EP0760526A1 - Dispositif et procede de traitement au plasma - Google Patents

Dispositif et procede de traitement au plasma Download PDF

Info

Publication number
EP0760526A1
EP0760526A1 EP95918726A EP95918726A EP0760526A1 EP 0760526 A1 EP0760526 A1 EP 0760526A1 EP 95918726 A EP95918726 A EP 95918726A EP 95918726 A EP95918726 A EP 95918726A EP 0760526 A1 EP0760526 A1 EP 0760526A1
Authority
EP
European Patent Office
Prior art keywords
plasma
processing chamber
processing
containing fluorine
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95918726A
Other languages
German (de)
English (en)
Other versions
EP0760526A4 (fr
Inventor
Tetsunori Kaji
Saburo Kanai
Satoshi Ito
Ryouji Hamasaki
Tetsuo Ono
Tatehito Usui
Kazue Takahashi
Kazutami Tago
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of EP0760526A1 publication Critical patent/EP0760526A1/fr
Publication of EP0760526A4 publication Critical patent/EP0760526A4/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32467Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10S156/914Differential etching apparatus including particular materials of construction

Definitions

  • the present invention relates to a plasma processing apparatus and a plasma processing method for processing a processed substance utilizing plasma produced by a plasma etching apparatus, a plasma chemical vapor deposition apparatus or the like.
  • aluminum material means pure aluminum and aluminum alloys.
  • the vacuum processing chamber has been made of a highly corrosion resistant material such as stainless steel, quartz glass, aluminum oxide ceramic and so on.
  • An apparatus of this kind is disclosed, for example, in Japanese Patent Application Laid-Open No. 62-103379.
  • the problem of heavy metal contamination can be solved by using a quartz glass cover, but the processing characteristic is sometimes changed because temperature of the quartz glass cover is increased over time by impact and thermal radiation of the plasma. In such a case, it is effective to heat or to cool the quartz glass cover using some means, but in most cases there are structural and technological difficulties because the quartz glass is exposed to vacuum and plasma in the plasma processing apparatus.
  • an aluminum material as a material which does not have the problem of heavy metal contamination and has better workability including heating or cooling.
  • the aluminum material does not have corrosion resistance against a gas plasma containing chlorine atoms or bromine atoms used in a plasma processing apparatus.
  • a method is disclosed, for example, in Japanese Patent Application Laid-Open No.62-103379 where a highly corrosion resistant film made of Al2O3, AlC, TiN, TiC, AlN or the like is formed on the surface of an aluminum material structure through some means.
  • An object of the present invention is to provide a plasma processing apparatus and a plasma processing method which is capable of performing stable processing by suppressing time-varying processing characteristic due to progress of fluorination in a plasma process using a gas containing fluorine atoms.
  • the surface of the plasma processing chamber is made of a material containing fluorine in advance.
  • FIG.1 is a graph showing the relationship between thickness of fluorinated layer and plasma processing time for various aluminum material surfaces.
  • FIG.2 is a graph showing the dependence of time-variation of etching speed ratio of oxide film on surface treatment of a processing chamber.
  • FIG.3 is a vertical cross-sectional view showing the construction of an embodiment of a plasma processing apparatus to which the present invention is applied.
  • FIG.1 shows thickness of fluorinated layer on each of the surfaces for an aluminum material and a pre-fluorinated aluminum material which is exposed to a high frequency plasma. It can be understood that the fluorinated speed of the aluminum material without pre-fluorination is larger than that of the pre-fluorinated aluminum material.
  • FIG. 2 shows time-variations of average etching speed ratio of oxide film when a silicon oxide film is plasma-processed by CHF3 gas to form a hole using the same chamber materials as those in FIG.1.
  • Each of the average etching speeds is normalized by setting the initial value at starting of processing to 1 (one).
  • the time-varying decrease in etching speed of oxide film can be substantially reduced.
  • a gas such as CnFm (n, m are integers)
  • SF6 a gas containing fluorine or a gas containing fluorine mixed with another gas other than CHF3 is used as the gas used for processing a sample, the time-varying decrease in etching speed of oxide film can be substantially reduced.
