EP0807940B1 - Supraleitende magnetvorrichtung - Google Patents

Supraleitende magnetvorrichtung Download PDF

Info

Publication number
EP0807940B1
EP0807940B1 EP96939331A EP96939331A EP0807940B1 EP 0807940 B1 EP0807940 B1 EP 0807940B1 EP 96939331 A EP96939331 A EP 96939331A EP 96939331 A EP96939331 A EP 96939331A EP 0807940 B1 EP0807940 B1 EP 0807940B1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
field generating
superconducting magnet
coils
magnet apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96939331A
Other languages
English (en)
French (fr)
Other versions
EP0807940A1 (de
EP0807940A4 (de
Inventor
Hirotaka Hitachi Medical Corporation TAKESHIMA
Hajime Hitachi Medical Corporation KAWANO
Shigeru Kakugawa
Noriaki Hino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Publication of EP0807940A1 publication Critical patent/EP0807940A1/de
Publication of EP0807940A4 publication Critical patent/EP0807940A4/de
Application granted granted Critical
Publication of EP0807940B1 publication Critical patent/EP0807940B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3875Compensation of inhomogeneities using correction coil assemblies, e.g. active shimming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3806Open magnet assemblies for improved access to the sample, e.g. C-type or U-type magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/42Screening
    • G01R33/421Screening of main or gradient magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor

