EP0797673A2 - Transgene pflanzen mit einer gesteigerten biomasseproduktion - Google Patents

Transgene pflanzen mit einer gesteigerten biomasseproduktion

Info

Publication number
EP0797673A2
EP0797673A2 EP95940259A EP95940259A EP0797673A2 EP 0797673 A2 EP0797673 A2 EP 0797673A2 EP 95940259 A EP95940259 A EP 95940259A EP 95940259 A EP95940259 A EP 95940259A EP 0797673 A2 EP0797673 A2 EP 0797673A2
Authority
EP
European Patent Office
Prior art keywords
phosphate
transgenic plant
plants
dna
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP95940259A
Other languages
English (en)
French (fr)
Inventor
Jens Kossmann
Franziska Springer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience AG
Original Assignee
Hoechst Schering Agrevo GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Schering Agrevo GmbH filed Critical Hoechst Schering Agrevo GmbH
Publication of EP0797673A2 publication Critical patent/EP0797673A2/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1217Phosphotransferases with a carboxyl group as acceptor (2.7.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8214Plastid transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/827Flower development or morphology, e.g. flowering promoting factor [FPF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1229Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention relates to transgenic plant cells in which the introduction and expression of certain DNA molecules leads to the formation of easily mobilizable phosphate pools outside the vacuole.
  • Transgenic plants which contain such plant cells show an increased biomass production and / or a changed flowering behavior in comparison to non-transformed plants.
  • the invention further relates to methods for increasing yields or changing the flowering behavior in plants, in which plants are changed in such a way that easily mobilizable phosphate pools outside the vacuole are formed in the cells.
  • sucrose transporter Riesmeier et al., EMBO J. 13 (1994), 1-7) to influence the sucrose transport is also considered (see also WO 94/00574).
  • the present invention is therefore based on the object of making available further genetic engineering methods which can generally be used in plants to increase the biomass production or the yield.
  • the invention thus relates to transgenic plant cells in which at least one easily mobilizable phosphate pool is formed outside the vacuole due to the introduction and expression of a DNA molecule which codes for a protein which is involved in the synthesis of a phos - is involved in a molecule containing phosphate.
  • Increasing the biomass production in plants is understood in the context of this invention to mean an increase in the biomass of the entire plant (measured as dry weight) and / or individual parts in comparison with wild-type plants, preferably an increase of at least 5% and in particular an increase of more than 10%.
  • the increase in biomass production thus also includes the increase in the yield of agriculturally usable parts of plants, for example storage organs, such as potato tubers, beets, seeds, fruits, or of leaves, stems, etc., in plants in which phosphate pools outside the vacuole were produced compared to wild-type plants, preferably by at least 5%, and in particular by more than 10%.
  • storage organs such as potato tubers, beets, seeds, fruits, or of leaves, stems, etc.
  • a change in the flowering behavior or premature flower formation means that transformed plants compared to non-transformed plants at least a few days, preferably one to several weeks, in particular 1-2 weeks early bloom here.
  • the term “phosphate pool” is understood to mean a class of phosphate-containing molecules which contain phosphate covalently bound and from which phosphate is easily mobilized, ie released or onto other molecules, by generally reversible enzymatic reactions can be transferred. This increases the availability of phosphate in the cells for various phosphate-dependent reactions.
  • phosphate mobilisable is understood to mean that the phosphate is available more quickly in the cell's cytosol than is usually possible by transporting phosphate from the vacuole into the cytosol.
  • the release of phosphate from the vacuum into the cytosol in the event of a phosphate deficiency in the cytosol generally takes place in the region of several hours (Woodrow et al., Planta 161 (1984), 525-530).
  • the phosphate pools are preferably pools of phosphate-containing molecules which do not impair the cytosolic homeostasis necessary for metabolic processes with regard to the phosphate concentration, but from which phosphate can be easily released or transferred to other molecules, i.e. which ensure an increased availability of phosphate.
  • phosphate-containing compounds which do not normally occur in higher plants. These include polyphosphate (Wood, Ann. Rev. Biochem. 57 (1988), 235-260), a compound which is synthesized by most organisms, except for higher plants, as a storage substance for phosphate, and e.g. also acetyl phosphate, which is used in bacteria for ATP regeneration (see e.g. Matsuyama et al., J. Bacteriol. 171 (1989), 577-580).
  • the phosphate pools can also consist of trehalose-6-phosphate, phosphoenolpyruvate or fructose-1-phosphate.
  • Such phosphate pools outside the vacuum are preferably produced by the fact that in vegetable Cells DNA molecules are introduced and expressed, which encode proteins whose enzymatic activity leads to the generation of the respective phosphate pool in transgenic plant cells.
  • the DNA molecules introduced into the plant cells code for proteins with the enzymatic property of a polyphosphate kinase, an acetate kinase, a phosphotransacetylase, a trehalose-6-phosphate synthase, a phosphoenolpyruvate mutase or a ketohexokinase.
  • ATP polyphosphate phosphotransferase
  • the product of this reversible reaction is a linear polymer of orthophosphate residues.
  • the length of the polymers can range from 3 to over 1000 phosphate residues.
  • the enzyme has already been described in various organisms, including E. coli (Ahn and Kornberg, J. Biol. Chem. 265 (1990), 11734-11739; Akiyama et al., J. Biol. Chem. 267 (1992), 22556-22561), Klebsiella aerogenes (Kato et al ., Gene 137 (1993), 237-242), S. cerevisiae (Felter and Stahl, Biochimie 55 (1973), 245-251), Propionibacterium shermanii (Robinson and Wood, J. Biol.
  • Acetate kinases (ATP: acetate phosphotransferase; E.C. 2.7.2.1.) Catalyze the reaction:
  • Acetate + ATP s acetyl phosphate + ADP The enzyme has been identified in a number of microorganisms and DNA sequences encoding acetate kinases have also been isolated, e.g. the ack gene from E. coli K-12 (Matsuyama et al., J. Bacteriol. 171 ( 1989), 577-580) and the ac ⁇ gene from Methanosarcina thermophila (Latimer and Ferry, J. Bacteriol. 175 (1993), 6822-6829).
  • Phosphotransacetylases (acetyl-CoA: orthophosphate acetyl transferase; E.C. 2.3.1.8.) Catalyze the following reaction:
  • Acetyl Coenzyme A + Orthophosphate Acetyl Phosphate + Coenzyme A
  • DNA sequences which code for this enzyme are also described, e.g. the pta gene from Methanosarcina thermophila (Latimer and Ferry, J. Bacteriol. 175 (1993), 6822-6829)
  • Trehalose-6-phosphate synthase catalyzes the synthesis of trehalose-6-phosphate.
  • Such an enzyme from yeast is described, for example, in US Pat. No. 5,422,254.
  • Phosphoenolpyruvate mutase catalyzes the synthesis of phosphoenolpyruvate.
  • Such an enzyme from Tetrahymena pyriformis is described, for example, in Seidel et al. (Biochemistry 31 (1995), 2598-2608).
  • Ketohexokinase catalyzes the synthesis of fructose-1-phosphate.
  • Such rat and human enzymes are described, for example, in Donaldson et al. (Biochem. J. 291 (1993), 179-186) or in Bonthron et al. (Hum. Mol. Genet. 3 (1994), 1627-1631).
  • the DNA molecules which code for proteins whose enzymatic activity leads to the formation of phosphate pools outside the vacuole in particular proteins with the enzymatic see property of a polyphosphate kinase, an acetate kinase, a phosphotransacetylase, a trehalose-6-phosphate synthase, a phosphoenolpyruvate mutase or a ketohexokinase
  • it can be genomic or cDNA molecules from any organism, preferably around DNA molecules from prokaryotic, in particular bacterial organisms.
  • the DNA molecules can be isolated from cells with the aid of common molecular biological methods or produced synthetically.
  • the molecules can be modified according to methods known to those skilled in the art in such a way that they contain plant-specific codons in order to improve expression in plant cells.
  • DNA molecules are preferably used for introduction and expression in plant cells which encode proteins which have the enzymatic property of a polyphosphate kinase and which have a low K - value for ADP and a high 1 ⁇ value for ATP.
  • the activity of these enzymes is usually influenced by the ratio of ATP to ADP. This means that a phosphate pool is only formed if there is an excess of ATP compared to ADP. This leads to a depletion of the cytosolic phosphate concentration under conditions which prefer the formation of ATP and to a constant reflux of phosphate from the vacuole. These newly formed pools have the advantage over the vacuolar phosphate pool that they are easier to mobilize.
  • the release of phosphate from the vacuole into the cytosol in the event of a phosphate deficiency in the cytosol generally takes place in the region of several hours (Woodrow et al., Planta 161 (1984), 525-530).
  • the DNA molecules which encode a polyphosphate kinase and which are introduced into the plant cells are DNA molecules from E. coli, Klebsiella aerogenes, Neisseria meningi tidis, or Synechocystia sp. , It is particularly preferably the pp gene from E. coli (Akiyama et al., J. Biol. Chem.
  • DNA molecules are introduced which code for an acetate kinase and originate from Methanosarcina thermophila, E. coli, Haemophilus influenza, Bacillus subtilis or Mycoplasma geni taliu. It is preferably the ac gene from E. coli K-12 (Matsuyama et al., J. Bacteriol. 171 (1989), 577-580), the ack gene from Methanosarcina thermophila, which is described in Fleischmann et al. (Science 269 (1995), 496-512) published sequence from Haemophilus influenza to the in Grundy et al. ⁇ J. Bacteriol.
  • DNA molecules that encode a phosphotransacetylase preferably originate from Methanosarcina thermophila, Escherichia coli or Mycoplasma geni talium. It is particularly preferably the pta gene from Methanosarcina thermophila
  • DNA molecules that encode a trehalose-6-phosphate synthase ⁇ preferably come from yeast.
  • the DNA molecule described in US Pat. No. 5,422,254 is preferably used.
  • DNA molecules that encode a phosphoenolpyruvate mutase are preferably derived from Tetrahymena pyriformis, such as that in Seidel et al. (see above) described molecule.
  • DNA molecules that encode a ketohexokinase are preferably from humans or rats, such as those in Bonthron et al. (see above) or Donaldson et al. (see above) molecules described.
  • DNA molecules which encode a protein which leads to the synthesis of polyphosphate DNA molecules which encode a protein with the enzymatic activity of an acetate kinase and a DNA sequence coding for a protein with the enzymatic activity of a phosphotransacetylase.
  • the enzymatic activities of acetate kinase and phosphotransacetylase lead to the conversion of acetyl-coenzyme A and ADP to acetate and ATP.
  • the resulting ATP can then be used by the polyphosphate kinase for the synthesis of polyphosphate.
  • the mobilization of the phosphate pools formed by the expressed proteins in the cells outside the vacuole, in particular polyphosphate can also be carried out by other enzymes in addition to the enzymes which catalyze the reversible reactions described above.
  • Enzymes using polyphosphate as a substrate are known. DNA sequences which encode such enzymes must then also be introduced into the plant cells and expressed.
  • polyphosphate glucokinase which has already been described in a number of microorganisms, is known to for example in Mycobacterium phlei (Szymona, Bull. Acad. Pol. Sei. Ser. Sei. Biol. 5 (1956), 379-381; Szymona and Ostrowski, Biochim. Biophys.
  • 1,3-diphosphoglycerate polyphosphate phosphotransferase (Kulaev et al., Biokhimiya 33 (1968), 419-434; Wood and Goss, Proc. Natl. Acad. Sci. USA 82 (1985), 312-315), the polyphosphate-dependent NAD kinase (Murata et al., Agric. Biol. Chem. 44 (1980), 61-68), exopolyphosphatase (see e.g. Akiyama et al., J. Biol. Chem.
  • the protein expressed in the transgenic plant cell which due to its enzymatic activity causes the formation of a phosphate pool outside the vacuole, in particular polyphosphate or acetylphosphate, is localized in any compartment of the plant cell can.
  • the coding region In order to achieve localization in a specific compartment, the coding region must be linked to DNA sequences which ensure localization in the respective compartment.
  • the protein to be expressed will preferably be located in the cytosol, the plastids or the mitochondria. No special signal sequence is required for localization in the cytosol. When using prokaryotic DNA molecules, care must be taken that the coding regions have no signal sequences which cause secretion of the protein to be expressed.
