EP0842385B1 - Procede et dispositif de production variable d'un produit gazeux comprime - Google Patents

Procede et dispositif de production variable d'un produit gazeux comprime Download PDF

Info

Publication number
EP0842385B1
EP0842385B1 EP96927545A EP96927545A EP0842385B1 EP 0842385 B1 EP0842385 B1 EP 0842385B1 EP 96927545 A EP96927545 A EP 96927545A EP 96927545 A EP96927545 A EP 96927545A EP 0842385 B1 EP0842385 B1 EP 0842385B1
Authority
EP
European Patent Office
Prior art keywords
liquid fraction
heat exchanger
heat
liquid
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96927545A
Other languages
German (de)
English (en)
Other versions
EP0842385A1 (fr
EP0842385B2 (fr
Inventor
Horst Corduan
Horst Altmeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7767507&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0842385(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0842385A1 publication Critical patent/EP0842385A1/fr
Application granted granted Critical
Publication of EP0842385B1 publication Critical patent/EP0842385B1/fr
Publication of EP0842385B2 publication Critical patent/EP0842385B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • F25J3/04503Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
    • F25J3/04509Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/912External refrigeration system
    • Y10S62/913Liquified gas

Definitions

  • the invention relates to a method and an apparatus for variable generation of a gaseous printed product by low temperature separation of air by means of Pressure increase in the liquid state and subsequent evaporation.
  • DE-B-1056633, EP-A-422974, EP-A-524785 and EP-A-556861 show processes that combine internal compression and removable storage by both the liquid product to be evaporated and during evaporation liquefied heat transfer media (air or nitrogen) are buffered in storage tanks.
  • the problem of the varying need for heat carriers for the evaporation of the Liquid product is solved in DE-B-1056633 in that the is not for each Evaporation required part of the heat transfer medium to relax and work is discarded.
  • One later deviated from this and instead condensed it variable amounts of heat transfer medium While in the first case a cleaned gas is lost unused, in the second case Large relative fluctuations in the compressor throughput occur. Both types of Systems can only be operated in the respective operating mode.
  • the invention is therefore based on the object of a method and a device specify which can be operated as flexibly as possible and which in particular the Avoid the disadvantages described above.
  • the gaseous print product is obtained in liquid form from the or the rectification columns are withdrawn and buffered in a first storage tank.
  • a first storage tank Each depending on whether it is currently below average or above average
  • the amount of product produced, the liquid level in the tank rises or falls.
  • the amount of liquid produced in the rectification Fraction that is not currently evaporating or otherwise e.g. as Liquid product
  • the entire liquid fraction in the Initiate storage tank and remove the currently required amount and the evaporation can be used, for Understand fluid storage. This can be, for example external tank with its own insulation, but also a different type of Vessel, which is arranged within the cryogenic separation plant and for Buffering of liquid is suitable.
  • any known method can be used to increase the pressure in the liquid state be used, for example pressure build-up evaporation at the storage tank a static height, pumps upstream or downstream of the storage tank, or combinations of these methods.
  • the inventive method also has a refrigeration cycle with a Circuit compressor and a relaxation machine.
  • a Heat carrier in particular a process gas of air separation, compresses, Relieved of work and returned to the circuit compressor. With help this cycle becomes cold to compensate for insulation and exchange losses and possibly generated for product liquefaction.
  • the circuit compressor also serves to compress the heat transfer medium condensed against the product to be evaporated and in a second storage tank is buffered (first partial flow of the heat transfer medium). It compresses the heat transfer medium to a pressure which corresponds to a condensation temperature which is at least approximately is equal to the vaporization temperature of the liquid pressurized fraction. At least part of the heat carrier compressed in the circuit compressor becomes Circulated compressor returned, in particular the second partial flow after it work-related relaxation or part of it. The second part of the im Circulation compressor compressed heat carrier does not need or not to be completely rejected, but is at least partially circulated. Refrigeration cycle and variable product evaporation are integrated in the invention; the same machine is used both for cooling and for the generation of the evaporation of the liquid fraction required pressure.
  • the first partial flow is in accordance with the variable product amount varies.
  • this variation can be found here realized different ways and thus flexible to the current Needs to be adjusted.