Definitions

  • the present invention relates to a superconducting magnet apparatus that is suitable for use in a magnetic resonance imaging system (hereunder referred to as "MRI system") and, more particularly, to a superconducting magnet apparatus that has a large opening to thereby prevent a subject from feeling claustrophobic and to thereby allow an operator to have easy access to a subject.
  • MRI system magnetic resonance imaging system
  • FIG. 7 illustrates an example of a conventional superconducting magnet apparatus for use in MRI system.
  • This example is a superconducting magnet apparatus of the horizontal magnetic field type.
  • This superconducting magnet apparatus is composed of small-diameter main coils 13, 14, 15, 16, 17 and 18 and large-diameter shield coils 19 and 20 and is adapted to produce a horizontal (namely, Z-axis direction) magnetic field.
  • the main coils 13 to 18 are placed to produce a magnetic field along the center axis 22 of a magnet, while the shield coils 19 and 20 are placed to shield magnetic field leakage to the surroundings thereof.
  • a uniform magnetic field region 21 of magnetic homogeneity of about 10 ppm or less is formed in a magnetic field space. Magnetic resonance imaging pictures are taken in this uniform magnetic filed 21.
  • These coils are generally made by using superconducting wires, and thus need cooling to a predetermined temperature (for example, liquid-helium temperature (namely, 4.2 K) in the case of alloy superconductors; and liquid-nitrogen temperature (namely, 77 K) in the case of oxide superconductors).
  • the coils are, therefore, held in a cooling vessel consisting of a vacuum enclosure, a thermal shield and a coolant container (containing liquid helium or the like).
  • the main coils 13 to 18 and the shield coils 19 and 20 are placed in a coolant container 11, which contains coolant 12, such as liquid helium, for superconductivity by supported by means of supporting elements (not shown). Further, the coolant container 11 is held in a vacuum enclosure 10.
  • the thermal shield is maintained at a constant temperature by using a refrigerator (not shown) or the evaporation of coolant 12 for superconductivity is reduced.
  • the performance of the refrigerator has been increased, so that the superconductor coils are sometimes cooled directly by the refrigerator without using the coolant container 11.
  • FIG. 8 illustrates another example of a conventional superconducting magnet apparatus for use in MRI system.
  • This example is an open superconducting magnet apparatus of the horizontal magnetic field type.
  • This example of the conventional superconducting magnet apparatus has been disclosed in the United States Patent No. 5,410,287 and remedies the drawbacks of the aforementioned example of the conventional superconducting magnet apparatus of FIG. 7 in that the measuring space causes a subject to feel claustrophobic and in that there is the difficulty in getting access to a subject by an operator.
  • FIG. 8(a) shows a sectional view of this example.
  • FIG. 8(b) shows an external view thereof. As shown in FIG.
  • a set of three coils 23A, 24A and 25A and another set of three coils-23B, 24B and 25B are spaced apart from each other by a predetermined distance in such a manner as to be coaxial with the center axis 22 of a magnet. Further, a uniform magnetic field region 21 is generated at the halfway position between the sets of the coils. Coils of each of the sets are supported by supporting elements (not shown) and are directly cooled by a refrigerator. All of the coils of each of the sets are surrounded with thermal shields 9A and 9B that are held in vacuum enclosures 10A and 10B, respectively.
  • Coils 23A, 23B, 24A and 24B are main coils, through which electric currents flow in a same direction.
  • Coils 25A and 25B are auxiliary coils, through which electric currents flow in a direction opposite to the direction of the current flow in the main coils.
  • the main coils 23A, 23B, 24A and 24B produce a magnetic field along the center axis 22.
  • the auxiliary coils 25A and 25B enhance the magnetic homogeneity of the uniform magnetic field region 21.
  • this magnet does not use shield coils. However, a room, in which the superconducting magnet apparatus is installed, is magnetically shielded.
  • the vacuum enclosures 10A and 10B facing each other in the lateral direction are shaped like doughnuts and are supported by two supporting posts 26 interposed therebetween.
  • the vacuum enclosures 10A and 10B there is provided an open space between the vacuum enclosures 10A and 10B.
  • a subject is inserted into the uniform magnetic field region 21 along the center axis 22, which is illustrated in FIG. 8(a), through the central bores of the vacuum enclosures 10A and 10B. Then, images of the subject are taken there.
  • outward side surfaces of the uniform magnetic field region 21 serving as an imaging region are opened.
  • a subject can avoid feeling claustrophobic.
  • an operator can easily get access to the subject from a side of the apparatus and further can use the images displayed on the screen of a monitor during an operation.
  • each of the sets of coils 23A, 24A and 25A and coils 23B, 24B and 25B and the vacuum enclosures 10A and 10B is shaped like a doughnut.
  • a space between the doughnut-like vacuum enclosures 10A and 10B facing each other is not used as a region used for performing improvement in magnetic homogeneity. Therefore, it has been difficult to obtain favorable magnetic homogeneity over a large space.
  • magnetic fluxes generated by the superconducting coils return through the external space of the superconducting magnet apparatus, so that a leakage magnetic field becomes large. Thus, a large area is needed for installing the superconducting magnet apparatus. Alternatively, strong magnetic shielding should be performed.
  • FIG. 9 illustrates a third example of a conventional superconducting magnet apparatus for use in MRI system.
  • This example is a superconducting magnet apparatus of the vertical magnetic field type.
  • This example of the conventional superconducting magnet apparatus has been disclosed in the United States Patent No. 5,194,810.
