EP0948730A1 - Verfahren und vorrichtung zur gewinnung von druckstickstoff - Google Patents

Verfahren und vorrichtung zur gewinnung von druckstickstoff

Info

Publication number
EP0948730A1
EP0948730A1 EP97948844A EP97948844A EP0948730A1 EP 0948730 A1 EP0948730 A1 EP 0948730A1 EP 97948844 A EP97948844 A EP 97948844A EP 97948844 A EP97948844 A EP 97948844A EP 0948730 A1 EP0948730 A1 EP 0948730A1
Authority
EP
European Patent Office
Prior art keywords
pressure column
low
nitrogen
liquid
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97948844A
Other languages
English (en)
French (fr)
Other versions
EP0948730B1 (de
Inventor
Horst Corduan
Dietrich Rottmann
Jürgen Voit
Christian Kunz
Wolfgang Haag
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP97948844A priority Critical patent/EP0948730B1/de
Publication of EP0948730A1 publication Critical patent/EP0948730A1/de
Application granted granted Critical
Publication of EP0948730B1 publication Critical patent/EP0948730B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • F25J3/04212Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product and simultaneously condensing vapor from a column serving as reflux within the or another column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/0403Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04236Integration of different exchangers in a single core, so-called integrated cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04321Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04418Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system with thermally overlapping high and low pressure columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04424Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system without thermally coupled high and low pressure columns, i.e. a so-called split columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04884Arrangement of reboiler-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/52Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/02Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pump in general or hydrostatic pressure increase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/10Boiler-condenser with superposed stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/52One fluid being oxygen enriched compared to air, e.g. "crude oxygen"