  • Plant cells into which the DNA molecules described above are introduced can generally originate from any plant species, in particular from any monocotyledonous or dicotyledonous plants.
  • Plant cells of agricultural useful plants are preferably used, in particular of cereals (such as barley, rye, oats, millet, rice, corn, wheat etc.), types of fruit, potatoes, rape, sugar beet, soybeans, vegetables (such as peas, Bean, tomato etc.) or from ornamental plants.
  • Photosynthetically active cells are particularly preferred.
  • the invention also relates to transgenic plants which contain transgenic plant cells according to the invention. These can be obtained, for example, by regeneration from the transgenic plant cells described, using methods known to the person skilled in the art.
  • the invention also relates to propagation material of a plant according to the invention.
  • the present invention relates to methods for increasing the biomass product or the yield and / or changing the flowering behavior in plants, characterized in that easily mobilizable phosphate pools are generated in plant cells outside the vacuole, which guarantee an increased availability of phosphate in the cells.
  • Such a procedure usually comprises the following steps:
  • any promoter which is functional in plants is suitable for the promoter mentioned under (i) in the processes according to the invention.
  • the expression of the said DNA sequences can generally take place in any tissue of a transformed plant and at any time.
  • the 35S promoter of the Cauliflower mosaic virus (Odell et al., Nature 313 (1985), 810-812) is suitable, which ensures constitutive expression in all tissues of a plant.
  • promoters can also be used which lead to an expression of subsequent sequences in a certain tissue of the plant, preferably in photosynthetically active tissue (see, for example, Stockhaus et al., EMBO J. 8 (1989), 2245- 2251) or only at a point in time determined by external influences (see for example WO / 9307279).
  • the termination sequence serves to correctly terminate the transcription and to add a poly-A tail to the transcript, which is believed to have a function in stabilizing the transcripts.
  • Such elements are described in the literature (cf. Gielen et al., EMBO J. 8 (1989), 23-29) and can be interchanged as desired.
  • the expression cassette produced in the course of the method according to the invention is also a subject of the invention. It is preferably located on a plasmid, in particular on the plasmids p35S-PPK (FIG. 1) or p35S-ACK (FIG. 3), and is preferably used using a plasmid which is suitable for the transformation of plant cells is introduced into plant cells.
  • the binary vector pBinAR Höfgen and Willmitzer, Plant Sei. 66 (1990), 221-230
  • This vector is a derivative of the binary vector pBin19 (Bevan, Nucl. Acids Res.
  • Cells of agricultural crops are preferably used in the process, in particular cereals (such as barley, rye, oats, millet, rice, corn, wheat etc.), fruit varieties, potatoes, rapeseed, sugar beet, soybeans, Vegetable types (such as peas, beans, tomatoes etc.) or cells from ornamental plants.
  • cereals such as barley, rye, oats, millet, rice, corn, wheat etc.
  • fruit varieties such as barley, rye, oats, millet, rice, corn, wheat etc.
  • Fruit varieties such as barley, rye, oats, millet, rice, corn, wheat etc.
  • fruit varieties such as barley, rye, oats, millet, rice, corn, wheat etc.
  • rapeseed such as sugar beet
  • soybeans such as Vegetable types (such as peas, beans, tomatoes etc.) or cells from ornamental plants.
  • Vegetable types such as
  • the invention also relates to the transgenic plant cells and transgenic plants resulting from the processes according to the invention.
  • the transgenic plants are characterized in that in cells of these plants, due to the introduction and stable integration of an expression cassette constructed according to the method according to the invention into the genome, there is expression of a protein which, owing to its enzymatic activity, forms polyphosphate, Acetyl phosphate, trehalose-6-phosphate, phosphoenol pyruvate or fructose-1-phosphate outside the vacuole in the transgenic cells.
  • Another object of the invention is the use of DNA molecules which encode proteins which, owing to their enzymatic activity, form phosphate pools which can be easily mobilized, in particular polyphosphate, acetylphosphate, trehalose-6-phosphate, fructose-1 Phosphate or phosphoenol pyruvate, outside the vacuole in plant cells, lead to the transformation of plant cells and to expression in plant cells, in particular to improve the phenotype of these cells.
  • the invention relates to the use of DNA molecules, the proteins with the enzymatic activity of a polyphosphate kinase, an acetate kinase, a phosphotransacetylase, a trehalose-6-phosphate synthase.
  • DNA molecules include in particular the DNA molecules described above, which encode proteins with the enzymatic activity of a polyphosphate kinase, an acetate kinase, a phosphotransacetylase, a trehalose-6-phosphate synthase, a phosphoenolpyruvate mutase or a ketohexokinase.
  • cloning vectors which contain a replication signal for E. coli and a marker gene for the selection of transformed bacterial cells.
  • examples of such vectors are pBR322, pUC series, M13mp series, pACYC184 etc.
  • the desired sequence can be introduced into the vector at a suitable restriction site.
  • the plasmid obtained is used for the transformation of E. coli cells.
  • Transformed E. coli cells are grown in a suitable medium, then harvested and lysed.
  • the plasmid is recovered. Restriction analyzes are generally used as the analysis method for characterizing the plasmid DNA obtained, Gel electrophoresis and other biochemical-molecular biological methods are used.
  • the DNA to be introduced must be cloned into special plasmids, either in an intermediate vector or in a binary vector.
  • the intermediate vectors can be integrated into the Ti or Ri plasmid of the agrobacteria on the basis of sequences which are homologous to sequences in the T-DNA by homologous recombination. This also contains the vir region necessary for the transfer of the T-DNA. Intermediate vectors cannot replicate in agrobacteria. Using a helper plasmid, the intermediate vector can be transferred to Agrobacterium tumefaciens (conjugation). Binary vectors can replicate both in E. coli and in agrobacteria.
  • the agrobacterium serving as the host cell is said to contain a plasmid which carries a vir region. The vir region is necessary for the transfer of the T-DNA into the plant cell. Additional T-DNA may be present.
  • the agrobacterium transformed in this way is used to transform plant cells.
  • plant explants can expediently be cultivated with Agrobacterium tumefaciens or Agrobacterium rhizogenes.
  • Whole plants can then be regenerated from the infected plant material (for example leaf pieces, stem segments, roots, but also protoplasts or suspension-cultivated plant cells) in a suitable medium, which can contain antibiotics or biocides for the selection of transformed cells .
  • the plants thus obtained can then be examined for the presence of the introduced DNA.
  • the introduced DNA is integrated in the genome of the plant cell, it is generally stable there and remains in the offspring of the originally transformed cell. It normally contains a selection marker which gives the transformed plant cells resistance to a biocide or an antibiotic such as kanamycin, G 418, bleomycin, hygromycin or phosphinotricin and others.
  • the individually selected marker should therefore allow the selection of transformed cells over cells which lack the introduced DNA.
  • FIG. 2 shows the plasmid pACK
  • the leaves were sprouted for induction on MS medium with 1.6% glucose, 1.4 mg / 1 zeatin ribose, 20 mg / 1 naphthylacetic acid, 20 mg / 1 Giberellic acid, 250 mg / 1 claforan, 50 mg / 1 kanamycin or 3 mg / 1 hygromycin B, and 0.80% Bacto agar. 5. Radioactive labeling of DNA fragments
  • Oligo 1 5 '-AAGGATCCAGGAACCCGGGCCATGGGTCAGGAAAAG-3' (Seq ID No. 1) and
  • Oligo 2 5 '-GGGGATCCCGGGCCATGGGTTATTCAGGTTG-3' (Seq ID No. 2)
  • nucleotides 187 to 2253 of the type described in Akiyama et al. (J. Biol. Chem. 267 (1992), 22558) comprises the DNA sequence (ppk gene) which encodes polyphosphate kinase from E. coli.
  • ppk gene polyphosphate kinase from E. coli.
  • restriction sites for the restriction endonucleases BamH I and an Sma I are introduced at the 5' end of the amplified DNA fragment.
  • Oligonucleotide 2 which is partially complementary to the 3 'end of the ppk gene, introduces interfaces for BamH I, Sma I and Nco I at the 3' end of the fragment.
  • the DNA fragment resulting from the PCR reaction was cut with BamH I and ligated into the binary vector pBinAR cut with BamH I (H ⁇ fgen and Willmitzer, Plant Sei. 66 (1990), 221-230). This is a derivative of the binary vector pBin19 (Bevan, Nucl. Acids Res. 12 (1984), 8711-8721).
  • pBinAR was constructed as follows:
  • a 192 bp fragment was isolated from the plasmid pAGV40 (Herrera-Estrella et al., Nature 303, 209-213) with the aid of the restriction endonucleases Pvu II and Hind III which contains the polyadenylation signal of gene 3 of the T-DNA of the Ti plasmid pTiACH5 (Gielen et al., EMBO J. 3, 835-846) comprises (nucleotides 11749-11939). After addition of Sph I linkers to the Pvu J site, the fragment was ligated between the Sph I and Hind HI sites pBin19-A. This created pBinAR.
  • the insertion of the amplified DNA fragment creates an expression cassette which is composed of fragments A, B and C as follows:
  • the plasmid was transferred into cells of potato plants using Agrobacterium-mediated transformation as described above. Whole plants were regenerated from the transformed cells. In this way, 40 lines of transformed plants were produced, of which 7 lines, in particular lines JP1 16, JP1 26, JP1 29, JP1 31, JP1 33, JP1 34 and JP1 35, were analyzed in more detail.
  • the starch content of the tubers of transformed plants corresponded to the starch content of tubers of wild-type plants (measurement by determining the density of the tubers). Furthermore, the transformed plants showed premature flowering compared to wild-type plants, as shown in the following tables: Table II n% of plants
  • Tables II and III illustrate the premature flower formation of plants which were transformed with the plasmid p35S-PPK in comparison with non-transformed plants (wild type).
  • Transformed potato plants of the lines JP1 16, JP1 26, JP1 29, JP1 31, JP1 33, JP1 34 and JP1 35 as well as wild-type plants of the potato variety Desiree were cultivated under greenhouse conditions.
  • Table II shows the percentage of the plants examined in each line or of the wild-type plants which, after 80 days after the exposure of the Plants bloomed.
  • Table III shows the percentage of plants examined in each line or of the wild-type plants which bloomed after 84 days after the plants had been exposed.
  • n number of plants analyzed
  • % Plants percentage of plants that bloom
  • p35S-ACK For the construction of the plasmid p35S-ACK, a DNA fragment was first isolated which encodes the acetate kinase from Methanosarcina thermophila (ack gene). The gene is inserted in the Sma J site of a pUC19 plasmid. The construction of this pUC plasmid is described in detail in Latimer and Ferry (J. Bacteriol. 175 (1993), 6822-6829; see page 6823, right column). The plasmid used, which is called pACK in the context of this invention, is shown in FIG. 2.
  • Fragment A contains the 35S promoter of the cauliflower mosaic virus (CaMV).
  • the fragment includes the Nucleotides 6909 to 7437 of CaMV (Franck et al., 1980, Cell 21, 285-294).
  • Fragment B contains the coding region for acetate kinase from Methanosarcina thermophila.
  • the fragment comprises nucleotides 1314-2748 of the sequence shown in Latimer and Ferry (J. Bacteriol. 175 (1993), 6822-6829) (acetylkinase iack) gene). This coding region was ligated to the 35S promoter in sense orientation.
  • Fragment C (192 bp) contains the polyadenylation signal of gene 3 of the T-DNA of the Ti plasmid pTiACH5 (Gielen et al., EMBO J. 3 (1984), 835-846).
  • the size of the plasmid p35S-ACK is approximately 12.5 kb.
  • the plasmid was transferred into cells of potato plants using agrobacterium-mediated transformation. Whole plants were regenerated from the transformed cells.
  • transgenic potato plants showed the expression of the acetate kinase from Methanosarcina thermophila in the cytosol of the cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Physiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Es werden transgene Pflanzenzellen beschrieben, in denen es aufgrund der Einführung und Expression bestimmter DNA-Moleküle zur Bildung leicht mobilisierbarer Phosphatpools außerhalb der Vakuole kommt. Transgene Pflanzen, die derartige Zellen enthalten, zeigen eine gesteigerte Biomasseproduktion und/oder ein verändertes Blühverhalten. Es werden ferner Verfahren beschrieben, die eine Ertragssteigerung und/oder eine Veränderung des Blühverhaltens in Pflanzen bewirken.

