EP0749800B1 - Laserbearbeitungsmaschine mit gasgefülltem Strahlführungsraum - Google Patents

Laserbearbeitungsmaschine mit gasgefülltem Strahlführungsraum Download PDF

Info

Publication number
EP0749800B1
EP0749800B1 EP96108815A EP96108815A EP0749800B1 EP 0749800 B1 EP0749800 B1 EP 0749800B1 EP 96108815 A EP96108815 A EP 96108815A EP 96108815 A EP96108815 A EP 96108815A EP 0749800 B1 EP0749800 B1 EP 0749800B1
Authority
EP
European Patent Office
Prior art keywords
laser
air
beam guiding
processing machine
machine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP96108815A
Other languages
English (en)
French (fr)
Other versions
EP0749800A3 (de
EP0749800A2 (de
Inventor
Thomas Möhler
Jürgen-Michael Weick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trumpf SE and Co KG
Original Assignee
Trumpf SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8009266&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0749800(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Trumpf SE and Co KG filed Critical Trumpf SE and Co KG
Publication of EP0749800A2 publication Critical patent/EP0749800A2/de
Publication of EP0749800A3 publication Critical patent/EP0749800A3/de
Application granted granted Critical
Publication of EP0749800B1 publication Critical patent/EP0749800B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • B23K26/128Laser beam path enclosures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0211Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track
    • B23K37/0235Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track the guide member forming part of a portal

Definitions

  • the invention relates to a laser processing machine with a Laser generator and a processing head on which the laser beam between the laser generator and the machining head in an at least partially closed and filled with air Beam guiding room runs.
  • US-A-4,661,680 discloses a laser processing machine in which air which fills the beam guiding space is circulated in a circuit and is passed through a filter which, among other things, extracts the CO 2 contained therein from the air. It does not appear from the document that CO 2 with a certain concentration may be contained in the air filling the jet guiding space.
  • DE-C-40 06 148 does not address the fact that the CO 2 content of the gas present in the beam guiding space of laser processing machines can be important for the laser beam power available on the workpiece to be processed.
  • the invention is based on the object of a laser processing machine to create on which the laser beam in particular even with long beam path lengths at low cost the influence of performance-reducing gases can be protected.
  • This object is inventively achieved in that the beam guiding chamber with CO 2 containing air having a CO 2 content of less than 300 ppm. is filled. Practical tests have shown that with a CO 2 concentration of this height prevailing in the beam guiding space, even with long path lengths of the laser beam, in particular with laser beam travel distances of more than 12 meters, there is no significant reduction in laser beam power. As a result, the use of expensive gases, such as nitrogen, can be dispensed with on machines according to the invention and, instead, cheap air can be used, which can only be prepared with little effort before being introduced into the beam guidance space.
  • expensive gases such as nitrogen
  • the beam guiding space is provided with air with a CO 2 content of less than 300 ppm via an air supply device. is ventilated.
  • the air supply device is advantageously at least a preferably controllable ventilation device, in particular a pump.
  • the latter is special adjustable with regard to the generated air pressure. In this manner and how can the amount of air supplied to the jet guiding space regulate.
  • the "raw air" can be introduced directly into the jet guiding space.
  • the beam guiding space can be ventilated in a development of the invention via a device for adjusting the CO 2 content of the air supplied to the beam guiding space.
  • the device used to adjust the CO 2 content has at least one molecular sieve, by means of which the CO 2 content of the air supplied to the jet guiding space has a concentration below 300 ppm. is adjustable.
  • the device for adjusting the CO 2 content in a further embodiment of machines according to the invention has at least one gas scrubber, by means of which the CO 2 content of the air supplied to the jet guiding chamber has a concentration below 300 ppm. is adjustable. Both when using molecular sieves and when using gas scrubbers, it is generally ensured that the humidity of the air introduced into the gas-carrying space and treated for its CO 2 content does not exceed certain limit values. Experience has shown that the humidity of the air in the interior of the beam guiding room has a harmful effect on the laser beam power from a certain amount.