  • This magnet enhances the magnetic homogeneity of a uniform magnetic filed region 21 by generating a magnetic field by the use of two sets of superconducting coils 31 and 31, the respective sets of which are placed vertically in such a way as to face each other, and by providing iron shimming means 32 on the inner surfaces of the aforesaid superconducting coils 31 and 31 so as to obtain favorable magnetic field homogeneity.
  • this magnet has a structure in that upper and lower magnetic-field generating sources are mechanically supported by iron yokes 33, 33, ... that further serve as return paths for magnetic fields generated by the upper and lower superconducting coils 31 and 31.
  • the uniform magnetic field region 21 is opened in all directions, a subject can avoid feeling claustrophobic. Moreover, an operator can easily get access to the subject. Further, magnetic field leakage can be reduced because of the fact that the return path of the magnetic flux is composed of the aforementioned iron yokes 33, 33, ... and upper and lower iron plates 34 and 34.
  • an object of the present invention to provide a superconducting magnet apparatus that deals with such problems of the conventional superconducting magnet apparatuses, that enlarges an opening, which accommodates a subject, so as to prevent the subject from feeling claustrophobic, that has low magnetic field leakage, that avoids using much iron so as to reduce the weight thereof, and that can realize a large high magnetic field strength uniform magnetic field region.
  • a superconducting magnet apparatus and a use of a superconducting magnet apparatus in a magnetic resonance imaging system comprising the features in claims 1 and 8, respectively. Further preferred embodiments of the superconducting magnet apparatus according to the present invention are described in the dependent claims 2 to 7.
  • the superconducting magnet apparatus may comprise: magnetic field generating apparatuses, which are made of substances having superconducting properties and are operative to feed electric current for generating a uniform magnetic field, whose direction is a first direction, in a finite region; cooling means for cooling the aforesaid magnetic field generating apparatuses to a temperature, at which the substances exhibit the superconducting properties, and for maintaining the aforesaid magnetic field generating apparatuses at the temperature; and supporting means for supporting the magnetic field generating apparatuses.
  • the magnetic field generating apparatuses are placed equidistantly in such a way as to face each other across the uniform magnetic field region along the first direction and are composed of two sets of magnetic field generating device groups for feeding electric current in a coaxial direction with the first direction being made the center axis.
  • each of the sets of magnetic field generating device groups is composed of: one or more first magnetic field generating devices for feeding electric current which flows in a second direction along the circumference of a circle, whose center axis extends in the aforesaid first direction, so as to generate a main component of the uniform magnetic field; one or more second magnetic field generating devices for feeding electric current which flows in a direction opposite to the second direction, so as to reduce a magnetic field generated outside the magnetic field generating sources; and one or more third magnetic field generating devices for feeding electric current which flows in a direction that is same as or opposite to the second direction, so as to improve magnetic homogeneity of the uniform magnetic field.
  • the diameter of the first magnetic field generating device is equal to or smaller than that of the second magnetic field generating device. Further, the diameter of the third magnetic field generating device is less than that of the first magnetic field generating device. An amount of electric current fed to the third magnetic field generating device is less than an amount of electric current fed to the first magnetic field generating device. The distance between the first magnetic field generating devices facing each other across the uniform magnetic field region is shorter than that between the second magnetic field generating devices facing each other across the uniform magnetic field region.
  • the diameter of the aforesaid second magnetic field generating device may be set as being larger than that of the first magnetic field generating device.
  • the second magnetic field generating devices each consists of magnetic field generating elements having a plurality of different diameters.
  • the magnetic field generating elements are provided in such a manner that the diameter of the magnetic field generating elements corresponding to each other is increased in proportion to the distance between these magnetic field generating elements corresponding to each other and facing each other across a uniform magnetic field generating region.
  • the electromagnetic force acting on the second magnetic field generating elements obtained by dividing the second magnetic field generating device can be lowered.
  • the conditions for manufacturing the superconducting magnet apparatus can be moderated.
  • the first magnetic field generating devices each consists of magnetic field generating elements having a plurality of different diameters. These magnetic field generating elements are provided in such a manner that the diameter of these magnetic field generating elements corresponding to each other is increased in proportion to the distance between these magnetic field generating elements corresponding to each other and facing each other across the uniform magnetic field generating region. Thereby, the electromagnetic force acting on the first magnetic field generating elements obtained by dividing the first magnetic field generating device can be reduced.
  • the distance between the first magnetic field generating devices facing each other across the uniform magnetic field generating region may be set as being less than the distance between the second magnetic field generating devices facing each other across the uniform magnetic field generating region and further may be set as being less than the distance between the third magnetic field generating devices facing each other across the uniform magnetic field generating region.
  • the cooling means may have vacuum enclosures for containing the magnetic field generating sources. Furthermore, an outer circumferential portion of each of the vacuum enclosures protrudes to a side at which the uniform magnetic generating region may exist.