Description

Transgene Pflanzen mit einer gesteigerten Biomasseproduktion
Die vorliegende Erfindung betrifft transgene Pflanzenzellen, in denen es aufgrund der Einführung und Expression bestimm¬ ter DNA-Moleküle zur Bildung leicht mobilisierbarer Phos¬ phat-Pools außerhalb der Vakuole kommt. Transgene Pflanzen, die derartige Pflanzenzellen enthalten, zeigen im Vergleich zu nicht-transformierten Pflanzen eine gesteigerte Biomasse¬ produktion und/oder ein verändertes Blühverhalten. Die Erfindung betrifft ferner Verfahren zur Ertragssteige¬ rung bzw. Veränderung des Blühverhaltens bei Pflanzen, bei denen Pflanzen derart verändert werden, daß es in den Zellen zur Bildung leicht mobilisierbarer Phosphat-Pools außerhalb der Vakuole kommt.
Um die Versorgung der ständig wachsenden Weltbevölkerung mit Nahrungsmitteln zu gewährleisten, ist es erforderlich, sich um eine Steigerung des Ertrages von Nutzpflanzen zu bemühen. In den letzten Jahrzehnten war es möglich, die Erträge der Kulturpflanzen aufgrund der Industrialisierung der Landwirt¬ schaft kontinuierlich zu steigern. Dazu trugen insbesondere die Mechanisierung der Landwirtschaft, die modernisierte Pflanzenzüchtung, der Pflanzenschutz, aber auch die verbes¬ serte Pflanzenernährung durch den Einsatz verschiedener Dün¬ gemittel bei.
Eine Steigerung der Erträge durch eine Verbesserung der obengenannten Maßnahmen ist momentan kaum noch zu erreichen. Beispielsweise ist die Versorgung der Pflanzen mit das Wachstum von Pflanzen begrenzenden Nährstoffen in der Bio¬ sphäre, z.B. Stickstoff und Phosphor, heutzutage in der Re¬ gel gewährleistet. Das bedeutet, daß auch eine weitere Dün¬ gung zu keiner Ertragsteigerung mehr führt. Die Entwicklung neuer Pflanzensorten mit höherem Ertrag durch die Verfahren der Pflanzenzüchtung ist sehr zeitaufwendig und häufig wer- den negative Eigenschaften der resultierenden Pflanzensor¬ ten, beispielsweise eine geringere Krankheitsresistenz, in Kauf genommen. Dies hat wiederum den verstärkten Einsatz von Pflanzenschutzmitteln zur Folge.
Eine Möglichkeit zur Erzeugung von Pflanzensorten mit einem erhöhten Ertrag besteht in der gezielten gentechnischen Ver¬ änderung von Pflanzen.
Beschrieben ist beispielsweise die Expression einer proka- ryontischen Asparaginsynthetase in pflanzlichen Zellen, wo¬ durch es bei den Pflanzen unter anderem zu einer Steigerung der Biomasseproduktion kommt (EP-Bl 0 511 979) . In anderen Verfahren wird versucht, die Expression von Genen zu verändern, deren Produkte eine Funktion in Speicherstoff- synthesewegen in Pflanzen besitzen, oder es wird versucht, die Verteilung der im Laufe der Photosynthese gebildeten Photoassimilate derart zu verändern, daß bevorzugt "sink"- Organe, insbesondere Speicherorgane, mit Photoassimilaten versorgt werden. Hierbei wird zum einen versucht, die Auf¬ nahmefähigkeit der "sink"-Organe für die jeweilige Trans¬ portform der Photoassimilate, in der Regel Saccharose, zu verbessern, oder den Transport direkt zu beeinflußen. In der EP 0 442 592 wird z.B. die Expression einer Invertase in Kartoffelpflanzen beschrieben, die zur Veränderung des Ertrages in derartig manipulierten Pflanzen führt. Auch die Verwendung des Saccharosetransporters (Riesmeier et al., EMBO J. 13 (1994), 1-7) zur Beeinflussung des Saccharo¬ setransportes wird erwogen (siehe auch WO 94/00574).
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, weitere generell bei Pflanzen anwendbare gentechnische Ver¬ fahren zur Steigerung der Biomasseproduktion bzw. des Ertra¬ ges zur Verfügung zu stellen.
Diese Aufgabe wurde durch die Bereitstellung der in den Pa¬ tentansprüchen bezeichneten Ausführungsformen gelöst. Es wurde überraschend gefunden, daß durch die Einführung und Expression von DNA-Molekülen, die Proteine codieren, deren enzymatische aAktivität zur Erzeugung von Phosphat-Pools außerhalb der Vakuole in transgenen pflanzlichen Zellen führt, eine Erhöhung der Biomasseproduktion und somit eine Ertragsteigerung bei Pflanzen erreicht werden kann, die der¬ artige Zellen enthalten. Ferner können derartige Pflanzen ein verändertes Blühverhalten aufweisen.
Gegenstand der Erfindung sind somit transgene Pflanzenzel¬ len, bei denen es außerhalb der Vakuole zur Bildung minde¬ stens eines leicht mobilisierbaren Phosphat-Pools kommt, aufgrund der Einführung und Expression eines DNA-Moleküls, das ein Protein codiert, das an der Synthese eines phos- phathaltigen Moleküls beteiligt ist.
Unter Steigerung der Biomasseproduktion in Pflanzen wird im Rahmen dieser Erfindung eine Erhöhung der Biomasse der ge¬ samten Pflanze (gemessen als Trockengewicht) und/oder ein¬ zelner Teile im Vergleich zu Wildtyp-Pflanzen verstanden, vorzugsweise eine Steigerung um mindestens 5 % und insbeson¬ dere eine Steigerung um mehr als 10 %.
Die Steigerung der Biomasseproduktion umfaßt somit auch die Steigerung des Ertrages von landwirtschaftlich nutzbaren Teilen von Pflanzen, beispielsweise von Speicherorganen, wie Kartoffelknollen, Rüben, Samen, Früchten, oder von Blättern, Stämmen etc., in Pflanzen, in denen Phosphat-Pools außerhalb der Vakuole erzeugt wurden, im Vergleich zu Wildtyp-Pflan- zen, vorzugsweise um mindestens 5 %, und insbesondere um mehr als 10 %.
Derartige Steigerungen übertreffen Steigerungen, die durch herkömmliche Züchtungsverfahren in der Regel erreicht wer¬ den.
Unter einer Veränderung des Blühverhaltens bzw. einer vor¬ zeitigen Blütenbildung wird im Rahmen dieser Anmeldung ver¬ standen, daß transformierte Pflanzen im Vergleich zu nicht- transformierten Pflanzen mindestens einige Tage, vorzugs¬ weise eine bis mehrere Wochen, insbesondere 1-2 Wochen frü¬ her blühen. Unter dem Begriff Phosphat-Pool wird im Rahmen dieser Erfin¬ dung jeweils eine Klasse von phosphathaltigen Molekülen ver¬ standen, die Phosphat kovalent gebunden enthalten und aus denen Phosphat durch in der Regel reversible enzymatische Reaktionen leicht mobilisiert, d.h. freigesetzt oder auf an¬ dere Moleküle übertragen werden kann. Dies erhöht die Ver¬ fügbarkeit von Phosphat in den Zellen für verschiedene Phos¬ phat-abhängige Reaktionen. Unter dem Begriff "leicht mobili¬ sierbar" wird verstanden, daß das Phosphat schneller im Cy- tosol der Zelle verfügbar ist, als es gewöhnlicherweise durch den Transport von Phosphat aus der Vakuole in das Cy- tosol möglich ist. Die Freisetzung von Phosphat aus der Va¬ kuole in das Cytosol im Fall einer Phosphatdefizienz im Cy- tosol erfolgt in der Regel im Bereich mehrerer Stunden (Woodrow et al. , Planta 161 (1984), 525-530) .
Bei den Phosphat-Pools handelt es sich vorzugsweise um Pools phosphathaltiger Moleküle, die die für metabolische Prozesse notwendige cytosolische Homöostase bezüglich der Phosphat- konzentration nicht beeinträchtigen, aber aus denen Phosphat leicht freigesetzt oder auf andere Moleküle übertragen wer¬ den kann, d.h. die eine erhöhte Verfügbarkeit von Phosphat gewährleisten.
Hierfür besonders geeignet sind phosphathaltige Verbindun¬ gen, die normalerweise nicht in höheren Pflanzen vorkommen. Dazu gehören Polyphosphat (Wood, Ann. Rev. Biochem. 57 (1988) , 235-260) , eine Verbindung, die von den meisten Orga¬ nismen, außer höheren Pflanzen, als Speicherstoff für Phos¬ phat synthetisiert wird, und z.B. auch Acetylphosphat, das in Bakterien zur ATP-Regenerierung verwandt wird (siehe z.B. Matsuyama et al., J. Bacteriol. 171 (1989), 577-580) . Die Phosphat-Pools können erfindungsgemäß auch aus Treha- lose-6-Phosphat, Phosphoenolpyruvat oder Fructose-1-Phosphat bestehen.
Die Erzeugung derartiger Phosphat-Pools außerhalb der Va¬ kuole erfolgt dabei vorzugsweise dadurch, daß in pflanzliche Zellen DNA-Moleküle eingeführt und zur Expression gebracht werden, die Proteine codieren, deren enzymatische Aktivität zur Erzeugung des jeweiligen Phosphat-Pools in transgenen pflanzlichen Zellen führt.
In einer bevorzugten Ausführungsform codieren die in die Pflanzenzellen eingeführten DNA-Moleküle für Proteine mit der enzymatischen Eigenschaft einer Polyphosphatkinase, einer Acetatkinase, einer Phosphotransacetylase, einer Trehalose-6-Phosphat-Synthase, einer Phosphoenolpyruvat- Mutase oder einer Ketohexokinase.
Polyphosphatkinasen (ATP:Polyphosphatphosphotransferase; E.C. 2.7.4.1) katalysieren die Reaktion:
Polyphosphat n + ATP s Polyphosphat n+1 + ADP
Das Produkt dieser reversiblen Reaktion ist ein lineares Po¬ lymer von Orthophosphatresten. Die Länge der Polymere kann dabei im Bereich von 3 bis zu über 1000 Phosphatresten rei¬ chen. Das Enzym wurde bereits in verschiedenen Organismen beschrieben, u.a. E. coli (Ahn und Kornberg, J. Biol. Chem. 265 (1990), 11734-11739; Akiyama et al. , J. Biol. Chem. 267 (1992), 22556-22561), Klebsiella aerogenes (Kato et al. , Gene 137 (1993), 237-242), S. cerevisiae (Felter und Stahl, Biochimie 55 (1973) , 245-251) , Propionibacterium shermanii (Robinson und Wood, J. Biol. Chem. 261 (1986), 4481-4485; Robinson et al., J. Biol. Chem. 262 (1987), 5216-5222), Cor neJacteriiun xerosis (Muhammed, Biochim. Biophys. Acta 54 (1961) , 121-132) und A fchoJbacterium atrocyaneus (Levinson et al., J. Gen. Microbiol. 88 (1975), 65-74).
Acetatkinasen (ATP:Acetat Phosphotransferase; E.C. 2.7.2.1.) katalysieren die Reaktion:
Acetat + ATP s Acetylphosphat + ADP Das Enzym ist in einer ganzen Reihe von Mikroorganismen identifiziert worden, und DNA-Sequenzen, die Acetatkinasen codieren, sind ebenfalls isoliert worden, beispielsweise das ack-Gen aus E. coli K-12 (Matsuyama et al. , J. Bacteriol. 171 (1989) , 577-580) und das acλ-Gen aus Methanosarcina thermophila (Latimer und Ferry, J. Bacteriol. 175 (1993), 6822-6829) .
Phosphotransacetylasen (Acetyl-CoA:Orthophosphat Acetyl- transferase; E.C. 2.3.1.8.) katalysieren die folgende Reak¬ tion:
Acetyl-CoenzymA + Orthophosphat = Acetylphosphat + CoenzymA
DNA-Sequenzen, die dieses Enzym codieren, sind ebenfalls be¬ schrieben, z.B. das pta-Gen aus Methanosarcina thermophila (Latimer und Ferry, J. Bacteriol. 175 (1993), 6822-6829)