Definitions

  • the invention relates to a process for the production of pressurized nitrogen by low-temperature decomposition of air in a rectification system which has a pressurized column and a low-pressure column, the process introducing feed air into the pressurized column, removing an oxygen-containing liquid fraction from the pressurized column and feeding it into the low-pressure column.
  • gaseous nitrogen from the low pressure column in a top condenser is at least partially condensed by indirect heat exchange with an evaporating liquid and nitrogen is obtained from the low pressure column as a gaseous pressure nitrogen product under a pressure which is higher than the operating pressure of the low pressure column
  • the invention is based, to obtain nitrogen under high pressure with relatively little effort the task
  • This object is achieved in that at least a portion of the liquid nitrogen produced during the indirect heat exchange in the top condenser or liquid nitrogen drawn off from the low-pressure column is brought to a pressure in a liquid state which exceeds the pressure of the low-pressure column in a product evaporator by indirect heat exchange is evaporated from a heat carrier and is obtained as a pressurized nitrogen product.
  • the product evaporator can be arranged inside one of the columns or outside the columns
  • the pressure increase in the nitrogen product from the low-pressure column is therefore carried out at least partially in the liquid state.
  • the pressure increase in the liquid can be carried out by any known measure, for example by means of a pump, by utilizing a hydrostatic potential and / or the pressure build-up evaporation on a tank. It means less expenditure on equipment than a gas compressor. Indirect heat exchange is also required, in which the low-pressure column nitrogen, which is brought under pressure, is evaporated. Nevertheless, there is an overall economically particularly favorable process.
  • the method according to the invention Compared to a removal of the pressure nitrogen product directly from the pressure column, the method according to the invention also has the advantage of higher product purity. In particular, a lower concentration of volatile components such as helium, neon and / or hydrogen can be achieved in the low pressure column compared to the top product of the pressure column. In the case of the invention, the entire nitrogen product of the low-pressure column is preferably removed in liquid form from the low-pressure column or its top condenser.
  • the operating pressures of the double column can be, for example, 6 to 20, preferably 7 to 16 bar in the pressure column and, for example, 3 to 8, preferably 3 to 6 bar in the low-pressure column in the process according to the invention.
  • the top condenser of the low-pressure column is operated, for example, with a liquid from the low-pressure column, such as the low-pressure column bottom liquid, as the refrigerant.
  • Return for the pressure column is usually generated by a condenser-evaporator, via which the top of the pressure column and the bottom of the low-pressure column are in heat-exchanging connection.
  • a gas from the pressure column preferably a nitrogen-containing fraction from an upper or middle area of the pressure column, can be used as the heat transfer medium.
  • This can be the top fraction of the pressure column or a gas which is drawn off at an intermediate point on the pressure column.
  • This intermediate point lies below the pressure column head by a number of theoretical plates, which is up to 5/6, preferably 1/3 to 5/6, of the total number of theoretical plates within the pressure column.
  • the condensate formed during indirect heat exchange in the product evaporator becomes at least partially, preferably completely, returned to the pressure column and used there as reflux.
  • a gas from the low-pressure column is used as a heat carrier for the vaporization of the low-pressure column nitrogen which has been brought under pressure, preferably an oxygen-containing fraction from a lower or middle region of the low-pressure column. It can be the bottom fraction of the low pressure column or a gas that comes from an intermediate point of the low pressure column. This intermediate point lies above the low-pressure column sump by a number of theoretical plates, which is up to 5/6, preferably 1/3 to 5/6, of the total number of theoretical plates within the low-pressure column.
  • the condensate formed in the indirect heat exchange in the product evaporator is at least partially, preferably completely, returned to the low-pressure column.
  • the liquid nitrogen is only partially evaporated in the indirect heat exchange in the product evaporator and the liquid portion of the nitrogen is returned to the low pressure column.
  • the product evaporator is preferably operated as a falling film evaporator. This type of evaporation enables a particularly low temperature difference and thus a correspondingly high evaporation pressure, which is only slightly (approximately 0.3 to 0.8 bar) below the pressure column pressure even when using pure nitrogen from the head of the pressure column as a heat carrier.
  • the existing pump for increasing the pressure is used as the circulation pump; the low-pressure column serves as a flash gas separator for the return of the liquid portion.
  • Pressure nitrogen product from the low pressure column can be brought to pressure column pressure with little effort and mixed with nitrogen product drawn off directly from the pressure column.
  • the mixture can be used as a product or compressed to an even higher pressure.
  • the process fraction to be relieved of work can be a partial flow of the input air evaporated refrigerant from the top condenser of the low pressure column or a gas from the lower region of the low pressure column.
  • the bottom liquid of the low pressure column is used as a refrigerant to condense the gaseous nitrogen from the low pressure column in the
  • Top condenser of the low pressure column used.
  • relatively pure or pure oxygen purity higher than 40 mol%, in particular higher than 80 mol% or higher than 90 mol%, preferably between 99.5 and 99.999 mol%
  • a liquid fraction, the oxygen content of which is between that of the oxygen-containing liquid fraction from the pressure column and that of the bottom liquid of the low pressure column is used in the top condenser for the condensation of the gaseous nitrogen from the low pressure column.
  • This can be the oxygen-containing liquid fraction from the pressure column itself or one after its relaxation to about
  • a pure oxygen product can be removed in liquid and / or gaseous form from the lower region of the low-pressure column, specifically under the pressure of the low-pressure column that is higher than the atmospheric pressure.
  • the refrigerant for the top condenser of the low pressure column still has a higher nitrogen content than the oxygen product and thus a relatively low evaporation temperature.
  • the invention also relates to a device according to claims 6 to 10.
  • Figure 1 shows a first embodiment of the method according to the invention and a corresponding device with an outside of the columns arranged and operated with steam from the pressure column product evaporator
  • Figure 2 shows a modified embodiment with heating the
  • Figure 3 shows another variant of the example of Figure 1 with work
  • FIG. 4 shows an example with work-relieving relaxation of a gas from the low pressure column
  • FIG. 5 shows an embodiment with simultaneous extraction of pure
  • FIG. 6 shows a further exemplary embodiment of the method according to the invention and a corresponding device with a product evaporator arranged inside the columns and operated with steam from the low pressure column,
  • FIGS. 8 and 9 exemplary embodiments with a product evaporator arranged outside the columns.
  • compressed and cleaned air 1 is cooled in a main heat exchanger 2 and fed to a pressure column 4 under a pressure of 14 bar (3).
  • the rectification system also has a low-pressure column 5, which is operated at a pressure of 5 bar and is in heat-exchanging connection with the pressure column via a common condenser-evaporator (main condenser) 6.
  • a portion 8 of the nitrogen removed at the top of the pressure column is liquefied in the main condenser 6 and fed via lines 9 and 10 as a return to the pressure column.
  • Bottom liquid 11 of the pressure column is throttled into the low-pressure column 5 after hypothermia 15 as an oxygen-rich liquid fraction (12).
  • the bottom liquid 13 of the low-pressure column 5 is also subcooled (14) and expanded (16) and then introduced into the evaporation chamber of the top condenser 17 of the low-pressure column 5.
  • gaseous nitrogen 18 condenses from the top of the low-pressure column 5; a first part of the condensate 19 is returned to the low-pressure column and used there as a return.
  • Another part 20 of the liquid nitrogen 19 from the top condenser 17 is either removed from the low-pressure column as shown in FIG. 1 or branched off directly from the line 19. According to the invention, this liquid nitrogen 20 is brought to pressure in the liquid state (in the example, 14 bar) (pump 21) and via line 22 through the subcooler 15 to a product evaporator 23.
  • the nitrogen 24 evaporated under a pressure of 13.4 bar is heated in the main heat exchanger 2 and discharged as a pressure product 25. It can optionally be further compressed 26 in the gaseous state and, if desired, with Compressed nitrogen 27, 28 drawn off directly from the pressure column can be mixed
