EP0820536A1 - Verfahren zur herstellung von alkaliperoxid/percarbonat-lösungen - Google Patents

Verfahren zur herstellung von alkaliperoxid/percarbonat-lösungen

Info

Publication number
EP0820536A1
EP0820536A1 EP94917610A EP94917610A EP0820536A1 EP 0820536 A1 EP0820536 A1 EP 0820536A1 EP 94917610 A EP94917610 A EP 94917610A EP 94917610 A EP94917610 A EP 94917610A EP 0820536 A1 EP0820536 A1 EP 0820536A1
Authority
EP
European Patent Office
Prior art keywords
alkali
solution
anode
cell
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94917610A
Other languages
English (en)
French (fr)
Inventor
Eilhard Hillrichs
Ulrich Sander
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MG Technologies AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0820536A1 publication Critical patent/EP0820536A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/30Peroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds

Definitions

  • the invention relates to a method for producing aqueous alkaline peroxide and / or percarbonate solution in an electrochemical cell, which consists of a porous oxygen diffusion cathode and an anode.
  • Peroxide solutions are becoming increasingly important as oxidation and bleaching chemicals because the reaction product water, which is produced from the oxidizing agent peroxide, does not pollute the environment.
  • sodium peroxide or sodium hydroperoxide is formed in an aqueous solution.
  • Sodium percarbonate-containing solutions which are prepared by mixing sodium carbonate-containing and hydrogen peroxide-containing solutions can also be used as bleaching agents. Since hydrogen peroxide is a relatively unstable compound and strict safety requirements must be observed for its transport, storage and handling, it is much easier and more advantageous to produce peroxide solutions directly at the point of use by electrochemical means.
  • E. Yeager Industrial Electrochemistry, Plenum Press, 1982, page 31 discloses an electrochemical cell which, according to a fuel cell concept, is used for the production of a peroxide solution without the application of an external voltage and which consists of a hydrogen diffusion Anode, a KOH electrolyte and an air operated oxygen diffusion cathode consists.
  • This electrochemical cell has the disadvantage of a low current density, which means that the temporal yield of peroxide is so low that it is not possible to produce peroxide economically using this process.
  • the aim of the invention is to provide a process for the production of aqueous alkaline peroxide and / or percarbonate solution in an electrochemical cell which is economical.
  • the cell is operated with a low external cell voltage and in that an alkali metal hydroxide-containing and / or alkali metal carbonate-containing electrolyte is passed through the cell chamber between the oxygen diffusion cathode and the anode and that by cathodic reduction of Oxygen alkali peroxide and / or alkali percarbonate is formed, the H ⁇ O- j / alkali molar ratio is less than 4.
  • the cell is operated with an external cell voltage of 0.5 to 2.0 V.
  • Alkali carbonate and the product solution contains 1 to 100 g / 1 H ⁇ O-.
  • NaOH is provided as the alkali hydroxide or KOH and Na-CO ⁇ or K-CC is used as alkali carbonate.
  • the alkali hydroxide solution contains 50 to 100 g / 1 alkali hydroxide or alkali carbonate and the product solution contains 10 to 70 g / 1 H-O-.
  • a chelating agent or at least one salt of a chelating agent is added to the electrolyte solution.
  • the chelating agent consists of
  • Ethylenediaminetetraacetic acid EDTA
  • the alkali metal salts are used as salts of the chelating agent.
  • the porous oxygen diffusion cathode consists of a carbon fabric or carbon fleece with a coating of a mixture of Teflon and carbon black.
  • air, oxygen-enriched air or oxygen is fed to the oxygen diffusion cathode.
  • a hydrogen diffusion anode is used as the anode, which consists of a carbon fabric or carbon fleece and a mixture of Teflon, carbon black and noble metal and is covered with a proton-permeable membrane.
  • the proton-permeable membrane consists of a non-porous cation exchange membrane or of a gas and electrolyte-impermeable microporous membrane.
  • a depolarized metal electrode coated with a noble metal and / or noble metal oxide catalyst and having a mesh or lattice structure is used as the anode, which has a cation-exchange membrane on the cathode side as "solid polymer electrolyte" is covered, a gas, a liquid or a substance dissolved in a liquid being used as the depolarizer.
  • the noble metals ruthenium, rhodium, palladium, rhenium, iridium or platinum or their oxides are used as catalysts.
  • Gas diffusion electrodes used a cation exchange membrane, and the aqueous alkali hydroxide and / or alkali carbonate solution is fed into the cathode chamber, and the alkaline peroxide and / or percarbonate solution formed therein is then passed through the anode chamber.