  • Gas dryers by means of which the untreated air can be extracted to the desired extent, offer a possibility for influencing the degree of moisture of the treated air. Such gas dryers are usually preceded by molecular sieves, and gas scrubbers are generally connected downstream.
  • the air to be supplied to the beam guiding chamber originates different sources.
  • the jet guiding space is connected to an otherwise closed container for the air to be fed to the jet guiding space.
  • This air storage container can contain air, the composition of which corresponds to the requirements with regard to the CO 2 content.
  • the air from the storage container can be introduced directly into the beam guiding room.
  • This air is then introduced into the beam guiding space via a device for adjusting the CO 2 content mentioned above.
  • the air in the interior of the storage container is usually under pressure, so that after a shut-off valve is opened it easily flows out into the jet guiding space.
  • the air in the storage container is depressurized, it can be removed with an appropriate aid in the form of a pump and fed to the jet guiding chamber.
  • the air stored in the storage container is characterized by a uniform CO 2 concentration.
  • the beam guiding space is connected to the free atmosphere.
  • the air originating from the free atmosphere can be introduced directly into the beam guiding room with a corresponding CO 2 concentration. If the CO 2 concentration of the atmospheric air is above the relevant limit value, the CO 2 content must be adjusted according to the requirements by means of a device provided for this purpose before the air is introduced into the beam guiding room.
  • a preferred, structurally simple construction This distinguishes laser processing machines according to the invention from that the beam guidance space via the air supply device in connection with the vicinity of the laser processing machine stands.
  • the beam guiding space expediently has a volume which remains constant when the processing head is moved relative to the laser generator. Regardless of the current position of the processing head in relation to the laser generator, a constant amount of air can be supplied to the beam guiding space on such machines. The CO 2 concentration inside the beam guiding room remains unchanged even when the machining head is moved.
  • the invention is in an advantageous development provided that the wall of the beam guiding space from segments consists of at least two each in the direction of movement of the machining head can be moved on both sides relative to this a laser beam exit are arranged, the effective Length of the arranged on one side of the laser beam exit Segments in the direction of movement of the machining head at the Movement decreases to the same extent as the effective one Length of the on the opposite side of the laser beam exit arranged segments when moving the machining head increased.
  • the wall of the Beam guiding space as bellows with segments in the form of Form ring folds.
  • Another preferred embodiment of laser processing machines according to the invention on which the machining head is relative to the laser generator can be moved in two mutually perpendicular directions is characterized in that the beam guidance space a first from both sides of a first and in one direction of movement of the processing head movable laser beam exit arranged segments existing and in one direction of movement of the machining head and a part corresponding, in the other direction of movement of the machining head following the laser beam exit of the first part has the second part, the processing head on the latter with an assigned second laser beam exit is provided movably in the other direction of movement.
  • the machining head can be changed Volume of the beam guidance space in the through its two Movement directions defined level are traversed.
  • a laser beam runs on a laser cutting machine 1 2 starting from a laser generator 3 inside as a Beam guide tube 4 trained beam guide room before it the end of the beam guide tube remote from the laser generator 3 4 into a machining head in the form of a cutting head 5 entry.
  • the laser beam 2 is inside the cutting head 5 by means of a deflecting mirror 6 in the direction of a focusing device 7 deflected and from this through a nozzle 8 on sheet 9 to be machined bundled.
  • the cutting head 5 remains during the processing of the sheet 9 stationary.
  • the latter is relative at a coordinate feed 10 to the cutting head 5 in a perpendicular to the plane of the drawing Clamped level and clamped on a workpiece support 11 stored.
  • the jet guide tube 4 is charged with air, in which CO 2 in a concentration of less than 300 ppm. is included. This air serves to purge the beam guiding tube 4 and thereby to keep it free from gases which impair the performance of the laser beam 2.