  • an electric resistance between two point on the inside surface of the processing chamber is more than 100 times as large as that of an aluminum material without pre-fluorination.
  • the time-varying of the processing characteristic can be more reduced.
  • FIG.3 is a vertical cross-sectional view showing the construction of a main portion of a microwave plasma etching apparatus which is used for obtaining the characteristic of FIG. 2.
  • a vacuum vessel 10 has a top-opened construction.
  • the vacuum vessel 10 is made of, for example, aluminum. In this case, the shape of the top of the vacuum vessel 10 is nearly circular when seeing from the top.
  • An exhausting nozzle 11 is formed in the bottom portion on the side wall of the vacuum vessel 10.
  • a vacuum exhausting apparatus 20 is installed outside the vacuum vessel 10. The exhausting nozzle 11 and a suction port of the vacuum exhausting apparatus 20 are connected with an exhausting pipe 21.
  • the exhausting pipe 21 has a closing valve (not shown), a valve for varying the exhausting resistance (not shown) and so on.
  • a discharge block 30 of means having a plasma generating region inside and the shape is of a hollow cylinder having a cross-sectional area being small in change in the transmitting direction of microwave.
  • the hollow cylinder is made of a material non-permeable to microwave, in this case, formed of an aluminum cylinder having a pre-fluorinated inside surface.
  • the discharging block 30 is installed so as to set the center axis of the inside hollow portion nearly vertical, and the inside hollow portion is hermetically installed on the top of the vacuum vessel 10 by communicating with the vacuum vessel 10 through the top open portion of the vacuum vessel 10.
  • the microwave transmitting window 40 is made of a material permeable to microwave such as quartz, aluminum oxide or the like. That is, a space 50 isolated from the external is formed by the vacuum vessel 10, the inside hollow portion of the discharging block 30 and the microwave transmitting window 40.
  • a sample table shaft 60 is projected in the space 50 in the top and outside the vacuum vessel 10 in the bottom, and the bottom wall of the vacuum vessel 10 and the sample table shaft 60 are electrically insulated with an electric insulating member 70.
  • a sample table 61 has a sample mounting surface on one side, in this case, on the upper surface.
  • the sample table 61 is placed on the top of the sample table shaft 60 so as to set the sample mounting surface nearly horizontal.
  • the sample table shaft 60 and the sample table 61 may be formed in a one-piece structure.
  • a high frequency electric power source 80 of bias electric power source is placed outside the space 50.
  • the sample table shaft 60 is connected to the high frequency electric power source 80.
  • the electric power source 80 is grounded.
  • the sample table shaft 60 and the sample table 61 are made of a electrical conductive material, and the sample table 61 and the sample table shaft 60 are in a conductive state.
  • the vacuum vessel 10 is grounded and the discharge block 30 is also grounded through the vacuum vessel 10 in this embodiment.
  • a direct current electric power source instead of the high frequency electric power source 80 may be used as the bias electric power source.
  • a coolant passage (not shown) is formed inside the sample table 61 and a coolant supply passage (not shown) and a coolant discharge passage (not shown) respectively communicating with the coolant passage are formed inside the sample table shaft 60.
  • a coolant supply apparatus (not shown) is provided outside the space 50.
  • a coolant supply port of the coolant supply apparatus and the coolant supply passage of the sample table shaft 60 are connected with a coolant supply pipe (not shown).
  • a coolant discharge pipe (not shown) is connected to the coolant discharge passage of the sample table shaft 60, and the other end is connected to a coolant recovery tank (not shown) or released to atmosphere.
  • the microwave transmitting window 40 and the sample mounting surface of the sample table 61 are opposite to each other, that is, in a case where a sample 90 such as a semiconductor element substrate is mounted on the sample mounting surface, the microwave transmitting window and the processed surface are opposite to each other in the vertical direction and the surfaces are nearly parallel to each other. It is preferable to construct in such that the central axis of the inside hollow portion of the discharge block 30, the center of the microwave transmitting window 40 and the center of the sample mounting surface of the sample table 61, that is, the center of the processed surface of the sample 90 agree with one another.
  • a gas supply passage 100 is formed inside the discharging block 30.