  • the aqueous solution of an alkali metal hydroxide and / or alkali metal carbonate which contains soda is used as the starting material, the soda solution being contaminated by polyvalent cations and other mineral components, a pH value from 8 to 13 and a salt concentration between 30 g / 1 and the solubility limit of the starting material and that the starting material is then filtered and the filtrate with a pH of 8 to 13 is passed through a selective cation exchanger for the absorption of divalent and multivalent cations and that the solution is fed to the electrochemical cell.
  • a soda-containing mineral or the soda-containing solid is used as the starting material for the production of the soda-containing solution, which, in the event of thermal decomposition of a peroxide used for bleaching paper or cellulose, Bleach is produced.
  • FIG. 1 shows the electrolysis cell with the associated lines, the cell consisting of an oxygen diffusion cathode and a hydrogen diffusion anode.
  • FIG. 2 shows the electrolysis cell with the associated lines, the cell consisting of an oxygen diffusion cathode and a product-permeable depolarized anode with “solid polymer electrolyte” (SPE).
  • SPE solid polymer electrolyte
  • FIG. 1 shows the electrolysis cell, which consists of an oxygen diffusion cathode (1) and a hydrogen diffusion anode (2).
  • the cathode is composed of two perforated nickel sheets, between which an approximately 0.4 mm thick, porous carbon fabric is pressed, which is coated with a Teflon / carbon black mixture.
  • On the back of this oxygen diffusion cathode (1) is passed oxygen or air through a line (3) at a pressure of 0.02 to 0.1 bar.
  • Oxygen diffusion cathode is vented via a line (4).
  • the hydrogen diffusion anode (2) consists of a carbon fabric which is coated with a Teflon / carbon black mixture and is additionally activated with a platinum catalyst.
  • the back of the carbon fabric of the hydrogen diffusion anode is pressed against a corrosion-resistant stainless steel sheet, and the front is covered with a proton-permeable cation exchange membrane (e.g. NAFION 117, DuPont, USA) to protect the hydrogen Separate the anode from the electrolyte.
  • the hydrogen is fed to the rear of the anode at a pressure of 0.02 to 0.1 bar on the carbon fabric via a line (5).
  • the hydrogen diffusion anode (2) is vented via a line (6).
  • the starting materials are introduced into the electrochemical cell via a line (7).
  • the product solution is removed from the electrochemical cell via a line (8).
  • FIG. 2 shows the electrolysis cell, which consists of an oxygen diffusion cathode (1) and a product-permeable depolarized anode (2) with "solid polymer electrolyte” (SPE) (3) as a cover to the cathode side.
  • the cathode is composed of two perforated nickel sheets, between which an approximately 0.4 mm thick, porous carbon fabric is pressed, which is coated with a Teflon / carbon black mixture. Oxygen or air is fed to the back of this oxygen diffusion cathode (1) via a line (4) at a pressure of 0.02 to 0.1 bar.
  • Oxygen diffusion cathode is vented via a line (5).
  • the anode consists of an expanded mesh or a mesh made of a corrosion-resistant metal or electrically conductive non-metal (eg graphite or carbon), the surface of which is coated with an electrochemically active metal or metal oxide catalyst.
  • the anode On the cathode side, the anode is covered with a proton-conducting cation exchange membrane as "solid polymer electrolyte" (SPE) (3).
  • SPE proton-conducting cation exchange membrane
  • the depolarizer is led as a gas, liquid or as a substance dissolved in a liquid to the surface of the metal anode via line (6).
  • the anodically formed oxidation products are removed via line (7).
  • Hydrogen or methanol (10% by weight) in aqueous sulfuric acid (10 to 20% by weight) can be used as the depolarizer.
  • the starting materials are introduced into the electrochemical cell via a line (8).
  • the product solution is removed from the electrochemical cell via a line (9).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

Es wird ein Verfahren zur Herstellung von wässriger alkalischer Peroxid und/oder Percarbonat-Lösung in einer elektrochemischen Zelle beschrieben, die aus einer porösen Sauerstoff-Diffusions-Kathode (1) sowie einer Anode (2) besteht. Bei diesem Verfahren wird die Zelle mit einer geringen äußeren Zellspannung betrieben, und durch deren Zellkammer wird zwischen der Sauerstoff-Diffusions-Kathode und der Anode ein Alkalihydroxid-haltiger und/oder Alkalicarbonat-haltiger Elektrolyt (7) geleitet, und durch kathodische Reduktion von Sauerstoff wird Alkaliperoxid und/oder Alkalipercarbonat gebildet, wobei das H2O2/Alkali-Molverhältnis kleiner als 4 ist.