  • the air is introduced by means of an air supply device 12.
  • this includes an air intake and delivery device serving pump 13, by means of which an air inlet in Shape of an intake 14 and a valve 15 atmospheric Air sucked in from the vicinity of the laser cutting machine 1 and can be conveyed to the beam guide tube 4.
  • a Control device 16 becomes the outlet-side pressure at pump 13 set.
  • Both the air extracted from the surroundings of the laser cutting machine 1 and the air originating from the container 17 are fed to the jet guide tube 4 via a gas dryer 19 and a device 20 downstream of this in the flow direction of the air for adjusting the CO 2 content of the conveyed air.
  • a molecular sieve is used, which, by filtering out CO 2 molecules from the raw air stream, reduces the CO 2 concentration in this to a value below 300 ppm. lowers.
  • the molecular sieve can be flushed with air after a predetermined operating time or after conditioning a predetermined amount of air in the opposite direction of the flow.
  • the gas dryer 19 serves to lower the water content of the conveyed air flow.
  • An outlet opening 32 for the air flowing through the interior of the beam guide tube 4 is provided on the jet guide tube 4 adjacent to the cutting head 5. With the help of an adjustable outlet orifice 33 at the outlet opening 32, the amount of air escaping or the overpressure prevailing inside the jet guide tube 4 can be regulated.
  • a machining head 5a designed as a cutting head relative to a laser generator 3a in two mutually perpendicular and directions indicated by double arrows 21, 22.
  • the cutting head 5a is in the direction of the double arrow 22 guided on a portal-like transverse guide 23. This in turn is in the direction of the double arrow 21 along two parallel to each other Longitudinal guides 24 movable.
  • a sheet 9a is during the Machining process stored stationary on a workpiece support 11a.
  • a laser beam 2a is emitted from the laser generator 3a a beam guiding room through a two-part bellows 25 is limited, directed to the cutting head 5a.
  • the laser beam 2a first has a beam passage 26 on a branch 27, a machine cross member, before it is by means of a first deflected mirror 28 deflected twice at right angles and reflected to a second deflecting mirror 29 on the branch piece 27 becomes.
  • the laser beam passes from the second deflecting mirror 29 2a finally by a first laser beam exit 30 of the branch piece 27 to the cutting head 5a, on which it is under redirection by 90 degrees is directed to the sheet 9a.
  • the laser beam 2a passes through a second laser beam exit 34 on the cutting head 5a on the sheet surface.
  • the second laser beam exit 34 is shown in Fig. 2 by the above lying parts of the cutting head 5a covered.
  • One in process of the cutting head 5a in the sheet 9a resulting cutting track 31 is indicated in Figure 2.
  • the cutting head 5 a is provided with the branch piece 27 Cross member movable in the direction of the double arrow 21.
  • a first part 25a of the bellows 25 also runs in the direction.
  • segments of the first part 25a of the bellows close 25 on both sides of the branch piece 27 and thus on both sides the first laser beam exit 30.
  • a second part 25b of the Bellows 25 extends from the laser beam exit 30 of the branch piece 27 and extends in the direction of the double arrow 22.
  • This second part 25b of the bellows 25 also has two sections. Both sections of this part 25b are separated through the cutting head 5a with its facing towards the sheet 9a Laser beam exit 34.
  • Air whose CO 2 content is less than 300 ppm, is applied to the bellows 25 via an air supply device 12a.
  • the structure of the air supply device 12a corresponds to the structure of the air supply device 12 according to FIG. 1.
  • Devices corresponding to the components of the air supply device 12 according to FIG. 1 are identified in FIG. 2 by adopting the reference numerals assigned in FIG. 1 and by adding the letter a in each case.
  • the bellows 25 by means of the air supply device 12a Air introduced fills both the first part 25a and the second part 25b of the bellows 25.
  • the air outlet takes place via an outlet opening 32a, the emerging air quantity or the overpressure prevailing inside the bellows 25 adjustable by means of a controllable outlet aperture 33a is.