  • each of the magnetic field generating sources may be constituted by a coil obtained by winding a wire made of a substance having a superconducting property.
  • FIGS. 1, 2 and 6(a) illustrate a first embodiment of a superconducting magnet apparatus according to the present invention.
  • FIG. 1 is a sectional diagram illustrating the configuration of the entire apparatus.
  • FIG. 2 is a perspective diagram illustrating an external view of the apparatus.
  • FIG. 6(a) illustrates the first embodiment of the present invention by cutting away an upper right part of the first embodiment of the present invention illustrated in the sectional diagram of FIG. 1 in such a manner as to be able to be compared with other embodiments of the present invention.
  • cylindrical vacuum enclosures 10A and 10B containing superconducting coils are spaced apart from each other by a predetermined distance in such a manner as to be coaxial with the center axis 22 of the magnet and as to face each other vertically.
  • the upper vacuum enclosure 10A is supported by supporting posts 26 and 26 in such a manner as to be a predetermined distance apart from the lower vacuum enclosure 10B.
  • Coolant containers 11A and 11B are held in the vacuum enclosures 10A and 10B.
  • superconducting coils 41A, 42A, 43A, 44A, 45A and 41B, 42B, 43B, 44B, 45B are supported by supporting elements (not shown) and are placed in the coolant containers, respectively.
  • each of the aforementioned superconducting coils 41 A to 45A and 41 B to 45B As the material of each of the aforementioned superconducting coils 41 A to 45A and 41 B to 45B, Nb-Ti wires, which are usually frequently used as the material of superconducting coils, are employed. Further, liquid helium is used as the coolant 12 for superconductivity. Moreover, the vacuum enclosures 10A and 10B are disposed outside the coolant containers 11A and 11B, respectively, so as to prevent an occurrence of convection of heat. Moreover, thermal shields (not shown) are placed thereat to prevent an occurrence of thermal radiation.
  • the supporting posts 26 and 26 serve a function of mechanically supporting the upper vacuum enclosure 10A and may have a function of thermally connecting the upper and lower coolant containers 11A and 11B with each other, if necessary. Thereby, the necessity of providing a refrigerator (not shown) at each of the upper and lower coolant containers 11A and 11B is eliminated. Consequently, a single refrigerator suffices for the entire apparatus.
  • the number of the supporting posts 26 is not always limited to two as illustrated in the figure but may be three or four. Alternatively, a single supporting post of the cantilever type may be employed so that a subject feels free and relaxed.
  • FIG. 1 five sets of superconducting coils 41A to 45A and 41B to 45B are placed in such a way as to be coaxial with the center axis 22A. Thus, a magnetic field of high magnetic homogeneity is formed in the uniform magnetic field region 21.
  • the functions of these superconducting coils 41A to 45a and 41 B to 45B are classified into the following three kinds.
  • the superconducting coils 41A and 41B are main coils for generating a magnetic field, whose magnetic field strength is high and is not less than a predetermined level, in the uniform magnetic field region 21.
  • the main coils generally, there is a tendency to enhance the magnetic homogeneity of a magnetic field generated therebetween when the diameters of these coils are increased under a condition wherein the distance therebetween is maintained at a constant value. Therefore, to obtain favorable magnetic homogeneity, it is better to increase the diameters of the coils as much as possible. In contrast, as the diameter of the main coil is increased, the magnetic field strength is decreased. Thus, the magnetomotive force of the main coil needed for obtaining a magnetic field having a constant strength, is increased.
  • the diameters of the superconducting coils 41A and 41B, acting as the main coils, are determined by balancing both viewpoints with each other. Moreover, the outside diameters of the vacuum enclosures 10A and 10B are almost determined as a result of the determination of the diameter of these main coils.
  • the superconducting coils 42A and 42B are bucking coils for canceling out an outward component of a magnetic field generated by the main coils 41A and 41B so as to suppress the magnetic field leakage to the exterior of the apparatus.
  • These bucking coils 42A and 42B are placed in such a manner as to be coaxial with the aforementioned main coils 41A and 41B, respectively. Then, these bucking coils feed electric current, whose direction is opposite to that of electric current fed by the main coils 41A and 41 B, and thus generate a magnetic field, whose direction is opposite to that of the magnetic field generated by the main coils 41 A and 41 B in the exterior of the apparatus. Consequently, the bucking coils cancel out the magnetic field generated outside the apparatus.
  • the bucking coils 42A and 42B have a diameter which is nearly equal to that of the main coils 41A and 41B and the distance between the two bucking coils 42A and 42B is made to be larger than that between the two main coils 41A and 41B.
  • the superconducting coils 43A, 44A, 45A and 43B, 44B, 45B are coils for correcting the magnetic homogeneity, for enhancing the magnetic homogeneity of a magnetic field generated in the uniform magnetic field region 21.
  • These coils for correcting the magnetic homogeneity 43A to 45A and 43B to 45B are provided so as to correct an inhomogeneous component of the magnetic field generated in the uniform magnetic field region 21 formed by the aforementioned main coils 41A and 41B and the bucking coils 42A and 42B.
  • the main coils 41A and 41B have a sufficiently large diameter, the aforementioned inhomogeneous component of the magnetic field is not so large.
  • the coils for correcting the magnetic homogeneity 43A to 45A and 43B to 45B do not need so large magnetomotive force as in the case of the main coils 41 A and 41 B and the bucking coils 42A and 42B.
  • the direction of the electric current fed by the coils for correcting the magnetic homogeneity may be determined according to the inhomogeneous component of the magnetic field generated by the main coils 41A and 41B for each coil and is not limited to a specific direction.