Description

Verfahren zur Herstellung von Alkaliperoxid/Percarbonat-Lösungen
Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von wässriger alkalischer Peroxid- und/oder Percarbonat-Lösung in einer elektrochemischen Zelle, die aus einer porösen Sauerstoff-Diffusions-Kathode sowie einer Anode besteht.
Peroxid-Lösungen gewinnen zunehmende Bedeutung als Oxidations- und Bleichchemikalien, da das aus dem Oxidationsmittel Peroxid entstehende Reaktionsprodukt Wasser die Umwelt nicht belastet. So werden z. B. alkalische wässrige Wasserstoffperoxid-Lösungen für die Zellstoff- und Papierbleichung verwendet. Als Ausgangsstoffe für die Bleichlauge werden Wassersroffperoxid und Natronlauge eingesetzt, bei deren Vermischung Natriumperoxid oder Natriumhydroperoxid in wässriger Lösung entsteht. Als Bleichmittel können ebenso Natriumpercarbonat-haltige Lösungen verwendet werden, die durch Mischen von Natriumcarbonat-haltigen und Wasserstoffperoxid-haltigen Lösungen hergestellt werden. Da Wasserstoffperoxid eine relativ instabile Verbindung ist und für deren Transport, Lagerung und Handhabung zudem strenge Sicherheitsauflagen zu beachten sind, ist es wesentlich einfacher und vorteilhafter, Peroxid-Lösungen auf elektrochemischem Weg direkt am Verbrauchsort herzustellen.
Von E. Yeager (Industrial Ξlectrochemistry, Plenum Press, 1982, Seite 31) ist eine elektrochemische Zelle offenbart, die nach einem Brennstoffzellen-Konzept ohne Anlegen einer äußeren Spannung für die Herstellung einer Peroxid-Lösung verwendet wird und die aus einer Wasserstoff-Diffusions-Anode, einem KOH-Elektrolyt und einer mit Luft betriebenen Sauerstoff-Diffusions-Kathode besteht. Diese elektrochemische Zelle besitzt den Nachteil einer geringen Stromdichte, was dazu führt, daß die zeitliche Ausbeute an Peroxid so gering ist, daß eine wirtschaftliche Herstellung von Peroxid mit Hilfe dieses Verfahrens als nicht möglich erscheint.
Ziel der Erfindung ist es, ein Verfahren zur Herstellung von wässriger alkalischer Peroxid- und/oder Percarbonat-Lösung in einer elektrochemischen Zelle bereitzustellen, das wirtschaftlich ist.
Dies wird erfindungsgemäß dadurch erreicht, daß die Zelle mit einer geringen äußeren Zellspannung betrieben wird und daß durch deren Zellkammer zwischen der Sauerstoff-Diffusions-Kathode und der Anode ein Alkalihydroxid-haltiger und/oder Alkalicarbonat-haltiger Elektrolyt geleitet wird und daß durch kathodische Reduktion von Sauerstoff Alkaliperoxid und/oder Alkalipercarbonat gebildet wird, wobei das H^O-j/Alkali-Molverhältnis kleiner als 4 ist.
Gemäß einer bevorzugten Ausführungsform der Erfindung wird die Zelle mit einer äußeren Zellspannung von 0,5 bis 2,0 V betrieben.
In weiterer bevorzugter Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, daß die
Alkalihydroxid-Lösung 30 bis 180 g/1 Alkalihydroxid oder
Alkalicarbonat und die Produkt-Lösung 1 bis 100 g/1 H^O- enthält.
Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist vorgesehen, daß als Alkalihydroxid NaOH oder KOH und als Alkalicarbonat Na-CO^ oder K-CC verwendet wird.
Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung enthält die Alkalihydroxid-Lösung 50 bis 100 g/1 Alkalihydroxid oder Alkalicarbonat und die Produkt-Lösung enthält 10 bis 70 g/1 H-O-.
In weiterer bevorzugter Ausgestaltung des erfindungsgemäßen Verfahrens werden der Elektrolyt-Lösung ein Chelatisierungsmittel oder mindestens ein Salz eines Chelatisierungs ittels zugegeben.
Das Chelatisierungsmittel besteht nach einer weiteren Ausführ ngsform der Erfindung aus
Äthylendiamintetraessigsäure (EDTA); als Salze des Chelatisierungsmittels werden die Alkalisalze verwendet.
Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist vorgesehen, daß die poröse Sauerstoff-Diffusions-Kathode aus einem Kohlenstoff-Gewebe oder Kohlenstoff-Vlies mit einer Beschichtung eines Gemisches aus Teflon und Ruß besteht.