  • the two sides of the branch piece 27 and the cutting head 5a arranged sections of the bellows 25 are above the Beam passage 26 or an air compensation bore 35 with each other in flow connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Description

Die Erfindung betrifft eine Laserbearbeitungsmaschine mit einem Lasergenerator und einem Bearbeitungskopf, an welcher der Laserstrahl zwischen dem Lasergenerator und dem Bearbeitungskopf in einem wenigstens teilweise geschlossenen und mit Luft gefüllten Strahlführungsraum verläuft.
Erfahrungsgemäß wird die Leistung des Laserstrahls an Bearbeitungsmaschinen durch in dem Strahlweg befindliche Gase und Dämpfe bestimmter Zusammensetzung, insbesondere durch Kohlen-Wasserstoff-Verbindungen, beeinträchtigt. Der Gefahr einer Minderung der Laserstrahlleistung auf dem Weg des Strahls vom Lasergenerator zu dem Bearbeitungskopf begegnet man an bekannten Bearbeitungsmaschinen durch Bereitstellen eines mit gasförmigem Stickstoff gefüllten Strahlführungsraumes. Innerhalb dieses Strahlführungsraumes verläuft der Laserstrahl vor dem Einfluß leistungsmindernder gasförmiger Stoffe geschützt. Das verwendete Stickstoffgas dient dazu, den Strahlweg des Laserstrahls von schädlichen flüchtigen Stoffen, insbesondere von den genannten KohlenWasserstoff-Verbindungen freizuhalten.
Nachteiligerweise ist die Verwendung von Stickstoff aber mit beachtlichen Kosten verbunden. Versuche, bei denen anstelle von Stickstoff oder von anderen reinen Gasen zur Kosteneinsparung Luft in den Strahlführungsraum eingegeben wurde, erbrachten bislang insbesondere bei größeren Strahlweglängen häufig nur unbefriedigende Strahlleistungen am Bearbeitungskopf und dementsprechend unakzeptable Bearbeitungsergebnisse.
Gattungsgemäße Laserbearbeitungsmaschinen sind bekannt aus US-A-4,661,680 sowie aus DE-C-40 06 148.
Dabei offenbart US-A-4,661,680 (bester Stand der Technik) eine Laserbearbeitungsmaschine, im Falle derer den Strahlführungsraum füllende Luft in einem Kreislauf zirkuliert und dabei über ein Filter geleitet wird, welcher der Luft u.a. das darin enthaltene CO2 entzieht. Daß CO2 mit einer gewissen Konzentration in der den Strahlführungsraum füllenden Luft enthalten sein darf, geht aus der Druckschrift nicht hervor. In DE-C-40 06 148 wird nicht angesprochen, daß der CO2-Gehalt des in dem Strahlführungsraum von Laserbearbeitungsmaschinen anstehenden Gases für die an dem zu bearbeitenden Werkstück zur Verfügung stehende Laserstrahlleistung von Bedeutung sein kann.
Der Erfindung liegt nun die Aufgabe zugrunde, eine Laserbearbeitungsmaschine zu schaffen, an welcher der Laserstrahl insbesondere auch bei großen Strahlweglängen mit geringem Kostenaufwand gegen den Einfluß leistungsmindernder Gase geschützt werden kann.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Strahlführungsraum mit CO2 enthaltender Luft mit einem CO2-Gehalt von weniger als 300 ppm. gefüllt ist. Praktische Erprobungen haben ergeben, daß bei einer in dem Strahlführungsraum herrschenden CO2-Konzentration dieser Höhe auch bei großen Weglängen des Laserstrahls, insbesondere bei Laserstrahllaufstrecken von mehr als 12 Metern, keine nennenswerte Minderung der Laserstrahlleistung auftritt. An erfindungsgemäßen Maschinen kann infolgedessen auf die Verwendung teurer Gase, wie etwa StickStoff, verzichtet und statt dessen auf billige Luft zurückgegriffen werden, die vor ihrem Einführen in den Strahlführungsraum allenfalls noch mit geringem Aufwand aufzubereiten ist.
