EP0776985B1 - Verfahren zur Aufbringung einer metallischen Haftschicht für keramische Wärmedämmschichten auf metallische Bauteile - Google Patents

Verfahren zur Aufbringung einer metallischen Haftschicht für keramische Wärmedämmschichten auf metallische Bauteile Download PDF

Info

Publication number
EP0776985B1
EP0776985B1 EP96810768A EP96810768A EP0776985B1 EP 0776985 B1 EP0776985 B1 EP 0776985B1 EP 96810768 A EP96810768 A EP 96810768A EP 96810768 A EP96810768 A EP 96810768A EP 0776985 B1 EP0776985 B1 EP 0776985B1
Authority
EP
European Patent Office
Prior art keywords
metallic
layer
binder
adhesive powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96810768A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0776985A1 (de
Inventor
Reinhard Fried
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Publication of EP0776985A1 publication Critical patent/EP0776985A1/de
Application granted granted Critical
Publication of EP0776985B1 publication Critical patent/EP0776985B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12049Nonmetal component
    • Y10T428/12056Entirely inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12097Nonparticulate component encloses particles

Definitions

  • the invention relates to the field of materials technology. It relates to a method for applying a metallic Adhesive layer for thermally sprayed ceramic thermal insulation layers to be subsequently applied to this adhesive layer (TBC) on metallic components as well as a metallic adhesive layer produced by this process.
  • TBC adhesive layer
  • metal and ceramic can be different because of the different Thermal expansion coefficients not with each other connect.
  • the coated metallic Protect components from harmful thermal stresses their complete existence is important for a sufficient Component life.
  • Components coated in this way are especially in the field of combustion technology used, for example for combustion chamber parts or gas turbine blades.
  • the disadvantage of the metallic adhesive layers produced so far for ceramic thermal insulation layers is that they have insufficient roughness and therefore too little Offer form fit (undercuts) so that the layer thickness of the TBC layers is limited.
  • Layer thicknesses are known from about 0.2 to 0.4 mm, with layer thicknesses of about 0.3 mm are most common. If you are fatter, so the risk of flaking increases rapidly. Are you thinner the thermal insulation effect quickly subsides. Recent developments go there, coarser adhesive layers (approx. 0.6 mm) to inject, but the necessary positive locking is missing.
  • a roughness typical of known metallic adhesive layers is around 30 ⁇ m. Rougher the layers cannot be sprayed because of the dimension of the powder particles to be melted depending on the coating process (different spray temperatures and spray speeds) is limited to approx. 10 to 50 ⁇ m and the Flatten the liquid powder particles when they hit the substrate (cf. B. Heine: "Thermally sprayed layers", metal, 49th year, 1/1995, p.51-57).
  • the invention tries to avoid all these disadvantages. you is based on the task of a metallic adhesive layer and a method of applying this adhesive layer for ceramic Thermal insulation layers on a metallic base body too develop with which it is compared to the known state of the art Technology is possible, then ceramic thermal insulation layers thermally spraying and attaching thicker. The layers should adhere stably and insensitively to be against impact.
  • the advantages of the invention include in that with these Process adhesive layers are generated that are opposite to the State of the art are very rough.
  • the soldered or sintered Metal powder particles are very stable and positive anchoring for the TBC layer to be sprayed on so that comparatively thick, stable adherence ceramic thermal insulation layers can be generated.
  • both powders are first mixed intensively be and then this mixture on the metallic Surface of the base material is applied. This will achieved a more uniform distribution of the powder particles and also shortens the process time.
