sich der Prozeß hervorragend für besonders anspruchsvolle Trennaufgaben wie die Gewinnung von Argon. Dazu kann an einer Zwischenstelle 66 der Niederdrucksäule 15 eine konventionelle Argonrektifikation angeschlossen sein, wie es in der Zeichnung durch die dort gezeigten Leitungen angedeutet ist. Bevorzugt wird dazu einer der in EP-B-377117 oder in einer der europäischen Patentanmeldungen 95101844.9 oder 95101845.6 mit älterem Zeitrang beschriebenen Verfahren und Vorrichtungen eingesetzt.
In dem Beispiel wird die erste Stufe 41 des Kreislaufverdichters auch als Produktverdichter verwendet, indem zwischen der ersten und der zweiten Stufe ein Produktstrom 65 unter einem Druck von vorzugsweise 8 bis 35 bar, beispielsweise 20 bar abgezogen wird.
Im folgenden werden nun die beiden grundsätzlichen Betriebsweisen eines Verfahrens und einer Vorrichtung gemäß der Erfindung erläutert. Die Anlage ist für eine bestimmte mittlere Menge an Drucksauerstoffprodukt ausgelegt. Die Produktion kann um diesen mittleren Wert schwanken, und zwar zwischen einem minimalen und einem maximalen Wert. Zur Erläuterung, wie diese Schwankung bewerkstelligt wird, werden in den folgenden Zahlenbeispielen die beiden extremen Betriebsfälle ("Max.", "Min.") und der Betriebsfall der durchschnittlichen Drucksauerstoffproduktion ("Mittl.") einer Anlage vorgestellt, die 190.000 NrrvVh Einsatzluft verarbeitet. Die Drücke betragen dabei
Drucksäule 14 5,1 bar
Niederdrucksäule 15 1 ,3 bar
Drucksauerstoff 37 26 bar
Eintritt des Kreislaufverdichters 4,8 bar
Austritt des Kreislaufverdichters 42 bar
Flüssigsauerstofftank 33 1,1 bar
Flüssigstickstofftank 1 ,1 bar
Tabelle 1 betrifft diejenige Betriebsweise, in der die Entspannungsturbine 43 für den zweiten Teilstrom 59 mit konstanter Drehzahl gefahren wird; bei der in Tabelle 2 dargestellten Betriebsweise wird der Durchsatz durch den Kreislaufverdichter 41, 42 konstant gehalten. Selbstverständlich ist auch bei dem Ausführungsbeispiel jeder beliebige Übergang zwischen diesen beiden Betriebsweisen möglich. In beiden Tabellen werden die Mengen der jeweiligen Ströme für die drei genannten Betriebsfälle in 1000 Nm3/h angegeben. Die Bezugszeichen in der ersten Tabellenspalte beziehen sich auf die Zeichnung.
Figure imgf000013_0001
Figure imgf000014_0001
Das Schema ist in der Zeichnung ist durch ein gestrichelte Linie in zwei Hälften geteilt. Die linke Hälfte enthält im wesentlichen den Kaltekreislauf und die Speichertanks; die gesamte Rektifikation befindet sich in der rechten Hälfte. Im Wechselbetrieb des Verfahrens und der Anlage bleiben alle Ströme in der rechten Hälfte der Zeichnung vollständig oder im wesentlichen unverändert, die Schwankungen in der Drucksauerstoffproduktion wirken sich nur auf den Kreislauf und die Speichertanks aus. Dies spiegelt sich in den ersten sechs Zeilen der beiden Tabellen wieder, in denen sämtliche Ströme genannt sind, die die gestrichelte Linie überschreiten; diese weisen in allen Betriebsfällen den gleichen Durchsatz auf, während sich die Verdampfungsmenge ändert (Bezugszeichen 36, 37). Insbesondere wird über Leitung 38 eine konstante Menge von 105.000 NrrvVh Stickstoff aus der Drucksäule 14 in den variablen Teil der Anlage geführt, der in den Strömen 40 und 53 von einem - ebenfalls gleichbleibenden - Teil (15.000 NrrvVh) des in der Turbine 43 entspannten zweiten Teilstroms überlagert wird. Ebenso bleibt die Entnahme von flüssigem Sauerstoffprodukt 31 , 32 aus der Niederdrucksäule 15 in allen Betriebsfällen konstant.
In dem Zahlenbeispiel von Tabelle 1 wird der zweite Teilstrom 59, 60 konstant gehalten. Die für die Verdampfung notwendige Variation des ersten Teilstroms 45 wird durch die entsprechende Veränderung des Durchsatzes durch den Kreislaufverdichter (Strom 44) bewirkt: Erhöht sich beispielsweise die Produktion von dem durchschnittlichen auf den maximalen Wert, so nimmt der Durchsatz durch den Kreislaufverdichter etwa um denselben Betrag wie die Produktmenge zu. Das zusätzliche Gas wird durch eine entsprechende Verringerung der Gasmenge zur Verfügung gestellt, die als weiterer Strom 55, 57, 58 durch die Turbine 56 aus dem Kreislauf entnommen wird.
Die schwankenden Mengen an verflüssigtem Wärmeträger (erster Teilstrom 45) werden dadurch gepuffert, daß bei überdurchschnittlicher Produktion über Leitung 48 überschüssige Flüssigkeit dem zweiten Speichertank 49 zugeführt wird; umgekehrt wird die fehlende Flüssigkeit bei geringer Produktmenge über Leitung 52 aus dem Flüssigstickstofftank nachgeführt, um die Rücklaufmenge für die Drucksäule 14 konstant zu halten.
Das Zahlenbeispiel von Tabelle 1 ist so ausgelegt, daß ein durchschnittlicher Überschuß an Flüssigkeit von jeweils 1500 NrrvVh Sauerstoff und Stickstoff erzeugt wird. Dieser kann kontinuierlich, intermittierend oder auch in variabler Menge in Form von Flüssigprodukten abgeführt werden. Im übrigen ist es bei dem Verfahren auch möglich, die durchschnittliche Kälteleistung des Kreislaufs und damit die mittlere Menge der Flüssigprodukte während des Betriebs zu verändern, indem die durchschnittlichen Drehzahlen der Turbinen entsprechend angepaßt werden. Die Anlage kann damit nicht nur bezüglich des innenverdichteten Druckprodukts, sondern auch hinsichtlich der Flüssigkeitsproduktion besonders flexibel betrieben werden.
Im Beispiel von Tabelle 2 wird statt des zweiten Teilstroms der Durchsatz des Kreislaufverdichters 41 , 42 konstant gehalten.