Trehalose-6-Phosphat-Synthase katalysiert die Synthese von Trehalose-6-Phosphat. Ein derartiges Enzym aus Hefe ist bei¬ spielsweise in dem US-Patent 5,422,254 beschrieben.
Phosphoenolpyruvat-Mutase katalysiert die Synthese von Phos- phoenolpyruvat. Ein derartiges Enzym aus Tetrahymena pyri- formis ist beispielsweise in Seidel et al. (Biochemistry 31 (1995) , 2598-2608) beschrieben.
Ketohexokinase katalysiert die Synthese von Fructose-1-Phos- phat. Derartige Enzyme aus Ratte und Mensch sind beispiels¬ weise beschrieben in Donaldson et al. (Biochem. J. 291 (1993), 179-186) bzw. in Bonthron et al. (Hum. Mol. Genet. 3 (1994) , 1627-1631) .
Bei den DNA-Molekülen, die Proteine codieren, deren enzyma¬ tische Aktivität zur Bildung von Phosphat-Pools außerhalb der Vakuole führt, insbesondere Proteine mit der enzymati- sehen Eigenschaft einer Polyphosphatkinase, einer Acetatki- nase, einer Phosphotransacetylase, einer Trehalose-6-Phos¬ phat-Synthase, einer Phosphoenolpyruvat-Mutase oder einer Ketohexokinase, kann es sich um genomische oder um cDNA-Mo- leküle aus jedem beliebigen Organismus handeln, vorzugsweise um DNA-Moleküle aus prokaryontischen, insbesondere bakte¬ riellen Organismen. Die DNA-Moleküle können mit Hilfe gängi¬ ger molekularbiologischer Methoden aus Zellen isoliert oder auf synthetischem Wege hergestellt worden sein. Ferner kön¬ nen die Moleküle nach dem Fachmann bekannten Methoden derart modifiziert werden, daß sie pflanzenspezifische Codons ent¬ halten, um die Expression in pflanzlichen Zellen zu verbes¬ sern.
Bevorzugt werden DNA-Moleküle zur Einführung und Expression in pflanzlichen Zellen verwendet, die Proteine codieren, die die enzymatische Eigenschaft einer Polyphosphatkinase besit¬ zen und einen niedrigen K----Wert für ADP und einen hohen 1^- Wert für ATP aufweisen.
Diese Enzyme werden in ihrer Aktivität in der Regel durch das Verhältnis von ATP zu ADP beeinflußt. Das bedeutet, daß eine Neubildung eines Phosphat-Pools nur erfolgt, wenn ATP im Überschuß gegenüber ADP vorliegt. Dies führt zu einer Verarmung der cytosolischen Phosphatkonzentration unter Be¬ dingungen, die die ATP-Bildung bevorzugen, und zu einem ste¬ tigen Rückfluß von Phosphat aus der Vakuole. Diese neugebil¬ deten Pools besitzen gegenüber dem vakuolären Phosphatpool den Vorteil, daß sie leichter mobilisierbar sind. Die Frei¬ setzung von Phosphat aus der Vakuole in das Cytosol im Fall einer Phosphatdefizienz im Cytosol erfolgt in der Regel im Bereich mehrerer Stunden (Woodrow et al., Planta 161 (1984), 525-530) . Insbesondere bedeutet dies, daß diese pflanzen¬ fremden Verbindungen aufgrund der enzymatischen Eigenschaf¬ ten der obenbeschriebenen Enzyme relativ schnell abgebaut werden können und somit Phosphat mobilisiert werden kann, wenn das Verhältnis von ATP zu ADP absinkt. In einer weiteren bevorzugten Ausführungsform handelt es sich bei den in die Pflanzenzellen eingeführten DNA-Molekü¬ len, die eine Polyphosphatkinase codieren, um DNA-Moleküle aus E. coli , Klebsiella aerogenes , Neisseria meningi tidis, oder Synechocystia sp . . Besonders bevorzugt handelt es sich um das pp -Gen aus E. coli (Akiyama et al. , J. Biol. Chem. 267 (1992) , 22556-22561) , um das ppk-Gen aus Klebsiella aerogenes (Kato et al., Gene 137 (1993), 237-242), um die unter der Zugriffsnummer U16262 in der GenBank-Datenbank hinterlegte Sequenz aus Neisseria meningi tidis (Tinsley und Gottschlich; 1995) oder um die unter der Zugriffsnummer D64005 in der GenBank-Datenbank hinterlegte Sequenz aus Synechocystia sp . Stamm PCC6803 (Kaneko et al.; 1995) .
In einer weiteren bevorzugten Ausführungsform werden DNA- Moleküle eingeführt, die eine Acetatkinase codieren und aus Methanosarcina thermophila , E. coli , Haemophilus influenza, Bacillus subtilis oder Mycoplasma geni taliu stammen. Bevorzugt handelt es sich dabei um das ac -Gen aus E. coli K-12 (Matsuyama et al. , J. Bacteriol. 171 (1989), 577-580), das ack-Gen aus Methanosarcina thermophila , um die in Fleischmann et al. (Science 269 (1995), 496-512) veröffentlichte Sequenz aus Haemophilus influenza , um die in Grundy et al. \ J . Bacteriol. 175 (1993), 7348-7355) veröffentlichte Sequenz aus Bacillus subtilis oder um die in Fräser et al. (Science 270 (1995), 397-403) veröffentlichte Sequenz aus Mycoplasma geni talium. DNA- Moleküle, die eine Phosphotransacetylase codieren, stammen vorzugsweise aus Methanosarcina thermophila , Escherichia coli oder Mycoplasma geni talium. Besonders bevorzugt handelt es sich dabei um das pta-Gen aus Methanosarcina thermophila
(Latimer und Ferry, J. Bacteriol. 175 (1993), 6822-6829), um ein DNA-Molekül aus E. coli, das die in Kakuda et al. (J. Biochem. (1994), 916-922) oder die in Matsuyama et al.
(Biochim. Biophys. Acta (1994), 559-562) veröffentlichte Sequenz aufweist, oder um ein DNA-Molekül aus Mycoplasma geni talium, das die in Fräser et al. (Science 270 (1995), 397-403) veröffentlichte Sequenz aufweist.
DNA-Moleküle, die eine Trehalose-6-Phosphatsynthase codieren¬ stammen vorzugsweise aus Hefe. Bevorzugt wird das in dem US- Patent 5,422,254 beschriebene DNA-Molekül verwendet. DNA- Moleküle, die eine Phosphoenolpyruvat-Mutase codieren, stammen vorzugsweise aus Tetrahymena pyriformis , wie z.B. das in Seidel et al. (siehe oben) beschriebene Molekül. DNA-Moleküle, die eine Ketohexokinase codieren, stammen vorzugsweise aus Mensch oder Ratte, wie z.B. die in Bonthron et al. (siehe oben) oder Donaldson et al. (siehe oben) beschriebenen Moleküle.
In einer weiteren bevorzugten Ausführungsform können in pflanzliche Zellen gleichzeitig DNA-Moleküle eingeführt wer¬ den, die ein Protein codieren, das zur Synthese von Poly¬ phosphat führt, sowie DNA-Moleküle, die ein Protein mit der enzymatischen Aktivität einer Acetatkinase codieren, und eine DNA-Sequenz, die für ein Protein mit der enzymatischen Aktivität einer Phosphotransacetylase codieren. Die enzymatischen Aktivitäten der Acetatkinase und der Phosphotransacetylase führen zur Umsetzung von Acetyl- CoenzymA und ADP zu Acetat und ATP. Das entstehende ATP kann anschließend von der Polyphosphatkinase zur Synthese von Po¬ lyphosphat verwendet werden.
Die Mobilisierung der durch die exprimierten Proteine in den Zellen außerhalb der Vakuole gebildeten Phosphat-Pools, ins¬ besondere Polyphosphat, kann neben den Enzymen, die die obenbeschriebenen reversiblen Reaktionen katalysieren, auch durch andere Enzyme erfolgen. Enzyme, die Polyphosphat als Substrat verwenden, sind bekannt. DNA-Sequenzen, die derar¬ tige Enzyme codieren, müssen dann ebenfalls in die pflanzli¬ chen Zellen eingebracht und exprimiert werden. Bekannt ist beispielsweise die Polyphosphat-Glucokinase, die bereits in einer Reihe von Mikroorganismen beschrieben wurde, bei- spielsweise in Mycobacterium phlei (Szymona, Bull. Acad. Pol. Sei. Ser. Sei. Biol. 5 (1956), 379-381; Szymona und Ostrowski, Biochim. Biophys. Acta 85 (1964), 283-295), Propionibacterium shermanii (Pepin und Wood, J. Biol. Chem. 261 (1986) , 4476-4480) , Corynebacterium xerosis (Dirheimer und Ebel, Bull. Soc. Chim. Biol. 50 (1968), 1933-1947) und Mycobacterium tuberculosis (Szymona et al., Acta Biochim. Pol. 24 (1977), 133-42). Weitere Enzyme, die Polyphosphat als Substrat verwenden und daher für die Mobilisierung von Polyphosphat geeignet sind, sind z.B. auch die Polyphos¬ phat:AMP-Phosphotransferase (Bonting et al. , J. Bacteriol. 173 (1991), 6484-6488; Dirheimer und Ebel, C.R. Acad. Sei. Paris 260 (1965), 3787-3790), die 1,3-Diphosphoglyce- rat:Polyphosphat-Phosphotransferase (Kulaev et al. , Biokhimiya 33 (1968), 419-434; Wood und Goss, Proc. Natl. Acad. Sei. USA 82 (1985), 312-315), die Polyphosphat-abhän¬ gige NAD-Kinase (Murata et al., Agric. Biol. Chem. 44 (1980), 61-68), die Exopolyphosphatase (siehe z.B. Akiyama et al., J. Biol. Chem. 268 (1993), 633-639; Wurst und Kornberg, J. Biol. Chem. 269 (1994), 10996-11001) und die Endopolyphosphatase (E.C. 3.6.1.10.; siehe z.B. Kowalczyk und Phillips, Analyt. Biochem. 212 (1993), 194-205).
Es besteht grundsätzlich die Möglichkeit, daß das in der transgenen Pflanzenzelle exprimierte Protein, das aufgrund seiner enzymatischen Aktivität die Bildung eines Phosphat- Pools außerhalb der Vakuole bewirkt, insbesondere von Poly¬ phosphat oder Acetylphopsphat, in jedem beliebigen Komparti¬ ment der pflanzlichen Zelle lokalisiert sein kann. Um die Lo¬ kalisation in einem bestimmten Kompartiment zu erreichen, muß die codierende Region mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in dem jeweiligen Kompartiment gewährlei¬ sten. Vorzugsweise wird das zu exprimierende Protein im Cyto¬ sol, den Piastiden oder den Mitochondrien lokalisiert sein. Für die Lokalisation im Cytosol ist keine spezielle Signalse¬ quenz erforderlich. Bei der Verwendung prokaryontischer DNA- Moleküle ist darauf zu achten, daß die codierenden Regionen keine Signalsequenzen aufweisen, die eine Sekretion des zu exprimierenden Proteins bewirken. Signalsequenzen, die die Lokalisation beispielsweise in den Mitoehondrien oder den Piastiden gewährleisten, sind bekannt (siehe beispielsweise Braun et al. , EMBO J. 11 (1992), 3219-3227; Wolter et al. , Proc. Natl. Acad. Sei. USA 85 (1988), 846-850).
Pflanzenzellen, in die die oben beschriebenen DNA-Moleküle eingeführt werden, können generell von jeder beliebigen Pflanzenspezies stammen, insbesondere von beliebigen monoko¬ tylen oder dikotylen Pflanzen. Bevorzugt werden Pflanzenzel¬ len landwirdschaftlicher Nutzpflanzen verwendet, insbeson¬ dere von Getreidearten (wie z.B. Gerste, Roggen, Hafer, Hirse, Reis, Mais, Weizen etc.), Obstarten, Kartoffel, Raps, Zuckerrübe, Sojabohne, Gemüsearten (wie z.B. Erbse, Bohne, Tomate etc.) oder von Zierpflanzen. Besonders bevorzugt han¬ delt es sich um photosynthetisch aktive Zellen.