In weiterer Ausgestaltung der Erfindung ist vorgesehen, daß der Sauerstoff-Diffusions-Kathode Luft, mit Sauerstoff angereicherte Luft oder Sauerstoff zugeführt wird.
In weiterer bevorzugter Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, daß als Anode eine Wasserstoff-Diffusions-Anode eingesetzt wird, die aus einem Kohlenstoffgewebe oder Kohlenstoff-Vlies und einem Gemisch aus Teflon, Ruß und Edelmetall besteht und mit einer Protonen-durchlässigen Membran abgedeckt ist. Gemäß einer weiteren Ausführungsform der Erfindung ist vorgesehen, daß die Protonen-durchlässige Membran aus einer porenfreien Kationenaustauscher-Membran oder aus einer Gas- und Elektrolyt-undurchlässigen mikroporösen Membran besteht.
In weiterer bevorzugter Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, daß als Anode eine mit einem Edelmetall- und/oder Edelmetalloxid-Katalysator beschichtete depolarisierte Metallelektrode mit einer Netz- oder Gitterstruktur eingesetzt wird, die zur Kathodenseite mit einer Kationenaustauscher-Membran als "solid polymer electrolyte" abgedeckt ist, wobei als Depolarisator ein Gas, eine Flüssigkeit oder ein in einer Flüssigkeit gelöster Stoff dient. Als Katalysator werden beispielsweise die Edelmetalle Ruthenium, Rhodium, Palladium, Rhenium, Iridium oder Platin oder deren Oxide verwendet.
Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung wird zwischen die beiden
Gasdiffusions-Elektroden eine Kationenaustauscher-Membran eingesetzt, und die Zuführung der wässrigen Alkalihydroxid- und/oder Alkalicarbonat-Lösung erfolgt in die Kathodenkammer, und die darin gebildete alkalische Peroxid- und/oder Percarbonat-Lösung wird anschließend durch die Anodenkammer geleitet.
In weiterer bevorzugter Ausgestaltung der Erfindung ist vorgesehen, daß als Ausgangsstoff die wässrige Lösung eines Alkalihydroxides und/oder Alkalicarbonates ein¬ gesetzt wird, die Soda enthält, wobei die Soda-Lösung durch mehrwertige Kationen und sonstige mineralische Komponenten verunreinigt sein kann, einen pH-Wert von 8 bis 13 sowie eine Salzkonzentration zwischen 30 g/1 und der Löslichkeitsgrenze des Ausgangsstoffs aufweist und daß der Ausgangsstoff anschließend filtriert und das Filtrat mit einem pH-Wert von 8 bis 13 über einen selektiven Kationenaustauscher zur Absorption von zwei- und mehrwertigen Kationen geleitet wird und daß die Lösung der elektrochemischen Zelle zugeführt wird.
In weiterer Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, daß als Ausgangsstoff für die Herstellung der Soda-haltigen Lösung ein Soda-haltiges Mineral oder der Soda-haltige Feststoff verwendet wird, der bei einer thermischen Zersetzung von einer zum Bleichen von Papier oder Zellstoff eingesetzten Peroxid-Bleichlauge anfällt.
Der Gegenstand der Erfindung wird nachfolgend anhand der Abbildungen (Fig. 1 und 2) näher erläutert.
Fig. 1 zeigt die Elektrolysezelle mit den dazugehörigen Leitungen, wobei die Zelle aus einer Sauerstoff-Diffusions-Kathode und einer Wasserstoff-Diffusions-Anode besteht.
Fig. 2 zeigt die Elektrolysezelle mit den dazugehörigen Leitungen, wobei die Zelle aus einer Sauerstoff-Diffusions-Kathode und einer Produkt-durchlässigen depolarisierten Anode mit "solid polymer electrolyte" (SPE) besteht.
In der Fig. 1 ist die Elektrolysezelle dargestellt, die aus einer Sauerstoff-Diffusions-Kathode (1) und einer Wasserstoff-Diffusions-Anode (2) besteht. Die Kathode ist zusammengesetzt aus zwei Nickel-Lochblechen, zwischen die ein ca. 0,4 mm dickes, poröses Kohlenstoffgewebe gepreßt ist, das mit einem Teflon/Ruß-Gemisch beschichtet ist. An die Rückseite dieser Sauerstoff-Diffusions-Kathode (1) wird Sauerstoff oder Luft über eine Leitung (3) mit einem Druck von 0,02 bis 0,1 bar geführt. Die