Claims

Patentansprüche
1. Verfahren zur variablen Erzeugung eines gasförmigen Druckprodukts (37) durch Tieftemperaturzerlegung von Luft, bei dem Einsatzluft (10, 13) einem Rektifiziersystem (14, 15) zugeführt wird, wobei eine flüssige Fraktion (31 , 32, 34) aus dem Rektifiziersystem (14, 15) in einem ersten Speichertank (33) gepuffert, der Druck der flüssigen Fraktion (34) erhöht (35) und eine variable Menge der flüssigen Fraktion (36) unter dem erhöhten Druck durch indirekten Wärmeaustausch (12) verdampft und als gasförmiges
Druckprodukt (37) gewonnen wird, wobei ferner ein Wärmeträger in einem Kältekreislauf geführt wird, der einen
Kreislaufverdichter (41 , 42) aufweist, ein erster Teilstrom (44, 45) von im Kreislaufverdichter (41 , 42) verdichtetem
Wärmeträger dem indirekten Wärmeaustausch (12) zur Verdampfung der flüssigen Fraktion (36) zugeführt und dabei mindestens teilweise verflüssigt wird, ein zweiter Teilstrom (44, 59) von im Kreislaufverdichter (41 , 42) verdichtetem
Wärmeträger (44) arbeitsleistend entspannt (43) wird und verflüssigter Wärmeträger (45, 48, 52) in einem zweiten Speichertank (49) gepuffert wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß ein weiterer Strom (55) des Wärmeträgers arbeitsleistend entspannt (56) wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Menge des weiteren Stroms (55), die der arbeitsleistenden Entspannung (56) zugeführt wird, bei erhöhtem Bedarf an gasförmigem Druckprodukt (37) erniedrigt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß Stickstoff (31) aus dem Rektifiziersystem (14, 15) als Wärmeträger eingesetzt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Einsatzluft (10) für das Rektifiziersystem (14, 15) in einem Hauptwärmetauschersystem (11 , 12) abgekühlt wird, in dem auch die Verdampfung (12) der flüssigen Fraktion (36) unter erhöhtem Druck durchgeführt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Hauptwärmetauschersystem einen Wärmetauscherblock aufweist, in dem sowohl die Abkühlung der Einsatzluft als auch die Verdampfung der flüssigen Fraktion unter erhöhtem Druck durchgeführt werden.
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Hauptwärmetauschersystem einen ersten und einen zweiten Wärmetauscherblock aufweist, wobei in dem ersten Wärmetauscherblock (11) die Abkühlung der Einsatzluft (10) und in dem zweiten Wärmetauscherbiock (12) die Verdampfung der flüssigen Fraktion (36) unter erhöhtem Druck durchgeführt wird, und wobei die beiden Wärmetauscherblöcke (11, 12) durch einen Ausgleichsstrom (54) gekoppelt sind, der einem (11) der beiden Wärmetauscherblöcke zwischen dem warmen und kalten Ende entnommen und dem anderen (12) der beiden Wärmetauscherblöcke zwischen dem warmen und kalten Ende zugeführt wird.
8. Vorrichtung zur variablen Erzeugung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft, mit einem Rektifiziersystem (14, 15), in das eine Einsatzluftleitung (10, 13) führt, mit einer Flüssigkeitsleitung (31 , 32) zur Entnahme einer flüssigen Fraktion aus dem Rektifiziersystem (14, 15) und zu deren Einleitung in einen ersten