  • the product evaporator 23 On the liquefaction side of the product evaporator 23, a portion 35 of the gaseous nitrogen 7 is condensed from the top of the pressure column 4. The liquid 36 formed in this way is applied to the pressure column 4 as an additional return.
  • the product evaporator 23 is designed as a falling film evaporator, in which only a partial one Evaporation takes place. Nitrogen 45 remaining in the liquid is returned to the low-pressure column 5
  • a portion of the liquid nitrogen can be obtained from the top of the low-pressure column as a liquid product 30.
  • the expanded air 34 is introduced into the low-pressure column 5.
  • the mechanical energy obtained in the expansion machine 33 can be used for the post-compression 26 of the compressed nitrogen product 24 evaporated in the product evaporator 23. preferably by direct mechanical coupling of expansion machine 33 and compressor 26
  • the method of FIG. 2 differs from this mainly by the use of another heat transfer medium in the product evaporator.
  • a gas 35 ′ is passed from an intermediate point of the pressure column into the liquefaction space of the product evaporator 23.
  • the intermediate point is about 20 theoretical bases below the head of the pressure column 4, which contains a total of 60 theoretical floors in the example
  • the gas 35 'still has an oxygen content of about 2 mol% and thus a higher condensation temperature than the pure nitrogen from the top of the pressure column 6 (10 ppb oxygen).
  • the pressure on the evaporation side of the product evaporator 23 can be correspondingly higher (14 bar instead of 13, 4 bar in the case of FIG. 1) Condensate 36 'formed during the indirect heat exchange is returned to the pressure column 4 at a point corresponding to its composition, in particular to the point of removal (line 35' or somewhat above)
  • the entire feed air 3 ′ can be passed into the pressure column 4.
  • a sufficiently high pressure for example 8 to 15 bar
  • the operating pressures in pressure column 4 and low-pressure column 5 in this example are 15 bar and 5 bar, respectively.
  • Process cold is generated here by expansion of the steam 31, 31 'from the evaporation side of the top condenser 17 of the low-pressure column 5.
  • the expansion machine 33' can, as in FIG 1 may be coupled to a compressor 26 for nitrogen product
  • the method of FIG. 4 can also be used at lower pressures (for example pressure column 10 bar, low pressure column 3 bar).
  • the expansion machine 33 "is operated with a gas 37/38 which is drawn off from the lower region of the low pressure column 5, in particular immediately above the sump
  • the pressure of this Gas (4.5 bar) is significantly higher than the pressure on the evaporation side of the top condenser 17 (1, 25 bar).
  • the exhaust gas 39 of the expansion machine can be heated in a separate passage of the main heat exchanger 2 and removed as a by-product; the additional passage is saved if it is mixed upstream of the main heat exchanger with another fraction (steam 31 from the top condenser 17) and the mixture 40 is heated together in the main heat exchanger 2, as shown in FIG. 4.
  • a method according to FIG. 5 is used if, in addition to pressure nitrogen, pure oxygen (in the example: 99.5 mol%) is also to be obtained.
  • This variant differs from FIG. 1 in that the refrigerant 13 'for the top condenser 17 of the low-pressure column 5 is not drawn from the sump but from an intermediate point, preferably from a liquid reservoir within the low-pressure column 5, which is directly below the supply of the oxygen-containing liquid fraction 11 is arranged from the pressure column 4.
  • oxygen product can be drawn off in liquid (42) and / or gaseous (43) form. If necessary, a portion 44 of the liquid 42 can be fed into the top condenser 17. If the oxygen is required under pressure, oxygen 42 can be pressurized in the liquid state in accordance with the known method of internal compression and then evaporated, for example against a portion of the feed air.
  • the method of FIG. 6 differs from that of FIG. 1 in several points. For example, it shows slightly different subcooling of the process streams, in that only one heat exchanger block 15 is shown for this purpose.
  • Part of the bottom product 13 of the low pressure column 5 can be obtained as a liquid product (LOX).
  • Part of the nitrogen 9 liquefied in the main condenser 6 can be subcooled (15) 160 and throttled (161) into the low-pressure column 5.
  • the bottom liquid 11 of the pressure column can be partially (162) directed (163) into the evaporation space of the top condenser 17 of the low pressure column.
  • the pressure nitrogen product 24 is not post-compressed from the product evaporator 23, but is instead drawn off under the evaporation pressure (29).
  • the mechanical energy obtained in the expansion machine 133 can be delivered to a generator or used to compress a process fraction, preferably by direct mechanical coupling of the expansion machine 133 to a compressor (not shown)
  • the main difference compared to FIG. 1 lies in the product evaporator 23, which is operated on the liquefaction side with steam from the low-pressure column. For this purpose, part of the gas located above the bottom of the low-pressure column is condensed on the liquefaction side. The resulting liquid 136 flows back into the low-pressure column.
  • the product evaporator 23 is arranged inside the low-pressure column in the example. It can be designed as a falling-film evaporator in which only partial evaporation takes place. Nitrogen remaining in the liquid can be returned to the low-pressure column 5
  • the product evaporator 23 is installed in the double column in a manner similar to that in FIG. 6. It sits here in the upper region of the pressure column 4.
  • the liquefaction side of the product evaporator 23 is similar to that in FIGS. 1 to 5 with a part 35 of the gaseous nitrogen 7 acted upon by the head of the pressure column 4
  • subcooler and product evaporator are integrated in a heat exchanger block 223.
  • part 246 of the bottom liquid 11 of the pressure column can be used for additional head cooling of pressure column (via valve 248) or low pressure column (via valve 247).
  • Process cold is achieved as in FIG. 1 work relaxation 33 of part 32 of the feed air obtained
  • the product evaporator 323 from FIG. 9 is implemented as a countercurrent heat exchanger, preferably as an aluminum plate heat exchanger In contrast to FIG. 8, however, it is separated from the subcooling heat exchanger 15.
  • the methods of the exemplary embodiments and the method according to the invention in general are particularly suitable for obtaining high-purity nitrogen with a particularly low content of volatile components such as helium, neon and / or hydrogen. You can do this in addition to the usual ones
  • Capacitors 23 and 17 arranged discharge lines for more volatile gases (not shown in the drawings) further measures may be provided.
  • the liquid nitrogen 20 which is fed to the pump 21 can be drawn off at least one theoretical or practical base below the top of the low-pressure column instead of being removed from the top of the low-pressure column.
  • the liquid nitrogen 20 which is fed to the pump 21 can be drawn off at least one theoretical or practical base below the top of the low-pressure column instead of being removed from the top of the low-pressure column.
  • up to ten, preferably three to five theoretical or practical trays can be located between the column head and the modified removal of the liquid nitrogen 20. Even if the low pressure column is otherwise equipped with packings, these trays are preferably designed as conventional rectification trays.
  • FIGS. 6 to 9 a further modification can be made in the methods of FIGS. 6 to 9, in which a liquid nitrogen stream (160 in FIGS. 6 and 7) produced in the pressure column 4 is fed as a return to the top of the low pressure column 5 (via valve 161) .
  • This current can also be taken from an intermediate point which is arranged one to ten, preferably three to five theoretical or practical trays below the head of the pressure column 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Das Verfahren und die Vorrichtung dienen zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft in einem Rektifiziersystem, das eine Drucksäule (4) und eine Niederdrucksäule (5) aufweist. Einsatzluft (1, 3) wird in die Drucksäule (4) eingeleitet. Eine sauerstoffhaltige flüssige Fraktion (11) wird aus der Drucksäule (4) entnommen und in die Niederdrucksäule (5) eingespeist. Gasförmiger Stickstoff (18) aus der Niederdrucksäule (5) wird in einem Kopfkondensator (17) durch indirekten Wärmeaustausch mit einer verdampfenden Flüssigkeit (13) mindestens teilweise kondensiert. Stickstoff aus der Niederdrucksäule wird als gasförmiges Druckstickstoffprodukt (24, 25, 29) unter einem Druck gewonnen, der höher als der Betriebsdruck der Niederdrucksäule (5) ist. Aus der Niederdrucksäule abgezogener flüssiger Stickstoff (20) wird in flüssigem Zustand auf einen Druck gebracht (21), der den Druck der Niederdrucksäule (5) übersteigt. Die auf Druck gebrachte Flüssigkeit (22) wird in einem Produktverdampfer (23) durch indirekten Wärmeaustausch mit einem Wärmeträger (35) verdampft und anschließend als gasförmiges Druckstickstoffprodukt (24, 25, 29) gewonnen.