  • the amount of heat carrier compressed in the circuit compressor is kept constant when there is an increased need for gaseous pressure product.
  • the variation of the first partial flow is absorbed by a corresponding variation of the second partial flow of the heat transfer medium.
  • the amount of the second partial flow is decreased / increased by the same amount by which the amount of the first partial flow is increased / decreased.
  • Quantity here refers to molar quantities per unit of time, which can be specified, for example, in Nm 3 / h.
  • the circulation compressor can thus be operated constantly, for example with its design capacity, and control depending on the product quantity is not necessary.
  • An increased amount of heat transfer medium liquefied in the second partial flow is temporarily stored in the second tank; an increased amount of gas in the second partial flow can be compensated for by a corresponding removal of gas (for example as a product) from the circuit; Conversely, if production is below average, a correspondingly smaller amount of gas is withdrawn from the cycle.
  • the system can be operated in a second operating mode.
  • the throughput of the second partial flow remains the same, while the variation of the the first partial flow is recirculated by the circuit compressor. If there is an increased need gaseous pressure product, the amount of the second partial stream becomes constant kept and the amount of heat medium compressed in the circuit compressor the same amount as the amount of the first partial stream increased. Nevertheless, the inventive method also in this mode of operation the relative Fluctuations in the compressor throughput are comparatively small because the Circulating amount can remain constant.
  • the constant part of the Compressed gas circuit compressors dampen the relative deflections of the Compressor throughput.
  • the two modes of operation can also be combined by the Partial fluctuations in the first partial flow due to variation of the second Partial flow and to another part by changing the throughput on Circuit compressor can be compensated. If there is an increased need for gaseous The printed product will then both the amount of compressed in the recycle compressor Heat transfer medium increases as well as the amount of the second partial flow is reduced.
  • the rectification system consists of a pressure column and a low pressure column Has double column, for example, liquid oxygen from the bottom of the Low pressure column or liquefied nitrogen from the pressure column as a liquid fraction be used.
  • the work-related relaxation of the further flow for example from the inlet pressure of the circuit compressor (lower level of the refrigeration cycle) to about atmospheric pressure and the work relaxed further electricity is withdrawn as an unpressurized gas product. It can also be used Catch fluctuations in the amount of gas circulating in the circuit.
  • the first mode of operation constant throughput on Circuit compressor
  • a reduction in the amount of the second partial flow by a a corresponding reduction in the amount of work performed and relaxed Electricity are balanced.
  • the second mode of operation constant throughput in the work-relieving relaxation of the second partial flow
  • any process stream available in the process can act as a heat transfer medium be used for the refrigeration cycle and the evaporation of the liquid fraction, for example air or another oxygen-nitrogen mixture.
  • nitrogen from the rectification system is used as a heat carrier, in the case a double column, for example gaseous nitrogen, at the top of the pressure column arises.
  • the entire cycle nitrogen is in the system itself produced.
  • a subset of the heat transfer medium from one external source for example by feeding in liquid nitrogen another system or from a tank truck into the second storage tank.
  • the second storage tank can in addition to its buffering effect for variable print product extraction also as Safety reserve (backup) for a temporary failure of the system and / or as Buffers for liquid product can be used.
  • the use of nitrogen as a heat transfer medium has the advantage that Refrigeration cycle and printed product evaporation have no negative effects on the Rectification has the same effect as the supply of air liquefied against the pressure product and when gaseous air is fed in from a relaxation machine a low pressure column would be the case.
  • the rectification can be done with the Process according to the invention using nitrogen as the heat transfer medium optimally be driven.
  • the process is therefore also suitable for high product purities and exploit suitable, as well as for the production of argon after the Air separation in the narrower sense (e.g. on the low pressure column of a double column connected raw argon column).
  • the main heat exchanger system has a heat exchanger block in which both the cooling of the feed air and also the evaporation of the liquid fraction is carried out under increased pressure become.
  • the main heat exchanger system has a plurality of heat exchanger blocks, in particular a first and a first second heat exchanger block, wherein in the first heat exchanger block Cooling of the feed air and evaporation in the second heat exchanger block the liquid fraction is carried out under increased pressure.