  • solder material Material such as the base material and boron-free or low-boron solders used. This reduces possible brittle phase formation.
  • the method according to the invention can be used locally for repair purposes as well as used for coating new parts become.
  • the metallic adhesive layer produced according to the invention exists depending on the process variant used from a Surface of the solder layer wetting the metallic component with spherically or sputteringly formed soldered in it Adhesive powder particles or additionally from a thin sprayed, in particular protective gas plasma sprayed layer same type of material as the adhesive powder particles or an inert gas plasma sprayed onto the surface of the metallic component Protective layer with on its surface sintered adhesive powder particles.
  • This metallic adhesive layer guarantees stable adhesion of the thermally sprayed ceramic thermal insulation layers, allows larger ones Layer thicknesses and leads to good emergency running properties.
  • the height of the adhesive powder particles is approximately as large as the layer thickness of the thermal ceramic thermal barrier coating to be sprayed on. This will the layer is almost insensitive to impact because strikes essentially be collected in a metallic way.
  • a guide vane of a gas turbine as an example of a metallic component 1 to be coated. It consists of the metallic base material (substrate) 2, in this case the alloy IN 939 with the following chemical composition: Bal. Ni; 22.5% Cr; 19.0% Co; 2.0% W; 1.0% Nb; 1.4% Ta; 3.7% Ti; 1.9% Al; 0.1 Zr; 0.01 B; 0.15 C.
  • the blade is provided with a corrosion and oxidation layer on the gas-carrying surfaces (MCrAlY, e.g. SV201473: Bal. Ni; 25% Cr; 5% Al; 2.5% Si; 0.5% Y; 1 % Ta).
  • this blade is coated on the leading edge, the pressure side of the blade and on the channel walls with an approximately 0.3 mm thick thermal insulation layer made of ytrium-stabilized zirconium oxide with the following composition: Bal. ZrO 2 incl 2.5% HfO 2 ; 7-9% Y 2 O 3 ; ⁇ 3% others.
  • the gas turbine guide vane comes after an operating time of 25,000 hours for reconditioning. It is determined that due to thermal overload and erosion at the leading edge of the sheet and on the channel wall Thermal insulation layer is no longer present (see hatched Areas in Fig. 1). Since the shovel did no further damage will not be completely re-coated for cost reasons, but a partial repair of the thermal insulation layer sought. Because of that on the above Systematically make a particularly strong attack by the TBC the TBC layer should not only be of the same thickness, but run as thick as possible.
  • the blade 1 becomes coarse in the steam jet Dirt (combustion residues) cleaned. After that deposits still adhering by means of soft sandblasting, (e.g. fine aluminum powder, 2 bar jet pressure, 20 cm distance) away. The still intact ceramic thermal insulation layer is allowed not be removed.
  • soft sandblasting e.g. fine aluminum powder, 2 bar jet pressure, 20 cm distance
  • the blade parts not to be coated are covered, for example with a sheet metal template, and the too coating surfaces are blasted (e.g. fine silicon carbide, Jet pressure 4 bar, distance 40 mm), so that any TBC residues and possible oxides are removed.
  • a sheet metal template e.g. fine silicon carbide, Jet pressure 4 bar, distance 40 mm
  • Adhesive powder 4 of the NiAl95 / 5 type is then used a pond size in the range of 100 to 200 microns over the sprinkled 3 moistened areas with the binder until about all 0.5 mm such adhesive powder particles 4 come to rest. After that the much finer solder powder 5 (particle diameter approx. 10-30 ⁇ m).
  • solder material the alloy NB 150 (Bal.Ni; 15% Cr; 3.5% B; 0.1% C) with a melting point of 1055 ° C and a soldering range of 1065 used up to 1200 ° C.
  • Weight is advantageous equal quantities of adhesive powder 4 and solder powder 5. But of course you can also use other proportions to get voted.
  • the packing density of the particles not of crucial importance because they are dense Packs are suitable, but less dense packs are also already sufficient.