Speichertank (33), mit Mitteln (35) zur Erhöhung des Drucks der flüssigen Fraktion (34), mit einem Wärmetauscher (12) zur Verdampfung der flüssigen Fraktion (36) unter erhöhtem Druck, mit einer Produktleitung (37) zur Entnahme der verdampften flüssigen
Fraktion als gasförmiges Druckprodukt, mit einem Kältekreislauf, der einen Kreislaufverdichter (41 , 42) aufweist, mit einer ersten Teilstromleitung (44, 45), die von dem Kreislaufverdichter
(41 , 42) zu dem Wärmetauscher (12) zur Verdampfung der flüssigen Fraktion
(36) verbunden ist, mit einer zweiten Teilstromleitung (44, 59), die von dem Kreislaufverdichter
(41. 42) zu einer Entspannungsmaschine (43) führt und mit einem zweiten Speichertank (49) zur Pufferung von verflüssigtem Wärmeträger (45, 48).
PCT/EP1996/003175 1995-07-21 1996-07-18 Verfahren und vorrichtung zur variablen erzeugung eines gasförmigen druckprodukts WO1997004279A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX9800557A MX9800557A (es) 1995-07-21 1996-07-18 Procedimiento y dispositivo para la produccion de cantidades variables de un producto gaseoso presurizado.
EP96927545A EP0842385B2 (de) 1995-07-21 1996-07-18 Verfahren und vorrichtung zur variablen erzeugung eines gasförmigen druckprodukts
AU67344/96A AU719608B2 (en) 1995-07-21 1996-07-18 Method and device for the production of variable amounts of a pressurized gaseous product
DE59606808T DE59606808D1 (de) 1995-07-21 1996-07-18 Verfahren und vorrichtung zur variablen erzeugung eines gasförmigen druckprodukts
US08/983,572 US5953937A (en) 1995-07-21 1996-07-18 Process and apparatus for the variable production of a gaseous pressurized product
BR9609781-7A BR9609781A (pt) 1995-07-21 1996-07-18 Processo e dispositivo para a geração variável de um produto de pressão gasoso.
DK96927545T DK0842385T4 (da) 1995-07-21 1996-07-18 Fremgangsmåde og anordning til variabel fremstilling af et gasformigt produkt under tryk
JP50629897A JP3947565B2 (ja) 1995-07-21 1996-07-18 加圧製品ガスの可変生成方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19526785.0 1995-07-21
DE19526785A DE19526785C1 (de) 1995-07-21 1995-07-21 Verfahren und Vorrichtung zur variablen Erzeugung eines gasförmigen Druckprodukts

Publications (1)

Publication Number Publication Date
WO1997004279A1 true WO1997004279A1 (de) 1997-02-06

Family

ID=7767507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/003175 WO1997004279A1 (de) 1995-07-21 1996-07-18 Verfahren und vorrichtung zur variablen erzeugung eines gasförmigen druckprodukts

Country Status (15)

Country Link
US (1) US5953937A (de)
EP (1) EP0842385B2 (de)
JP (1) JP3947565B2 (de)
KR (1) KR100421071B1 (de)
CN (1) CN1134638C (de)
AU (1) AU719608B2 (de)
BR (1) BR9609781A (de)
CA (1) CA2227050A1 (de)
DE (2) DE19526785C1 (de)
DK (1) DK0842385T4 (de)
ES (1) ES2158336T5 (de)
MX (1) MX9800557A (de)
TW (1) TW318882B (de)
WO (1) WO1997004279A1 (de)
ZA (1) ZA966146B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295840B1 (en) 2000-11-15 2001-10-02 Air Products And Chemicals, Inc. Pressurized liquid cryogen process