  • a process gas source 101 is placed outside the space 50.
  • the process gas source 101 and one end of the gas supply passage 100 are connected with a gas supply pipe 102.
  • a closing valve (not shown), a gas flow rate controller (not shown) and so on are provided in the gas supply pipe 102.
  • On the other end of the gas supply passage 100 is opened to the inside hollow portion of the discharging block 30 between the top portion and the middle portion in the height direction of the discharging block 30.
  • a wave-guide 110 is provided in a state of containing the block 30 inside.
  • the wave-guide 110 is terminated at the vacuum vessel 10.
  • the shape of the wave-guide 110 is nearly cylindrical in this embodiment.
  • a spsce 120 having a certain eight (spacing) is formed.
  • an opening is formed in the portion of the top wall of the wave-guide 110 opposite to the upper surface of the microwave transmitting window 40. It is not always necessary to provide the opening at that portion.
  • a magnetron 130 which is a means for oscillating a microwave.
  • the magnetron 130 and the wave-guide 110 are connected with wave-guides 111, 112.
  • the inside of the wave-guides 111, 112 is communicated with the space 120 through the opening on the top wall of the wave-guide 110.
  • the wave-guide 111 is a wave-guide of rectangle-to-circle right angle transducer, and the wave-guide 112 is a rectangular wave-guide.
  • the magnetron 130 and the wave-guide 110 may be connected using another microwave transmitting means such as a coaxial cable or the like.
  • hollow coils 140, 141 of means for generating a magnetic field in two stages in this embodiment.
  • the hollow coil 140 corresponds nearly to the outer peripheral wall of the space 120 and the hollow coil 141 corresponds nearly to the outer peripheral wall of the discharging block 30.
  • Each of the hollow coils 140, 141 is connected to a electric power source (not shown) through an ON-OFF means (not shown) and a current flow regulating means (not shown).
  • the space 50 is depressurized and evacuated. Further, by opening the gas supply passage 100 such as the gas supply pipe 102, the closing valve, the gas flow rate controller, a predetermined etching gas is introduced into the inside follow portion of the discharging block 30 from the process gas source 101 with a preset flow rate. That is, the etching gas is introduced in the space 50.
  • a predetermined etching gas is introduced into the inside follow portion of the discharging block 30 from the process gas source 101 with a preset flow rate. That is, the etching gas is introduced in the space 50.
  • valve opening of the exhausting resistance variable valve a part of the etching gas introduced into the space 50 is exhausted by the vacuum exhausting apparatus 20, and thereby the pressure in the space 50 is adjusted to a preset etching processing pressure.
  • a sample 90 is loaded inside the vacuum vessel 10 using a transferring means (not shown) known in the art.
  • the transferring means having transferred the sample 90 loaded in the vacuum vessel 10 is stored in a place so as to not interfering with processing of the sample 90.
  • the sample 90 transferred to the sample table 61 is placed on the sample mounting surface of the sample table in directing the processed surface upward.
  • the hollow coils 140, 141 are energized to apply a magnetic field in the inside hollow portion of the discharging block 30.
  • the present invention does not limit any specified plasma generating means. It is no need to say that the present invention con be applied to a case where plasma is generated using a high frequency wave.
  • a method of fluorinating the inside surface of the processing chamber comprises the steps of (1) heating the structural members of the processing chamber to a temperature of 200°C to 600C° and flowing a gas containing fluorine, and (2) generating a plasma using the gas containing fluorine and placing the structural members of the processing chamber in the atmosphere of the plasma.
  • the material is not limited to aluminum.
  • the same effect can be attained by using aluminum with an anodic oxide coating processed surface, aluminum with an alumina film or a film having alumina as a main component ( mullite or the like), or other metals or other insulators( film and single body).
  • an insulator the same effect can be attained by an small amount of fluorinating treatment.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
EP95918726A 1994-05-17 1995-05-17 Dispositif et procede de traitement au plasma Withdrawn EP0760526A4 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10245394 1994-05-17
JP102453/94 1994-05-17
PCT/JP1995/000935 WO1995031822A1 (fr) 1994-05-17 1995-05-17 Dispositif et procede de traitement au plasma