  • Fig. 2 schematically shows a cross section of the different ones Layers after application.
  • the surface coated in this way can now be brought into the soldering furnace horizontally, vertically or overhead.
  • the solder 5 and the adhesive powder 4 remain in their applied position until the solder has melted and has wetted and soldered the substrate surface and the surface of the adhesive powder particles.
  • the soldering is carried out in a high vacuum oven at 5x10 -6 mbar, 1080 ° C and a holding time of 15 min.
  • Fig. 3 shows schematically a cross section of the different Layers after the soldering process.
  • Lot 5 has the one to be repaired
  • the surface is completely wetted and the adhesive powder particles 4 are soldered.
  • the surface looks metallic matt silvery shiny.
  • the diffusion zone is because of the short Soldering time and the relatively low soldering temperature only very much small.
  • the shovel is again covered with a template and with a 0.5 mm thick ceramic thermal barrier coating 6, here made of calcium-stabilized zirconium oxide (MetaCeram 28085), the zirconium oxide using a known flame spraying process is applied, provided.
  • a ceramic thermal barrier coating 6 here made of calcium-stabilized zirconium oxide (MetaCeram 28085)
  • Fig. 4 shows schematically the layer structure according to the flame spraying process.
  • the attachment of the zirconium oxide can be done with a Compare push button technology.
  • the zirconium oxide has one strong positive locking and many undercuts on the contrary to the usual adhesive geometries, which at best only have a small form fit. This is the anchor the zirconium oxide (TBC) layer on the component is very stable.
  • TBC zirconium oxide
  • Adhesive layers is therefore next to plasma spraying and detonation flame spraying as described above flame spraying is also suitable. The latter has the advantage that portable coating devices are used for this can.
  • Another advantage of the invention is the high resistance to thermal shock of layers.
  • coated metallic component 1 was then thermocycled in a hot gas stream (heating with about 50 Degrees / min gas temperature, 2 min hold at 1000 ° C, cooling with 100 degrees / s gas temperature to 500 ° C). Even after 70 cycles the shift has not yet occurred.
  • Another advantage is the excellent emergency running properties the thermal on the adhesive layer according to the invention sprayed TBC layers.
  • the ceramic layer 6 bursts, ie in in this case the zirconium oxide, only above the adhesive powder 4 from.
  • the TBC layer 6 falls between the adhesive powder particles 4 due to the large positive connection, so that the ceramic thermal barrier coating 6 at least in the thickness of Adhesive powder particles 4 (approx. 200 ⁇ m) are retained.
  • Fig. 6 shows a perspective Representation of a thermal insulation board for hot gas, which in New condition with the thickest possible thermal spray Thermal insulation layer should be provided.
  • the thermal insulation board consists of the alloy MAR M 247, the following chemical Composition: Bal. Ni; 8.2-8.6% Cr; 9.7-10.3% Co; 0.6-0.8% Mo; 9.8-10.2% W; 2.9-3.1% Ta; 5.4-5.6% Al; 0.8-1.2% Ti; 1.0-1.6% Hf; 0.14-0.16% C).
  • the metallic component 1 to be coated is included relatively coarse silicon carbide (particle diameter ⁇ 200 ⁇ m) blasted oxide-free and rough (10 to 30 ⁇ m). After that the surface to be coated, for example with a brush Spread thinly with organic binder 3. Under a trickle for coarse spherical adhesive powder 4 (SV 20 14 73 with the following chemical composition: Bal. Ni; 25% Cr; 5% Al; 2.5% Si; 0.5% Y; 1% Ta) with a grain diameter of 150 the plate 1 to be coated is moved back and forth up to 300 ⁇ m, even distribution down to the adhesive layer of the highly corrosion-resistant adhesive powder 4 has taken place. in the The individual powder particles should be 0.3 to 0.6 mm Distance from each other.
  • Amdry Alloy DF 5 which is additional to the high Cr content, a high Al content with somewhat reduced B content selected.