  • the two heat exchanger blocks by a compensating current are coupled, one of the two heat exchanger blocks between the warm and cold end removed and the other of the two heat exchanger blocks between the warm and cold ends.
  • the invention also relates to a device according to claim 8.
  • Compressed and cleaned feed air 10 is at a pressure of 5 to 10 bar, preferably 5.5 to 6.5 bar cooled in the heat exchanger 11, which with the Heat exchanger 12 forms the main heat exchanger system. It is via line 13 introduced into a pressure column 14 at about dew point temperature.
  • the pressure column belongs to the rectification system, which also has a low pressure column 15, which is operated at a pressure of 1.3 to 2 bar, preferably 1.5 to 1.7 bar.
  • Pressure column 14 and low pressure column 15 are via a main condenser 16 thermally coupled.
  • Low pressure nitrogen 27 and impure nitrogen 28 are removed from the Low pressure column 15 in the heat exchangers 18 and 11 to about Ambient temperature warmed up.
  • the impure nitrogen 30 can be used for regeneration a molecular sieve, not shown, can be used for air purification; the Low pressure nitrogen 29 is either discharged as a product or in one Evaporative cooler used to cool cooling water.
  • Oxygen is a liquid fraction via line 31 from the bottom of the Low pressure column 15 withdrawn, supercooled (18) and in a liquid oxygen tank (first storage tank) 33 introduced (32).
  • the liquid oxygen tank 33 is standing preferably below about atmospheric pressure.
  • Liquid oxygen 34 from the first Storage tank 33 is raised to an increased pressure by means of a pump 35 brought, for example, 5 to 80 bar, depending on the product pressure required. (Of course there are also other methods for increasing the pressure in the liquid Phase applicable, for example by using a hydrostatic potential or by pressure build-up evaporation on a storage tank.)
  • the liquid High pressure oxygen 36 is evaporated in the heat exchanger 12 and as withdrawn internally compressed gaseous product 37.
  • the part of the gaseous nitrogen from the pressure column 14 that is not the Main capacitor 16 is supplied, is via lines 38, 39 and 40 through deducted the heat exchanger 11 and as a heat transfer medium a refrigeration cycle supplied, among other things, a two-stage cycle compressor 41, 42 and one Expansion turbine 43 includes.
  • the cycle compressor 41, 42 the nitrogen from about compression pressure compressed to a pressure equal to a nitrogen condensation temperature corresponds, which is at least approximately equal to Evaporation temperature of the liquid pressurized oxygen 36.
  • This pressure is - Depending on the given delivery pressure of the oxygen - for example 15 to 60 bar.
  • a first partial stream 45 of the highly compressed nitrogen 44 is against the evaporating oxygen 36 at least partially, preferably completely or in essentially completely liquefied and fed into a separator 46.
  • the second partial flow 59 of the nitrogen compressed in the circuit compressor is at the high pressure and at a temperature between the temperatures at warm and at the cold end of the heat exchanger 12, the expansion turbine 43 fed and relaxed there to work on pressure column pressure.
  • the relaxed second partial flow 60 is partly through heat exchanger 12 (via 61, 62), on the other hand through heat exchanger 11 (via 63, 64, 39, 40) for entry of the circuit compressor 41, 42 returned.
  • Liquid nitrogen from the separator 46 can be returned via line 47 to the Pressure column 14 abandoned and / or via line 48 in a second storage tank (Liquid nitrogen tank 49) are introduced, which under a pressure of for example 1 to 5 bar, preferably at about atmospheric pressure.
  • the Excess liquid 50 may also be removed from the tank Separators 25 are fed that are not used as return for the low pressure column 15 is needed. If necessary, liquid nitrogen can be pumped into the Separator 46 are pressed (line 52).
  • Part of the nitrogen 53 from line 39 can be released at an intermediate temperature can be removed from the heat exchanger 11.
  • This part partly serves as Equalizing current 54, with the help of the efficiency of the main heat exchanger system 11, 12 can be improved, and partially as a further stream 55 of the Heat transfer medium, which is working on something in a second expansion turbine 56 is relaxed over atmospheric pressure.
  • the work-power relaxed more current 57 is heated in the heat exchanger 12 to about ambient temperature and leaves the plant as a gaseous product 58.
  • Liquid oxygen and / or liquid can be obtained from the storage tanks 33, 49 Nitrogen are withdrawn as products (the corresponding lines are in the Drawing not shown).
  • the removable storage has none in the method according to the invention disruptive influences on the rectification, in particular neither liquid air Rectification supplied, low pressure air is still directly into the low pressure column fed. This makes the process particularly suitable for demanding separation tasks such as the extraction of argon. You can do this at one A conventional argon rectification between intermediate point 66 of low-pressure column 15 be connected as shown in the drawing by the lines shown there is indicated. For this purpose, one of the in EP-B-377117 or in one of the European patent applications 95101844.9 or 95101845.6 with older seniority described methods and devices used.