Gegenstand der Erfindung sind ebenfalls transgene Pflanzen, die erfindungsgemäße transgene Pflanzenzellen enthalten. Diese sind beispielsweise erhältlich durch Regeneration aus den beschriebenen transgenen Pflanzenzellen, nach dem Fach¬ mann bekannten Methoden.
Es wurde gefunden, daß derartige Pflanzen im Vergleich zu nicht transformierten (Wildtyp) Pflanzen eine gesteigerte Biomasseproduktion aufweisen und/oder ein verändertes Blüh¬ verhalten, insbesondere eine vorzeitige Blütenbildung und Blüte.
Die Erfindung betrifft ebenfalls Vermehrungsmaterial einer erfindungsgemäßen Pflanze. Darunter versteht man beispiels¬ weise Samen, Früchte, Knollen, Stecklinge, Wurzelstöcke etc.
Ferner betrifft die vorliegende Erfindung Verfahren zur Steigerung des Biomasseprodukts bzw. des Ertrages und/oder Veränderung des Blühverhaltens in Pflanzen dadurch gekenn¬ zeichnet, daß in pflanzlichen Zellen außerhalb der Vakuole leicht mobilisierbare Phosphat-Pools erzeugt werden, die eine erhöhte Verfügbarkeit von Phosphat in den Zellen ge¬ währleisten.
Ein derartiges Verfahren umfaßt in der Regel folgende Schritte:
(a) Herstellen einer Expressionskassette, die folgende DNA- Sequenzen umfaßt :
(i) einen in pflanzlichen Zellen funktionalen Promo¬ tor, der die Transkription einer nachfolgenden DNA-Sequenz gewährleistet;
(ii) mindestens eine DNA-Sequenz, die ein Protein co¬ diert, dessen enzymatische Aktivität zur Bildung eines leicht mobilisierbaren Phosphat-Pools außer¬ halb der Vakuole führt, und die in sense-Orientie- rung an das 3 ' -Ende des Promotors gekoppelt ist; und
(iii) gegebenenfalls ein Terminationssignal für die Ter- mination der Transkription und die Addition eines poly-A-Schwanzes an das entstehende Transkript, das an das 3 ' -Ende der codierenden Region gekop¬ pelt ist;
(b) Transformation pflanzlicher Zellen mit der in Schritt
(a) hergestellten Expressionskassette und stabile Inte¬ gration der Expressionskassette in das pflanzliche Ge¬ nom; und
(c) Regeneration ganzer, intakter Pflanzen aus den transfor¬ mierten Pflanzenzellen.
Für den in den erfindungsgemäßen Verfahren unter (i) genann¬ ten Promotor kommt im Prinzip jeder in Pflanzen funktionale Promotor in Betracht. Die Expression der besagten DNA-Se¬ quenzen kann generell in jedem Gewebe einer transformierten Pflanze und zu j-^dem Zeitpunkt stattfinden. Geeignet ist beispielsweise der 35S-Promotor des Cauliflower-Mosaik-Virus (Odell et al . , Nature 313 (1985) , 810-812) , der eine konsti- tutive Expression in allen Geweben einer Pflanze gewährlei- stet. Es können jedoch auch Promotoren verwendet werden, die in einem bestimmten Gewebe der Pflanze zu einer Expression nachfolgender Sequenzen führen, vorzugsweise in photosynthe¬ tisch aktivem Gewebe (siehe z. B. Stockhaus et al., EMBO J. 8 (1989) , 2245-2251) oder nur zu einem durch äußere Ein¬ flüsse determinierten Zeitpunkt (siehe beispielsweise WO/9307279) .
Für die unter Schritt (ii) genannte DNA-Sequenz kommt jede Sequenz der oben im Zusammenhang mit transgenen Zellen be¬ schriebenen DNA-Moleküle in Betracht.
Die Terminationssequenz dient der korrekten Beendigung der Transkription sowie der Addition eines Poly-A-Schwanzes an das Transkript, dem eine Funktion bei der Stabilisierung der Transkripte beigemessen wird. Derartige Elemente sind in der Literatur beschrieben (vgl. Gielen et al., EMBO J. 8 (1989), 23-29) und sind beliebig austauschbar.
Die im Verlauf des erfindungsgemäßen Verfahrens erzeugte Ex¬ pressionskassette ist ebenfalls Gegenstand der Erfindung. Sie ist vorzugsweise auf einem Plasmid lokalisiert, insbe¬ sondere auf den Plasmiden p35S-PPK (Fig. 1) oder p35S-ACK (Fig. 3) , und wird bevorzugt unter Verwendung eines Plas- mids, das für die Transformation pflanzlicher Zellen ge¬ eignet ist, in pflanzliche Zellen eingeführt. In den Bei¬ spielen der vorliegenden Erfindung wurde der binäre Vektor pBinAR (Höfgen und Willmitzer, Plant Sei. 66 (1990), 221- 230) verwendet. Bei diesem Vektor handelt es sich um ein De¬ rivat des binären Vektors pBinl9 (Bevan, Nucl. Acids Res. 12 (1984), 8711-8721), der kommerziell erhältlich ist (Clontech Laboratories, Inc., USA). Es ist jedoch auch jeder andere Pflanzentransformationsvektor geeignet, in den eine Expres¬ sionskassette inseriert werden kann, und der die Integration der Expressionskassette in das pflanzliche Genom gewährlei¬ stet. Zur Transformation gemäß Verfahrensschritt (b) mit der gemäß Verfahrensschritt (a) konstruierten Expressionskassette kom¬ men grundsätzlich Zellen aller Pflanzenspezies, insbesondere monokotyler oder dikotyler Pflanzen in Frage. Bevorzugt wer¬ den in dem Verfahren Zellen landwirtschaftlicher Nutzpflan¬ zen verwendet, insbesondere von Getreidearten (wie z.B. Ger¬ ste, Roggen, Hafer, Hirse, Reis, Mais, Weizen etc.) Obstar¬ ten, Kartoffel, Raps, Zuckerrübe, Sojabohne, Gemüsearten (wie z.B. Erbse, Bohne, Tomate etc.) oder Zellen von Zier¬ pflanzen.
Gegenstand der Erfindung sind ebenfalls die aus den erfin¬ dungsgemäßen Verfahren resultierenden transgenen Pflanzen¬ zellen und transgenen Pflanzen. Die transgenen Pflanzen sind dadurch gekennzeichnet, daß es in Zellen dieser Pflanzen aufgrund der Einführung und der stabilen Integration einer gemäß dem erfindungsgemäßen Verfahren konstruierten Expres¬ sionskassette in das Genom zur Expression eines Proteins kommt, das aufgrund seiner enzymatischen Aktivität die Bil¬ dung von Polyphosphat, Acetylphosphat, Trehalose-6-Phosphat, Phosphoenolpyruvat oder Fructose-1-Phosphat außerhalb der Vakuole in den transgenen Zellen bewirkt.
Insbesondere betrifft die Erfindung transgene Pflanzen ent¬ haltend mindestens eine DNA-Sequenz, die ein Protein mit der enzymatischen Aktivität einer Polyphosphatkinase, einer Ace¬ tatkinase, einer Phosphotransacetylase, einer Trehalose-6- Phosphat-Synthase, einer Phosphoenolpyruvat-Mutase, oder einer Ketohexokinase codiert, wobei diese DNA-Sequenz mit regulatorischen DNA-Bereichen für die Transkription und Translation in pflanzlichen Zellen verknüpft ist, stabil in das Genom integriert ist und es aufgrund der Expression der besagten DNA-Sequenz zur Bildung von Polyphosphat, Acetylphosphat, Trehalose-6-Phosphat, Phosphoenolpyruvat oder Fructose-1-Phosphat außerhalb der Vakuole in Zellen der Pflanze kommt. Ein weiterer Gegenstand der Erfindung ist die Verwendung von DNA-Molekülen, die Proteine codieren, die aufgrund ihrer en¬ zymatischen Aktivität zur Bildung von leicht mobilisierbaren Phosphat-Pools, insbesondere von Polyphosphat, Acetyl¬ phosphat, Trehalose-6-Phosphat, Fructose-1-Phosphat oder Phosphoenolpyruvat, außerhalb der Vakuole in pflanzlichen Zellen führen, zur Transformation pflanzlicher Zellen und zur Expression in pflanzlichen Zellen, insbesondere zur Ver¬ besserung des Phänotyps dieser Zellen. Insbesondere betrifft die Erfindung die Verwendung von DNA-Molekülen, die Proteine mit der enzymatischen Aktivität einer Polyphosphatkinase, einer Acetatkinase, einer Phosphotransacetylase, einer Trehalose-6-Phosphat-Synthase,. einer Phosphoenolpyruvat- Mutase oder einer Ketohexokinase codieren, zur Expression in pflanzlichen Zellen sowie zur Erzeugung von Polyphosphat, Acetylphosphat, Trehalose-6-Phosphat, Phosphoenolpyruvat oder Fructose-1-Phosphat außerhalb der Vakuole in pflanz¬ lichen Zellen. Zu diesen DNA-Molekülen gehören insbesondere die oben beschriebenen DNA-Moleküle, die Proteine mit der enzymatischen Aktivität einer Polyphosphatkinase, einer Acetatkinase, einer Phosphotransacetylase, einer Trehalose- 6-Phosphat-Synthase, einer Phosphoenolpyruvat-Mutase oder einer Ketohexokinase codieren.
Zur Vorbereitung der Einführung fremder Gene in höhere Pflan¬ zen stehen eine große Anzahl von Clonierungsvektoren zur Ver¬ fügung, die ein Replikationssignal für E. coli und ein Marker¬ gen zur Selektion transformierter Bakterienzellen enthalten. Beispiele für derartige Vektoren sind pBR322, pUC-Serien, M13mp-Serien, pACYC184 usw. Die gewünschte Sequenz kann an einer passenden Restriktionsschnittstelle in den Vektor ein¬ geführt werden. Das erhaltene Plasmid wird für die Transfor¬ mation von E. coli-Zellen verwendet. Transformierte E. coli- Zellen werden in einem geeigneten Medium gezüchtet, an¬ schließend geerntet und lysiert. Das Plasmid wird wiederge¬ wonnen. Als Analysemethode zur Charakterisierung der gewon¬ nenen Plasmid-DNA werden im allgemeinen Restriktionsanalysen, Gelelektrophoresen und weitere biochemisch-molekularbiologi¬ sche Methoden eingesetzt. Nach jeder Manipulation kann die Plasmid DNA gespalten und gewonnene DNA-Fragmente mit anderen DNA-Sequenzen verknüpft werden. Jede Plasmid-DNA-Sequenz kann in den gleichen oder anderen Plasmiden cloniert werden. Für die Einführung von DNA in eine pflanzliche Wirtszelle stehen eine Vielzahl von Techniken zur Verfügung. Diese Tech¬ niken umfassen die Transformation pflanzlicher Zellen mit T- DNA unter Verwendung von Agrobacterium tumefaciens oder Agrobacterium rhizogenes als Transformationsmittel, die Fu¬ sion von Protoplasten, die Injektion, die Elektroporation von DNA, die Einbringung von DNA mittels der biolistischen Me¬ thode sowie weitere Möglichkeiten.
Bei der Injektion und Elektroporation von DNA in Pflanzenzel¬ len werden an sich keine speziellen Anforderungen an die ver¬ wendeten Plasmide gestellt. Es können einfache Plasmide wie z.B. pUC-Derivate verwendet werden. Sollen aber aus derartig transformierten Zellen ganze Pflanzen regeneriert werden, ist die Anwesenheit eines selektierbaren Markergens notwendig. Je nach Einführungsmethode gewünschter Gene in die Pflanzen¬ zelle können weitere DNA-Sequenzen erforderlich sein. Werden z.B. für die Transformation der Pflanzenzelle das Ti- oder Ri-Plasmid verwendet, so muß mindestens die rechte Begren¬ zung, häufig jedoch die rechte und linke Begrenzung der Ti- und Ri-Plasmid T-DNA als Flankenbereich mit den einzuführen¬ den Genen verbunden werden.