Sauerstoff-Diffusions-Kathode wird über eine Leitung (4) entlüftet. Die Wasserstoff-Diffusions-Anode (2) besteht aus einem Kohlenstoff-Gewebe, das mit einem Teflon/Ruß-Gemisch beschichtet und zusätzlich mit einem Platin-Katalysator aktiviert ist. Das Kohlenstoff-Gewebe der Wasserstoff-Diffusions-Anode ist mit der Rückseite gegen ein korrosionsbeständiges Edelstahlblech gepreßt, und die Frontseite ist mit einer Protonen-durchlässigen Kationenaustauscher-Membran (z. B. NAFION 117, DuPont, USA) abgedeckt, um den Wasserstoff-Raum der Anode von dem Elektrolyt zu trennen. Der Wasserstoff wird der Rückseite der Anode mit einem Druck von 0,02 bis 0,1 bar an dem Kohlenstoff-Gewebe über eine Leitung (5) zugeführt. Die Wasserstoff-Diffusions-Anode (2) wird über eine Leitung (6) entlüftet. Die Ausgangsstoffe werden über eine Leitung (7) in die elektrochemische Zelle eingebracht. Die Produkt-Lösung wird über eine Leitung (8) der elektrochemischen Zelle entnommen.
In Fig. 2 ist die Elektrolysezelle dargestellt, die aus einer Sauerstoff-Diffusions-Kathode (1) und einer Produkt-durchlässigen depolarisierten Anode (2) mit "solid polymer electrolyte" (SPE) (3) als Abdeckung zur Kathodenseite besteht. Die Kathode ist zusammengesetzt aus zwei Nickel-Lochblechen, zwischen die ein ca. 0,4 mm dickes, poröses Kohlenstoffgewebe gepreßt ist, das mit einem Teflon/Ruß-Gemisch beschichtet ist. An die Rückseite dieser Sauerstoff-Diffusions-Kathode (1) wird Sauerstoff oder Luft über eine Leitung (4) mit einem Druck von 0,02 bis 0,1 bar geführt. Die
Sauerstoff-Diffusions-Kathode wird über eine Leitung (5) entlüftet. Die Anode besteht aus einem Streckgitter oder einem Netz aus einem korrosionsstabilen Metall oder elektrisch leitenden Nichtmetall (z.B. Graphit oder Kohlenstoff), dessen Oberfläche mit einem elektrochemisch aktiven Metall- oder Metalloxid-Katalysator beschichtet ist. Zur Kathodenseite ist die Anode mit einer Protonen-leitenden Kationenaustauscher-Membran als "solid polymer electrolyte" (SPE) (3) abgedeckt. Von der Rückseite wird über die Leitung (6) der Depolarisator als Gas, Flüssigkeit oder als in einer Flüssigkeit gelöster Stoff an die Oberfläche der Metall-Anode geführt. Über die Leitung (7) werden die anodisch gebildeten Oxidationsprodukte abgeführt. Als Depolarisator kann Wasserstoff oder Methanol (10 Gew. %) in wässriger Schwefelsäure (10 bis 20 Gew. %) eingesetzt werden. Die Ausgangsstoffe werden über eine Leitung (8) in die elektroschemische Zelle eingebracht. Die Produkt-Lösung wird über eine Leitung (9) der elektrochemischen Zelle entnommen.
Die Erfindung wird nachfolgend anhand von Beispielen näher beschrieben.
Beispiel 1:
In einer Elektrolysezelle, die aus einer
Sauerstoff-Diffusions-Kathode und einer
Wasserstoff-Diffusions-Anode besteht (siehe Fig. 1), wird in den Zwischenraum zwischen der
Sauerstoff-Diffusions-Kathode (1) und der
Wasserstoff-Diffusions-Anode (2) eine wässrige
Na-CO^.-Lösung mit einer Konzentration von 60 g/1 NanCO, und 1 g/1 Äthylendiamintetraessigsäure (EDTA) geleitet.
Die Elektrolysezelle mit einer Elektrodenfläche von
2 100 cm und einem Elektrodenabstand von 2 mm wird mit einem Strom von 10 A bei 35°C betrieben. Bei einer kathodischen Stromausbeute von 70 % bezogen auf H-O- bilden sich 4,4 g/h H-O-. Dies führt bei einem Volumenstrom von 0,3 1/h durch die Zelle zu einer Produkt-Lösung mit einer Konzentration von 14 g/1 H-O^. Bei Betrieb der Elektrolysezelle mit Sauerstoff an der Kathode stellt sich eine Zellspannung von 0,95 V ein.
Beispiel 2:
Durch eine Elektrolysezelle, die aus einer
Sauerstoff-Diffusions-Kathode und einer
Wasserstoff-Diffusions-Anode besteht (siehe Fig. 1), wird eine wässrige Lösung mit einer Konzentration von 50 g/1
NaOH geleitet. Der Sauerstoff-Diffusions-Kathode (1) wird
Luft zugeleitet. Bei einem Elektrolysestrom von 10 A stellt sich eine Zellspannung von 1,25 V ein. Die
H-O--Ausbeute liegt in der Größenordnung, die im Beispiel
1 genannt ist.