Publications (2)

Publication Number Publication Date
EP0760526A1 true EP0760526A1 (fr) 1997-03-05
EP0760526A4 EP0760526A4 (fr) 2001-01-10

Family

ID=14327898

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95918726A Withdrawn EP0760526A4 (fr) 1994-05-17 1995-05-17 Dispositif et procede de traitement au plasma

Country Status (5)

Country Link
US (1) US5895586A (fr)
EP (1) EP0760526A4 (fr)
KR (1) KR100331053B1 (fr)
TW (1) TW321821B (fr)
WO (1) WO1995031822A1 (fr)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444083B1 (en) 1999-06-30 2002-09-03 Lam Research Corporation Corrosion resistant component of semiconductor processing equipment and method of manufacturing thereof
US6227140B1 (en) 1999-09-23 2001-05-08 Lam Research Corporation Semiconductor processing equipment having radiant heated ceramic liner
US6408786B1 (en) 1999-09-23 2002-06-25 Lam Research Corporation Semiconductor processing equipment having tiled ceramic liner
KR20010062209A (ko) * 1999-12-10 2001-07-07 히가시 데쓰로 고내식성 막이 내부에 형성된 챔버를 구비하는 처리 장치
US6391146B1 (en) 2000-04-11 2002-05-21 Applied Materials, Inc. Erosion resistant gas energizer
US6533910B2 (en) 2000-12-29 2003-03-18 Lam Research Corporation Carbonitride coated component of semiconductor processing equipment and method of manufacturing thereof
US6620520B2 (en) * 2000-12-29 2003-09-16 Lam Research Corporation Zirconia toughened ceramic components and coatings in semiconductor processing equipment and method of manufacture thereof
US6790242B2 (en) 2000-12-29 2004-09-14 Lam Research Corporation Fullerene coated component of semiconductor processing equipment and method of manufacturing thereof
US6537429B2 (en) 2000-12-29 2003-03-25 Lam Research Corporation Diamond coatings on reactor wall and method of manufacturing thereof
US6613442B2 (en) * 2000-12-29 2003-09-02 Lam Research Corporation Boron nitride/yttria composite components of semiconductor processing equipment and method of manufacturing thereof
US7128804B2 (en) * 2000-12-29 2006-10-31 Lam Research Corporation Corrosion resistant component of semiconductor processing equipment and method of manufacture thereof
US6830622B2 (en) * 2001-03-30 2004-12-14 Lam Research Corporation Cerium oxide containing ceramic components and coatings in semiconductor processing equipment and methods of manufacture thereof
US6923886B2 (en) * 2001-10-23 2005-08-02 Acushnet Company Apparatus for plasma treatment of golf balls
US6869645B2 (en) * 2001-10-23 2005-03-22 Acushnet Company Method for plasma treatment of golf balls
JP4175021B2 (ja) * 2002-05-01 2008-11-05 株式会社島津製作所 高周波誘導結合プラズマ生成装置およびプラズマ処理装置
US6798519B2 (en) * 2002-09-30 2004-09-28 Tokyo Electron Limited Method and apparatus for an improved optical window deposition shield in a plasma processing system
US6837966B2 (en) * 2002-09-30 2005-01-04 Tokyo Electron Limeted Method and apparatus for an improved baffle plate in a plasma processing system
US7137353B2 (en) * 2002-09-30 2006-11-21 Tokyo Electron Limited Method and apparatus for an improved deposition shield in a plasma processing system
US7147749B2 (en) * 2002-09-30 2006-12-12 Tokyo Electron Limited Method and apparatus for an improved upper electrode plate with deposition shield in a plasma processing system
US7166166B2 (en) * 2002-09-30 2007-01-23 Tokyo Electron Limited Method and apparatus for an improved baffle plate in a plasma processing system
US7166200B2 (en) * 2002-09-30 2007-01-23 Tokyo Electron Limited Method and apparatus for an improved upper electrode plate in a plasma processing system
US7204912B2 (en) * 2002-09-30 2007-04-17 Tokyo Electron Limited Method and apparatus for an improved bellows shield in a plasma processing system
JP3946130B2 (ja) * 2002-11-20 2007-07-18 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理方法
KR100772740B1 (ko) * 2002-11-28 2007-11-01 동경 엘렉트론 주식회사 플라즈마 처리 용기 내부재
US20040192059A1 (en) * 2003-03-28 2004-09-30 Mosel Vitelic, Inc. Method for etching a titanium-containing layer prior to etching an aluminum layer in a metal stack
WO2004095530A2 (fr) 2003-03-31 2004-11-04 Tokyo Electron Limited Procede pour appliquer des revetements adjacents sur un element de traitement
JP4532479B2 (ja) * 2003-03-31 2010-08-25 東京エレクトロン株式会社 処理部材のためのバリア層およびそれと同じものを形成する方法。
US7552521B2 (en) * 2004-12-08 2009-06-30 Tokyo Electron Limited Method and apparatus for improved baffle plate
US7601242B2 (en) * 2005-01-11 2009-10-13 Tokyo Electron Limited Plasma processing system and baffle assembly for use in plasma processing system
US20060225654A1 (en) * 2005-03-29 2006-10-12 Fink Steven T Disposable plasma reactor materials and methods
US20180061617A1 (en) * 2016-08-23 2018-03-01 Applied Materials, Inc. Method to deposit aluminum oxy-fluoride layer for fast recovery of etch amount in etch chamber
CN115261776B (zh) * 2022-07-22 2024-04-09 西安空间无线电技术研究所 基于等离子体氟化抑制微波部件材料二次电子发射的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0428733A1 (fr) * 1989-04-10 1991-05-29 Hashimoto Kasei Kabushiki-Kaisya Dispositif de formation d'un film de tungstene
EP0460700A1 (fr) * 1990-06-07 1991-12-11 Applied Materials, Inc. Revêtement protecteur résistant à la corrosion sur un substrat ou une surface d'aluminium et procédé de formation
US5272417A (en) * 1989-05-12 1993-12-21 Tadahiro Ohmi Device for plasma process
US5281302A (en) * 1992-01-27 1994-01-25 Siemens Aktiengesellschaft Method for cleaning reaction chambers by plasma etching