Description

VERFAHREN UND VORRICHTUNG ZUR GEWINNUNG VON DRUCKSTICKSTOFF
Die Erfindung betrifft ein Verfahren zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft in einem Rektifiziersystem, das eine Drucksaule und eine Niederdrucksaule aufweist, wobei bei dem Verfahren Einsatzluft in die Drucksaule eingeleitet, eine sauerstoffhaltige flussige Fraktion aus der Drucksaule entnommen und in die Niederdrucksaule eingespeist wird, gasformiger Stickstoff aus der Niederdrucksaule in einem Kopfkondensator durch indirekten Wärmeaustausch mit einer verdampfenden Flüssigkeit mindestens teilweise kondensiert wird und Stickstoff aus der Niederdrucksaule als gasformiges Druckstickstoffprodukt unter einem Druck gewonnen wird, der hoher als der Betriebsdruck der Niederdrucksaule ist
Ein derartiges Verfahren ist aus DE 3528374 A1 bekannt Hier wird insbesondere am Kopf der Niederdrucksaule gewonnener Stickstoff als Druckprodukt abgeführt Dazu wird der Stickstoff gasformig aus der Niederdrucksaule entnommen, im Hauptwarmetauscher gegen Einsatzluft angewärmt und anschließend von etwa Niederdrucksaulendruck auf den Produktdruck verdichtet
Der Erfindung liegt die Aufgabe zugrunde, Stickstoff unter hohem Druck mit relativ geringem Aufwand zu gewinnen
Diese Aufgabe wird dadurch gelost, daß mindestens ein Teil des bei dem indirekten Wärmeaustausch im Kopfkondensator entstandenen flussigen Stickstoffs oder aus der Niederdrucksaule abgezogener flussiger Stickstoff in flussigem Zustand auf einen Druck gebracht wird, der den Druck der Niederdrucksaule übersteigt, in einem Produktverdampfer durch indirekten Wärmeaustausch mit einem Warmetrager verdampft wird und als Druckstickstoffprodukt gewonnen wird Der Produktverdampfer kann innerhalb einer der Säulen oder außerhalb der Säulen angeordnet sein
Die Druckerhohung im Stickstoffprodukt aus der Niederdrucksaule wird also mindestens teilweise in flussigem Zustand durchgeführt Die Druckerhohung in der Flüssigkeit kann durch jede bekannte Maßnahme durchgeführt werden, beispielsweise mittels einer Pumpe, der Ausnutzung eines hydrostatischen Potentials und/oder der Druckaufbauverdampfung an einem Tank. Sie bedeutet einen geringeren apparativen Aufwand als ein Gasverdichter. Es wird zusätzlich ein indirekter Wärmeaustausch benötigt, in dem der flüssig auf Druck gebrachte Niederdrucksäulen-Stickstoff verdampft wird. Dennoch ergibt sich insgesamt ein wirtschaftlich besonders günstiges Verfahren.
Gegenüber einer Entnahme des Druckstickstoffprodukts direkt aus der Drucksäule weist das erfindungsgemäße Verfahren außerdem den Vorteil höherer Produktreinheit auf. Insbesondere kann in der Niederdrucksäule eine gegenüber dem Kopfprodukt der Drucksäule verringerte Konzentration an leichterflüchtigen Komponenten wie Helium, Neon und/oder Wasserstoff erreicht werden. Vorzugsweise wird bei der Erfindung das gesamte Stickstoffprodukt der Niederdrucksäule flüssig aus der Niederdrucksäule beziehungsweise ihrem Kopfkondensator entnommen.
Die Betriebsdrücke der Doppelsäule können bei dem erfindungsgemäßen Verfahren beispielsweise 6 bis 20, vorzugsweise 7 bis 16 bar in der Drucksäule und beispielsweise 3 bis 8, vorzugsweise 3 bis 6 bar in der Niederdrucksäule betragen. Der Kopfkondensator der Niederdrucksäule wird beispielsweise mit einer Flüssigkeit aus der Niederdrucksäule wie etwa der Niederdrucksäulen-Sumpfflüssigkeit als Kältemittel betrieben. Rücklauf für die Drucksäule wird üblicherweise durch einen Kondensator-Verdampfer erzeugt, über den der Kopf der Drucksäule und der Sumpf der Niederdrucksäule in wärmetauschender Verbindung stehen.
Für die Auswahl des Wärmeträgers für die Verdampfung des flüssig auf Druck gebrachten Niederdrucksäulen-Stickstoffs gibt es zwei bevorzugte Möglichkeiten.
Zum einen kann ein Gas aus der Drucksäule, vorzugsweise eine stickstoffhaltige Fraktion aus einem oberen oder mittleren Bereich der Drucksäule, als Wärmeträger eingesetzt werden. Es kann sich dabei um die Kopffraktion der Drucksäule oder um ein Gas handeln, das an einer Zwischenstelle der Drucksäule abgezogen wird. Diese Zwischenstelle liegt um eine Anzahl von theoretischen Böden unterhalb des Drucksäulenkopfs, die bis zu 5/6, vorzugsweise 1/3 bis 5/6 der Gesamtzahl an theoretischen Böden innerhalb der Drucksäule beträgt. Das bei dem indirekten Wärmeaustausch in dem Produktverdampfer entstandene Kondensat wird mindestens teilweise, vorzugsweise vollständig wieder in die Drucksäule zurückgeführt und dort als Rücklauf verwendet.
Alternativ oder zusätzlich wird ein Gas aus der Niederdrucksäule als Wärmeträger für die Verdampfung des flüssig auf Druck gebrachten Niederdrucksäulen-Stickstoffs verwendet, vorzugsweise eine sauerstoffhaltige Fraktion aus einem unteren oder mittleren Bereich der Niederdrucksäule. Es kann sich dabei um die Sumpffraktion der Niederdrucksäule handeln oder um ein Gas, das von einer Zwischenstelle der Niederdrucksäule stammt. Diese Zwischenstelle liegt um eine Anzahl von theoretischen Böden oberhalb des Niederdrucksäulensumpfs, die bis zu 5/6, vorzugsweise 1/3 bis 5/6 der Gesamtzahl an theoretischen Böden innerhalb der Niederdrucksäule beträgt. Das bei dem indirekten Wärmeaustausch in dem Produktverdampfer entstandene Kondensat wird mindestens teilweise, vorzugsweise vollständig wieder in die Niederdrucksäule zurückgeführt.
Es ist ferner günstig, wenn der flüssige Stickstoff bei dem indirekten Wärmeaustausch im Produktverdampfer nur teilweise verdampft und der flüssig verbliebene Anteil des Stickstoffs in die Niederdrucksäule zurückgeleitet wird. Der Produktverdampfer wird hierbei vorzugsweise als Fallfilmverdampfer betrieben. Diese Art der Verdampfung ermöglicht eine besonders niedrige Temperaturdifferenz und damit einen entsprechend hohen Verdampfungsdruck, der auch bei der Verwendung reinen Stickstoffs vom Kopf der Drucksäule als Wärmeträger nur geringfügig (etwa 0,3 bis 0,8 bar) unterhalb des Drucksäulendrucks liegt. Als Umwälzpumpe wird die ohnehin zur Druckerhöhung vorhandene Pumpe verwendet; die Niederdrucksäule dient als Flashgasabscheider bei der Rückführung des flüssig verbliebenen Anteils.
Zur Kältegewinnung ist es üblich, eine Prozeßfraktion arbeitsleistend zu entspannen. Im Rahmen der Erfindung ist es von Vorteil, wenn die bei der arbeitsleistenden Entspannung gewonnene Energie zur Weiterverdichtung des Druckstickstoffprodukts stromabwärts des Produktverdampfers verwendet wird. Damit kann das
Druckstickstoffprodukt aus der Niederdrucksäule mit geringem Aufwand auf Drucksäulendruck gebracht und mit direkt aus der Drucksäule abgezogenem Stickstoffprodukt vermischt werden. Das Gemisch kann als Produkt verwendet oder auf einen noch höheren Druck verdichtet werden. Bei der arbeitsleistend zu entspannenden Prozeßfraktion kann es sich um einen Teilstrom der Einsatzluft, um verdampftes Kältemittel aus dem Kopfkondensator der Niederdrucksäule oder um ein Gas aus dem unteren Bereich der Niederdrucksäule handeln.
Normalerweise wird die Sumpfflüssigkeit der Niederdrucksäule als Kältemittel zur Kondensation des gasförmigen Stickstoffs aus der Niederdrucksäule im
Kopfkondensator der Niederdrucksäule eingesetzt. Soll jedoch im Rahmen des erfindungsgemäßen Verfahrens neben dem Druckstickstoff auch relativ reiner oder reiner Sauerstoff (Reinheit höher als 40 mol%, insbesondere höher als 80 mol% oder höher als 90 mol%, vorzugsweise zwischen 99,5 und 99,999 mol%) gewonnen werden, ist es besonders günstig, wenn eine flüssige Fraktion, deren Sauerstoffgehalt zwischen demjenigen der sauerstoffhaltigen flüssigen Fraktion aus der Drucksäule und demjenigen der Sumpfflüssigkeit der Niederdrucksäule liegt, zur Kondensation des gasförmigen Stickstoffs aus der Niederdrucksäule in dem Kopfkondensator eingesetzt wird. Dabei kann es sich um die sauerstoffhaltige flüssige Fraktion aus der Drucksäule selbst oder um eine nach deren Entspannung auf etwa