Werden für die Transformation Agrobakterien verwendet, muß die einzuführende DNA in spezielle Plasmide cloniert werden, und zwar entweder in einen intermediären Vektor oder in einen binären Vektor. Die intermediären Vektoren können aufgrund von Sequenzen, die homolog zu Sequenzen in der T-DNA sind, durch homologe Rekombination in das Ti- oder Ri-Plasmid der Agrobakterien integriert werden. Dieses enthält außerdem die für den Transfer der T-DNA notwendige vir-Region. Intermedi¬ äre Vektoren können nicht in Agrobakterien replizieren. Mit¬ tels eines Helferplasmids kann der intermediäre Vektor auf Agrobacterium tumefaciens übertragen werden (Konjugation) . Binäre Vektoren können sowohl in E. coli als auch in Agrobak¬ terien replizieren. Sie enthalten ein Selektionsmarker-Gen und einen Linker oder Polylinker, welche von der rechten und linken T-DNA Grenzregion eingerahmt werden. Sie können direkt in die Agrobakterien transformiert werden (Holsters et al., Mol. Gen. Genet. 163 (1978), 181-187) . Das als Wirtszelle dienende Agrobakterium soll ein Plasmid, das eine vir-Region trägt, enthalten. Die vir-Region ist für den Transfer der T- DNA in die Pflanzenzelle notwendig. Zusätzliche T-DNA kann vorhanden sein. Das derartig transformierte Agrobakterium wird zur Transformation von Pflanzenzellen verwendet. Die Verwendung von T-DNA für die Transformation von Pflanzen¬ zellen ist intensiv untersucht und ausreichend in EP 120516; Hoekema, In: The Binary Plant Vector System Offsetdrukkerij Kanters B.V., Alblasserdam, Chapter V; Fraley et al., Crit. Rev. Plant. Sei., 4 (1985), 1-46 und An et al. , EMBO J. 4 (1985) , 277-287 beschrieben worden.
Für den Transfer der DNA in die Pflanzenzelle können Pflan- zen-Explantate zweckmäßigerweise mit Agrobacterium tumefaciens oder Agrobacterium rhizogenes kokultiviert wer¬ den. Aus dem infizierten Pflanzenmaterial (z.B. Blattstücke, Stengelsegmente, Wurzeln, aber auch Protoplasten oder Suspen- sions-kultivierte Pflanzenzellen) können dann in einem ge¬ eigneten Medium, welches Antibiotika oder Biozide zur Selek¬ tion transformierter Zellen enthalten kann, wieder ganze Pflanzen regeneriert werden. Die so erhaltenen Pflanzen kön¬ nen dann auf Anwesenheit der eingeführten DNA untersucht wer¬ den.
Ist die eingeführte DNA einmal im Genom der Pflanzenzelle in¬ tegriert, so ist sie dort in der Regel stabil und bleibt auch in den Nachkommen der ursprünglich transformierten Zelle er¬ halten. Sie enthält normalerweise einen Selektionsmarker, der den transformierten Pflanzenzellen Resistenz gegenüber einem Biozid oder einem Antibiotikum wie Kanamycin, G 418, Bleomycin, Hygromycin oder Phosphinotricin u.a. vermittelt. Der individuelle gewählte Marker sollte daher die Selektion transformierter Zellen gegenüber Zellen, denen die einge¬ führte DNA fehlt, gestatten.
Die transformierten Zellen wachsen innerhalb der Pflanze in der üblichen Weise (siehe auch McCormick et al . , Plant Cell Reports 5 (1986) , 81-84) . Die resultierenden Pflanzen können normal angezogen werden und mit Pflanzen, die die gleiche transformierte Erbanlage oder andere Erbanlagen besitzen, ge¬ kreuzt werden. Die daraus entstehenden hybriden Individuen haben die entsprechenden phänotypischen Eigenschaften. Es sollten zwei oder mehrere Generationen angezogen werden, um sicherzustellen, daß das phänotypische Merkmal stabil beibehalten und vererbt wird. Auch sollten Samen geerntet werden, um sicherzustellen, daß der entsprechende Phänotyp oder andere Eigenarten erhalten geblieben sind.
Verwendete Medien und Lösungen
20 x SSC 175,3 g NaCl
88,2 g Natrium-Citrat ad 1000 ml mit ddH20 pH 7,0 mit 10 N NaOH
10 x MEN 200 mM MOPS
50 mM Natriumacetat 10 mM EDTA pH 7,0
NSEB-Puffer 0,25 M Natriumphosphatpuffer pH 7, 2
7 % SDS 1 mM EDTA 1 % BSA (Gew. /Vol.) Beschreibung der Abbildungen
Fig. 1 zeigt das Plasmid p35S-PPK
Aufbau des Plasmids :
A = Fragment A: CaMV 35S-Promotor, nt 6909-7437 (Franck et al., Cell 21 (1980) , 285-294)
B = Fragment B: DNA-Fragment aus Escherichia coli co¬ dierend für Polyphosphatkinase;
Nucleotide 187-2253 des Polyphosphatkinase (ppk) - Gens (Akiyama et al. , J. Biol. Chem. 1992, 267 (1992) , 22556-22561) ; Orientierung zum Promotor: sense
Der Pfeil gibt die Transkriptionsrichtung des ppk- Gens an
C = Fragment C: nt 11748-11939 der T-DNA des Ti-Plas- mids pTiACH5 (Gielen et al., EMBO J. 3 (1984) , 835-846)
Fig. 2 zeigt das Plasmid pACK
Die dünne Linie entspricht dem Plasmid pUC19, die starke Linie repräsentiert eine DNA-Insertion, die die codierende Region des ac -Gens aus Methanosarcina thermophila (Latimer und Ferry, J. Bacteriol. 175 (1993) , 6822-6829) umfaßt. Der Pfleil gibt die Trans¬ kriptionsrichtung des ac -Gens an.
Fig. 3 zeigt das Plasmid p35S-ACK
Aufbau des Plasmids :
A = Fragment A: CaMV 35S-Promotor, nt 6909-7437 (Franck et al., Cell 21 (1980) , 285-294) B = Fragment B: DNA-Fragment aus Methanosarcina thermophila codierend für Acetatkinase; Nucleotide 1314-2748 des Acetatkinase ( ack) -Gens (Latimer und Ferry, J. Bacteriol. 175 (1993), 6822-6829) ;
Orientierung zum Promotor: sense
Der Pfeil gibt die Transkriptionsrichtung des ack- Gens an
C = Fragment C: nt 11748-11939 der T-DNA des Ti-Plas- mids pTiACH5 (Gielen et al., EMBO J. 3 (1984), 835-846)
Fig. 4 zeigt transformierte Kartoffelpflanzen im Vergleich mit nicht-transformierten Kartoffelpflanzen.
Drei Pflanzen der Kartoffellinie JP1 35, die mit dem Plasmid p35S-PPK transformiert wurden (hinten) , sind im Vergleich gezeigt mit zwei nicht-transformierten Kartoffelpflanzen (vorne) . Die Pflanzen sind ca. 84 Tage alt und wurden im Ge¬ wächshaus gehalten.
Die Beispiele erläutern die Erfindung. In den Beispielen wer¬ den folgende Methoden angewendet:
1. Clonierungsverfahren
Zur Clonierung in E. coli wurde der Vektor pUC19 verwendet. Für die Pflanzentransformation wurden die Genkonstruktionen in den binären Vektor pBinAR (Höfgen und Willmitzer, Plant Sei. 66 (1990), 221-230) cloniert.
2. Bakterienstämme
Für den pUC19-Vektor und für die pBinAR-Konstrukte wurde der E. coli-Stamm DH5α (Bethesda Research Laboratories, Gaithersburgh, USA) verwendet. Die Transformation der Plasmide in die Kartoffelpflanzen wurde mit Hilfe des Agrobacterium tumefaciens-Sta es C58C1 pGV2260 durchgeführt (Deblaere et al., Nucl. Acids Res. 13 (1985) , 4777-4788) .
3. Transformation von Agrobacterium tumefaciens
Der Transfer der DNA erfolgte durch direkte Transformation nach der Methode von Höfgen&Willmitzer (Nucleic Acids Res. 16 (1988) , 9877) . Die Plasmid-DNA transformierter Agrobakterien wurde nach der Methode von Birnboim&Doly (Nucleic Acids Res. 7 (1979) , 1513-1523) isoliert und nach geeigneter Restrikti¬ onsspaltung gelelektrophoretisch analysiert.
4. Transformation von Kartoffeln
Zehn kleine mit dem Skalpell verwundete Blätter einer Kartof¬ fel-Sterilkultur (Solanu tuberosum L.cv. Desiree) wurden in 10 ml MS-Medium (Murashige&Skoog, Physiol. Plant. 15 (1962), 473) mit 2 % Saccharose gelegt, welches 50 μl einer unter Se¬ lektion gewachsenen Agrobacterium tumefaciens-Übernachtkultur enthielt. Nach 3-5 minütigem, leichtem Schütteln erfolgte eine weitere Inkubation für 2 Tage im Dunkeln. Daraufhin wur¬ den die Blätter zur Kallusinduktion auf MS-Medium mit 1,6 % Glucose, 5 mg/1 Naphthylessigsäure, 0,2 mg/1 Benzylaminopu- rin, 250 mg/1 Claforan, 50 mg/1 Kanamycin bzw. 1 mg/1 Hygro- mycin B, und 0,80 % Bacto Agar gelegt. Nach einwöchiger Inku¬ bation bei 25°C und 3000 Lux wurden die Blätter zur Sproßin¬ duktion auf MS-Medium mit 1,6 % Glucose, 1,4 mg/1 Zeatinri- bose, 20 mg/1 Naphthylessigsäure, 20 mg/1 Giberellinsäure, 250 mg/1 Claforan, 50 mg/1 Kanamycin bzw. 3 mg/1 Hygromycin B, und 0,80 % Bacto Agar gelegt. 5. Radioaktive Markierung von DNA-Fragmenten
Die radiokative Markierung von DNA-Fragmenten wurde mit Hilfe eines DNA-Random Primer Labelling Kits der Firma Boehringer (Deutschland) nach den Angaben des Herstellers durchgeführt.
6. Northern Blot-Analyse
RNA wurde nach Standardprotokollen aus Blattgewebe von Pflan¬ zen isoliert. 50 μg der RNA wurden auf einem Agarosegel auf¬ getrennt (1,5 % Agarose, 1 x MEN-Puffer, 16,6 % Formaldehyd) . Das Gel wurde nach dem Gellauf kurz in Wasser gewaschen. Die RNA wurde mit 20 x SSC mittels Kapillarblot auf eine Nylon¬ membran vom Typ Hybond N (Amersham, UK) transferiert. Die Membran wurde anschließend bei 80°C unter Vakuum für zwei Stunden gebacken.
Die Membran wurde in NSEB-Puffer für 2 h bei 68°C prähybridi¬ siert und anschließend in NSEB-Puffer über Nacht bei 68°C in Gegenwart der radioaktiv markierten Probe hybridisiert.
7. Pflanzenhaltung
Kartoffelpflanzen wurden im Gewächshaus unter folgenden Be¬ dingungen gehalten:
Lichtperiode 16 h bei 2500 Lux und 22°C
Dunkelperiode 8 h bei 15°C
Luftfeuchte 60 %
Beispiel 1
Konstruktion des Plasmids p35S-PPK und Einführung des Plas¬ mids in das Genom von Kartoffelpflanzen
Für die Konstruktion des Plasmids p35S-PPK wurde zunächst ein DNA-Fragment, das für die Polyphosphatkinase aus E. coli kodiert, mit Hilfe der PCR-Technik ("Polymerase Chain Reaction") amplifiziert. Hierzu wurde genomische DNA aus E. coli-Zellen des Stamms DH5α nach Standardmethoden isoliert (siehe z.B. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2. Aufl. (1989), Cold Spring Harbor Laboratory Press, Cold Spring Harbour, NY) . Unter Verwendung der beiden Oligonucleotide
Oligo 1 5' -AAGGATCCAGGAACCCGGGCCATGGGTCAGGAAAAG-3' (Seq ID No. 1) und
Oligo 2 5' -GGGGATCCCGGGCCATGGGTTATTCAGGTTG-3 ' (Seq ID No. 2)