  • three sets of coils are placed as the coils for correcting the magnetic homogeneity.
  • the number of these coils may be determined according to the inhomogeneous component of the magnetic field. Generally, as the diameter of the main coils 41A and 41B is increased, the inhomogeneous component of the magnetic field becomes smaller. Thus, the number of the coils for correcting the magnetic homogeneity can be reduced.
  • the outside diameter of the main coils 41A and 41B is set as ranging from 1,600 mm to 1,800 mm
  • the diameter of the uniform magnetic field region 21 is set at 450 mm
  • the magnetic field strength is set at 1 Tesla
  • the magnetic homogeneity of 5 ppm or less is achieved in the aforementioned uniform magnetic field region 21.
  • the superconducting magnet apparatus of the present invention constructed as above described, there can be realized an apparatus which has a large opening and small magnetic field leakage. Moreover, iron is not used in order to suppress the magnetic field leakage. Thus, the weight of the apparatus can be small. Moreover, there is not caused a magnetic flux saturation which would be a problem caused if using iron. Therefore, even if the magnetic field strength becomes high, favorable magnetic homogeneity can be attained over the large uniform magnetic field region 21.
  • FIGS. 3 and 4 illustrate a second embodiment of the superconducting magnet apparatus according to the present invention.
  • FIG. 3 is a sectional diagram illustrating the configuration of the entire apparatus.
  • FIG. 4 is a perspective diagram illustrating an external view of the apparatus.
  • the vacuum enclosures 10A and 10B and the coolant containers 11A and 11B which are provided vertically are shaped like doughnuts. Further, bores are formed in the central portions 51A and 51B thereof.
  • shimming means for a gradient magnetic field and a static magnetic field may be placed in the bores formed in the aforementioned central portions 51 A and 51 B. Consequently, there is no need for providing a space for the shimming means between the faces of the vacuum enclosures 10A and 10B, which face each other.
  • the opening of the apparatus can be further enlarged.
  • FIG. 5 illustrates a third embodiment of the superconducting magnet apparatus according to the present invention.
  • the distance between the opposed main coils 41A and 41B is set as being less than that between the coils for correcting the homogeneity 43A to 45A and the corresponding shim coils 43B to 45B.
  • the magnetic field strength of the magnetic field produced in the uniform magnetic field region 21 can be increased without increasing the magnetomotive force of the main coils 41A and 41b.
  • recess portions 52A and 52B are provided in the central portions of the faces, which face each other, of the vacuum enclosures 10A and 10B.
  • Effective opening of the apparatus can be made to be large by accommodating a gradient magnetic field coil, a high frequency coil and magnetic field shimming means in these recess portions 52A and 52B.
  • FIGS. 6(a), 6(b), 6(c) and 6(d) there are shown further other embodiments of the present invention, as compared with the first embodiment of the present invention. These embodiments are obtained by altering the placement of the main coils or the bucking coils in the first embodiment illustrated in FIG. 6(a).
  • the embodiment illustrated in FIG. 6(b) is obtained by setting the diameter of the bucking coils 42A and 42B as being larger than that of the main coils 41A and 41B.
  • the efficiency of the bucking coils 42A and 42B can be increased.
  • the magnetic field leakage to the exterior of the apparatus can be more effectively reduced.
  • only the diameter of the bucking coils is increased, so that the field of view of a subject is substantially undamaged when the subject enters the opening of the apparatus. Consequently, the subject feels claustrophobic in the same degree as in the case of the embodiment of FIG. 6(a).
  • FIG. 6(c) is the case realized by dividing the bucking coils 42A and 42B of FIG. 6(a) into a set of two bucking coils 42AA and 42AB and another set of two bucking coils 42BA and 42BB, respectively.
  • each coil is placed in a magnetic field generated by itself, and electric current flows therethrough.
  • an electromagnetic force is exerted on each coil.
  • This electromagnetic force which depends on the magnetic field strength of the uniform magnetic field region 21, may reach the strength of 100 t or so. Therefore, it is an important problem how to reduce this electromagnetic force when manufacturing a superconducting magnet apparatus.
  • each of the bucking coils is divided into two coils.
  • the present invention is not limited thereto. Namely, each of the bucking coils may be divided into three or more coils.
  • the embodiment illustrated in FIG. 6(d) is the case realized by dividing the main coils 41 A and 41 B of FIG. 6(a) into a set of two main coils 41 AA and 41 AB and another set of two main coils 41 BA and 41 BB, respectively.
  • the magnetic force exerted onto each resultant main coil can be decreased by dividing the main coils 41 A and 41 B into a set of two main coils and another set of two main coils, respectively.
  • the number of resultant main coils obtained by the division is not limited to two. Namely, each of the main coils may be divided into three or more main coils.
  • coolants for superconductivity such as liquid helium
  • the material may be cooled by liquid nitrogen.
  • the material may be cooled directly by a refrigerator, so that the apparatus sometimes does without using the coolant containers.
  • an opening, which accommodates a subject, of a superconducting magnet apparatus is enlarged to thereby prevent the subject from feeling claustrophobic. Further, an operator can easily get access to the subject. Moreover, there can be provided a superconducting magnet apparatus, whose magnetic field leakage is low and weight thereof is light, which can realize a large uniform magnetic field region even in the case of high magnetic field strength. Consequently, conditions for installing a superconducting magnet apparatus are moderated. Moreover, favorable pictures can be taken.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Claims (8)