Claims

PATENTANSPRÜCHE
1. Verfahren zur Herstellung von wässriger alkalischer Peroxid- und/oder Percarbonat-Lösung in einer elektrochemischen Zelle, die aus einer porösen Sauerstoff-Diffusions-Kathode sowie einer Anode besteht, dadurch gekennzeichnet, daß die Zelle mit einer geringen äußeren Zellspannung betrieben wird und daß durch deren Zellkammer zwischen der Sauerstoff-Diffusions-Kathode und der Anode ein Alkalihydroxid-haltiger und/oder Alkalicarbonat-haltiger Elektrolyt geleitet wird und daß durch kathodische Reduktion von Sauerstoff Alkaliperoxid und/oder Alkalipercarbonat gebildet wird, wobei das H202/Alkali-Molverhältnis kleiner als 4 ist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Zelle mit einer äußeren Zellspannung von 0,5 bis 2,0 V betrieben wird.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Alkalihydroxid-Lösung 30 bis 180 g/1 Alkalihydroxid oder Alkalicarbonat und die Produkt-Lösung 1 bis 100 g/1 H_0_ enthält.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß als Alkalihydroxid NaOH oder KOH und als Alkalicarbonat Na-CO-, oder K-CO- verwendet wird.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Alkalihydroxid-Lösung 50 bis 100 g/1 Alkalihydroxid oder Alkalicarbonat enthält und die Produkt-Lösung 10 bis 70 g/1 H-O- enthält.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß der Elektrolyt-Lösung ein Chelatisierungsmittel oder mindestens ein Salz eines Chelatisierungsmittels zugegeben wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß das Chelatisierungsmittel aus
Äthylendiamintetraessigsäure (EDTA) besteht und daß als Salze des Chelatisierungsmittels die Alkalisalze verwendet werden.
8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die poröse Sauerstoff-Diffusions-Kathode aus einem Kohlenstoff-Gewebe oder Kohlenstoff-Vlies mit einer Beschichtung eines Gemisches aus Teflon und Ruß besteht.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß der Sauerstoff-Diffusions-Kathode Luft, mit Sauerstoff angereicherte Luft oder Sauerstoff zugeführt wird.
10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß als Anode eine Wasserstoff-Diffusions-Anode eingesetzt wird, die aus einem Kohlenstoffgewebe oder Kohlenstoff-Vlies und einem Gemisch aus Teflon, Ruß und Edelmetall besteht und mit einer Protonen-durchlässigen Membran abgedeckt ist.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß die Protonen-durchlässige Membran aus einer porenfreien Kationenaustauscher-Membran oder aus einer Gas- und Elektrolyt-undurchlässigen mikroporösen Membran besteht.
12. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß als Anode eine mit einem Edelmetall- und/oder Edelmetalloxid-Katalysator beschichtete depolarisierte Metallelektrode mit einer Netz- oder Gitterstruktur eingesetzt wird, die zur Kathodenseite mit einer Kationenaustauscher-Membran als "solid polymer electrolyte" abgedeckt ist, wobei als Depolarisator ein Gas, eine Flüssigkeit oder ein in einer Flüssigkeit gelöster Stoff dient.
13. Verfahren nach den Ansprüchen 1 bis 11, dadurch ^ gekennzeichnet, daß zwischen die beiden
Gasdiffusions-Elektroden eine
Kationenaustauscher-Membran eingesetzt wird und die Zuführung der wässrigen Alkalihydroxid- und/oder Alkalicarbonat-Lösung in die Kathodenkammer erfolgt und die darin gebildete alkalische Peroxid- und/oder Percarbonat-Lösung anschließend durch die Anodenkammer geleitet wird.
14. Verfahren nach den Ansprüchen 1 bis 13, dadurch gekennzeichnet,
a) daß als Ausgangsstoff die wässrige Lösung eines Alkalihydroxides und/oder Alkalicarbonates eingesetzt wird, die Soda enthält, wobei die Soda-Lösung durch mehrwertige Kationen und sonstige mineralische Komponenten verunreinigt sein kann, einen pH-Wert von 8 bis 13 sowie eine Salzkonzentration zwischen 30 g/1 und der Löslichkeitsgrenze des Ausgangsstoffs aufweist. b) daß der Ausgangsstoff anschließend filtriert und das Filtrat mit einem pH-Wert von 8 bis 13 über einen selektiven Kationenaustauscher zur Absorption von zwei- und mehrwertigen Kationen geleitet wird und daß die Lösung der elektrochemischen Zelle zugeführt wird.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß als Ausgangsstoff für die Herstellung der Soda-haltigen Lösung ein Soda-haltiges Mineral oder der Soda-haltige Feststoff verwendet wird, der bei einer thermischen Zersetzung von einer zum Bleichen von Papier oder Zellstoff eingesetzten Peroxid-Bleichlauge anfällt.
EP94917610A 1993-05-25 1994-05-10 Verfahren zur herstellung von alkaliperoxid/percarbonat-lösungen Withdrawn EP0820536A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4317349 1993-05-25
DE4317349A DE4317349C1 (de) 1993-05-25 1993-05-25 Verfahren zur Herstellung von Alkaliperoxid/Percarbonat-Lösungen
PCT/EP1994/001506 WO1994028198A1 (de) 1993-05-25 1994-05-10 Verfahren zur herstellung von alkaliperoxid/percarbonat-lösungen

