EP0779376A1 - Verfahren zur Plasmaaufkohlung metallischer Werkstücke - Google Patents

Verfahren zur Plasmaaufkohlung metallischer Werkstücke Download PDF

Info

Publication number
EP0779376A1
EP0779376A1 EP96118592A EP96118592A EP0779376A1 EP 0779376 A1 EP0779376 A1 EP 0779376A1 EP 96118592 A EP96118592 A EP 96118592A EP 96118592 A EP96118592 A EP 96118592A EP 0779376 A1 EP0779376 A1 EP 0779376A1
Authority
EP
European Patent Office
Prior art keywords
propane
methane
carbon
plasma
carburizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96118592A
Other languages
English (en)
French (fr)
Other versions
EP0779376B1 (de
EP0779376B2 (de
Inventor
Winfried Dipl.-Phys. Gräfen
Bernd Dr. Mont. Edenhofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ipsen International GmbH
Original Assignee
Ipsen International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7780384&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0779376(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ipsen International GmbH filed Critical Ipsen International GmbH
Publication of EP0779376A1 publication Critical patent/EP0779376A1/de
Publication of EP0779376B1 publication Critical patent/EP0779376B1/de
Application granted granted Critical
Publication of EP0779376B2 publication Critical patent/EP0779376B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces

Definitions

  • the invention relates to a process for the plasma carburization of metallic workpieces in a furnace, the furnace atmosphere containing a carbon carrier which is split under the process conditions of the plasma carburization with the release of pure carbon.
  • propane (C 3 H 8 ) is generally used as the carbon carrier, which is split in the course of the so-called propane pyrolysis according to the following reaction equations: C. 3rd H 8th ⁇ CH 4th + C 2nd H 4th C. 2nd H 4th ⁇ 2C + 2H 2nd CH 4th ⁇ C + 2H 2nd
  • methane (CH 4 ) is mostly used as the carbon carrier, which is obtained by methane pyrolysis according to the equation CH 4th ⁇ C + 2H 2nd is split.
  • propane instead of methane.
  • propane is a more effective carbon carrier than methane due to its larger number of carbon atoms - 3 carbon atoms for propane versus 1 carbon atom for methane.
  • propane has the disadvantage that propane is thermally split in the temperature range above 600 ° C., as a result of which carburization takes place in the furnace, which leads to sooting of the furnace.
  • Methane on the other hand, has only one carbon atom, but the methane molecule is so stable that it is not already split at the necessary carburizing temperature. Rather, the splitting takes place only in the plasma and therefore really only on the workpiece surface. Since the carbon mass flow density is only very low when splitting methane, large-scale batches are very difficult to carburize evenly with methane.
  • the invention has for its object to provide a method for the plasma carburizing of metal workpieces, which ensures carburizing with a high carbon mass flow density, without at the same time the risk of sooting the furnace.
  • the achievement of the high carbon mass flow density on the one hand and the avoidance of sooting on the other hand is due to the fact that propane can provide much more carbon than methane due to its three carbon atoms during thermal and electrical splitting in the plasma.
  • the methane on the other hand hardly splits at carburizing temperatures between 800 ° C and 1000 ° C.
  • the methane is only split in the plasma, ie really only on the workpiece surface, so that these released carbon atoms can only contribute to carburizing the workpieces, but not to sooting the furnace.
  • the gas pressure in the furnace atmosphere is below 10 mbar, since thermal splitting of the methane is almost impossible in this pressure range.
  • the furnace atmosphere can also contain other gases, in particular hydrogen and / or argon, which, as inert gases, are also intended to prevent oxidation of the workpieces.
  • the drawing shows the hardness curve for the material 27 CrMo 4 according to the plasma carburizing process with a methane-propane mixture as a carbon carrier.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Arc Welding In General (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Plasmaaufkohlung metallischer Werkstücke in einem Ofen, wobei die Ofenatmosphäre einen Kohlenstoff-Träger enthält, der unter den Prozeßbedingungen der Plasmaaufkohlung unter Abgabe von reinem Kohlenstoff gespalten wird. Um bei einem solchen Plasmaaufkohlungsverfahren die Kohlenstoff-Massenstromdichte ohne die Gefahr der Ofenverrußung deutlich zu erhöhen, wird vorgeschlagen, daß als Kohlenstoff-Träger ein Gemisch aus Methan und Propan verwendet wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Plasmaaufkohlung metallischer Werkstücke in einem Ofen, wobei die Ofenatmosphäre einen Kohlenstoff-Träger enthält, der unter den Prozeßbedingungen der Plasmaaufkohlung unter Abgabe von reinem Kohlenstoff gespalten wird.
  • Unter den thermochemischen Behandlungsverfahren zur Einsatzhärtung metallischer Werkstücke haben sich in den letzten Jahren neben der konventionellen Gasaufkohlung immer mehr die Aufkohlungsprozesse in Vakuumanlagen durchgesetzt, da nur mit diesen Verfahren eine randoxidationsfreie Aufkohlung realisierbar ist. Bei diesen Aufkohlungsprozessen in Vakuumanlagen handelt es sich um die Niederdruck- und die Plasmaaufkohlung. Da bei diesen Aufkohlungsverfahren ohne sauerstoffhaltige Reaktionsgase gearbeitet wird, kann keine C-Pegelregelung erfolgen; die entscheidende Kenngröße für den Kohlenstoffübergang ist bei diesen Verfahren die Kohlenstoff-Massenstromdichte, die als Kohlenstoffmenge definiert ist, die pro Zeit- und Flächeneinheit in den Werkstoff übergeht. Dieser zur Aufkohlung benötigte Kohlenstoff wird von einem in der Ofenatmosphäre befindlichen Kohlenstoff-Träger - meist einem Kohlenwasserstoff - zur Verfügung gestellt, der bei den gegebenen Prozeßbedingungen unter Abgabe von reinem Kohlenstoff gespalten wird.