  • the first stage 41 of the cycle compressor is also called Product compressors are used by inserting between the first and second stages Product stream 65 under a pressure of preferably 8 to 35 bar, for example Is deducted 20 bar.
  • the two basic modes of operation of a method and a device according to the invention are now explained below.
  • the system is designed for a certain average amount of pressurized oxygen product. Production can fluctuate around this average value, between a minimum and a maximum value. To explain how this fluctuation is achieved, the two extreme operating cases ("Max.”, "Min.”) And the operating case of the average pressure oxygen production (“Average”) of a system are presented in the following numerical examples.
  • the pressures are Pressure column 14 5.1 bar Low pressure column 15 1.3 bar Pressurized oxygen 37 26 bar Entry of the circuit compressor 4.8 bar Outlet of the circuit compressor 42 bar Liquid oxygen tank 33 1.1 bar Liquid nitrogen tank 1.1 bar
  • Table 1 relates to the mode of operation in which the expansion turbine 43 for the second partial flow 59 is operated at a constant speed; in the operating mode shown in Table 2, the throughput through the circuit compressor 41, 42 is kept constant. Of course, any transition between these two modes of operation is also possible in the exemplary embodiment.
  • the amounts of the respective flows for the three operating cases mentioned are given in 1000 Nm 3 / h.
  • the reference symbols in the first column of the table refer to the drawing. (Constant throughput by turbine 43) Max. Mean Min.
  • Mean Min. 50 Liquid nitrogen from the main condenser to the liquid nitrogen tank 1.5 1.5 1.5 32 Liquid oxygen from the low pressure column to the liquid oxygen tank 36.5 36.5 36.5 40 Feeding pressure column nitrogen into the circuit 90 90 90 53 Compensating current + additional current (turbine 56) 30th 30th 30th 64 Withdrawal of gaseous nitrogen under pressure from the circuit 15 15 15 47 Liquid nitrogen from the liquid nitrogen tank and from the circuit to the top of the pressure column 54 54 54 36 Liquid oxygen to be evaporated 45 35 25th 37 Gaseous printed product (oxygen) 45 35 25th 44 Outlet of the circuit compressor 83 83 83 45 First partial flow of the heat transfer medium 64 54 44 59 Second partial flow of the heat transfer medium (turbine 43) 18.5 28.5 38.5 60 61 Return from the second partial flow directly through heat exchanger 12 to the circuit compressor 3.5 13.5 23.5 54 Compensating current 25th 15 5 55 Further flow through second turbine 56 5 15 25th 57 48 Liquid nitrogen from the liquefied first partial stream into the
  • the scheme in the drawing is divided in half by a dashed line.
  • the left half essentially contains the refrigeration cycle and the storage tanks; the entire rectification is in the right half.
  • all flows in the right half of the drawing remain completely or essentially unchanged, the fluctuations in the production of pressurized oxygen only affect the circuit and the storage tanks. This is reflected in the first six lines of the two tables, in which all streams are mentioned that cross the dashed line; these have the same throughput in all operating cases, while the amount of evaporation changes (reference symbols 36, 37).
  • the second partial flow 59, 60 becomes constant held.
  • the variation of the first partial stream 45 necessary for the evaporation is changed by the corresponding change in the throughput Circulation compressor (stream 44) causes: For example, the production of the average to the maximum value, the throughput through the Circulation compressors about the same amount as the amount of product.
  • the additional gas is reduced by a corresponding reduction in the amount of gas Provided that as a further stream 55, 57, 58 through the turbine 56 from the Circuit is removed.
  • the fluctuating amounts of liquefied heat transfer medium (first partial flow 45) are buffered by the fact that above-average production via line 48 excess liquid is supplied to the second storage tank 49; vice versa the missing liquid with a small amount of product via line 52 from the Liquid nitrogen tank tracked to the return amount for the pressure column 14th to keep constant.
  • Table 1 The numerical example of Table 1 is designed so that an average excess of liquid of 1500 Nm 3 / h oxygen and nitrogen is generated. This can be removed continuously, intermittently or in variable amounts in the form of liquid products. In addition, it is also possible with the method to change the average cooling capacity of the circuit and thus the average quantity of liquid products during operation by adapting the average speeds of the turbines accordingly. The system can thus be operated particularly flexibly not only with regard to the internally compressed printed product, but also with regard to liquid production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