Publications (1)

Publication Number Publication Date
EP0820536A1 true EP0820536A1 (de) 1998-01-28

Family

ID=6488852

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94917610A Withdrawn EP0820536A1 (de) 1993-05-25 1994-05-10 Verfahren zur herstellung von alkaliperoxid/percarbonat-lösungen

Country Status (8)

Country Link
US (1) US5766443A (de)
EP (1) EP0820536A1 (de)
JP (1) JPH09504827A (de)
CN (1) CN1060228C (de)
BR (1) BR9406634A (de)
CA (1) CA2163896A1 (de)
DE (1) DE4317349C1 (de)
WO (1) WO1994028198A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19516304C1 (de) * 1995-05-04 1996-07-25 Metallgesellschaft Ag Verfahren zur Herstellung von Alkaliperoxid-Hydrat
US6998155B2 (en) * 2001-05-23 2006-02-14 Traptek Llc Woven materials with incorporated solids and processes for the production thereof
AU2002345968A1 (en) * 2001-06-26 2003-01-08 Traptek Llc A treated yarn and methods for making same
US20080121141A1 (en) * 2006-11-16 2008-05-29 Haggquist Gregory W Exothermic-enhanced articles and methods for making the same
CA2489139C (en) 2002-06-12 2012-01-10 Traptek, Llc Encapsulated active particles and methods for making and using the same
EP2520611B1 (de) * 2006-05-09 2017-06-21 Cocona, Inc. Verfahren zur Herstellung einer wasserbeständigen atmungsfähigen Membran
EP3272907B1 (de) * 2016-07-20 2019-11-13 Fuelsave GmbH Verfahren zum betreiben einer elektrolyseeinrichtung sowie antriebssystem mit elektrolyseeinrichtung

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969201A (en) * 1975-01-13 1976-07-13 Canadian Patents And Development Limited Electrolytic production of alkaline peroxide solutions
DE2501342C3 (de) * 1975-01-15 1979-05-17 Kernforschungsanlage Juelich Gmbh, 5170 Juelich Verfahren zur Herstellung von Wasserstoffperoxid
CS192037B1 (en) * 1975-06-19 1979-08-31 Jan Balej Gaseous porous electrode for preparing alkaline solutions of peroxicompounds and process for preparing this electrode
EP0066663A1 (de) * 1981-06-10 1982-12-15 La Cellulose Des Ardennes Elektrolytische Zelle zur Herstellung von Wasserstoffsuperoxid in alkalischen Lösungen
US4384931A (en) * 1981-09-04 1983-05-24 Occidental Research Corporation Method for the electrolytic production of hydrogen peroxide
US4430176A (en) * 1981-11-13 1984-02-07 Occidental Chemical Corporation Electrolytic process for producing hydrogen peroxide
EP0095997B1 (de) * 1982-05-28 1987-04-01 BBC Brown Boveri AG Verfahren zur elektrolytischen Erzeugung von Wasserstoffperoxyd und dessen Verwendung
US4921587A (en) * 1985-09-19 1990-05-01 H-D Tech, Inc. Porous diaphragm for electrochemical cell
BR8707943A (pt) * 1986-11-20 1990-02-13 Fmc Corp Celula eletrolitica para reduzir oxigenio a peroxido de hidrogenio,artigo de fabricacao utilizavel para sua construcao e processo para fabricar um catodo de difusao de gas
US4693794A (en) * 1986-11-20 1987-09-15 Fmc Corporation Process for manufacturing hydrogen peroxide electrolytically
US4753718A (en) * 1986-11-20 1988-06-28 Fmc Corporation Hydrogen peroxide electrolytic cell
US4872957A (en) * 1988-07-20 1989-10-10 H-D Tech Inc. Electrochemical cell having dual purpose electrode
DE68928338T2 (de) * 1988-09-19 1998-02-26 H D Tech Inc Zelle und Verfahren zum Betrieb einer elektrochemischen Zelle vom Typ flüssig-gasförmig
US5074975A (en) * 1990-08-08 1991-12-24 The University Of British Columbia Electrochemical cogeneration of alkali metal halate and alkaline peroxide solutions
US5316629A (en) * 1991-09-20 1994-05-31 H-D Tech Inc. Process for maintaining electrolyte flow rate through a microporous diaphragm during electrochemical production of hydrogen peroxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9428198A1 *