Im Sinne der Erfindung ist es grundsätzlich denkbar, einen gasdichten und mit Luft geeigneter Zusammensetzung gefüllten Strahlführungsraum vorzusehen. Dies setzt jedoch entsprechende und konstruktiv verhältnismäßig anspruchsvolle Abdichtungsmaßnahmen an der Maschine voraus. Aus Gründen der Konstruktionsvereinfachung ist daher in Weiterbildung der Erfindung vorgesehen, daß der Strahlführungsraum über eine Luftzufuhreinrichtung mit Luft mit einem CO2-Gehalt von weniger als 300 ppm. belüftbar ist.
Dabei ist die Luftzufuhreinrichtung zweckmäßigerweise mit wenigstens einer vorzugsweise steuerbaren Belüftungsvorrichtung, insbesondere einer Pumpe, ausgestattet. Letztere ist insbesondere hinsichtlich des erzeugten Luftdruckes einstellbar. Auf diese Art und Weise läßt sich die dem Strahlführungsraum zugeführte Luftmenge regulieren.
In Fällen, in denen sichergestellt ist, daß die dem Strahlführungsraum zuzuführende Luft bereits in ihrem Ausgangszustand stets die beschriebene Voraussetzung hinsichtlich der CO2-Konzentration erfüllt, läßt sich die "Rohluft" unmittelbar in den Strahlführungsraum einleiten. Für hiervon abweichende Anwendungsfälle ist der Strahlführungsraum in Weiterbildung der Erfindung über eine Vorrichtung zur Einstellung des CO2-Gehalts der dem Strahlführungsraum zugeführten Luft belüftbar.
Die dabei eingesetzte Vorrichtung zur Einstellung des CO2-Gehalts weist erfindungsgemäß wenigstens ein Molekularsieb auf, mittels dessen der CO2-Gehalt der dem Strahlführungsraum zugeführten Luft auf eine Konzentration unterhalb 300 ppm. einstellbar ist.
Alternativ oder ergänzend zu wenigstens einem Molekularsieb weist die Vorrichtung zur Einstelung des CO2-Gehalts an einer weiteren Ausführungsform erfindungsgemäßer Maschinen wenigstens einen Gaswäscher auf, mittels dessen der CO2-Gehalt der dem Strahlführungsraum zugeführten Luft auf eine Konzentration unterhalb 300 ppm. einstellbar ist. Sowohl bei Verwendung von Molekularsieben als auch bei Einsatz von Gaswäschern wird in der Regel sichergestellt, daß die Feuchtigkeit der in den Gas führungsraum eingeleiteten, hinsichtlich ihres CO2-Gehalts aufbereiteten Luft gewisse Grenzwerte nicht überschreitet. Erfahrungsgemäß wirkt sich nämlich auch die Feuchtigkeit der im Innern des Strahlführungsraumes befindlichen Luft ab einem gewissen Betrag schädlich auf die Laserstrahlleistung aus. Eine Möglichkeit zur Beeinflussung des Feuchtigkeitsgrades der aufbereiteten Luft bieten Gastrockner, mittels derer der Rohluft Feuchtigkeit in dem gewünschten Umfang entzogen werden kann. Molekularsieben werden derartige Gastrockner in der Regel vor -, Gaswäschern in der Regel nachgeschaltet.
Die dem Strahlführungsraum zuzuführende Luft entstammt erfindungsgemäß verschiedenen Quellen.