  • the exact composition is the following: Bal. Ni; 13% Cr; 3% Ta; 4% Al; 2.7% B; 0.02% Y. Lot 5 is also made using a suitable Spray device applied evenly to the surface to be soldered. It is also possible to mix adhesive powder 4 and solder 5 and then the mixture in one process step on the sprinkle the coated surface with the cement binder 3.
  • the soldering is carried out in a high vacuum oven at 1100 ° C and 15 min Hold time.
  • Thermal insulation layer 6 is a protective gas plasma spraying thin layer 7 (approx. 50 ⁇ m) SV 20 14 73 applied. That makes in addition to the rough anchoring option (as in the embodiment 1) additionally a fine interlocking what the adhesive strength of thick TBC layers in thermal shock further increases.
  • Fig. 7 shows schematically the formation of these layers.
  • the component coated in this way proved itself in a thermal shock test in a sand bed (1000 ° C to room temperature) as resistant to thermal shock.
  • the solder layer After a long period of operation, the solder layer is between corroded somewhat away from the large adhesive powder grains, but the The load-bearing part of the solder neck cannot be attacked by corrosion reduce significantly.
  • a cooled guide vane made of the material CM 247 LC DS (chemical composition: Ba. Ni; 8.1% Cr; 9.2% Co; 0.5% Mo; 9.5% W; 3.2% Ta; 0.7% Ti; 5.6% Al; 0.01% Zr; 0.01% B; 0.07% C; 1.4% Hf) exists, in new condition with a 0.7 to 0.8 mm thick TBC layer be provided.
  • CM 247 LC DS chemical composition: Ba. Ni; 8.1% Cr; 9.2% Co; 0.5% Mo; 9.5% W; 3.2% Ta; 0.7% Ti; 5.6% Al; 0.01% Zr; 0.01% B; 0.07% C; 1.4% Hf
  • the blade is sprayed in the entire channel area using inert gas plasma with the powder ProXon 21031 (alloy on Nickel base) about 0.2 mm thick coated (sprayed low in oxygen).
  • This powder exhibits because of its high aluminum content and chromium content an excellent oxidation and Corrosion resistance.
  • Oxidation and corrosion protection layer 8 a thin Layer Binder 3 applied.
  • the coating takes place then in a high vacuum furnace under solution annealing conditions for CM 247 LS DS (several hours at 1220 to 1250 ° C).
  • the oxidation and corrosion protection layer 8 am Base material 1.
  • Layer 8 further densifies and coarse adhesive powder particles 4 are formed by stable sintering 9 on the layer 8, which is now a Protective and adhesive layer is bound.
  • a cooled one is also intended Guide vane made of CM 247 LC DS with a thermal barrier coating be provided.
  • Lot 5 for attaching the coarse adhesive powder particles 4 from ProXon 21031 will be the same Powder CM 247 with an addition of 6% Cr; 3% Si; 2% Al and 0.5% B used. The order is made as above described, i.e. on the thin cement binder layer 3 the approximately 150 to 200 ⁇ m large adhesive powder 4 scattered and on it in abundance the solder powder 5. Then subjected the blade to a heat treatment in which the Base material 2 solution annealed and the solder 5 partially melted becomes.
  • thermal shock tests showed that the thermal insulation layer thus attached superior to a conventionally produced layer is. Even if for different reasons a piece of the TBC layer bursts off, remains between the adhesive powder particles maintain this layer and thus guarantee good emergency running properties. In contrast, bursts with conventionally coated If the TBC layer is scooped off, it remains on the substrate only minimal residues, which is by no means an insulating Feature. In addition, in this example shown that it is cheap, boron-free or almost boron-free Solder to be used as the brittle phase formation with W-borides is hardly possible.
  • the Base material 2 is MAR M 247, NB 150 was used as lot 5 and the adhesive powder particles 4 are made of NiA195 / 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Ceramic Products (AREA)
  • Laminated Bodies (AREA)
EP96810768A 1995-12-02 1996-11-11 Verfahren zur Aufbringung einer metallischen Haftschicht für keramische Wärmedämmschichten auf metallische Bauteile Expired - Lifetime EP0776985B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19545025 1995-12-02
DE19545025A DE19545025A1 (de) 1995-12-02 1995-12-02 Verfahren zur Aufbringung einer metallischen Haftschicht für keramische Wärmedämmschichten auf metallische Bauteile