Also Published As

Publication number Publication date
US5766443A (en) 1998-06-16
WO1994028198A1 (de) 1994-12-08
BR9406634A (pt) 1996-02-06
JPH09504827A (ja) 1997-05-13
CN1060228C (zh) 2001-01-03
DE4317349C1 (de) 1994-10-13
CN1127535A (zh) 1996-07-24
CA2163896A1 (en) 1994-12-08

Similar Documents

Publication Publication Date Title
EP0694087B1 (de) Verfahren zur herstellung von alkaliperoxid-lösungen
DE2655070C2 (de) Sauerstoffkonzentrator
DE2806984C3 (de) Verfahren zum Herstellen von Wasserstoff und Sauerstoff sowie eine Elektrolysezelle zur Durchführung dieses Verfahrens
DE2851225C2 (de)
DE2847955A1 (de) Verfahren zum elektrolytischen herstellen von halogen und vorrichtung zur durchfuehrung des verfahrens
EP0095997B1 (de) Verfahren zur elektrolytischen Erzeugung von Wasserstoffperoxyd und dessen Verwendung
DE10130828A1 (de) Brennstoffzelle
DE2926560A1 (de) Elektrolysezelle, membran-elektroden- einheit und verfahren zur herstellung von halogen und alkalimetallhydroxid
EP0182114A1 (de) Elektrolyseapparat mit horizontal angeordneten Elektroden
EP1327011B1 (de) Verfahren zur elektrochemischen herstellung von wasserstoffperoxid
DE2844495A1 (de) Elektrolytkatalysator aus thermisch stabilisiertem, partiell reduziertem platinmetalloxid und verfahren zu dessen herstellung
CH650031A5 (de) Vorrichtung zur gewinnung von halogen durch elektrolyse einer waessrigen loesung von alkalimetallhalogeniden und verfahren zu deren betrieb.
DE4317349C1 (de) Verfahren zur Herstellung von Alkaliperoxid/Percarbonat-Lösungen
DE2124045C3 (de) Verfahren zur elektrolytischen Her stellung von reinem Chlor, Wasserstoff und reinen konzentrierten Alkaliphosphat lösungen und Elektrolyslerzelle zur Durch führung des Verfahrens
DE2005602A1 (de) Elektrochemische Zelle
DE60004090T2 (de) Verfahren zur herstellung einer alkalischen wasserstoffperoxidlösung und chlordioxid
AT393280B (de) Kathoden-membran-einheit
DE102008002108A1 (de) Elektrolytlösung für Wasserstofferzeugungsvorrichtung und Wasserstofferzeugungsvorrichtung mit derselben
DE2648268A1 (de) Verfahren und vorrichtung zur elektrochemischen herstellung von sauerstoff
DE19516304C1 (de) Verfahren zur Herstellung von Alkaliperoxid-Hydrat
DE19625600B4 (de) Elektrolyseverfahren
DE1265257B (de) Verfahren zum elektro? Umsatz von aus wasserstoffhaltigen Verbindungen hergestelltemWasserstoff
DE1958359A1 (de) Verfahren und Vorrichtung zur Herstellung von Wasserstoff
CN1281791C (zh) 用于生产碱性过氧化氢的含醌充氧阴极及阴极的制备方法
DE1953563C3 (de) Verfahren zur Abtrennung von Kohlendioxyd aus Gasen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT NL SE

17Q First examination report despatched

Effective date: 19980226

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: METALLGESELLSCHAFT AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MG TECHNOLOGIES AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20010511