L'invention concerne un procédé selon lequel l'air utilisé est acheminé jusqu'à un système de rectification (14, 15) en vue d'une décomposition à température cryogénique, d'où une fraction liquide (31, 32) est prélevée pour être introduite dans un premier réservoir de stockage (33). La pression d'un volume variable de la fraction liquide (34) est augmentée. La fraction liquide (36) est vaporisée par échange de chaleur (12) indirect sous l'effet de l'élévation de la pression et est obtenue sous forme de produit gazeux comprimé (37). Un caloporteur circule dans un circuit frigorifique qui comporte un compresseur (41, 42). Un premier courant partiel (45) du caloporteur (44) comprimé dans le compresseur (41, 42) est acheminé jusqu'au système d'échange de chaleur indirect (12) en vue de la vaporisation de la fraction liquide (36), et est de ce fait liquéfié, au moins en partie. Un second courant partiel (5) du caloporteur (44) comprimé dans le compresseur (41, 42) est détendu (43), produisant ainsi de l'énergie. Le caloporteur liquide (45, 48) est tamponné dans un second réservoir de stockage (49).

Claims (8)

  1. Procédé de production variable d'un produit gazeux comprimé (37) par fractionnement à basse température d'air, lors duquel l'air de charge (10, 13) est acheminé dans un système de rectification (14, 15)
    une fraction liquide (31, 32, 34) en provenance du système de rectification (14, 15) étant tamponnée dans un premier réservoir (33),
    la pression de la fraction liquide (34) étant augmentée (35), et
    une quantité variable de la fraction liquide (36) s'évaporant sous la pression accrue par échange thermique indirect (12) et étant extraite en tant que produit gazeux comprimé (37) ; en outre
    un agent caloporteur étant acheminé dans un circuit fermé de refroidissement, qui présente un condenseur de circuit fermé (41, 42),
    un premier courant partiel (44, 45) de l'agent caloporteur comprimé dans le condenseur de circuit fermé (41, 42) étant acheminé, en vue de l'évaporation de la fraction liquide (36), à l'échange thermique indirect et étant de ce fait au moins partiellement liquéfié,
    un deuxième courant partiel (44, 59) de l'agent caloporteur (44), comprimé dans le condenseur de circuit fermé (41, 42), étant détendu en fournissant du travail (43) et
    l'agent caloporteur liquéfié (45, 48, 52) étant tamponné dans un deuxième réservoir (49).
  2. Procédé selon la revendication 1, caractérisé en ce qu'un courant supplémentaire (55) de l'agent caloporteur est détendu en fournissant du travail (56).
  3. Procédé selon la revendication 2, caractérisé en ce que la quantité du courant supplémentaire (55), qui est acheminé à la détente fournissant du travail (56), est réduite en cas de demande plus élevée de produit gazeux comprimé (37).
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'azote (31) en provenance du système de rectification (14, 15) est utilisé en tant qu'agent caloporteur.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'air de charge (10) pour le système de rectification (14, 15) est refroidi dans un système principal d'échange thermique (11, 12), dans lequel est également effectuée sous pression élevée l'évaporation (12) de la fraction liquide (36).
  6. Procédé selon la revendication 5, caractérisé en ce que le système principal d'échange thermique présente un bloc d'échangeur thermique, dans lequel on effectue non seulement le refroidissement de l'air de charge, mais aussi l'évaporation sous pression élevée de la fraction liquide.
  7. Procédé selon la revendication 5, caractérisé en ce que le système principal d'échangeur thermique présente un premier et un deuxième bloc d'échangeur thermique, le refroidissement de l'air de charge (10) étant effectué dans le premier bloc d'échangeur thermique (11) et l'évaporation de la fraction liquide (36) étant effectuée sous pression élevée dans le bloc d'échangeur thermique (12), et les deux blocs d'échangeur thermique (11, 12) étant couplés par l'intermédiaire d'un courant de compensation (54), qui est prélevé de l'un (11) des deux blocs d'échangeur thermique, entre les extrémités chaude et froide, et de l'autre (12) des deux blocs d'échangeur thermique, entre les extrémités chaude et froide.
  8. Dispositif de production variable d'un produit gazeux comprimé par fractionnement à basse température d'air,
    à l'aide d'un système de rectification (14, 15), dans lequel est conduit un conduit d'air de charge (10, 13),
    à l'aide d'un conduit de liquide (31, 32) en vue du prélèvement d'une fraction liquide en provenance du système de rectification (14, 15) et en vue de son introduction dans un premier réservoir (33),
    à l'aide de moyens (35) en vue de l'augmentation de la pression de la fraction liquide (34),
    à l'aide d'un échangeur thermique (12) en vue de l'évaporation sous pression élevée de la fraction liquide (36),
    à l'aide d'un conduit de produit (37) en vue du prélèvement de la fraction liquide évaporée en tant que produit gazeux comprimé,
    à l'aide d'un circuit fermé de refroidissement, qui présente un condenseur de circuit fermé (41, 42),
    à l'aide d'un premier conduit de courant partiel (44, 45), qui est raccordé du condenseur de circuit fermé (41, 42) en direction de l'échangeur thermique (12) en vue de l'évaporation de la fraction liquide (36),
    à l'aide d'un deuxième conduit de courant partiel (44, 59), qui conduit du condenseur de circuit fermé (41, 42) à une machine de détente (43) et
    à l'aide d'un deuxième réservoir (49) en vue du tamponnage de l'agent caloporteur liquéfié (45, 48).
EP96927545A 1995-07-21 1996-07-18 Procede et dispositif de production variable d'un produit gazeux comprime Expired - Lifetime EP0842385B2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19526785 1995-07-21
DE19526785A DE19526785C1 (de) 1995-07-21 1995-07-21 Verfahren und Vorrichtung zur variablen Erzeugung eines gasförmigen Druckprodukts
PCT/EP1996/003175 WO1997004279A1 (fr) 1995-07-21 1996-07-18 Procede et dispositif de production variable d'un produit gazeux comprime