Publications (2)

Publication Number Publication Date
EP0776985A1 EP0776985A1 (de) 1997-06-04
EP0776985B1 true EP0776985B1 (de) 2001-12-19

Family

ID=7779041

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96810768A Expired - Lifetime EP0776985B1 (de) 1995-12-02 1996-11-11 Verfahren zur Aufbringung einer metallischen Haftschicht für keramische Wärmedämmschichten auf metallische Bauteile

Country Status (11)

Country Link
US (1) US5894053A (pl)
EP (1) EP0776985B1 (pl)
JP (1) JP3983323B2 (pl)
CN (1) CN1161489C (pl)
AT (1) ATE211185T1 (pl)
CA (1) CA2188614C (pl)
CZ (1) CZ290920B6 (pl)
DE (2) DE19545025A1 (pl)
PL (2) PL181404B1 (pl)
RU (1) RU2209256C2 (pl)
UA (1) UA42001C2 (pl)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2763953C1 (ru) * 2021-03-11 2022-01-11 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Комбинированное защитное покрытие

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3302589B2 (ja) * 1997-02-06 2002-07-15 株式会社日立製作所 セラミック被覆ガスタービン動翼
TW587967B (en) 2000-04-14 2004-05-21 Emitec Emissionstechnologie Housing with passivation layer and method for the production of a catalyst support structure with such a housing
US6279811B1 (en) 2000-05-12 2001-08-28 Mcgraw-Edison Company Solder application technique
DE10057187B4 (de) * 2000-11-17 2011-12-08 Alstom Technology Ltd. Verfahren für die Herstellung von Verbundaufbauten zwischen metallischen und nichtmetallischen Materialien
DE10117127B4 (de) * 2001-04-06 2009-12-31 Alstom Technology Ltd. Verbundaufbau zwischen metallischen und nichtmetallischen Materialien
DE10117128A1 (de) 2001-04-06 2002-10-10 Alstom Switzerland Ltd Verfahren zur Herstellung von Verbundaufbauten zwischen metallischen und nichtmetallischen Materialien
DE10121019A1 (de) * 2001-04-28 2002-10-31 Alstom Switzerland Ltd Gasturbinendichtung
FR2827308B1 (fr) * 2001-07-12 2004-05-14 Snecma Moteurs Procede de reparation globale d'une piece revetue d'une barriere thermique
EP1275748A3 (de) 2001-07-13 2004-01-07 ALSTOM (Switzerland) Ltd Hochtemperaturbeständiger Schutzüberzug mit eingebetteten lokalen Erhebungen sowie Verfahren zur Herstellung des Schutzüberzuges
DE50202696D1 (de) 2001-08-14 2005-05-12 Alstom Technology Ltd Baden Verfahren zur Bearbeitung einer beschichteten Gasturbinenschaufel
EP1327702A1 (en) * 2002-01-10 2003-07-16 ALSTOM (Switzerland) Ltd Mcraiy bond coating and method of depositing said mcraiy bond coating
US6679680B2 (en) * 2002-03-25 2004-01-20 General Electric Company Built-up gas turbine component and its fabrication
US7066235B2 (en) * 2002-05-07 2006-06-27 Nanometal, Llc Method for manufacturing clad components
US6759151B1 (en) 2002-05-22 2004-07-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multilayer article characterized by low coefficient of thermal expansion outer layer
US6733908B1 (en) 2002-07-08 2004-05-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multilayer article having stabilized zirconia outer layer and chemical barrier layer
EP1411210A1 (en) * 2002-10-15 2004-04-21 ALSTOM Technology Ltd Method of depositing an oxidation and fatigue resistant MCrAIY-coating
US7338699B2 (en) 2002-10-31 2008-03-04 Tosoh Corporation Island projection-modified part, method for producing the same, and apparatus comprising the same
EP1422054A1 (de) * 2002-11-21 2004-05-26 Siemens Aktiengesellschaft Schichtsystem für eine Verwenbdung in Gasturbinen
EP1437426A1 (de) * 2003-01-10 2004-07-14 Siemens Aktiengesellschaft Verfahren zum Herstellen von einkristallinen Strukturen
EP1491658A1 (en) * 2003-06-26 2004-12-29 ALSTOM Technology Ltd Method of applying a coating system