Niederdrucksäulendruck entstandene Flüssigkeit handeln, oder aber um eine flüssige Fraktion, die der Niederdrucksäule oberhalb des Sumpfes, aber unterhalb der Einspeisung der sauerstoffhaltigen flüssigen Fraktion entnommen wird. Auf diese Weise kann dem unteren Bereich der Niederdrucksäule ein reines Sauerstoffprodukt flüssig und/oder gasförmig entnommen werden, und zwar unter dem gegenüber dem Atmosphärendruck erhöhten Druck der Niederdrucksäule. Das Kältemittel für den Kopfkondensator der Niederdrucksäule weist dennoch einen höheren Stickstoffgehalt als das Sauerstoffprodukt und damit eine relativ niedrige Verdampfungstemperatur auf.
Die Erfindung betrifft außerdem eine Vorrichtung gemäß den Patentansprüchen 6 bis 10.
Die Erfindung sowie weitere Einzelheiten der Erfindung werden im folgenden anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
Figur 1 ein erstes Ausführungsbeispiel des erfindungsgemäßen Verfahrens und einer entsprechenden Vorrichtung mit einem außerhalb der Säulen angeordneten und mit Dampf aus der Drucksäule betriebenen Produktverdampfer, Figur 2 ein abgewandeltes Ausführungsbeispiel mit Beheizung des
Produktverdampfers durch eine Zwischenfraktion der Drucksäule, Figur 3 eine weitere Variante des Beispiels von Figur 1 mit arbeitsleistender
Entspannung von Restgas aus dem Kopfkondensator der Niederdrucksäule, Figur 4 ein Beispiel mit arbeitsleistender Entspannung eines Gases aus der Niederdrucksäule, Figur 5 ein Ausführungsbeispiel mit gleichzeitiger Gewinnung von reinem
Sauerstoff in der Niederdrucksäule Figur 6 ein weiteres Ausführungsbeispiel des erfindungsgemäßen Verfahrens und einer entsprechenden Vorrichtung mit einem innerhalb der Säulen angeordneten und mit Dampf aus der Niederdrucksäule betriebenen Produktverdampfer,
Figur 7 ein Ausführungsbeispiel mit einem innerhalb der Säulen angeordneten und mit Dampf aus der Drucksäule betriebenen Produktverdampfer und Figuren 8 und 9 Ausführungsbeispiele mit einem außerhalb der Säulen angeordneten Produktverdampfer.
Bei dem Verfahren der Figur 1 wird verdichtete und gereinigte Luft 1 in einem Hauptwärmetauscher 2 abgekühlt und einer Drucksäule 4 unter einem Druck von 14 bar zugeleitet (3). Das Rektifiziersystem weist außerdem eine Niederdrucksäule 5 auf, die mit einem Druck von 5 bar betrieben wird und mit der Drucksäule über einen gemeinsamen Kondensator-Verdampfer (Hauptkondensator) 6 in wärmetauschender Verbindung steht. Ein Teil 8 des am Kopf der Drucksäule entnommenen Stickstoffs wird im Hauptkondensator 6 verflüssigt und über die Leitungen 9 und 10 als Rücklauf auf die Drucksäule aufgegeben. Sumpfflüssigkeit 11 der Drucksäule wird nach Unterkühlung 15 als sauerstoffreiche flüssige Fraktion in die Niederdrucksäule 5 eingedrosselt (12). Die Sumpfflüssigkeit 13 der Niederdrucksäule 5 wird ebenfalls unterkühlt (14) und entspannt (16) und anschließend in den Verdampfungsraum des Kopfkondensators 17 der Niederdrucksäule 5 eingeführt. In dessen Verflüssigungsraum kondensiert gasförmiger Stickstoff 18 vom Kopf der Niederdrucksäule 5; das Kondensat 19 wird zu einem ersten Teil in die Niederdrucksäule zurückgeleitet und dort als Rücklauf verwendet. Ein anderer Teil 20 des flussigen Stickstoffs 19 aus dem Kopfkondensator 17 wird entweder wie in Figur 1 dargestellt aus der Niederdrucksaule entnommen oder direkt aus der Leitung 19 abgezweigt Dieser flussige Stickstoff 20 wird erfindungsgemaß in flussigem Zustand auf Druck (im Beispiel 14 bar) gebracht (Pumpe 21) und über Leitung 22 durch den Unterkuhler 15 zu einem Produktverdampfer 23 gefuhrt Der unter einem Druck von 13,4 bar verdampfte Stickstoff 24 wird im Hauptwarmetauscher 2 angewärmt und als Druckprodukt 25 abgeführt Er kann gegebenenfalls in gasformigem Zustand weiter verdichtet 26 und falls gewünscht mit direkt aus der Drucksaule abgezogenem Druckstickstoff 27, 28 vermischt werden
(29) In dem Beispiel stammen ca 50 % des gesamten Druckstickstoffprodukts 29 aus der Niederdrucksaule 5
Auf der Verflussigungsseite des Produktverdampfers 23 wird ein Teil 35 des gasformigen Stickstoffs 7 vom Kopf der Drucksaule 4 kondensiert Die dabei entstehende Flüssigkeit 36 wird als zusätzlicher Rucklauf auf die Drucksaule 4 aufgegeben Der Produktverdampfer 23 ist in dem Beispiel als Fallfilmverdampfer ausgebildet, in dem eine nur partielle Verdampfung stattfindet Flussig verbliebener Stickstoff 45 wird in die Niederdrucksaule 5 zurückgeführt
Bei Bedarf kann ein Teil des flussigen Stickstoffs vom Kopf der Niederdrucksaule als Flussigprodukt 30 gewonnen werden Der unreine Sauerstoff 31 , der durch Verdampfung der Sumpfflussigkeit 13 der Niederdrucksaule 5 im Kopfkondensator 17 der Niederdrucksaule entsteht, wird nach Anwarmung in den Wärmetauschern 14, 15 und 2 als Nebenprodukt oder Restgas abgeführt Er kann beispielsweise für die Regenerierung einer Vorrichtung zur Luftreinigung eingesetzt werden
Kalte wird bei dem Verfahren nach Figur 1 durch arbeitsleistende Entspannung 33 eines Teilstroms 32 der Luft erzeugt Die entspannte Luft 34 wird in die Niederdrucksaule 5 eingeleitet Die in der Entspannungsmaschine 33 gewonnene mechanische Energie kann zur Nachverdichtung 26 des im Produktverdampfer 23 verdampften Druckstickstoffprodukts 24 verwendet werden, vorzugsweise durch direkte mechanische Kopplung von Entspannungsmaschine 33 und Verdichter 26 Das Verfahren der Figur 2 unterscheidet sich hiervon hauptsächlich durch die Verwendung eines anderen Warmetragers im Produktverdampfer Anstelle von Kopfgas 7 der Drucksaule 4 wird hier ein Gas 35' von einer Zwischenstelle der Drucksaule in den Verfiussigungsraum des Produktverdampfers 23 geleitet Die Zwischenstelle liegt etwa 20 theoretische Boden unterhalb des Kopfes der Drucksaule 4, die in dem Beispiel insgesamt 60 theoretische Boden enthalt
Das Gas 35' hat noch einen Sauerstoffgehalt von etwa 2 mol% und damit eine höhere Kondensationstemperatur als der reine Stickstoff vom Kopf der Drucksaule 6 (10 ppb Sauerstoff) Entsprechend hoher kann der Druck auf der Verdampfungsseite des Produktverdampfers 23 sein (14 bar anstatt 13,4 bar im Falle der Figur 1) Bei dem indirekten Wärmeaustausch entstandenes Kondensat 36' wird an einer seiner Zusammensetzung entsprechenden Stelle in die Drucksaule 4 zuruckgeleitet, insbesondere an die Stelle der Entnahme (Leitung 35' oder etwas darüber)
Durch den höheren Druck beim Verdampfen 23, der bereits mit Hilfe der Pumpe 21 erzeugt wurde, kann unter Umstanden eine Nachverdichtung (26 in Figur 1) des verdampften Druckstickstoffs 24' auf den Drucksaulendruck entfallen und die beiden Stickstoffprodukte 24', 27' aus Niederdrucksaule und Drucksaule können bereits stromaufwärts des Hauptwarmetauschers 2 vermischt werden (Leitung 29')
Falls die Doppelsaule unter einem ausreichend hohen Druck betrieben wird (beispielsweise 8 bis 15 bar) kann die gesamte Einsatzluft 3' in die Drucksaule 4 geleitet werden Ein derartiges Verfahren ist in Figur 3 dargestellt, wobei wiederum nur die Abweichungen von Figur 1 im einzelnen erläutert werden Die Betriebsdrucke in Drucksaule 4 und Niederdrucksaule 5 betragen in diesem Beispiel 15 bar beziehungsweise 5 bar Verfahrenskalte wird hier durch arbeitsleistende Entspannung von Dampf 31 , 31' von der Verdampfungsseite des Kopfkondensators 17 der Niederdrucksaule 5 erzeugt Bei Bedarf kann die Entspannungsmaschine 33' ebenso wie in Figur 1 an einen Verdichter 26 für Stickstoffprodukt gekoppelt sein