Publications (3)

Publication Number Publication Date
EP0842385A1 EP0842385A1 (fr) 1998-05-20
EP0842385B1 true EP0842385B1 (fr) 2001-04-18
EP0842385B2 EP0842385B2 (fr) 2003-12-03

Family

ID=7767507

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96927545A Expired - Lifetime EP0842385B2 (fr) 1995-07-21 1996-07-18 Procede et dispositif de production variable d'un produit gazeux comprime

Country Status (15)

Country Link
US (1) US5953937A (fr)
EP (1) EP0842385B2 (fr)
JP (1) JP3947565B2 (fr)
KR (1) KR100421071B1 (fr)
CN (1) CN1134638C (fr)
AU (1) AU719608B2 (fr)
BR (1) BR9609781A (fr)
CA (1) CA2227050A1 (fr)
DE (2) DE19526785C1 (fr)
DK (1) DK0842385T4 (fr)
ES (1) ES2158336T5 (fr)
MX (1) MX9800557A (fr)
TW (1) TW318882B (fr)
WO (1) WO1997004279A1 (fr)
ZA (1) ZA966146B (fr)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (fr) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Procédé et dispositif de production d'oxygène sous pression et de crypton/xénon
EP2458311A1 (fr) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
EP2568242A1 (fr) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'acier
EP2600090A1 (fr) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2647934A1 (fr) 2012-04-03 2013-10-09 Linde Aktiengesellschaft Procédé et dispositif de génération d'énergie électrique
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
EP2963371A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air
EP2963369A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963370A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295840B1 (en) 2000-11-15 2001-10-02 Air Products And Chemicals, Inc. Pressurized liquid cryogen process
DE10249383A1 (de) * 2002-10-23 2004-05-06 Linde Ag Verfahren und Vorrichtung zur variablen Erzeugung von Sauerstoff durch Tieftemperatur-Zerlegung von Luft
US7409835B2 (en) * 2004-07-14 2008-08-12 Air Liquide Process & Construction, Inc. Backup system and method for production of pressurized gas
US20070251267A1 (en) * 2006-04-26 2007-11-01 Bao Ha Cryogenic Air Separation Process
US20080115531A1 (en) * 2006-11-16 2008-05-22 Bao Ha Cryogenic Air Separation Process and Apparatus
US20090320520A1 (en) * 2008-06-30 2009-12-31 David Ross Parsnick Nitrogen liquefier retrofit for an air separation plant
US9714789B2 (en) * 2008-09-10 2017-07-25 Praxair Technology, Inc. Air separation refrigeration supply method
WO2012031399A1 (fr) * 2010-09-09 2012-03-15 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Processus et appareil de séparation des composés de l'air par distillation cryogénique
CN102072612B (zh) * 2010-10-19 2013-05-29 上海加力气体有限公司 N型模式节能制气方法
CN102322727A (zh) * 2011-09-08 2012-01-18 罗良宜 空气能空气液化分离装置
FR3062197B3 (fr) * 2017-05-24 2019-05-10 Air Liquide Procede et appareil pour la separation de l'air par distillation cryogenique