ATE338150T1 (de) * 2003-06-26 2006-09-15 Alstom Technology Ltd Verfahren für das auftragen eines mehrschichtigen systems
DE10332938B4 (de) * 2003-07-19 2016-12-29 General Electric Technology Gmbh Thermisch belastetes Bauteil einer Gasturbine
DE10357180A1 (de) * 2003-12-08 2005-06-30 Alstom Technology Ltd Verbundaufbau zwischen metallischen und nichtmetallischen Materialien
US20050238894A1 (en) * 2004-04-22 2005-10-27 Gorman Mark D Mixed metal oxide ceramic compositions for reduced conductivity thermal barrier coatings
EP1645653A1 (de) * 2004-10-07 2006-04-12 Siemens Aktiengesellschaft Schichtsystem
US7378132B2 (en) * 2004-12-14 2008-05-27 Honeywell International, Inc. Method for applying environmental-resistant MCrAlY coatings on gas turbine components
US20060222776A1 (en) * 2005-03-29 2006-10-05 Honeywell International, Inc. Environment-resistant platinum aluminide coatings, and methods of applying the same onto turbine components
DE102005050873B4 (de) * 2005-10-21 2020-08-06 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Herstellung einer segmentierten Beschichtung und nach dem Verfahren hergestelltes Bauteil
EP1867749A1 (de) * 2006-06-12 2007-12-19 Siemens Aktiengesellschaft Verfahren zum Aufbringen von Material auf ein Bauteil
US8303247B2 (en) * 2007-09-06 2012-11-06 United Technologies Corporation Blade outer air seal
US20100047526A1 (en) * 2008-08-19 2010-02-25 Merrill Gary B Subsurface inclusions of spheroids and methodology for strengthening a surface bond in a hybrid ceramic matrix composite structure
US20100047512A1 (en) * 2008-08-19 2010-02-25 Morrison Jay A Methodology and tooling arrangements for strengthening a surface bond in a hybrid ceramic matrix composite structure
US7704596B2 (en) 2008-09-23 2010-04-27 Siemens Energy, Inc. Subsurface inclusion of fugitive objects and methodology for strengthening a surface bond in a hybrid ceramic matrix composite structure
US8006740B2 (en) * 2008-10-08 2011-08-30 Synergen, Inc High performance brake rotor
US8360756B2 (en) * 2008-10-31 2013-01-29 Michael Brent Ford Valve rod guide with cyclonic debris removal
JP4981828B2 (ja) * 2009-02-06 2012-07-25 三菱重工業株式会社 Hvof溶射コーティング層の形成方法及びタービン部材保持装置
JP5381384B2 (ja) 2009-06-19 2014-01-08 日産自動車株式会社 溶射前処理形状及び溶射前処理方法並びに溶射前処理装置
DE102010060944B3 (de) * 2010-12-01 2012-04-05 Bbat Berlin Brandenburg Aerospace Technology Ag Wärmedämmende Auskleidung für eine Fluggasturbine
CN102127729B (zh) * 2011-02-18 2012-09-05 湖北工业大学 一种金属材料表面热喷涂涂层的钎焊强化方法
CN102401214B (zh) * 2011-07-15 2013-09-04 浙江天泉表面技术有限公司 一种隔热材料以及生产隔热材料的方法
DE102011085801A1 (de) * 2011-11-04 2013-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Bauelement und Turbomaschine mit einem Bauelement
RU2483137C1 (ru) * 2012-03-15 2013-05-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку
US9102015B2 (en) * 2013-03-14 2015-08-11 Siemens Energy, Inc Method and apparatus for fabrication and repair of thermal barriers
RU2567764C2 (ru) * 2013-10-16 2015-11-10 Общество с ограниченной ответственностью научно-производственный центр "Трибоника" Способ высокоэнергетического плазменного напыления теплозащитного покрытия на лопатки турбин газотурбинного двигателя и оборудование для его реализации
US9151175B2 (en) 2014-02-25 2015-10-06 Siemens Aktiengesellschaft Turbine abradable layer with progressive wear zone multi level ridge arrays
WO2016133582A1 (en) 2015-02-18 2016-08-25 Siemens Aktiengesellschaft Turbine shroud with abradable layer having dimpled forward zone
US8939706B1 (en) 2014-02-25 2015-01-27 Siemens Energy, Inc. Turbine abradable layer with progressive wear zone having a frangible or pixelated nib surface