So ist in Weiterbildung der Erfindung vorgesehen, daß der Strahlführungsraum mit einem ansonsten abgeschlossenen Behälter für dem Strahlführungsraum zuzuführende Luft in Verbindung steht. Dieser Luft-Vorratsbehälter kann Luft enthalten, deren Zusammensetzung hinsichtlich des CO2-Gehaltes den gestellten Anforderungen entspricht. In diesem Fall kann die Luft aus dem Vorratsbehälter unmittelbar in den Strahlführungsraum eingeleitet werden. Alternativ besteht die Möglichkeit, den Vorratsbehälter mit Luft zu befüllen, deren CO2-Gehalt über dem vorgegebenen Grenzwert liegt. Die Einleitung dieser Luft in den Strahlführungsraum erfolgt dann über eine vorstehend genannte Vorrichtung zur Einstellung des CO2-Gehalts. Die Luft im Innern des Vorratsbehälters steht in aller Regel unter überdruck, so daß sie nach öffnen eines Sperrventils ohne weiteres in den Strahlführungsraum abströmt. Steht die Luft im Vorratsbehälter drucklos an, so läßt sie sich mit einem entsprechenden Hilfsmittel in Form einer Pumpe abfördern und dem Strahlführungsraum zuführen. In jedem Fall zeichnet sich die in dem Vorratsbehälter gespeicherte Luft durch eine einheitliche CO2-Konzentration aus. Infolgedessen ist gewährleistet, daß bei unmittelbarer Einleitung der Luft in den Strahlführungsraum dieser mit einem Medium einheitlicher CO2-Konzentration beschickt wird; in dem Fall, daß der CO2-Gehalt der in dem Vorratsbehälter anstehenden Luft den vorgegebenen Grenzwert überschreitet und diese Luft dementsprechend vor der Einleitung in den Strahlführungsraum aufbereitet werden muß, ist sichergestellt, daß der dann zu verwendenden Vorrichtung zur Einstellung des CO2-Gehalts Luft mit einer einheitlichen und gleichbleibenden Zusammensetzung zugeführt wird. Die Vorrichtung zur Einstellung des CO2-Gehaltes kann dann unter gleichbleibenden Bedingungen betrieben werden.
Im Falle einer erfindungsgemäß bevorzugten Bauform der Laserbearbeitungsmaschine ist vorgesehen, daß der Strahlführungsraum mit der freien Atmosphäre in Verbindung steht. Die der freien Atmosphäre entstammende Luft kann bei entsprechender CO2-Konzentration unmittelbar in den Strahlführungsraum eingeleitet werden. Liegt die CO2-Konzentra-tion der atmosphärischen Luft über dem relevanten Grenzwert, so ist der CO2-Gehalt mittels einer hierfür vorgesehenen Vorrichtung vor dem Einleiten der Luft in den Strahlführungsraum den Erfordernissen entsprechend einzustellen.
Eine bevorzugte, konstruktiv einfach aufgebaute Ausführungsform erfindungsgemäßer Laserbearbeitungsmaschinen zeichnet sich dadurch aus, daß der Strahlführungsraum über die Luftzufuhreinrichtung mit dem Nahbereich der Laserbearbeitungsmaschine in Verbindung steht.
Im Falle einer Bauform erfindungsgemäßer Maschinen, an welchen der Bearbeitungskopf relativ zu dem Lasergenerator bewegbar ist, weist der Strahlführungsraum zweckmäßigerweise ein bei der Bewegung des Bearbeitungskopfs relativ zu dem Lasergenerator gleichbleibendes Volumen auf. Unabhängig von der momentanen Stellung des Bearbeitungskopfs gegenüber dem Lasergenerator kann an derartigen Maschinen dem Strahlführungsraum eine gleichbleibende Luftmenge zugeführt werden. Die CO2-Konzentration im Innern des Strahlführungsraumes bleibt auch bei Verfahren des Bearbeitungskopfs unverändert.