  1. Supraleitende Magnetvorrichtung, aufweisend:
    Magnetfelderzeugungsvorrichtungen, welche aus Stoffen sind, die Supraleitungseigenschaften aufweisen, und funktionsfähig sind, elektrischen Strom zum Erzeugen eines homogenen Magnetfelds, dessen Richtung eine erste Richtung ist, in einem beschränkten Bereich zuzuleiten;
    Kühlmittel (11A, 11B, 12) zum Kühlen der Magnetfelderzeugungsvorrichtungen auf eine Temperatur, bei der die Stoffe die Supraleitungseigenschaften aufweisen, und zum Halten der Magnetfelderzeugungsvorrichtungen bei der Temperatur; und
    Stützmittel (26) zum Stützen der Magnetfelderzeugungsvorrichtungen,
    wobei die Magnetfelderzeugungsvorrichtungen derart äquidistant angeordnet sind, dass sie einander über den Bereich des homogenen Magnetfeldes längs der ersten Richtung gegenüberliegen, und aus zwei Sätzen von Gruppen von Magnetfelderzeugungsvorrichtungen zum Zuleiten des elektrischen Stroms in einer Koaxialrichtung bebildet werden,
    wobei die erste Richtung als die der zentralen Achse (22A) gebildet wird,
    wobei jeder der Sätze von Gruppen von Magnetfelderzeugungsvorrichtungen aufweist:
    eine oder mehrere Magnetfelderzeugungsvorrichtung(en) zum Zuleiten von elektrischem Strom, welcher in einer zweiten Richtung längs eines Kreisumfangs fließt, dessen zentrale Achse sich in der ersten Richtung erstreckt, so dass die Hauptkomponente des homogenen Magnetfelds erzeugt wird;
    eine oder mehrere Magnetfelderzeugungseinrichtung(en) zum Zuleiten von elektrischem Strom, welcher in einer zu der zweiten Richtung entgegengesetzten Richtung fließt, so dass ein Magnetfeld vermindert wird, das außerhalb der Magnetfelderzeugungsvorrichtungen erzeugt wird; und
    eine oder mehrere dritte Magnetfelderzeugungsvorrichtung(en) zum Zuleiten von elektrischem Strom, welcher in einer Richtung fließt, die dieselbe wie die zweite Richtung oder zu ihr entgegengesetzt ist, so dass die magnetische Homogenität des homogenen Magnetfelds verbessert wird,
    wobei die Magnetresonanztomographievorrichtung dadurch gekennzeichnet ist,
    dass der Abstand zwischen den ersten Magnetfelderzeugungsvorrichtungen, die einander über den Bereich des homogenen Magnetfelds gegenüberliegen, kürzer ist als der Abstand zwischen den zweiten Magnetfelderzeugungsvorrichtungen, die einander über den Bereich des homogenen Magnetfelds gegenüberliegen, und
    der Durchmesser der ersten Magnetfelderzeugungsvorrichtung gleich oder kleiner als der Durchmesser der zweiten Magnetfelderzeugungsvorrichtung ist, der Durchmesser der dritten Magnetfelderzeugungsvorrichtung kleiner als der Durchmesser der ersten Magnetfelderzeugungsvorrichtung ist, die Menge des elektrischen Stroms, welcher der dritten Magnetfelderzeugungsvorrichtung zugeleitet wird, kleiner als die Menge des elektrischen Stroms ist, welcher der ersten Magnetfelderzeugungsvorrichtung zugeleitet wird.
  2. Supraleitende Magnetvorrichtung nach Anspruch 1, wobei der Abstand zwischen den ersten Magnetfelderzeugungsvorrichtungen, die einander über den Bereich eines homogenen Magnetfelds gegenüberliegen, kleiner als der Abstand zwischen den zweiten Magnetfelderzeugungsvorrichtungen festgelegt wird, die einander über den Bereich des homogenen Magnetfelds gegenüberliegen, und ferner kleiner als der Abstand zwischen den dritten Magnetfelderzeugungsvorrichtungen festgelegt wird, die einander über den Bereich des homogenen Magnetfelds gegenüberliegen.
  3. Supraleitende Magnetvorrichtung nach einem der Ansprüche 1 oder 2, wobei das Kühlmittel Vakuumgehäuse (10A, 10B) zum Aufnehmen der Magnetfelderzeugungsvorrichtungen aufweist, wobei die Vakuumgehäuse (10A, 10B) Aussparungsabschnitte jeweils auf ihren Oberflächen aufweisen, die dem Bereich des homogenen Magnetfelds gegenüberliegen, und der Abstand zwischen den Aussparungsabschnitten, die einander gegenüberliegen, größer als der Abstand zwischen den äußeren Umfangsabschnitten der Vakuumgehäuse (10A, 10B) ist, die einander gegenüberliegen.
  4. Supraleitende Magnetvorrichtung nach einem der Ansprüche 1 bis 3, wobei jede der Magnetfelderzeugungsvorrichtungen durch eine Spule gebildet wird, die durch Wickeln eines Drahts erhalten wird, der aus einem Stoff hergestellt ist, der eine Supraleitungseigenschaft aufweist.
  5. Supraleitende Magnetvorrichtung nach Anspruch 3, wobei jedes der Vakuumgehäuse (10A, 10B) derart ausgebildet ist, dass seine äußere Seitenfläche um einen vorbestimmten Winkel geneigt ist.
  6. Supraleitende Magnetvorrichtung nach Anspruch 3, wobei jedes der Vakuumgehäuse (10A, 10B) in einer Ringform ausgebildet ist, die ein Durchgangsloch in der Richtung, in der das Magnetfeld erzeugt wird, und auch in einer vertikalen Richtung aufweist.
  7. Supraleitende Magnetvorrichtung nach Anspruch 1, wobei die dritten Magnetfelderzeugungsvorrichtungen an einer Außenseite der ersten Magnetfelderzeugungsvorrichtungen längs einer Richtung, in der das Magnetfeld erzeugt wird, mit der Mitte des homogenen Magnetfelds als Bezug angeordnet sind.
  8. Verwenden einer supraleitenden Magnetvorrichtung nach einem der Ansprüche 1 bis 7 in einem Magnetresonanztomographiesystem.
EP96939331A 1995-11-30 1996-11-29 Supraleitende magnetvorrichtung Expired - Lifetime EP0807940B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP336023/95 1995-11-30
JP33602395A JP3731231B2 (ja) 1995-11-30 1995-11-30 超電導磁石装置
PCT/JP1996/003512 WO1997020326A1 (fr) 1995-11-30 1996-11-29 Dispositif a aimant supraconducteur