wurde durch die PCR-Reaktion ein ca. 2,1 kb langes DNA-Frag¬ ment amplifiziert, das die Nucleotide 187 bis 2253 der in Akiyama et al. (J. Biol. Chem. 267 (1992), 22558) darge¬ stellten DNA-Sequenz (ppk-Gen) umfaßt, die Polyphosphatki¬ nase aus E. coli codiert. Durch das Oligonucleotid 1, das teilweise zu dem 5' -Ende des pp -Gens komplementär ist, wer¬ den am 5' -Ende des amplifizierten DNA-Fragmentes Restrikti¬ onsschnittstellen für die Restriktionsendonucleasen BamH I und eine Sma I eingeführt. Durch das Oligonucleotid 2, das teilweise zu dem 3 ' -Ende des ppk-Gens komplementär ist, wer¬ den am 3 ' -Ende des Fragmentes Schnittstellen für BamH I, Sma I und Nco I eingeführt. Das aus der PCR-Reaktion resultie¬ rende DNA-Fragment wurde mit BamH I geschnitten und in den mit BamH I geschnittenen binären Vektor pBinAR (Hδfgen und Willmitzer, Plant Sei. 66 (1990), 221-230) ligiert. Bei die¬ sem handelt es sich um ein Derivat des binären Vektors pBinl9 (Bevan, Nucl. Acids Res. 12 (1984), 8711-8721). pBinAR wurde folgendermaßen konstruiert:
Ein 529 bp langes Fragment, das die Nucleotide 6909-7437 des 35S-Promotor des Cauliflowermosaic-Virus umfaßt (Franck et al., Cell 21 (1980), 285-294), wurde als EcoR I/Kpn I-Frag- ment aus dem Plasmid pDH51 (Pietrzak et al., Nucl. Acids Res. 14, 5857-5868) isoliert und zwischen die EcoR I- und die Kpn J-Schnittstellen des Polylinkers von pBinl9 ligiert. Dabei entstand das Plasmid pBinl9-A.
Aus dem Plasmid pAGV40 (Herrera-Estrella et al., Nature 303, 209-213) wurde mit Hilfe der Restriktionsendonucleasen Pvu II und Hind III ein 192 bp langes Fragment isoliert, das das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al. , EMBO J. 3, 835-846) umfaßt (Nucleo¬ tide 11749-11939) . Nach Addition von Sph I-Linkern an die Pvu J-Schnittstelle wurde das Fragment zwischen die Sph I- und Hind HI-Schnittstellen pBinl9-A ligiert. Dabei entstand pBinAR.
Mit Hilfe von Restriktions- und Sequenzanalysen wurden re- kombinante Vektoren identifiziert, bei denen das amplifi- zierte DNA-Fragment derart in den Vektor inseriert ist, daß die codierende Region für die Polyphosphatkinase aus E. coli in sense-Orientierung mit dem 35S-Promotor verknüpft ist. Das resultierende Plasmid, p35S-PPK, ist in Fig. 1 darge¬ stellt.
Durch die Insertion des amplifizierten DNA-Fragmentes ent¬ steht eine Expressionskassette, die folgendermaßen aus den Fragmenten A, B und C aufgebaut ist:
Das Fragment A (529 bp) enthält den 35S-Promotor des Cauliflower-Mosaik-Virus (CaMV) . Das Fragment umfaßt die Nucleotide 6909 bis 7437 des CaMV (Franck et al. , Cell 21 (1980) , 285-294) .
Das Fragment B enthält die codierende Region für Polyphos¬ phatkinase aus E. coli . Das Fragment umfaßt die Nucleotide 187-2253 des Polyphosphatkinase-Gens (Akiyama et al., J. Biol. Chem. 267 (1992) , 22556-22561) . Diese codierende Re¬ gion wurde in sense-Orientierung an den 35S-Promotor li¬ giert.
Fragment C (192 bp) enthält das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al. , EMBO J. 3 (1984) , 835-846) . Die Größe des Plasmids p35S-PPK beträgt ca. 13 kb. Da die verwendete codierende Region des Gens für Polyphos¬ phatkinase aus E. coli keine Signalsequenz umfaßte, sollte das exprimierte Protein im Cytoplasma transformierter Zellen vorliegen.
Das Plasmid wurde mit Hilfe Agrobakterien-vermittelter Transformation in Zellen von Kartoffelpflanzen transferiert wie oben beschrieben. Aus den transformierten Zellen wurden ganze Pflanzen regeneriert. Auf diese Weise wurden 40 Linien transformierter Pflanzen erzeugt, von denen 7 Linien, insbe¬ sondere die Linien JP1 16, JP1 26, JP1 29, JP1 31, JP1 33, JP1 34 und JP1 35, näher analysiert wurden.
Als Ergebnis der Transformation zeigten transgene Kartoffel- pflanzen die Expression des Gens für die Polyphosphatkinase aus E. coli . Die Expression wurde mit Hilfe von Nothern- Blot-Analysen nachgewiesen. Dazu wurde RNA aus Gewebe von transgenen Pflanzen isoliert, gelelektrophoretisch aufge¬ trennt, auf eine Nylonmembran transferiert und mit der ra¬ dioaktiv markierten codierenden Region des ppk-Gens aus E. coli hybridisiert. Von den obengenannten 7 transgenen Kar¬ toffellinien wurde jeweils eine Pflanze im Hinblick auf die Expression des ppk-Gens untersucht. Alle zeigten eine deut¬ liche Expression des ppk-Gens aus E. coli . In Wildtyp-Pflan¬ zen konnten dagegen keine Transkripte dieses Gens nachgewie¬ sen werden.
Die Pflanzen zeigten im Vergleich zu Wildtyp-Pflanzen einen wesentlich höheren Ertrag pro Pflanze (gemessen als g Knol¬ len/Pflanze) wie in der folgenden Tabelle dargestellt. Tabelle I n g/Pflanze
JP1 16 8 113,88
JP1 26 8 115,13
JP1 29 8 111,63
JP1 31 8 132,50
JP1 33 8 122,38
JP1 34 8 122,50
JP1 35 8 117,25
Wildtyp 8 102,38
Dargestellt ist der Knollenertrag in g/Pflanze von Pflanzen, die mit dem Plasmid p35S-PPK transformiert wurden, im Ver¬ gleich zu nicht-transformierten Pflanzen (Wildtyp) . Untersucht wurden Pflanzen, die im Gewächshaus kultiviert wurden, der Linien JP1 16, JP1 26, JP1 29, JP1 31, JP1 33, JP1 34 und JP1 35 sowie Wildtyp-Pflanzen der Kartoffelvarie¬ tät Desiree. Die Ernte der Kartoffeln erfolgte 11 Wochen nach dem Aussetzen der Pflanzen. n = Anzahl der zur Analyse verwendeten Pflanzen g/Pflanze = durchschnittliches Knollengewicht/Pflanze
Die transformierten Pflanzen bildeten im Vergleich zu Wild¬ typ-Pflanzen nicht mehr, dafür aber wesentlich größere Knol¬ len.
Der Stärkegehalt der Knollen transformierter Pflanzen ent¬ sprach dem Stärkegehalt von Knollen von Wildtyp-Pflanzen (Messung durch Bestimmung der Dichte der Knollen) . Weiterhin zeigten die transformierten Pflanzen im Vergleich zu Wildtyp-Pflanzen eine vorzeitige Blütenbildung, wie in den folgenden Tabellen dargestellt: Tabelle II n % der Pflanzen
JP1 16 14 33,3
JP1 26 14 46,6
JP1 29 14 28,6
JP1 31 14 35,7
JP1 33 14 57,1
JP1 34 14 35,7
JP1 35 14 64,3
Wildtyp 14 0,0
Tabelle III n % der Pflanzen
JP1 16 14 66,7
JP1 26 14 46,6
JP1 29 14 35,7
JP1 31 14 71,4
JP1 33 14 61,5
JP1 34 14 42,9
JP1 35 14 64,3
Wildtyp 14 8,3
Tabelle II und III illustrieren die vorzeitige Blütenbildung von Pflanzen, die mit dem Plasmid p35S-PPK transformiert wurden, im Vergleich zu nicht-transformierten Pflanzen (Wildtyp) .
Transformierte Kartoffelpflanzen der Linien JP1 16, JP1 26, JP1 29, JP1 31, JP1 33, JP1 34 und JP1 35 sowie Wildtyp- Pflanzen der Kartoffelvarietät Desiree wurden unter Gewächs¬ hausbedingungen kultiviert. Tabelle II zeigt den prozen¬ tualen Anteil der untersuchten Pflanzen jeder Linie bzw. der Wildtyp-Pflanzen, die nach 80 Tagen nach dem Aussetzen der Pflanzen blühten. Tabelle III zeigt den prozentualen Anteil der untersuchten Pflanzen jeder Linie bzw. der Wildtyp- Pflanzen, die nach 84 Tagen nach dem Aussetzen der Pflanzen blühten. n = Anzahl analysierten Pflanzen
% Pflanzen = prozentualer Anteil der Pflanzen, die blühen
Bei transformierten Pflanzen setzte die Blüte durchschnitt¬ lich 1-2 Wochen früher ein als bei Wildtyp-Pflanzen, die unter den gleichen Bedingungen gehalten wurden.
Beispiel 2
Konstruktion des Plasmids p35S-ACK und Einführung des Plas¬ mids in das Genom von Kartoffelpflanzen
Für die Konstruktion des Plasmids p35S-ACK wurde zunächst ein DNA-Fragment isoliert, das die Acetatkinase aus Methanosarcina thermophila codiert (ack-Gen) . Das Gen ist in der Sma J-Schnittstelle eines pUC19-Plasmids inseriert. Die Konstruktion dieses pUC-Plasmides ist ausführlich in Latimer und Ferry (J. Bacteriol. 175 (1993), 6822-6829; siehe Seite 6823, rechte Spalte) beschrieben. Das verwendete Plasmid, das im Rahmen dieser Erfindung pACK genannt wird, ist in Fig. 2 dargestellt.
Aus diesem Plasmid wurde durch Restriktionsverdau mit den Restriktionsendonucleasen Asp718 und BamH I ein ca. 1,45 kb großes DNA-Fragment isoliert und in den mit Asp718 und BamH I geschnittenen binären Vektor pBinAR ligiert. Das resultie¬ rende Plasmid wurde mit p35S-ACK bezeichnet und ist in Fig. 3 dargestellt.
Durch die Insertion des isolierten Asp718/BamH I-DNA-Frag- mentes entsteht eine Expressionskassette, die folgendermaßen aus den Fragmenten A, B und C aufgebaut ist:
Das Fragment A (529 bp) enthält den 35S-Promotor des Cauliflower-Mosaik-Virus (CaMV) . Das Fragment umfaßt die Nucleotide 6909 bis 7437 des CaMV (Franck et al. , Cell 21 (1980) , 285-294) .
Das Fragment B enthält die codierende Region für Acetatki¬ nase aus Methanosarcina thermophila . Das Fragment umfaßt die Nucleotide 1314-2748 der in Latimer und Ferry (J. Bacteriol. 175 (1993) , 6822-6829) dargestellten Sequenz (Acetylkinase iack) -Gen) . Diese codierende Region wurde in sense-Orientie¬ rung an den 35S-Promotor ligiert.
Fragment C (192 bp) enthält das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al. , EMBO J. 3 (1984), 835-846).
Die Größe des Plasmids p35S-ACK beträgt ca. 12,5 kb. Das Plasmid wurde wie oben beschrieben mit Hilfe Agrobakte¬ rien-vermittelter Transformation in Zellen von Kartoffel¬ pflanzen transferiert. Aus den transformierten Zellen wurden ganze Pflanzen regeneriert.
Als Ergebnis der Transformation zeigten transgene Kartoffel- pflanzen die Expression der Acetatkinase aus Methanosarcina thermophila im Cytosol der Zellen.
SEQUENZPROTOKOLL
(1) ALLGEMEINE ANGABEN:
(i) ANMELDER:
(A) NAME: Institut fuer Genbiologische Forschung Berlin
GmbH
(B) STRASSE: Ihnestrasse 63
(C) ORT: Berlin
(E) LAND: DE
(F) POSTLEITZAHL: 14195
(G) TELEFON: (0 30) 8 30 00 70 (H) TELEFAX: (0 30) 83 00 07 36
(ii) BEZEICHNUNG DER ERFINDUNG: Transgene Pflanzen mit einer gesteigerten Biomasseproduktion
(iii) ANZAHL DER SEQUENZEN: 2
(iv) COMPUTER-LESBARE FASSUNG:
<A) DATENTRÄGER: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: Patentin Release #1.0, Version #1.30 (EPA)
(vi) DATEN DER URANMELDUNG:
(A) ANMELDENUMMER: DE P 44 44 460.5
(B) ANMELDETAG: 29-N0V-1994
(2) ANGABEN ZU SEQ ID NO: 1:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 36 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure
(A) BESCHREIBUNG: /desc = "Oligonucleotid"
(iii) HYPOTHETISCH: JA
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1: AAGGATCCAG GAACCCGGGC CATGGGTCAG GAAAAG 36 (2) ANGABEN ZU SEQ ID NO: 2:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 31 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure
(A) BESCHREIBUNG: /desc = "Oligonucleotid"
(iii) HYPOTHETISCH: JA
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2: GGGGATCCCG GGCCATGGGT TATTCAGGTT G 31