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143333A (ja) * 1974-10-11 1976-04-14 Tokyo Shibaura Electric Co Purazumaetsuchingusochi
JPS5936525B2 (ja) * 1980-09-13 1984-09-04 幸男 石川 高速蒸気熱湯沸器
JPS57124439A (en) * 1981-01-26 1982-08-03 Nec Corp Manufacture of semiconductor device
JPS6348847A (ja) * 1986-08-19 1988-03-01 Toshiba Corp 薄膜堆積方法
US5158644A (en) * 1986-12-19 1992-10-27 Applied Materials, Inc. Reactor chamber self-cleaning process
JPH0221620A (ja) * 1988-07-08 1990-01-24 Matsushita Electric Ind Co Ltd ドライエッチング装置
US5009963A (en) * 1988-07-20 1991-04-23 Tadahiro Ohmi Metal material with film passivated by fluorination and apparatus composed of the metal material
JPH02101740A (ja) * 1988-10-11 1990-04-13 Anelva Corp プラズマエッチング装置
JP3017528B2 (ja) * 1990-11-27 2000-03-13 アプライドマテリアルズジャパン株式会社 プラズマ処理装置
JPH04354330A (ja) * 1991-05-31 1992-12-08 Victor Co Of Japan Ltd ドライエッチング装置及びドライエッチング方法
US5221414A (en) * 1991-07-16 1993-06-22 Micron Technology, Inc. Process and system for stabilizing layer deposition and etch rates while simultaneously maintaining cleanliness in a water processing reaction chamber
JPH05243167A (ja) * 1992-02-28 1993-09-21 Sony Corp 半導体装置の製造方法
KR0126249B1 (ko) * 1992-06-22 1997-12-26 모리시타 요이찌 드라이에칭법 및 드라이에칭장치
US5366585A (en) * 1993-01-28 1994-11-22 Applied Materials, Inc. Method and apparatus for protection of conductive surfaces in a plasma processing reactor
US5443680A (en) * 1993-08-12 1995-08-22 Gerber Scientific Products, Inc. Mosaic tile maker
US5532447A (en) * 1993-12-06 1996-07-02 Aluminum Company Of America Method of cleaning an aluminum surface by plasma treatment
US5585012A (en) * 1994-12-15 1996-12-17 Applied Materials Inc. Self-cleaning polymer-free top electrode for parallel electrode etch operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0428733A1 (fr) * 1989-04-10 1991-05-29 Hashimoto Kasei Kabushiki-Kaisya Dispositif de formation d'un film de tungstene
US5272417A (en) * 1989-05-12 1993-12-21 Tadahiro Ohmi Device for plasma process
EP0460700A1 (fr) * 1990-06-07 1991-12-11 Applied Materials, Inc. Revêtement protecteur résistant à la corrosion sur un substrat ou une surface d'aluminium et procédé de formation
US5281302A (en) * 1992-01-27 1994-01-25 Siemens Aktiengesellschaft Method for cleaning reaction chambers by plasma etching