  • Bei den bekannten Niederdruck-Aufkohlungsverfahren wird als Kohlenstoff-Träger in der Regel Propan (C3H8) verwendet, welches im Laufe der sogenannten Propanpyrolyse nach folgenden Reaktionsgleichungen gespalten wird: C 3 H 8 → CH 4 + C 2 H 4
    Figure imgb0001
    C 2 H 4 → 2C + 2H 2
    Figure imgb0002
    CH 4 → C + 2H 2
    Figure imgb0003
  • Bei der Plasmaaufkohlung wird als Kohlenstoff-Träger meist Methan (CH4) verwendet, welches im Wege der Methanpyrolyse nach der Gleichung CH 4 → C + 2H 2
    Figure imgb0004
    gespalten wird. Bei der Plasmaaufkohlung ist es jedoch auch möglich, anstelle von Methan Propan zu verwenden.
  • Die Verwendung von Methan oder Propan als Kohlenstoff-Träger ist jeweils mit verschiedenen Vor- und Nachteilen verbunden. So ist beispielsweise Propan aufgrund seiner größeren Anzahl von Kohlenstoffatomen - 3 C-Atome beim Propan gegenüber 1 C-Atom beim Methan - ein wirksamerer Kohlenstoff-Träger als Methan. Andererseits weist Propan jedoch den Nachteil auf, daß Propan bereits im Temperaturbereich über 600°C thermisch gespalten wird, wodurch bereits im Ofen eine Aufkohlung stattfindet, die zum Verrußen des Ofens führt. Methan hingegen weist zwar nur ein C-Atom auf, jedoch ist das Methan-Molekül so stabil, daß es nicht bereits bei der notwendigen Aufkohlungstemperatur gespalten wird. Die Spaltung erfolgt vielmehr erst im Plasma und somit wirklich nur an der Werkstückoberfläche. Da die Kohlenstoff-Massenstromdichte bei der Spaltung von Methan nur sehr gering ist, lassen sich großflächige Chargen nur sehr schwer gleichmäßig mit Methan aufkohlen.
  • In Anbetracht des voranstehend geschilderten Standes der Technik liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Plasmaaufkohlung metallischer Werkstücke bereitzustellen, das eine Aufkohlung mit einer hohen Kohlenstoff-Massenstromdichte gewährleistet, ohne daß gleichzeitig die Gefahr der Verrußung des Ofens besteht.
  • Überraschenderweise hat sich im Laufe der Versuche herausgestellt, daß diese Aufgabe erfindungsgemäß dadurch gelöst wird, daß als Kohlenstoff-Träger ein Gemisch aus Methan und Propan verwendet wird.
  • Das Erreichen der hohen Kohlenstoff-Massenstromdichte einerseits und das Vermeiden der Verrußung des Ofens andererseits kommt dabei dadurch zustande, daß Propan aufgrund seiner drei C-Atome bei der thermischen und elektrischen Spaltung im Plasma viel mehr Kohlenstoff zur Verfügung stellen kann als Methan. Das Methan auf der anderen Seite spaltet sich bei den Aufkohlungstemperaturen zwischen 800°C und 1000°C fast gar nicht. Die Spaltung des Methans findet erst im Plasma, also wirklich nur an der Werkstückoberfläche statt, so daß diese frei werdenden Kohlenstoff-Atome nur zum Aufkohlen der Werkstücke, nicht jedoch zur Verrußung des Ofens beitragen können.
  • Bei den Versuchen hat sich herausgestellt, daß ein Methan-Propan-Gemisch mit bis zu 60 Vol.-% Propan, insbesondere einem Propan-Anteil von 5 bis 50 Vol.-% besonders geeignet ist, um ohne Rußbildung eine hohe Kohlenstoff-Massenstromdichte bzw. Kohlenstoff-Übertragungsrate zu erhalten.
  • Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens beträgt der Gasdruck in der Ofenatmosphäre unter 10 mbar, da in diesem Druckbereich eine thermische Spaltung des Methans nahezu unmöglich ist.
  • Neben dem Methan-Propan-Gemisch kann die Ofenatmosphäre zusätzlich noch weitere Gase, insbesondere Wasserstoff und/oder Argon enthalten, welche als Inertgase zusätzlich die Oxidation der Werkstücke verhindern sollen.
  • In der Zeichnung ist für den Werkstoff 27 CrMo 4 der Härteverlauf nach dem Plasmaaufkohlungsverfahren mit einem Methan-Propan-Gemisch als Kohlenstoff-Träger dargestellt.
  • Die Prozeßparameter für den in der Abbildung dargestellten Plasmaaufkohlungsprozeß waren:
    • zehnminütiges Aufkohlen bei einer Aufkohlungstemperatur von 940°C.
    • Die anschließende Diffusionsphase betrug 51 Minuten,
    • woran anschließend nach dem Absenken auf die Härtetemperatur von 860°C die Charge mittels Hochdruckgasabschreckung abgeschreckt wurde.
  • Als Ergebnis dieses Prozesses wurde eine Einsatzhärtungstiefe (550 HV 1) von 0,7 mm auf der Zahnflanke erzielt.
  • Mit dem voranstehend dargestellten Verfahren ist es somit möglich, durch die Verwendung des Methan-Propan-Gemisches als Kohlenstoff-Träger die Kohlenstoff-Massenstromdichte bei der Plasmaaufkohlung deutlich zu erhöhen, ohne daß die Gefahr der Verrußung des Ofens besteht.