Claims

P a t e n t a n s p r ü c h e
1. Transgene Pflanzenzelle, dadurch gekennzeichnet, daß es in der Zelle außerhalb der Vakuole zur Bildung eines leicht mobilisierbaren Phosphat-Pools kommt aufgrund der Einführung und Expression mindestens eines DNA-Moleküls, das ein Protein codiert, das an der Synthese eines phos- phathaltigen Moleküls außerhalb der Vakuole beteiligt ist.
2. Transgene Pflanzenzelle nach Anspruch 1, wobei der Phos¬ phat-Pool aus Polyphosphat, Acetylphosphat, Trehalose-6- Phosphat, Phosphoenolpyruvat oder Fructose-1-Phosphat besteht.
3. Transgene Pflanzenzelle nach Anspruch 1 oder 2, wobei das DNA-Molekül ein Protein mit der enzymatischen Akti¬ vität einer Polyphosphatkinase, einer Acetatkinase, einer Phosphotransacetylase, einer Trehalose-6-Phosphat¬ synthase, einer Phosphoenolpyruvat-Mutase oder einer Ketohexokinase codiert.
4. Transgene Pflanzenzelle nach Anspruch 3, wobei das DNA- Molekül, das eine Polyphosphatkinase codiert, aus E. coli, Klebsiella aerogenes, Neisseria meningitidis oder Synechocystia sp. stammt.
5. Transgene Pflanzenzelle nach Anspruch 3, wobei das DNA- Molekül, das eine Acetatkinase codiert, aus E. coli, Methanosarcina thermophila, Haemophilus influenza, Bacillus subtilis oder Mycoplasma genitalium stammt.
6. Transgene Pflanzenzelle nach Anspruch 3, wobei das DNA- Molekül, das eine Phosphotransacetylase codiert, aus Methanosarcina thermophila, E. coli oder Mycoplasma genitalium stamm .
7. Transgene Pflanzenzelle nach Anspruch 3, wobei das DNA- Molekül, das eine Trehalose-6-Phosphat-Synthase codiert, aus Hefe stammt.
8. Transgene Pflanzenzelle nach Anspruch 3, wobei das DNA- Molekül, das eine Phosphoenolpyruvat-Mutase codiert, aus Tetrahymena pyriformis stammt.
9. Transgene Pflanzenzelle nach Anspruch 3, wobei das DNA- Molekül, das eine Ketohexokinase codiert, aus Mensch oder Ratte stammt.
10. Transgene Pflanzenzelle nach einem der Ansprüche 1 bis 9, die eine photosynthetisch aktive Zelle ist.
11. Transgene Pflanze, dadurch gekennzeichnet, daß sie transgene Pflanzenzellen nach einem der Ansprüche 1 bis 10 enthält.
12. Transgene Pflanze nach Anspruch 11, die im Vergleich zu nicht-transformierten Pflanzen eine gesteigerte Biomas¬ seproduktion aufweist.
13. Transgene Pflanze nach Anspruch 11 oder 12, die im Ver¬ gleich zu nicht-transformierten Pflanzen ein verändertes Blühverhalten aufweist.
14. Transgene Pflanze nach einem der Ansprüche 11 bis 13, die eine Nutzpflanze ist.
15. Transgene Pflanze nach Anspruch 14, die eine Kartoffel¬ pflanze ist.
16. Vermehrungsmaterial einer Pflanze nach einem der Ansprü¬ che 11 bis 15 enthaltend Zellen nach einem der Ansprüche 1 bis 10.
17. Verwendung von DNA-Molekülen, die Proteine codieren, de¬ ren enzymatische Aktivität zur Synthese von Polyphos¬ phat, Acetylphosphat, Trehalose-6-Phosphat, Phosphoenol¬ pyruvat oder Fructose-1-phosphat führt, zur Transforma¬ tion und Expression in pflanzlichen Zellen.
EP95940259A 1994-11-29 1995-11-29 Transgene pflanzen mit einer gesteigerten biomasseproduktion Ceased EP0797673A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4444460 1994-11-29
DE4444460A DE4444460A1 (de) 1994-11-29 1994-11-29 Verfahren zur Steigerung des Ertrags sowie zur Veränderung des Blühverhaltens bei Pflanzen
PCT/EP1995/004705 WO1996017069A2 (de) 1994-11-29 1995-11-29 Transgene pflanzen mit einer gesteigerten biomasseproduktion

Publications (1)

Publication Number Publication Date
EP0797673A2 true EP0797673A2 (de) 1997-10-01

Family

ID=6535750

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95940259A Ceased EP0797673A2 (de) 1994-11-29 1995-11-29 Transgene pflanzen mit einer gesteigerten biomasseproduktion

Country Status (7)

Country Link
EP (1) EP0797673A2 (de)
JP (1) JPH10510162A (de)
AU (1) AU715002B2 (de)
CA (1) CA2205849A1 (de)
DE (1) DE4444460A1 (de)
HU (1) HU221515B (de)
WO (1) WO1996017069A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008121291A1 (en) 2007-03-28 2008-10-09 Monsanto Technology Llc Utility of snp markers associated with major soybean plant maturity and growth habit genomic regions
EP3219199A1 (de) 2007-09-11 2017-09-20 Monsanto Technology LLC Sojabohnen mit erhöhtem alpha-prime-beta-conglycinin

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19529696A1 (de) * 1995-08-11 1997-02-13 Inst Genbiologische Forschung Transgene Pflanzenzellen und Pflanzen mit gesteigerter Glykolyserate
IN1997CH00924A (en) 1996-05-03 2005-03-04 Syngenta Mogen Bv Regulating metabolism by modifying the level of trehalose-6-phosphate
DE19619917A1 (de) * 1996-05-17 1997-11-20 Max Planck Gesellschaft Kartoffelpflanzen mit einer verringerten Aktivität der cytosolischen Stärkephosphorylase und einem veränderten Keimungsverhalten
WO1998004725A1 (en) * 1996-07-31 1998-02-05 Yale University Methods for altering the rate of plant development and plants obtained therefrom
AU6152998A (en) * 1997-02-14 1998-09-08 Agricola Technologies, Inc. Enhancing plant growth using genes encoding for carbonic anhydrase, calcium binding protein, metal binding protein or biomineralization protein
WO1998050561A1 (en) * 1997-05-02 1998-11-12 Mogen International N.V. Regulating metabolism by modifying the level of trehalose-6-phosphate by inhibiting endogenous trehalase levels
AU2412499A (en) * 1997-10-30 1999-05-31 Mogen International N.V. Novel high-fermenting microorganisms
ZA989782B (en) * 1997-10-30 1999-05-04 Mogen Int Pre-and postharvest inhibition of remobilisation of storage compounds
WO1999023225A1 (en) * 1997-10-30 1999-05-14 Mogen International N.V. Novel high-fermenting microorganisms
US6476293B1 (en) 1999-10-01 2002-11-05 University Of Kentucky Research Foundation Use of bacterial acetate kinase and their genes for protection of plants against different pathogens
BR0017359A (pt) * 2000-10-20 2004-06-15 Univ Kentucky Res Found Uso de acetato quinase bacteriano e seus genes para proteção de plantas contra patógenos diferentes
KR101370283B1 (ko) * 2012-09-19 2014-03-06 전남대학교산학협력단 애기장대의 유래의 AtRBP1 단백질을 암호화하는 유전자로 형질전환된 생육촉진 및 종자수량이 증진된 식물체의 제조방법
CN109609542A (zh) * 2018-12-28 2019-04-12 博域环保技术研究院(南京)有限公司 多聚磷酸盐激酶基因ppk1在水稻中的基因工程应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU644619B2 (en) * 1989-12-21 1993-12-16 Advanced Technologies (Cambridge) Limited Modification of plant metabolism
US5422254A (en) * 1992-02-14 1995-06-06 Oy Alko Ab Method to increase the trehalose content of organisms by transforming them with the structural genes for the short and long chains of yeast trehalose synthase
DE4220758A1 (de) * 1992-06-24 1994-01-05 Inst Genbiologische Forschung DNA-Sequenz und Plasmide zur Herstellung von Pflanzen mit veränderter Saccharose-Konzentration
SK166095A3 (en) * 1993-06-30 1997-01-08 Mogen Int Production of trehalose in plants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9617069A2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008121291A1 (en) 2007-03-28 2008-10-09 Monsanto Technology Llc Utility of snp markers associated with major soybean plant maturity and growth habit genomic regions
EP3219199A1 (de) 2007-09-11 2017-09-20 Monsanto Technology LLC Sojabohnen mit erhöhtem alpha-prime-beta-conglycinin

Also Published As

Publication number Publication date
JPH10510162A (ja) 1998-10-06
CA2205849A1 (en) 1996-06-06
HUT77465A (hu) 1998-05-28
AU715002B2 (en) 2000-01-13
DE4444460A1 (de) 1996-05-30
WO1996017069A3 (de) 1996-08-29
HU221515B (en) 2002-10-28
WO1996017069A2 (de) 1996-06-06
AU4177096A (en) 1996-06-19

Similar Documents

Publication Publication Date Title
DE69733945T2 (de) Metabolismusregulierung durch verändern des gehaltes an trehalose-6-phosphat
EP0973921B1 (de) 2-desoxyglucose-6-phosphat (2-dog-6-p) phosphatase dna-sequenzen als selektionsmarker in pflanzen
DE69534467T2 (de) Modifikation des starke-gehalts in pflanzen
DE4447387A1 (de) Debranching-Enzyme aus Pflanzen und DNA-Sequenzen kodierend diese Enzyme
DE19509695A1 (de) Verfahren zur Herstellung einer modifizieren Stärke in Pflanzen, sowie die aus den Pflanzen isolierbare modifizierte Stärke
EP0797673A2 (de) Transgene pflanzen mit einer gesteigerten biomasseproduktion
DE112010000876T5 (de) Steuerung Kälte-induzierten Süßens und Verringerung von Acrylamid-Niveaus in Kartoffeln oder Süßkartoffeln
EP0479180A2 (de) Virusresistente Pflanzen, Verfahren zu ihrer Herstellung
DE4035756A1 (de) Neue plasmide zur herstellung von im habitus und ertrag veraenderten transgenen pflanzen
DE3933384A1 (de) Multifunktionelle rna mit selbstprozessierungsaktivitaet, ihre herstellung und ihre verwendung
DE19502053A1 (de) Verfahren und DNA-Moleküle zur Steigerung der Photosyntheserate in Pflanzen, sowie Pflanzenzellen und Pflanzen mit gesteigerter Photosyntheserate
DE69434173T2 (de) Herstellung von trehalose in pflanzen
EP0513054A1 (de) Virus/herbizidresistenz-gene, verfahren zu ihrer herstellung und ihre verwendung
KR102272557B1 (ko) CRISPR/Cas9 시스템을 이용한 갈변 억제 감자 식물체의 제조방법
EP0977878B1 (de) Dna-sequenzen kodierend für die untereinheit chld pflanzlicher magnesium-chelatasen sowie verfahren zur aktivitätsbestimmung pflanzlicher magnesium-chelatasen
EP0428881B1 (de) RNA mit Endonuclease- und antisense-Aktivität, ihre Herstellung und ihre Verwendung
EP0789773A1 (de) Verfahren zur veränderung des blühverhaltens bei pflanzen
WO2001059135A1 (de) Verfahren zur beeinflussung der pollenentwicklung durch veränderung des saccharosestoffwechsels
EP0918849A1 (de) TRANSGENE PFLANZENZELLEN UND PFLANZEN MIT VERÄNDERTER ACETYL-CoA-BILDUNG
DE60008962T2 (de) Klonierung einer N-Methyltransferase, die an der Koffeinbiosynthese beteiligt ist
DE19732926C2 (de) DNA-Sequenzen, kodierend einen Glukose-6-phosphat-Phosphat-Translokator, sowie Plasmide, Bakterien, Hefen und Pflanzen, enthaltend diesen Transporter
WO2003014364A1 (de) Verfahren zur beeinflussung der mineralstoffaufnahme in transgenen pflanzen
CN115335528A (zh) 孢囊线虫属病原体抗性基因
BG100268A (bg) Продуциране на трехалоза в растения
WO1997025346A1 (de) Dna-sequenz kodierend einen phosphoenolpyruvat-phosphat-translokator, plasmide, bakterien, hefen und pflanzen enthaltend diesen transporter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970627

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

AX Request for extension of the european patent

Free format text: LT PAYMENT 970627;SI PAYMENT 970630

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AVENTIS CROPSCIENCE GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AVENTIS CROPSCIENCE GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010814

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20020415