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249383A1 (de) * 2002-10-23 2004-05-06 Linde Ag Verfahren und Vorrichtung zur variablen Erzeugung von Sauerstoff durch Tieftemperatur-Zerlegung von Luft
US7409835B2 (en) * 2004-07-14 2008-08-12 Air Liquide Process & Construction, Inc. Backup system and method for production of pressurized gas
US20070251267A1 (en) * 2006-04-26 2007-11-01 Bao Ha Cryogenic Air Separation Process
US20080115531A1 (en) * 2006-11-16 2008-05-22 Bao Ha Cryogenic Air Separation Process and Apparatus
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
US20090320520A1 (en) * 2008-06-30 2009-12-31 David Ross Parsnick Nitrogen liquefier retrofit for an air separation plant
US9714789B2 (en) * 2008-09-10 2017-07-25 Praxair Technology, Inc. Air separation refrigeration supply method
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (de) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Verfahren und Vorrichtung Gewinnung von Drucksauerstoff und Krypton/Xenon
EP2614326B1 (de) * 2010-09-09 2019-03-27 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren zur trennung von luft durch kryogene destillation
CN102072612B (zh) * 2010-10-19 2013-05-29 上海加力气体有限公司 N型模式节能制气方法
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
CN102322727A (zh) * 2011-09-08 2012-01-18 罗良宜 空气能空气液化分离装置
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090B1 (de) 2011-12-01 2014-07-16 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102012006746A1 (de) 2012-04-03 2013-10-10 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung elektrischer Energie
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
PL2963370T3 (pl) 2014-07-05 2018-11-30 Linde Aktiengesellschaft Sposób i urządzenie do kriogenicznego rozdziału powietrza
EP2963371B1 (de) 2014-07-05 2018-05-02 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckgasprodukts durch tieftemperaturzerlegung von luft
EP2963369B1 (de) 2014-07-05 2018-05-02 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
FR3066809B1 (fr) * 2017-05-24 2020-01-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil pour la separation de l'air par distillation cryogenique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1178006A (en) * 1966-03-25 1970-01-14 Air Liquide Process for the production of a Gas in the Gaseous State under Pressure in Variable Quantities, and in the Liquid State
US5152149A (en) * 1991-07-23 1992-10-06 The Boc Group, Inc. Air separation method for supplying gaseous oxygen in accordance with a variable demand pattern
EP0556861A1 (de) * 1992-02-21 1993-08-25 Praxair Technology, Inc. Tieftemperaturluftzerlegung für die Herstellung von gasförmigem Sauerstoff

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE752439C (de) * 1943-02-11 1953-01-05 Messer & Co G M B H Verfahren zur Erzeugung von komprimiertem Sauerstoff
US2708831A (en) * 1953-04-09 1955-05-24 Air Reduction Separation of air
GB890458A (en) * 1959-12-14 1962-02-28 British Oxygen Co Ltd Low temperature separation of gas mixtures
DE1226616B (de) 1961-11-29 1966-10-13 Linde Ag Verfahren und Einrichtung zur Gewinnung von gasfoermigem Drucksauerstoff mit gleichzeitiger Erzeugung fluessiger Zerlegungsprodukte durch Tieftemperatur-Luftzerlegung
DE6910083U (de) * 1969-03-13 1969-12-04 Merk Gmbh Telefonbau Fried Elektromagnetisches schauzeichen
GB2125949B (en) * 1982-08-24 1985-09-11 Air Prod & Chem Plant for producing gaseous oxygen
DE3913880A1 (de) * 1989-04-27 1990-10-31 Linde Ag Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
JPH02293575A (ja) 1989-05-08 1990-12-04 Kobe Steel Ltd 空気分離装置
US5252149B1 (en) * 1989-08-04 1998-09-29 Warman Int Ltd Ferrochromium alloy and method thereof
JPH0455682A (ja) 1990-06-22 1992-02-24 Kobe Steel Ltd 空気分離装置
FR2670278B1 (fr) * 1990-12-06 1993-01-22 Air Liquide Procede et installation de distillation d'air en regime variable de production d'oxygene gazeux.
FR2703140B1 (fr) * 1993-03-23 1995-05-19 Air Liquide Procédé et installation de production d'oxygène gazeux et/ou d'azote gazeux sous pression par distillation de l'air.
US5386692A (en) * 1994-02-08 1995-02-07 Praxair Technology, Inc. Cryogenic rectification system with hybrid product boiler
FR2723184B1 (fr) * 1994-07-29 1996-09-06 Grenier Maurice Procede et installation de production d'oxygene gazeux sous pression a debit variable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1178006A (en) * 1966-03-25 1970-01-14 Air Liquide Process for the production of a Gas in the Gaseous State under Pressure in Variable Quantities, and in the Liquid State
US5152149A (en) * 1991-07-23 1992-10-06 The Boc Group, Inc. Air separation method for supplying gaseous oxygen in accordance with a variable demand pattern
EP0556861A1 (de) * 1992-02-21 1993-08-25 Praxair Technology, Inc. Tieftemperaturluftzerlegung für die Herstellung von gasförmigem Sauerstoff