Publications (3)

Publication Number Publication Date
EP0807940A1 EP0807940A1 (de) 1997-11-19
EP0807940A4 EP0807940A4 (de) 2000-01-19
EP0807940B1 true EP0807940B1 (de) 2007-01-17

Family

ID=18294903

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96939331A Expired - Lifetime EP0807940B1 (de) 1995-11-30 1996-11-29 Supraleitende magnetvorrichtung

Country Status (5)

Country Link
US (2) US6580346B1 (de)
EP (1) EP0807940B1 (de)
JP (1) JP3731231B2 (de)
DE (1) DE69636849T2 (de)
WO (1) WO1997020326A1 (de)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030195410A1 (en) * 1995-08-10 2003-10-16 James Winter Method of treatment using magnetic resonance and apparatus therefor
JPH09190913A (ja) * 1996-01-10 1997-07-22 Hitachi Medical Corp 超電導磁石装置及びそれを用いた磁気共鳴イメージング装置
JP2002034947A (ja) 1997-10-24 2002-02-05 Hitachi Ltd マグネット装置、および、これを用いたmri装置
JP4247948B2 (ja) 1997-12-01 2009-04-02 株式会社日立メディコ 磁石装置及びmri装置
JP2000046999A (ja) * 1998-07-31 2000-02-18 Rikagaku Kenkyusho 均一磁場発生装置
JP2001078982A (ja) 1999-09-16 2001-03-27 Hitachi Medical Corp 開放型磁石装置
JP2004509721A (ja) * 2000-09-26 2004-04-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 主磁石中に配置された円錐傾斜コイルを有する垂直磁場型mri装置
KR20020070984A (ko) 2000-09-26 2002-09-11 코닌클리케 필립스 일렉트로닉스 엔.브이. 주 자석내에 위치된 원뿔형 공동을 가진 수직 필드 형태mri장치
EP1340456A4 (de) * 2000-12-05 2005-11-09 Hitachi Ltd Magnet- und abschirmungsspulenanordnung mit magnetischem feld und niedriger leckrate
US20040041565A1 (en) * 2002-05-08 2004-03-04 Shigeru Kakugawa NMR magnet device for solution analysis and NMR apparatus
JP3845048B2 (ja) * 2002-08-27 2006-11-15 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴撮影装置
JP4034224B2 (ja) * 2003-04-24 2008-01-16 株式会社日立製作所 核磁気共鳴装置用マグネットおよびそれを用いた核磁気共鳴分析装置
JP3624254B1 (ja) 2003-09-30 2005-03-02 株式会社日立製作所 超伝導磁石装置
EP2189802B1 (de) * 2004-04-01 2014-05-14 Liposcience, Inc. Klinische NMR-Analysegeräte und anhängende Verfahren, Bausteine und Computerprogrammprodukte zur klinischen Auswertung von Bioproben
JP2006115934A (ja) * 2004-10-19 2006-05-11 Mitsubishi Electric Corp 磁石装置及びそれを用いた磁気共鳴イメージング装置
JP4639763B2 (ja) * 2004-11-12 2011-02-23 三菱電機株式会社 磁気共鳴イメージング装置
US7224167B2 (en) * 2004-11-30 2007-05-29 General Electric Company Magnetic field generating apparatus and method for magnetic resonance imaging
US7375528B2 (en) * 2005-03-29 2008-05-20 Magnetica Limited Shielded, asymmetric magnets for use in magnetic resonance imaging
US7274192B2 (en) * 2005-05-31 2007-09-25 General Electric Company Combined open and closed magnet configuration for MRI
JP4610449B2 (ja) * 2005-09-01 2011-01-12 株式会社日立製作所 磁石装置
JP4705528B2 (ja) * 2006-01-05 2011-06-22 株式会社日立製作所 超伝導磁石装置および磁気共鳴イメージング装置
US7560929B2 (en) * 2006-08-14 2009-07-14 Fonar Corporation Ferromagnetic frame magnet with superconducting coils
CN101765399B (zh) * 2007-08-01 2013-08-21 金溶进 强磁场性能得到提高的超导体、其制造方法、以及包含该超导体的mri仪器
JP4542573B2 (ja) * 2007-08-07 2010-09-15 株式会社日立製作所 アクティブシールド型の超電導電磁石装置および磁気共鳴イメージング装置
JP2009141255A (ja) * 2007-12-10 2009-06-25 Kobe Steel Ltd 超電導電磁石
JP4762226B2 (ja) * 2007-12-20 2011-08-31 三菱電機株式会社 超電導磁石装置
US20090237192A1 (en) * 2008-03-20 2009-09-24 General Electric Company Magnetic resonance imaging system and apparatus having a multiple-section
EP2283374A4 (de) * 2008-05-08 2012-01-04 Univ Queensland Anordnung von spulen für eine mri-vorrichtung
US8400157B2 (en) * 2008-08-29 2013-03-19 Geotech Airborne Limited Bucking coil and B-field measurement system and apparatus for time domain electromagnetic measurements
FR2962844B1 (fr) * 2010-07-16 2013-08-30 Commissariat Energie Atomique Dispositif d'aimant supraconducteur compact
JP2012234938A (ja) * 2011-04-28 2012-11-29 High Energy Accelerator Research Organization 低温用熱伝達材
JP2012234939A (ja) 2011-04-28 2012-11-29 High Energy Accelerator Research Organization 超電導磁石用磁気遮蔽材
CN104157391B (zh) * 2014-08-15 2017-01-11 中国科学院电工研究所 一种磁共振成像超导磁体最短长度的获取方法
JP6460922B2 (ja) * 2015-06-16 2019-01-30 株式会社日立製作所 ビーム用超電導偏向電磁石およびそれを用いたビーム偏向装置
US10867731B2 (en) * 2015-08-19 2020-12-15 Shuki Wolfus Hybrid superconducting magnetic device