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE752439C (de) * 1943-02-11 1953-01-05 Messer & Co G M B H Verfahren zur Erzeugung von komprimiertem Sauerstoff
US2708831A (en) * 1953-04-09 1955-05-24 Air Reduction Separation of air
GB890458A (en) * 1959-12-14 1962-02-28 British Oxygen Co Ltd Low temperature separation of gas mixtures
DE1226616B (de) 1961-11-29 1966-10-13 Linde Ag Verfahren und Einrichtung zur Gewinnung von gasfoermigem Drucksauerstoff mit gleichzeitiger Erzeugung fluessiger Zerlegungsprodukte durch Tieftemperatur-Luftzerlegung
FR1479561A (fr) * 1966-03-25 1967-05-05 Air Liquide Procédé de preoduction d'un gaz en débit variable
DE6910083U (de) * 1969-03-13 1969-12-04 Merk Gmbh Telefonbau Fried Elektromagnetisches schauzeichen
GB2125949B (en) * 1982-08-24 1985-09-11 Air Prod & Chem Plant for producing gaseous oxygen
DE3913880A1 (de) * 1989-04-27 1990-10-31 Linde Ag Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
JPH02293575A (ja) 1989-05-08 1990-12-04 Kobe Steel Ltd 空気分離装置
US5252149B1 (en) * 1989-08-04 1998-09-29 Warman Int Ltd Ferrochromium alloy and method thereof
JPH0455682A (ja) 1990-06-22 1992-02-24 Kobe Steel Ltd 空気分離装置
FR2670278B1 (fr) * 1990-12-06 1993-01-22 Air Liquide Procede et installation de distillation d'air en regime variable de production d'oxygene gazeux.
US5152149A (en) * 1991-07-23 1992-10-06 The Boc Group, Inc. Air separation method for supplying gaseous oxygen in accordance with a variable demand pattern
CN1071444C (zh) * 1992-02-21 2001-09-19 普拉塞尔技术有限公司 生产气体氧的低温空气分离系统
FR2703140B1 (fr) * 1993-03-23 1995-05-19 Air Liquide Procédé et installation de production d'oxygène gazeux et/ou d'azote gazeux sous pression par distillation de l'air.
US5386692A (en) * 1994-02-08 1995-02-07 Praxair Technology, Inc. Cryogenic rectification system with hybrid product boiler
FR2723184B1 (fr) * 1994-07-29 1996-09-06 Grenier Maurice Procede et installation de production d'oxygene gazeux sous pression a debit variable

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
EP2015013A2 (fr) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Procédé et dispositif de production d'un gaz sous pression par séparation cryogénique d'air
EP2015012A2 (fr) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Procédé pour la séparation cryogénique d'air
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (fr) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Procédé et dispositif de production d'oxygène sous pression et de crypton/xénon
EP2458311A1 (fr) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2466236A1 (fr) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Procédé de production d'un produit d'impression gazeux par décomposition à basse température de l'air
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2568242A1 (fr) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'acier
EP2600090A1 (fr) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2647934A1 (fr) 2012-04-03 2013-10-09 Linde Aktiengesellschaft Procédé et dispositif de génération d'énergie électrique
DE102012006746A1 (de) 2012-04-03 2013-10-10 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung elektrischer Energie
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
EP2963371A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air
EP2963369A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963370A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
WO2016005031A1 (fr) 2014-07-05 2016-01-14 Linde Aktiengesellschaft Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable

Also Published As

Publication number Publication date
ES2158336T3 (es) 2001-09-01
ZA966146B (en) 1997-02-04
ES2158336T5 (es) 2004-07-01
MX9800557A (es) 1998-04-30
DE59606808D1 (de) 2001-05-23
CN1191600A (zh) 1998-08-26
DE19526785C1 (de) 1997-02-20
AU6734496A (en) 1997-02-18
AU719608B2 (en) 2000-05-11
EP0842385A1 (fr) 1998-05-20
CA2227050A1 (fr) 1997-02-06
EP0842385B2 (fr) 2003-12-03
KR100421071B1 (ko) 2004-04-17
KR19990035798A (ko) 1999-05-25
DK0842385T4 (da) 2004-03-22
CN1134638C (zh) 2004-01-14
US5953937A (en) 1999-09-21
JPH11509615A (ja) 1999-08-24
TW318882B (fr) 1997-11-01
DK0842385T3 (da) 2001-08-06
JP3947565B2 (ja) 2007-07-25
WO1997004279A1 (fr) 1997-02-06
BR9609781A (pt) 1999-12-21

Similar Documents

Publication Publication Date Title
EP0842385B1 (fr) Procede et dispositif de production variable d'un produit gazeux comprime
EP0949471B1 (fr) Unité de séparation de l'air à deux modes de fonctionnement
DE69304948T2 (de) Tieftemperaturluftzerlegung für die Herstellung von gasförmigem Sauerstoff
DE69214693T2 (de) Verfahren zur Herstellung von gasförmigem Sauerstoff unter Druck
EP0093448B1 (fr) Procédé et dispositif pour obtenir de l'oxygène gazeux sous pression élevée
EP0399197B1 (fr) Procédé et dispositif pour la séparation d'air à basse température
DE69205424T2 (de) Verfahren und Vorrichtung für die Luftzerlegung durch Rektifikation.
DE69012923T2 (de) Verfahren und Vorrichtung zur Herstellung von Stickstoff aus Luft.
DE69214409T3 (de) Verfahren zur Herstellung unreinen Sauerstoffs
DE3874731T2 (de) Kryogene luftspaltung mit einem aufkocher mit totalkondensation durch kompression/expansion.
EP1284404A1 (fr) Procédé et dispositif pour la production d'un produit sous pression par séparation cryogénique de l'air
DE69208962T2 (de) Lufttrennung
EP1067345A1 (fr) Procédé et dispositif pour la séparation cryogénique des constituants de l'air
EP0716280A2 (fr) Procédés et dispositifs de séparation d'air à basse température
DE69209835T2 (de) Einsäulenluftzerlegungszyklus und dessen Integration in Gasturbinen
DE69814519T2 (de) Kryogenisches Verfahren mit Doppelsäure und externem Verdämpfer-Kondensator für eine Sauerstoff- und Stickstoffmischung
DE69917131T2 (de) Stickstoffgenerator mit mehreren Säulen und gleichzeitiger Sauerstofferzeugung
DE3782660T2 (de) Kaelteerzeugung durch teilexpansion der luft fuer die tieftemperatur-luftzerlegung.
EP3019803B1 (fr) Procédé et dispositif permettant d'obtenir de l'oxygène par fractionnement cryogénique d'air avec une consommation variable d'énergie
EP1146301A1 (fr) Procédé et dispositif de production d'azote à haute pression par séparation d'air
DE4415747C2 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE69712340T2 (de) Verfahren und einrichtung zur herstellung eines luftgases mit variablen mengen
DE4030749A1 (de) Verfahren zur tieftemperaturzerlegung von luft
DE69414282T3 (de) Verfahren und Anlage zur Herstellung von Drucksauerstoff
DE69410040T2 (de) Verfahren und Einrichtung zur Herstellung von wenigstens einem durch Zerlegung von Luft gewonnenem Gas unter Druck

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES FR GB IT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000904

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES FR GB IT SE

REF Corresponds to:

Ref document number: 59606808

Country of ref document: DE

Date of ref document: 20010523

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010713

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2158336

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

Effective date: 20020117

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20031203

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE DK ES FR GB IT SE

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20040211

Kind code of ref document: T5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20040715

Year of fee payment: 9

ET3 Fr: translation filed ** decision concerning opposition
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050801

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140611

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140716

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140711

Year of fee payment: 19

Ref country code: FR

Payment date: 20140708

Year of fee payment: 19

Ref country code: GB

Payment date: 20140716

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140716

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59606808

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150718

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150718

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150719

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150719