RU2662003C2 (ru) 2014-02-25 2018-07-23 Сименс Акциенгезелльшафт Компонент газовой турбины, газотурбинный двигатель, способ изготовления компонента газотурбинного двигателя
US9243511B2 (en) 2014-02-25 2016-01-26 Siemens Aktiengesellschaft Turbine abradable layer with zig zag groove pattern
CN104611693B (zh) * 2015-01-23 2017-08-01 华中科技大学 一种纳米颗粒增强的热障涂层的制备方法
US10408079B2 (en) 2015-02-18 2019-09-10 Siemens Aktiengesellschaft Forming cooling passages in thermal barrier coated, combustion turbine superalloy components
CN104959617A (zh) * 2015-07-14 2015-10-07 上海胜桀精密机械科技有限公司 一种粉末冶金制备方法
RU2634864C1 (ru) * 2016-07-18 2017-11-07 Общество С Ограниченной Ответственностью "Технологические Системы Защитных Покрытий" (Ооо "Тсзп") Порошковый материал для газотермического напыления покрытий
CN107467110B (zh) * 2016-11-10 2023-06-13 徐巍 饸饹面机
US10718350B2 (en) * 2016-11-24 2020-07-21 Pratt & Whitney Canada Corp. Fan blade with galvanic separator
RU2665647C2 (ru) * 2017-01-30 2018-09-03 Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) Способ плазменного напыления износостойких покрытий толщиной более 2мм
CN112342367B (zh) * 2020-10-15 2022-04-01 西安热工研究院有限公司 一种复合强化型盾构机刀圈及工艺方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2248940A (en) * 1939-07-03 1941-07-15 Hans S Berg Bearing packer
NL270234A (pl) * 1959-04-08 1900-01-01
DE1236345B (de) * 1960-04-27 1967-03-09 Bendix Corp Gleitkufe fuer Flugzeuge mit verschleissfester Oberflaeche
FR1379044A (fr) * 1963-10-09 1964-11-20 Desmarquest & Cie L Procédé de revêtement par projection à haute température d'oxydes réfractairessur la surface d'objets en matières organiques combustibles
CH522041A (de) * 1969-05-14 1972-04-30 Castolin Sa Verfahren zur Behandlung metallischer Oberflächen
DE2162699A1 (de) * 1971-12-17 1973-06-28 Daimler Benz Ag Verfahren zur erhoehung der haftfestigkeit von durch thermisches spritzen aufgebrachten schichten
JPS5223531A (en) * 1975-08-18 1977-02-22 Nissan Motor Abrasionnresistant sliding member and its production method
US4248940A (en) * 1977-06-30 1981-02-03 United Technologies Corporation Thermal barrier coating for nickel and cobalt base super alloys
SE7610298L (sv) * 1975-09-19 1977-03-20 Alloy Surfaces Co Inc Med ett skyddande metallskikt belagt alster av korroderbar metall samt forfarande for framstellning av detsamma
DE2910962C2 (de) * 1979-03-21 1981-07-02 Josef 4250 Bottrop Adam Verfahren zum Aufbringen einer matrixbildenden metallischen Schicht mit darin eingebettetem verschleißfestem Material auf einen Träger
US4273824A (en) * 1979-05-11 1981-06-16 United Technologies Corporation Ceramic faced structures and methods for manufacture thereof
US4564555A (en) * 1982-10-27 1986-01-14 Sermatech International Incorporated Coated part, coating therefor and method of forming same
US5180285A (en) * 1991-01-07 1993-01-19 Westinghouse Electric Corp. Corrosion resistant magnesium titanate coatings for gas turbines
FR2691658B1 (fr) * 1992-05-27 1994-07-22 Snecma Piece en superalliage comportant un apport et procede de realisation de l'apport.
DE4226272C1 (de) * 1992-08-08 1994-02-10 Mtu Muenchen Gmbh Verfahren zur Behandlung von MCrAlZ-Schichten und mit dem Verfahren hergestellte Bauteile
DE4417384C1 (de) * 1994-05-18 1995-01-12 Hans Leistner Gmbh Suedd Metal Beschichtung für Flugkörper, insbesondere für die Vorderkante des Höhenleitwerkes von Flugzeugen und Verfahren zum Aufbringen der Beschichtung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2763953C1 (ru) * 2021-03-11 2022-01-11 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Комбинированное защитное покрытие