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3123493A1 (de) * 1981-06-13 1982-12-30 Bruker Analytische Meßtechnik GmbH, 7512 Rheinstetten Elektromagnet fuer die nmr-tomographie
JPH0620011B2 (ja) * 1983-12-29 1994-03-16 株式会社日立製作所 超電導磁界発生装置
JPS61125109A (ja) * 1984-11-22 1986-06-12 Hitachi Ltd 超電導磁石装置
JPS61172040A (ja) * 1985-01-25 1986-08-02 Sumitomo Electric Ind Ltd 核磁気共鳴用磁場発生装置
JPS6343649A (ja) * 1986-08-08 1988-02-24 株式会社日立メディコ 核磁気共鳴イメ−ジング装置
JPS63272335A (ja) * 1986-11-18 1988-11-09 Toshiba Corp 磁気共鳴イメ−ジング装置
US4766378A (en) * 1986-11-28 1988-08-23 Fonar Corporation Nuclear magnetic resonance scanners
US4829252A (en) * 1987-10-28 1989-05-09 The Regents Of The University Of California MRI system with open access to patient image volume
JPH01165106A (ja) * 1987-12-22 1989-06-29 Asahi Chem Ind Co Ltd 磁界発生装置
DE3907927A1 (de) * 1989-03-11 1990-09-20 Bruker Analytische Messtechnik Magnetsystem
US5134374A (en) 1989-06-01 1992-07-28 Applied Superconetics Magnetic field control apparatus
JP2803306B2 (ja) * 1990-03-31 1998-09-24 株式会社島津製作所 Mri用マグネット装置
JPH05182828A (ja) * 1992-01-06 1993-07-23 Hitachi Cable Ltd Nmr分析用超電導マグネット
US5382904A (en) * 1992-04-15 1995-01-17 Houston Advanced Research Center Structured coil electromagnets for magnetic resonance imaging and method for fabricating the same
US5359310A (en) * 1992-04-15 1994-10-25 Houston Advanced Research Center Ultrashort cylindrical shielded electromagnet for magnetic resonance imaging
JP3266355B2 (ja) * 1993-02-05 2002-03-18 住友特殊金属株式会社 超電導型mri用磁界発生装置
US5596303A (en) * 1993-02-22 1997-01-21 Akguen Ali Superconductive magnet system with low and high temperature superconductors
US5410287A (en) * 1994-04-05 1995-04-25 General Electric Company Open MRI magnet with uniform magnetic field
DE4416907C1 (de) * 1994-05-13 1995-09-07 Bruker Analytische Messtechnik Therapietomograph mit Homogenisierungseinrichtung
US5448214A (en) * 1994-06-15 1995-09-05 General Electric Company Open MRI magnet with superconductive shielding
GB2299672A (en) * 1995-04-07 1996-10-09 Oxford Magnet Tech Attachment method for superconducting MRI coil
US5565831A (en) * 1995-10-23 1996-10-15 General Electric Company Shielded and open MRI magnet
US5568104A (en) * 1995-10-23 1996-10-22 General Electric Company Open MRI superconductive magnet with cryogenic-fluid cooling

Also Published As

Publication number Publication date
JP3731231B2 (ja) 2006-01-05
EP0807940A1 (de) 1997-11-19
WO1997020326A1 (fr) 1997-06-05
US6580346B1 (en) 2003-06-17
DE69636849T2 (de) 2007-11-08
US6816047B2 (en) 2004-11-09
DE69636849D1 (de) 2007-03-08
US20030155998A1 (en) 2003-08-21
EP0807940A4 (de) 2000-01-19
JPH09153408A (ja) 1997-06-10

Similar Documents

Publication Publication Date Title
EP0807940B1 (de) Supraleitende magnetvorrichtung
EP0817211B1 (de) Supraleitende magnetvorrichtung und bilderzeugungsvorrichtung durch magnetische resonanz unter verwendung derselben
US5565831A (en) Shielded and open MRI magnet
US5410287A (en) Open MRI magnet with uniform magnetic field
US5874880A (en) Shielded and open superconductive magnet
JP3654463B2 (ja) 磁気共鳴イメージング装置
US6396376B1 (en) Apparatus and method for a superconductive magnet with pole piece
US5574417A (en) Open MRI magnet with homogeneous imaging volume
US5361054A (en) Magnet system
EP0826977B1 (de) Kompakter supraleitender MRI-Magnet
US20060109006A1 (en) Magnet for NMR analyzer and NMR analyzer using the same
EP0937994B1 (de) Offener und abgeschirmter supraleitender Magnet
EP0770883A1 (de) Offener, durch kryogenes Fluid gekühlter Magnet für die Bilderzeugung durch magnetische Resonanz mit gleichförmigem Magnetfeld
US6157279A (en) Open magnet having shielding
US5568110A (en) Closed MRI magnet having reduced length
US4931759A (en) Magnetic resonance imaging magnet having minimally symmetric ferromagnetic shield
US5521571A (en) Open MRI magnet with uniform imaging volume
US6812702B2 (en) Magnetic resonance imaging apparatus
EP0940687A2 (de) Offene Magneteinrichtung mit Abschirmung
JPH09276246A (ja) 超電導磁石装置
JPH07204174A (ja) 磁気共鳴イメージング装置用静磁場発生装置
JP3990410B2 (ja) 超電導磁石及び磁気共鳴イメージング装置
JPS62169311A (ja) Nmrイメ−ジング用超伝導磁石装置
JP3469436B2 (ja) 分割型mri用磁場発生装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19971204

D17D Deferred search report published (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 19991206

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB IT

RIC1 Information provided on ipc code assigned before grant

Free format text: 7H 01F 7/22 A, 7G 01R 33/38 B, 7G 01R 33/3815 B, 7G 01R 33/421 B, 7G 01R 33/3875 B

17Q First examination report despatched

Effective date: 20010830

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 24/08 20060101ALI20060418BHEP

Ipc: G01R 33/3875 20060101ALI20060418BHEP

Ipc: G01R 33/421 20060101ALI20060418BHEP

Ipc: G01R 33/3815 20060101ALI20060418BHEP

Ipc: G01R 33/38 20060101ALI20060418BHEP

Ipc: H01F 6/06 20060101AFI20060418BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HITACHI MEDICAL CORPORATION

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69636849

Country of ref document: DE

Date of ref document: 20070308

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101022

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20111130

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69636849

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121129