Auch bei niedrigeren Drucken (Beispiel Drucksaule 10 bar, Niederdrucksaule 3 bar) ist das Verfahren von Figur 4 anwendbar Hier wird die Entspannungsmaschine 33" mit einem Gas 37/38 betrieben, das aus dem unteren Bereich der Niederdrucksaule 5, insbesondere unmittelbar oberhalb des Sumpfs abgezogen wird Der Druck dieses Gases (4,5 bar) ist deutlich höher als der Druck auf der Verdampfungsseite des Kopfkondensators 17 (1 ,25 bar). Das Abgas 39 der Entspannungsmaschine kann in einer eigenen Passage des Hauptwärmetauschers 2 angewärmt und als Nebenprodukt abgezogen werden; die zusätzliche Passage wird eingespart, wenn es stromaufwärts des Hauptwärmetauschers mit einer anderen Fraktion (Dampf 31 aus dem Kopfkondensator 17) vermischt und das Gemisch 40 gemeinsam im Hauptwärmetauscher 2 erwärmt wird, wie es in Figur 4 dargestellt ist.
Ein Verfahren gemäß Figur 5 kommt zum Einsatz, wenn neben Druckstickstoff auch reiner Sauerstoff (in dem Beispiel: 99,5 mol%) gewonnen werden soll. Gegenüber Figur 1 unterscheidet sich diese Variante dadurch, daß das Kältemittel 13' für den Kopfkondensator 17 der Niederdrucksäule 5 nicht vom Sumpf, sondern von einer Zwischenstelle abgezogen wird, vorzugsweise aus einem Flüssigkeitsreservoir innerhalb der Niederdrucksäule 5, das unmittelbar unterhalb der Zuspeisung der sauerstoffhaltigen flüssigen Fraktion 11 aus der Drucksäule 4 angeordnet ist.
Unterhalb des Flüssigkeitsreservoirs, mit dem die Leitung 13' verbunden ist, befinden sich etwa 50 theoretische Böden, über die die herabfließende Flüssigkeit auf die gewünschte Sauerstoffreinheit angereichert wird. Das Sauerstoffprodukt kann flüssig (42) und/oder gasförmig (43) abgezogen werden. Bei Bedarf kann ein Teil 44 der Flüssigkeit 42 in den Kopfkondensator 17 geführt werden. Falls der Sauerstoff unter Druck benötigt wird, kann Sauerstoff 42 nach der bekannten Methode der Innenverdichtung in flüssigem Zustand auf Druck gebracht und anschließend verdampft werden, beispielsweise gegen einen Teil der Einsatzluft.
Das Verfahren der Figur 6 unterscheidet sich in mehreren Punkten von demjenigen der Figur 1. Zum Beispiel zeigt es eine etwas abweichende Unterkühlung der Prozeßströme, indem nur ein Wärmetauscherblock 15 für diesen Zweck dargestellt ist. Ein Teil des Sumpf produkts 13 der Niederdrucksäule 5 kann als Flüssigprodukt (LOX) gewonnen werden. Der im Hauptkondensator 6 verflüssigte Stickstoff 9 kann zu einem Teil 160 unterkühlt (15) und in die Niederdrucksäule 5 eingedrosselt (161) werden. Die Sumpfflüssigkeit 11 der Drucksäule kann teilweise (162) in den Verdampfungsraum des Kopfkondensators 17 der Niederdrucksäule geleitet (163) werden. In dem Beispiel der Figur 6 wird das Druckstickstoffprodukt 24 aus dem Produktverdampfer 23 nicht nachverdichtet, sondern unter dem Verdampfungsdruck abgezogen (29). Kälte wird hier durch arbeitsleistende Entspannung von Restgas gewonnen, indem mindestens ein Teil 150 des unreinen Sauerstoffs 31 aus dem Kopfkondensator 17 der Niederdrucksaule 5 in einer Entspannungsmaschine 133 von einer Zwischentemperatur des Wärmetauschers 2 aus arbeitsleistend entspannt wird Das Turbinenabgas 151 wird wieder im Wärmetauscher 2 angewärmt und als Restgas 152 abgeführt beziehungsweise zur Regenerierung einer Vorrichtung für die Reinigung der Einsatzluft verwendet Die in der Entspannungsmaschine 133 gewonnene mechanische Energie kann an einen Generator abgegeben oder zur Verdichtung einer Prozeßfraktion verwendet werden, vorzugsweise durch direkte mechanische Kopplung der Entspannungsmaschine 133 mit einem nicht dargestellten Verdichter
Der Hauptunterschied gegenüber Figur 1 liegt im Produktverdampfer 23 Dieser wird verflussigungsseitig mit Dampf aus der Niederdrucksaule betrieben Dazu wird auf der Verflussigungsseite des Produktverdampfers 23 ein Teil des über dem Sumpf der Niederdrucksaule befindlichen Gases kondensiert Die dabei entstehende Flüssigkeit 136 strömt in die Niederdrucksaule zurück Der Produktverdampfer 23 ist in dem Beispiel innerhalb der Niederdrucksaule angeordnet Er kann als Fallfilmverdampfer ausgebildet sein, in dem eine nur partielle Verdampfung stattfindet Flussig verbliebener Stickstoff kann in die Niederdrucksaule 5 zurückgeführt werden
Bei der in Figur 7 gezeigten Anlage ist der Produktverdampfer 23 ahnlich wie in Figur 6 in die Doppelsaule eingebaut Er sitzt hier im oberen Bereich der Drucksaule 4 Die Verflussigungsseite des Produktverdampfers 23 wird ähnlich wie bei den Figuren 1 bis 5 mit einem Teil 35 des gasformigen Stickstoffs 7 vom Kopf der Drucksaule 4 beaufschlagt
In Figur 8 sind Unterkuhler und Produktverdampfer in einem Warmetauscherblock 223 integriert In diesem Beispiel kann ein Teil 246 der Sumpfflussigkeit 11 der Drucksaule zur zusätzlichen Kopfkuhlung von Drucksaule (über Ventil 248) oder Niederdrucksaule (über Ventil 247) genutzt werden Verfahrenskalte wird wie in Figur 1 durch arbeitsleistende Entspannung 33 eines Teils 32 der Einsatzluft gewonnen
Wie in Figur 8 ist der Produktverdampfer 323 von Figur 9 als Gegenstrom- Warmetauscher, vorzugsweise als Aluminium-Plattenwarmetauscher, realisiert Im Unterschied zu Figur 8 ist er jedoch von dem Unterkühlungswärmetauscher 15 getrennt.
Selbstverständlich können die Merkmale der verschiedenen hier dargestellten Varianten der Erfindung untereinander kombiniert werden. Bei jeder Ausführung des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Vorrichtung, insbesondere in allen Ausführungsbeispielen, können konventionelle Rektifizierböden oder geordnete oder ungeordnete Packungen als Stoffaustauschelemente in den Säulen des Rektifiziersystems eingesetzt werden. Auch due kombinierte Verwendung verschiedener Arten von Stoffaustauschelementen ist möglich.
Die Verfahren der Ausführungsbeispiele und das erfindungsgemäße Verfahren allgemein sind insbesondere zur Gewinnung hochreinen Stickstoffs mit besonders geringem Gehalt an leichterflüchtigen Komponenten wie Helium, Neon und/oder Wasserstoff geeignet. Dazu können zusätzlich zu den üblichen, an den
Kondensatoren 23 und 17 angeordneten Ablaßleitungen für leichterflüchtige Gase (in den Zeichnungen nicht dargestellt) weitere Maßnahmen vorgesehen sein.
Zum einen kann in allen Ausführungsbeispielen der flüssige Stickstoff 20, der der Pumpe 21 zugeführt wird, anstelle der Entnahme am Kopf der Niederdrucksäule mindestens einen theoretischen oder praktischen Boden unterhalb des Kopfs der Niederdrucksäule abgezogen werden. Es können sich beispielsweise bis zu zehn, vorzugsweise drei bis fünf theoretische oder praktische Böden zwischen Säulenkopf und modifiziertem Abzug des flüssigen Stickstoffs 20 befinden. Auch wenn die Niederdrucksäule ansonsten mit Packungen ausgestattet ist, werden diese Böden vorzugsweise als konventionelle Rektifizierböden ausgeführt.
Zum anderen kann eine weitere Modifizierung bei den Verfahren der Figuren 6 bis 9 vorgenommen werden, bei denen ein in der Drucksäule 4 produzierter Flüssigstickstoffstrom (160 in den Figuren 6 und 7) als Rücklauf auf den Kopf der Niederdrucksäule 5 aufgegeben wird (über Ventil 161). Dieser Strom kann ebenfalls von einer Zwischenstelle abgenommen werden, der einen bis zehn, vorzugsweise drei bis fünf theoretische oder praktische Böden unterhalb des Kopfs der Drucksäule 4 angeordnet ist.