Also Published As

Publication number Publication date
PL182552B1 (pl) 2002-01-31
DE19545025A1 (de) 1997-06-05
JP3983323B2 (ja) 2007-09-26
US5894053A (en) 1999-04-13
CN1161489C (zh) 2004-08-11
EP0776985A1 (de) 1997-06-04
CA2188614A1 (en) 1997-06-03
CZ346896A3 (en) 1997-08-13
CZ290920B6 (cs) 2002-11-13
PL317298A1 (en) 1997-06-09
DE59608498D1 (de) 2002-01-31
ATE211185T1 (de) 2002-01-15
JPH09176818A (ja) 1997-07-08
PL181404B1 (pl) 2001-07-31
UA42001C2 (uk) 2001-10-15
RU2209256C2 (ru) 2003-07-27
CN1160088A (zh) 1997-09-24
CA2188614C (en) 2005-10-04

Similar Documents

Publication Publication Date Title
EP0776985B1 (de) Verfahren zur Aufbringung einer metallischen Haftschicht für keramische Wärmedämmschichten auf metallische Bauteile
DE69828732T2 (de) Verfahren zum Auftragen einer Haftbeschichtung für eine Wärmedämmschicht
DE60021178T2 (de) Abrasions- und hochtemperaturbeständige, abschleifbare wärmedämmende verbundbeschichtung
DE69925590T2 (de) Mehrschichtige haftbeschichtung für wärmedämmschicht und verfahren dazu
EP0219536B1 (de) Schutzschicht
DE69728898T2 (de) Verfahren zur Herstellung einer verschleissbaren Dichtung, verschleissbare Dichtung, und Bauteil eines Gasturbinentriebwerks mit einer solchen verschleissbaren Dichtung
DE60010271T2 (de) Verbundbeschichtung für turbinenkomponenten und verfahren zur herstellung
DE102005050873B4 (de) Verfahren zur Herstellung einer segmentierten Beschichtung und nach dem Verfahren hergestelltes Bauteil
DE10121019A1 (de) Gasturbinendichtung
DE2801016A1 (de) Gegenstand aus einer superlegierung, der durch flammspritzen mit einem oxidations- und korrosionsbestaendigen ueberzug versehen ist sowie verfahren zu dessen herstellung
DE102005033176A1 (de) Abschleifbare Beschichtungen für eine 7FA+E-Stufe 1 und Verfahren zum Herstellen der Beschichtungen
EP2467224A1 (de) Dünnwandiges strukturbauteil und verfahren zu seiner herstellung
DE2642737A1 (de) Verbessertes verfahren zum herstellen gekuehlter turbinen- oder kompressorschaufeln
DE60216751T2 (de) Metall-zirconium-verbundbeschichtung
DE102005044991A1 (de) Verfahren zur Herstellung einer Schutzschicht, Schutzschicht und Bauteil mit einer Schutzschicht
DE19935164C2 (de) Verfahren zur gleichzeitigen Reinigung und Flußmittelbehandlung von Aluminium-Motorblock-Zylinderbohrungsoberflächen zur Befestigung von thermisch gespritzten Überzügen
DE102006032110A1 (de) Verfahren zum Beschichten eines Aluminium-Silizium-Guss-Gegenstands
DE202006009145U1 (de) Verbindung von Bauteilen
DE102008012683A1 (de) Verfahren zur Herstellung von Reibflächen oder Reibschichten einer Carbon-Keramik-Bremsscheibe sowie eine mit derartigen Reibflächen oder Reibschichten ausgestatteten Carbon-Keramik-Bremsscheibe
DE102006027085B3 (de) Verfahren zum Verbinden von Bauteilen und danach hergestellte Verbindungen
EP1247607A2 (de) Verfahren zur Herstellung von Verbundaufbauten zwischen metallischen und nichtmetallischen Materialien
DE102016114533A1 (de) Eisenbasierte Legierung zur Herstellung thermisch gespritzter Verschleißschutzschichten
WO2008110161A1 (de) Schichtsystem und verfahren zu dessen herstellung
DE19920567C2 (de) Verfahren zur Beschichtung eines im wesentlichen aus Titan oder einer Titanlegierung bestehenden Bauteils
DE4220063C1 (de) Verfahren zur Herstellung einer Schutzschicht auf mit heißen Gasen, insbesondere Rauchgasen beaufschlagten metallischen Wänden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19971106

17Q First examination report despatched

Effective date: 19990201

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB ALSTOM POWER (SCHWEIZ) AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SCHWEIZ) AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 211185

Country of ref document: AT

Date of ref document: 20020115

Kind code of ref document: T

BECA Be: change of holder's address

Free format text: 20011219 *ALSTOM (SCHWEIZ) A.G.:BROWN BOVERI STRASSE 7, CH-5401 BADEN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 59608498

Country of ref document: DE

Date of ref document: 20020131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: ALSTOM (SCHWEIZ) AG,HASELSTRASSE 16,5400 BADEN (CH) TRANSFER- ALSTOM (SCHWEIZ) AG,BROWN BOVERI STRASSE 7,5401 BADEN (CH)

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020311

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

ET Fr: translation filed
NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ALSTOM (SWITZERLAND) LTD

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20091106

Year of fee payment: 14

Ref country code: DE

Payment date: 20091130

Year of fee payment: 14

Ref country code: CH

Payment date: 20091026

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20101025

Year of fee payment: 15

Ref country code: FR

Payment date: 20101109

Year of fee payment: 15

Ref country code: AT

Payment date: 20101022

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20011219

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20101102

Ref country code: CH

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20011219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101118

Year of fee payment: 15

Ref country code: GB

Payment date: 20101022

Year of fee payment: 15

Ref country code: BE

Payment date: 20101116

Year of fee payment: 15

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101112

BERE Be: lapsed

Owner name: *ALSTOM (SCHWEIZ) A.G.

Effective date: 20111130

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111111

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 211185

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111111