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W.ROHDE: "Luftzerlegungsanlage mit Wechselspeicherung für variable Sauerstofflieferung", LINDE BERICHTE AUS TECHNIK UND WISSENSCHAFT, no. 54, 1984, pages 18 - 20, XP002019668 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295840B1 (en) 2000-11-15 2001-10-02 Air Products And Chemicals, Inc. Pressurized liquid cryogen process

Also Published As

Publication number Publication date
AU6734496A (en) 1997-02-18
DK0842385T3 (da) 2001-08-06
CN1191600A (zh) 1998-08-26
EP0842385A1 (de) 1998-05-20
KR19990035798A (ko) 1999-05-25
JPH11509615A (ja) 1999-08-24
ES2158336T3 (es) 2001-09-01
CN1134638C (zh) 2004-01-14
KR100421071B1 (ko) 2004-04-17
MX9800557A (es) 1998-04-30
TW318882B (de) 1997-11-01
ZA966146B (en) 1997-02-04
DK0842385T4 (da) 2004-03-22
BR9609781A (pt) 1999-12-21
DE19526785C1 (de) 1997-02-20
EP0842385B2 (de) 2003-12-03
JP3947565B2 (ja) 2007-07-25
CA2227050A1 (en) 1997-02-06
DE59606808D1 (de) 2001-05-23
ES2158336T5 (es) 2004-07-01
US5953937A (en) 1999-09-21
AU719608B2 (en) 2000-05-11
EP0842385B1 (de) 2001-04-18

Similar Documents

Publication Publication Date Title
EP0842385B2 (de) Verfahren und vorrichtung zur variablen erzeugung eines gasförmigen druckprodukts
EP0949471B1 (de) Luftzerlegungsanlage mit zwei verschiedenen Betriebsmodi
EP0093448B1 (de) Verfahren und Vorrichtung zur Gewinnung von gasförmigem Sauerstoff unter erhöhtem Druck
DE3146335C2 (de) Verfahren zum Erzeugen von Sauerstoff-Produktgas
EP1067345B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE3706733C2 (de)
EP0895045B1 (de) Verfahren zur Luftzerlegung
DE2920270C2 (de) Verfahren zum Erzeugen von Sauerstoff
DE3874731T2 (de) Kryogene luftspaltung mit einem aufkocher mit totalkondensation durch kompression/expansion.
DE69727648T2 (de) Verfahren und Anlage zur Lieferung eines Luftgases in variablen Mengen
EP1845323A1 (de) Verfahren und Vorrichtung zur Erzeugung eines Druckprodukts durch Tieftemperatur-Luftzerlegung
DE3913880A1 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
DE10139727A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP0716280A2 (de) Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft
EP1146301A1 (de) Verfahren und Vorrichtung zur Gewinnung von Drückstickstoff durch Tieftemperaturzerlegung von Luft
EP0948730A1 (de) Verfahren und vorrichtung zur gewinnung von druckstickstoff
EP3019803B1 (de) Verfahren und vorrichtung zur sauerstoffgewinnung durch tieftemperaturzerlegung von luft mit variablem energieverbrauch
DE4415747C2 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
WO2014154339A2 (de) Verfahren zur luftzerlegung und luftzerlegungsanlage
EP2647934A1 (de) Verfahren und Vorrichtung zur Erzeugung elektrischer Energie
DE10205096A1 (de) Verfahren und Vorrichtung zur Gewinnung hoch reinen Sauerstoffs aus weniger reinem Sauerstoff
DE1250848B (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft bei Sauerstoffabnahmeschwankungen
DE10045128A1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
DE102021117030B4 (de) Gasgemisch-Zerlegungsanlage sowie Verfahren zum Abtrennen von wenigstens einem Hauptfluid aus einem Gasgemisch
DE60020791T2 (de) Verfahren zur Zufuhr einer kryogenisch-getrennten Komponente aus einem Gasgemisch mit variablen Durchflussgeschwindigkeiten

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96195699.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2227050

Country of ref document: CA

Ref document number: 2227050

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/000557

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 1997 506298

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019980700457

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996927545

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08983572

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996927545

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980700457

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996927545

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019980700457

Country of ref document: KR