Claims

Patentansprüche
1. Verfahren zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft in einem Rektifiziersystem, das eine Drucksäule (4) und eine Niederdrucksäule (5) aufweist, wobei bei dem Verfahren Einsatzluft (1 , 3; 1 , 3') in die Drucksäule (4) eingeleitet, eine sauerstoffhaltige flüssige Fraktion (11) aus der Drucksäule (4) entnommen und in die Niederdrucksäule (5) eingespeist wird, gasförmiger Stickstoff (18) aus der Niederdrucksäule (5) in einem Kopfkondensator (17) durch indirekten Wärmeaustausch mit einer verdampfenden Flüssigkeit (13; 13', 44) mindestens teilweise kondensiert wird und Stickstoff aus der Niederdrucksäule als gasförmiges Druckstickstoffprodukt (24, 24', 25, 29) unter einem Druck gewonnen wird, der höher als der Betriebsdruck der Niederdrucksäule (5) ist, dadurch gekennzeichnet, daß mindestens ein Teil des bei dem indirekten Wärmeaustausch im Kopfkondensator (17) entstandenen flüssigen Stickstoffs oder aus der Niederdrucksäule abgezogener flüssiger Stickstoff (20) in flüssigem Zustand auf einen Druck gebracht (21) wird, der den Druck der Niederdrucksäule (5) übersteigt, in einem Produktverdampfer (23) durch indirekten Wärmeaustausch mit einem Wärmeträger (35; 35') verdampft wird und als Druckstickstoffprodukt (24, 24', 25, 29) gewonnen wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß als Wärmeträger ein Gas aus der Drucksäule (4), vorzugsweise eine stickstoffhaltige Fraktion (35; 35') aus einem oberen oder mittleren Bereich der Drucksäule (4), und/oder ein Gas aus der Niederdrucksäule (5), vorzugsweise eine sauerstoffhaltige Fraktion aus einem unteren oder mittleren Bereich der Niederdrucksäule (5), eingesetzt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der flüssige Stickstoff (22) bei dem indirekten Wärmeaustausch im Produktverdampfer (23) nur teilweise verdampft und der flüssig verbliebene Anteil (45) des Stickstoffs in die Niederdrucksäule (5) zurückgeleitet wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß eine Prozeßfraktion (32, 31', 38) arbeitsleistend entspannt (33, 33', 33") und die bei der arbeitsleistenden Entspannung (33, 33', 33") gewonnene Energie zur Weiterverdichtung (26) des Druckstickstoffprodukts (24) stromabwärts des Produktverdampfers (23) verwendet wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß eine flüssige Fraktion (13'), deren Sauerstoffgehalt zwischen demjenigen der sauerstoffhaltigen flüssigen Fraktion (11) aus der Drucksäule (4) und demjenigen der Sumpfflüssigkeit (42) der Niederdrucksäule (5) liegt, zur Kondensation des gasförmigen Stickstoffs (18) aus der Niederdrucksäule (5) in dem Kopfkondensator (17) eingesetzt wird.
6. Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft in einem Rektifiziersystem, das eine Drucksäule (4) und eine
Niederdrucksäule (5) aufweist, mit einer Einsatzluftleitung (1 , 3; 1 , 3'), die in die Drucksäule (4) führt, mit einer Leitung (11) für eine sauerstoffhaltige flüssige Fraktion, die von der Drucksäule (4) in die Niederdrucksäule (5) führt, mit einem Kopfkondensator (17), dessen Verflüssigungsseite mit einem oberen Bereich der Niederdrucksäule (5) verbunden (18) ist, und mit einer Druckproduktleitung (24,
24', 25, 29) zur Entnahme von Stickstoff aus der Niederdrucksäule (5) als gasförmiges Druckprodukt, dadurch gekennzeichnet, daß die Verflüssigungsseite des Kopfkondensators (17) der Niederdrucksäule (5) oder der obere Bereich der Niederdrucksäule (5) über eine Flüssigstickstoffleitung (20, 22) mit Mitteln (21) zur Druckerhöhung einer Flüssigkeit und mit einem
Produktverdampfer (23) in Strömungsverbindung steht, wobei der Produktverdampfer (23) seinerseits mit der Druckproduktleitung (24, 24', 25, 29) verbunden ist.
1. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die
Verflüssigungsseite des Produktverdampfers (23) mit einem oberen oder mittleren Bereich der Drucksäule und/oder mit einem unteren oder mittleren Bereich der Niederdrucksäule verbunden (7, 8; 35') ist.
8. Vorrichtung nach Anspruch 6 oder 7, gekennzeichnet durch eine Flüssigkeitsrückleitung (45), die vom Produktverdampfer (23) in die Niederdrucksäule (5) führt.
9. Vorrichtung nach einem der Ansprüche 6 bis 8, gekennzeichnet durch eine Entspannungsmaschine (33, 33', 33") zur arbeitsleistenden Entspannung einer Prozeßfraktion (32, 31', 38), die mit einem Verdichter (26) zur Weiterverdichtung des Druckstickstoffprodukts (24) stromabwärts des Produktverdampfers (23) gekoppelt ist.
10. Vorrichtung nach einem der Ansprüche 6 bis 9, gekennzeichnet durch eine Flüssigkeitsleitung (13) für Kältemittel, die einerseits mit einem mittleren Bereich der Niederdrucksäule (5) oder mit einem unteren Bereich der Drucksäule und andererseits mit der Verdampfungsseite des Kopfkondensators (17) der Niederdrucksäule (5) verbunden ist.
EP97948844A 1996-10-30 1997-10-30 Verfahren und vorrichtung zur gewinnung von druckstickstoff Expired - Lifetime EP0948730B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP97948844A EP0948730B1 (de) 1996-10-30 1997-10-30 Verfahren und vorrichtung zur gewinnung von druckstickstoff

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
DE19643916 1996-10-30
DE19643916 1996-10-30
EP97102533 1997-02-17
EP97102533 1997-02-17
DE19717124 1997-04-23
DE19717124 1997-04-23
DE19735154 1997-08-13
DE19735154A DE19735154A1 (de) 1996-10-30 1997-08-13 Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff
EP97948844A EP0948730B1 (de) 1996-10-30 1997-10-30 Verfahren und vorrichtung zur gewinnung von druckstickstoff
PCT/EP1997/006010 WO1998019122A1 (de) 1996-10-30 1997-10-30 Verfahren und vorrichtung zur gewinnung von druckstickstoff

Publications (2)

Publication Number Publication Date
EP0948730A1 true EP0948730A1 (de) 1999-10-13
EP0948730B1 EP0948730B1 (de) 2000-08-30

Family

ID=27438467

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97948844A Expired - Lifetime EP0948730B1 (de) 1996-10-30 1997-10-30 Verfahren und vorrichtung zur gewinnung von druckstickstoff

Country Status (11)