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9531822A1 *

Also Published As

Publication number Publication date
WO1995031822A1 (fr) 1995-11-23
EP0760526A4 (fr) 2001-01-10
US5895586A (en) 1999-04-20
KR100331053B1 (ko) 2002-06-20
TW321821B (fr) 1997-12-01

Similar Documents

Publication Publication Date Title
US5895586A (en) Plasma processing apparatus and plasma processing method in which a part of the processing chamber is formed using a pre-fluorinated material of aluminum
US7208422B2 (en) Plasma processing method
JP4338355B2 (ja) プラズマ処理装置
KR100745942B1 (ko) 유도 결합 플라즈마 처리 장치
US6727654B2 (en) Plasma processing apparatus
JPH07335626A (ja) プラズマ処理装置およびプラズマ処理方法
JP3150058B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP4554815B2 (ja) 汚染制御方法およびプラズマ処理チャンバ
US4487161A (en) Semiconductor device manufacturing unit
JPH04279044A (ja) 試料保持装置
US6092486A (en) Plasma processing apparatus and plasma processing method
EP0841838A1 (fr) Appareil de traitement au plasma et procede de traitement au plasma
JP2921499B2 (ja) プラズマ処理装置
WO2002067311A1 (fr) Systeme de traitement au plasma
JPH07254500A (ja) プラズマ処理装置
JP3477573B2 (ja) プラズマ処理装置、プラズマ生成導入部材及びスロット電極
JP3077516B2 (ja) プラズマ処理装置
JP3534716B2 (ja) プラズマ処理方法
JP3534660B2 (ja) プラズマ処理装置
JP2000150488A (ja) プラズマ処理装置およびプラズマ処理方法
JP2956640B2 (ja) プラズマ処理装置
JPH07142197A (ja) 電磁波透過体
JP2002359233A (ja) プラズマ処理装置
JP3830634B2 (ja) プラズマ処理装置及びプラズマ処理方法
JPH07273091A (ja) プラズマプロセス装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19961206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

A4 Supplementary search report drawn up and despatched

Effective date: 20001127

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE GB IT

RIC1 Information provided on ipc code assigned before grant

Free format text: 7H 01L 21/302 A, 7H 01J 37/32 B

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20010323