Claims (6)

  1. Verfahren zur Plasmaaufkohlung metallischer Werkstücke in einem Ofen, wobei die Ofenatmosphäre einen Kohlenstoff-Träger enthält, der unter den Prozeßbedingungen der Plasmaaufkohlung unter Abgabe von reinem Kohlenstoff gespalten wird,
    dadurch gekennzeichnet,
    daß als Kohlenstoff-Träger ein Gemisch aus Methan und Propan verwendet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Methan-Propan-Gemisch bis zu 60 Vol.-% Propan enthält.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Propan-Anteil in dem Methan-Propan-Gemisch 5 bis 50 Vol.-% beträgt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Gasdruck der Ofenatmosphäre unter 10 mbar beträgt.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß in der Ofenatmosphäre neben dem Kohlenstoff-Träger noch andere Gase enthalten sind.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Ofenatmosphäre zusätzlich noch Wasserstoff und/oder Argon enthält.
EP96118592A 1995-12-16 1996-11-20 Verfahren zur Plasmaaufkohlung metallischer Werkstücke Expired - Lifetime EP0779376B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19547131A DE19547131A1 (de) 1995-12-16 1995-12-16 Verfahren zur Plasmaaufkohlung metallischer Werkstücke
DE19547131 1995-12-16

Publications (3)

Publication Number Publication Date
EP0779376A1 true EP0779376A1 (de) 1997-06-18
EP0779376B1 EP0779376B1 (de) 2000-01-26
EP0779376B2 EP0779376B2 (de) 2002-12-18

Family

ID=7780384

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96118592A Expired - Lifetime EP0779376B2 (de) 1995-12-16 1996-11-20 Verfahren zur Plasmaaufkohlung metallischer Werkstücke

Country Status (4)

Country Link
US (1) US5851314A (de)
EP (1) EP0779376B2 (de)
AT (1) ATE189271T1 (de)
DE (2) DE19547131A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19815233A1 (de) * 1998-04-04 1999-10-07 Ald Vacuum Techn Gmbh Verfahren zur Vakuumaufkohlung unter Behandlungsgas
WO2008025344A1 (de) * 2006-08-31 2008-03-06 Schaeffler Kg Verfahren zum erzeugen einer hoch einsatzhärtbaren wälzlagerkomponente

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050016831A1 (en) * 2003-07-24 2005-01-27 Paganessi Joseph E. Generation of acetylene for on-site use in carburization and other processes
DE102004053935B4 (de) * 2004-11-09 2015-04-09 Schaeffler Technologies AG & Co. KG Verfahren zur Wärmebehandlung eines Bauteils aus einem durchhärtenden warmfesten Stahl und Bauteil aus einem durchhärtenden warmfesten Stahl
KR101622306B1 (ko) * 2009-10-29 2016-05-19 삼성전자주식회사 그라펜 시트, 이를 포함하는 그라펜 기재 및 그의 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113371A (ja) * 1981-12-28 1983-07-06 Seiko Epson Corp プラズマ表面硬化法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139584A (en) 1989-07-13 1992-08-18 Solo Fours Industriels Sa Carburization process
US5383980A (en) * 1992-01-20 1995-01-24 Leybold Durferrit Gmbh Process for hardening workpieces in a pulsed plasma discharge
DE4427902C1 (de) 1994-08-06 1995-03-30 Leybold Durferrit Gmbh Verfahren zum Aufkohlen von Bauteilen aus kohlungsfähigen Werkstoffen mittels einer impulsförmig betriebenen Plasmaentladung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113371A (ja) * 1981-12-28 1983-07-06 Seiko Epson Corp プラズマ表面硬化法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 102, no. 26, 1 July 1985, Columbus, Ohio, US; abstract no. 224092u, SGIBNEV V.V.: "machine experiment study of mechanisms of processes occuring in a glow discharge in a medium of hydrocarbons" page 212; XP002028317 *
FIZ. KHIM. OBRAB. MATER., vol. 2, no. 75-8, 1985, OMSK,SU *
HOFFMANN F ET AL: "ASPEKTE DES UNTERDRUCK- UND PLASMAAUFKOHLENS", HAERTEREI TECHNISCHE MITTEILUNGEN, vol. 49, no. 2, 1 March 1994 (1994-03-01), pages 103 - 111, XP000436013 *
PATENT ABSTRACTS OF JAPAN vol. 7, no. 219 (C - 188) 29 September 1983 (1983-09-29) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19815233A1 (de) * 1998-04-04 1999-10-07 Ald Vacuum Techn Gmbh Verfahren zur Vakuumaufkohlung unter Behandlungsgas
WO2008025344A1 (de) * 2006-08-31 2008-03-06 Schaeffler Kg Verfahren zum erzeugen einer hoch einsatzhärtbaren wälzlagerkomponente