In diesem Sinne ist in vorteilhafter Weiterbildung der Erfindung vorgesehen, daß die Wandung des Strahlführungsraumes aus Segmenten besteht, von denen jeweils wenigstens zwei in Bewegungsrichtung des Bearbeitungskopfs relativ zu diesem bewegbar beidseits eines Laserstrahlaustritts angeordnet sind, wobei sich die wirksame Länge der an einer Seite des Laserstrahlaustritts angeordneten Segmente in Bewegungsrichtung des Bearbeitungskopfs bei dessen Bewegung in gleichem Maße verringert, wie sich die wirksame Länge der an der gegenüberliegenden Seite des Laserstrahlaustritts angeordneten Segmente bei der Bewegung des Bearbeitungskopfs vergrößert.
Bewährt hat es sich in diesem Zusammenhang, die Wandung des Strahlführungsraumes als Faltenbalg mit Segmenten in Form von Ringfalten auszubilden.
Eine weitere bevorzugte Ausführungsform erfindungsgemäßer Laserbearbeitungsmaschinen, an welchen der Bearbeitungskopf relativ zu dem Lasergenerator in zwei zueinander senkrechten Richtungen bewegbar ist, zeichnet sich dadurch aus, daß der Strahlführungsraum einen ersten aus beidseits eines ersten und in der einen Bewegungsrichtung des Bearbeitungskopfs bewegbaren Laserstrahlaustritts angeordneten Segmenten bestehenden und in der einen Bewegungsrichtung des Bearbeitungskopfs verlaufenden Teil sowie einen entsprechenden, sich in der anderen Bewegungsrichtung des Bearbeitungskopfs an den Laserstrahlaustritt des ersten Teils anschließenden zweiten Teil aufweist, wobei an letzterem der Bearbeitungskopf mit einem zugeordneten zweiten Laserstrahlaustritt in der anderen Bewegungsrichtung bewegbar vorgesehen ist. An einer derartigen Maschine kann der Bearbeitungskopf bei unveränderlichem Volumen des Strahlführungsraums in der durch seine beiden Bewegungsrichtungen definierten Ebene verfahren werden.
Die Erfindung wird nachfolgend anhand schematischer Darstellungen zu Ausführungsbeispielen näher erläutert. Es zeigen:
Fig. 1:
Die Prinzipdarstellung einer ersten Ausführungsform einer Laserschneidmaschine mit luftgefülltem Strahlführungsraum und
Fig. 2:
Die Prinzipdarstellung einer zweiten Ausführungsform einer Laserschneidmaschine mit luftgefülltem Strahlführungsraum.
Gemäß Figur 1 verläuft an einer Laserschneidmaschine 1 ein Laserstrahl 2 ausgehend von einem Lasergenerator 3 im Innern eines als Strahlführungsrohr 4 ausgebildeten Strahlführungsraums, ehe er an dem von dem Lasergenerator 3 abliegenden Ende des Strahlführungsrohrs 4 in einen Bearbeitungskopf in Form eines Schneidkopfs 5 eintritt. Der Laserstrahl 2 wird im Innern des Schneidkopfs 5 mittels eines Umlenkspiegels 6 in Richtung auf eine Fokussiereinrichtung 7 umgelenkt und von dieser durch eine Düse 8 auf ein schneidend zu bearbeitendes Blech 9 gebündelt.
Der Schneidkopf 5 bleibt während der Bearbeitung des Blechs 9 ortsfest. Letzteres ist an einem Koordinatenvorschub 10 relativ zu dem Schneidkopf 5 in einer senkrecht zu der Zeichenebene verlaufenden Ebene verschiebbar eingespannt und auf einer Werkstückauflage 11 gelagert.
Das Strahlführungsrohr 4 wird mit Luft beschickt, in welcher CO2 in einer Konzentration von weniger als 300 ppm. enthalten ist. Diese Luft dient dazu, das Strahlführungsrohr 4 zu spülen und dadurch von die Leistung des Laserstrahls 2 beeinträchtigenden Gasen freizuhalten. Die Einleitung der Luft erfolgt mittels einer Luftzufuhreinrichtung 12.