Country Link
US (1) US6196023B1 (de)
EP (1) EP0948730B1 (de)
JP (1) JP2001509246A (de)
KR (1) KR20000052974A (de)
CN (1) CN1235666A (de)
CA (1) CA2277838A1 (de)
DE (2) DE19735154A1 (de)
DK (1) DK0948730T3 (de)
ES (1) ES2150291T3 (de)
PT (1) PT948730E (de)
WO (1) WO1998019122A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6708523B2 (en) 2001-10-04 2004-03-23 Linde Aktiengesellschaft Process and apparatus for producing high-purity nitrogen by low-temperature fractionation of air
EP1653183A1 (de) * 2004-10-12 2006-05-03 Air Products And Chemicals, Inc. Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19819263C2 (de) * 1998-04-30 2003-08-21 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff
EP0955509B1 (de) 1998-04-30 2004-12-22 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von hochreinem Sauerstoff
DE10018200A1 (de) * 2000-04-12 2001-10-18 Linde Gas Ag Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
DE10058332A1 (de) * 2000-11-24 2002-05-29 Linde Ag Verfahren und Vorrichtung zur Erzeugung von Sauerstoff und Stickstoff
US6397631B1 (en) 2001-06-12 2002-06-04 Air Products And Chemicals, Inc. Air separation process
US6499312B1 (en) 2001-12-04 2002-12-31 Praxair Technology, Inc. Cryogenic rectification system for producing high purity nitrogen
US6494060B1 (en) 2001-12-04 2002-12-17 Praxair Technology, Inc. Cryogenic rectification system for producing high purity nitrogen using high pressure turboexpansion
CN102003865A (zh) * 2010-11-09 2011-04-06 苏州制氧机有限责任公司 一种制氮装置及其制氮方法
US8991209B2 (en) * 2010-12-13 2015-03-31 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for producing high-pressure nitrogen
EP2662654A1 (de) * 2012-05-07 2013-11-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren und Vorrichtung zur Abscheidung von Luft durch kryogene Destillation
MX2016001221A (es) * 2013-08-02 2016-05-24 Linde Ag Metodo y dispositivo para producir nitrogeno comprimido.
CN103776239B (zh) * 2014-01-13 2016-03-30 浙江海天气体有限公司 多功能制氮装置
US9366476B2 (en) 2014-01-29 2016-06-14 Praxair Technology, Inc. Condenser-reboiler system and method with perforated vent tubes
US9488408B2 (en) 2014-01-29 2016-11-08 Praxair Technology, Inc. Condenser-reboiler system and method
EP3059536A1 (de) * 2015-02-19 2016-08-24 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines Druckstickstoffprodukts
EP3290843A3 (de) * 2016-07-12 2018-06-13 Linde Aktiengesellschaft Verfahren und vorrichtung zur erzeugung von druckstickstoff und flüssigstickstoff durch tieftemperaturzerlegung von luft
WO2021242309A1 (en) * 2020-05-26 2021-12-02 Praxair Technology, Inc. Enhancements to a dual column nitrogen producing cryogenic air separation unit
WO2021242307A1 (en) * 2020-05-28 2021-12-02 Praxair Technology, Inc. Enhancements to a dual column nitrogen producing cryogenic air separation unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2578532B1 (fr) * 1985-03-11 1990-05-04 Air Liquide Procede et installation de production d'azote
DE3528374A1 (de) 1985-08-07 1987-02-12 Linde Ag Verfahren und vorrichtung zur erzeugung von stickstoff mit ueberatmosphaerischem druck
US5098457A (en) 1991-01-22 1992-03-24 Union Carbide Industrial Gases Technology Corporation Method and apparatus for producing elevated pressure nitrogen
US5303556A (en) * 1993-01-21 1994-04-19 Praxair Technology, Inc. Single column cryogenic rectification system for producing nitrogen gas at elevated pressure and high purity
US5402647A (en) * 1994-03-25 1995-04-04 Praxair Technology, Inc. Cryogenic rectification system for producing elevated pressure nitrogen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9819122A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6708523B2 (en) 2001-10-04 2004-03-23 Linde Aktiengesellschaft Process and apparatus for producing high-purity nitrogen by low-temperature fractionation of air
EP1653183A1 (de) * 2004-10-12 2006-05-03 Air Products And Chemicals, Inc. Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Also Published As

Publication number Publication date
CN1235666A (zh) 1999-11-17
KR20000052974A (ko) 2000-08-25
US6196023B1 (en) 2001-03-06
DK0948730T3 (da) 2000-10-16
PT948730E (pt) 2000-12-29
DE19735154A1 (de) 1998-05-07
ES2150291T3 (es) 2000-11-16
EP0948730B1 (de) 2000-08-30
WO1998019122A1 (de) 1998-05-07
DE59702301D1 (de) 2000-10-05
JP2001509246A (ja) 2001-07-10
CA2277838A1 (en) 1998-05-07

Similar Documents

Publication Publication Date Title
EP0955509B1 (de) Verfahren und Vorrichtung zur Gewinnung von hochreinem Sauerstoff
EP0948730B1 (de) Verfahren und vorrichtung zur gewinnung von druckstickstoff
EP0716280B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1284404A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE19803437A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP1074805B1 (de) Verfahren und Vorrichtung zur Gewinnung von Sauerstoff unter überatmosphärischem Druck
DE10217091A1 (de) Drei-Säulen-System zur Tieftemperatur-Luftzerlegung mit Argongewinnung
EP0669508B1 (de) Verfahren und Vorrichtung zur Gewinnung von reinem Argon
EP1146301A1 (de) Verfahren und Vorrichtung zur Gewinnung von Drückstickstoff durch Tieftemperaturzerlegung von Luft
DE19909744A1 (de) Zweisäulensystem zur Tieftemperaturzerlegung von Luft
DE19609490A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP0363861B1 (de) Verfahren zur Gewinnung von Rohargon
EP0768503B1 (de) Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
DE60007686T2 (de) Tieftemperaturrektifikationsystem zur Luftzerleggung
DE19933558C5 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
DE202009004099U1 (de) Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1189001B1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
DE10153919A1 (de) Verfahren und Vorrichtung zur Gewinnung hoch reinen Sauerstoffs aus weniger reinem Sauerstoff
DE60020500T2 (de) Verfahren zur Luftzerlegung durch Tieftemperaturdestillation
DE60019198T2 (de) Vorrichtung und Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation
EP1209431B1 (de) Verfahren und Vorrichtung zur Erzeugung von Sauerstoff und Stickstoff
DE19819263C2 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff
DE19819338A1 (de) Verfahren und Vorrichtung zur Gewinnung von hochreinem Druckstickstoff
DE10045121A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Produkts durch Tieftemperaturzerlegung von Luft
EP0559117B1 (de) Verfahren und Vorrichtung zur Zerlegung eines Gasgemisches

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES FI FR GB IE IT PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAAG, WOLFGANG

Inventor name: KUNZ, CHRISTIAN

Inventor name: VOIT, JUERGEN

Inventor name: ROTTMANN, DIETRICH

Inventor name: CORDUAN, HORST

17Q First examination report despatched

Effective date: 20000131

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES FI FR GB IE IT PT SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59702301

Country of ref document: DE

Date of ref document: 20001005

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000929

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2150291

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20001011

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20041006

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041008

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20041013

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20041014

Year of fee payment: 8

Ref country code: FI

Payment date: 20041014

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20041018

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041027

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041028

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20041116

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051030

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060503

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Effective date: 20060502

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20051031