Also Published As

Publication number Publication date
EP0779376B1 (de) 2000-01-26
DE19547131A1 (de) 1997-06-19
US5851314A (en) 1998-12-22
DE59604291D1 (de) 2000-03-02
ATE189271T1 (de) 2000-02-15
EP0779376B2 (de) 2002-12-18

Similar Documents

Publication Publication Date Title
DE2340282C3 (de) Verfahren zum Härten der Oberfläche eines Substrats durch Implantieren von Metallionen in die Oberfläche des Substrats und Aufbringen eines Metallüberzugs
DE3702984C2 (de)
DE2450879A1 (de) Verfahren zur waermebehandlung von eisenmetallen
DE2824171A1 (de) Verfahren zum aufkohlen von stahl
DE19525182C2 (de) Verfahren zur Erzeugung von Korrosions- und Verschleißschutzschichten auf Eisenbasiswerkstoffen
EP0662525B1 (de) Verfahren zur Vermeidung von Randoxidation beim Aufkohlen von Stählen
EP0882811B1 (de) Verfahren zur Aufkohlung metallischer Werkstücke in einem Vakuum-Ofen
EP0544987A1 (de) Verfahren zur Behandlung von legierten Stählen und Refraktärmetallen
EP0779376A1 (de) Verfahren zur Plasmaaufkohlung metallischer Werkstücke
EP0031034B1 (de) Verfahren zum regelbaren Aufkohlen oder Erwärmen in Schutzgas von Werkstücken aus Stahl
DE2837272B2 (de) Verfahren zur Gasaufkohlung von Werk stucken aus Stahl
DE19909694A1 (de) Verfahren zum Varbonitrieren bei Unterdruckverfahren ohne Plasmaunterstützung
DE2435026A1 (de) Verfahren zur herstellung eines schutzgases mit definierter kohlungswirkung
EP0049531B1 (de) Verfahren zum Einsatzhärten metallischer Werkstücke
DE692080C (de) Verfahren zum Vergueten von metallischen Gegenstaein Gas- oder Dampfform
EP0049532B1 (de) Verfahren zum Aufkohlen und kohlungsneutralen Glühen von Werkstücken
DE10162702C1 (de) Verfahren zur Vermeidung von Klebern und Kratzern beim Rekristallisationsglühen von Kaltband
DE19920297A1 (de) Verfahren zur Wärmebehandlung metallischer Werkstücke
DE4005710C1 (en) Two=stage nitro:carburising for iron - comprises heating in furnace with catalyst in presence of methanol, ammonia and nitrogen
DE2146472C3 (de) Pulverförmiges Borierungsmittel
DE3120509C2 (de) Verfahren zum Gasnitrieren von Werkstücken aus Stahl
DE3716367A1 (de) Verfahren zur herstellung karbidischer diffusionsueberzuege auf erzeugnissen aus eisen-kohlenstoff-legierungen
EP0076488B1 (de) Verfahren zur Herstellung von Fe2B-Schichten auf Werkstücken aus Eisenbasislegierungen
DE2801235A1 (de) Karbonitrierverfahren fuer legierte chrom-molybdaenstaehle mit erhoehtem kohlenstoffgehalt
EP0106961B1 (de) Verfahren zum Herstellen einer Gasatmosphäre für das Glühen metallischer Werkstücke

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19971213

17Q First examination report despatched

Effective date: 19981008

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 189271

Country of ref document: AT

Date of ref document: 20000215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000127

REF Corresponds to:

Ref document number: 59604291

Country of ref document: DE

Date of ref document: 20000302

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: ALD VACUUM TECHNOLOGIES AG

Effective date: 20001021

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20021029

Year of fee payment: 7

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20021218

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
ET3 Fr: translation filed ** decision concerning opposition
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20051114

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061124

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20061127

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061130

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061206

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071120