Diese umfaßt einerseits eine als Luftansaug- und -fördervorrichtung dienende Pumpe 13, mittels derer über einen Lufteinlaß in Form eines Ansaugstutzens 14 sowie ein Ventil 15 atmosphärische Luft aus dem Nahbereich der Laserschneidmaschine 1 angesaugt und zu dem Strahlführungsrohr 4 gefördert werden kann. Durch eine Steuereinrichtung 16 wird der auslaßseitige Druck an der Pumpe 13 eingestellt.
Alternativ zu der freien Atmosphäre entstammender Luft kann das Strahlführungsrohr 4 mit Luft aus einem Behälter 17 beschickt werden. Die Luft in dem Behälter 17 steht unter überdruck und läßt sich dementsprechend ohne zusätzliche Hilfsmittel über ein dem Behälter 17 zugeordnetes Ventil 18 dem Strahlführungsrohr 4 zuführen.
Sowohl die aus der Umgebung der Laserschneidmaschine 1 abgesaugte als auch die dem Behälter 17 entstammende Luft wird dem Strahlführungsrohr 4 über einen Gastrockner 19 sowie eine diesem in Strömungsrichtung der Luft nachgeschaltete Vorrichtung 20 zur Einstellung des CO2-Gehaltes der geförderten Luft zugeleitet. Dabei kommt zur Einstellung des CO2-Gehaltes ein Molekularsieb zum Einsatz, welches durch Ausfiltern von CO2-Molekülen aus dem Rohluftstrom, die in diesem herrschende CO2-Konzentration auf einen Wert unter 300 ppm. senkt. Zur Regenerierung läßt sich das Molekularsieb nach einer vorgegebenen Betriebsdauer bzw. nach Aufbereiten einer vorgegebenen Luftmenge in Gegenrichtung des Förderstroms mit Luft durchspülen. Der Gastrockner 19 dient zur Senkung des Wassergehalts des geförderten Luftstroms. Dem Schneidkopf 5 benachbart ist an dem Strahlführungsrohr 4 eine Austrittsöffnung 32 für die das Innere des Strahlführungsrohres 4 durchströmende Luft vorgesehen. Mit Hilfe einer verstellbaren Austrittsblende 33 an der Austrittsöffnung 32 läßt sich die austretende Luftmenge bzw. der im Innern des Strahlführungsrohres 4 herrschende überdruck regulieren.
An einer Laserschneidmaschine 1a, wie sie in Figur 2 dargestellt ist, ist ein als Schneidkopf ausgebildeter Bearbeitungskopf 5a relativ zu einem Lasergenerator 3a in zwei zueinander senkrechten und durch Doppelpfeile 21,22 gekennzeichneten Richtungen verfahrbar. Dabei ist der Schneidkopf 5a in Richtung des Doppelpfeils 22 an einer portalartigen Querführung 23 geführt. Diese wiederum ist in Richtung des Doppelpfeils 21 entlang zweier zueinander paralleler Längsführungen 24 verfahrbar. Ein Blech 9a wird während des Bearbeitungsvorgangs ortsfest auf einer Werkstückauflage 11a gelagert.
Ein Laserstrahl 2a wird ausgehend von dem Lasergenerator 3a durch einen Strahlführungsraum, der durch einen zweiteiligen Faltenbalg 25 begrenzt ist, zu dem Schneidkopf 5a gelenkt. Dabei durchsetzt der Laserstrahl 2a zunächst einen Strahldurchlaß 26 an einem Abzweigstück 27, eines Maschinen-Querträgers, ehe er mittels eines ersten Umlenkspiegels 28 zweimal im rechten Winkel umgelenkt und zu einem zweiten Umlenkspiegel 29 an dem Abzweigstück 27 reflektiert wird. Von dem zweiten Umlenkspiegel 29 aus gelangt der Laserstrahl 2a schließlich durch einen ersten Laserstrahlaustritt 30 des Abzweigstücks 27 zu dem Schneidkopf 5a, an dem er unter erneuter Umlenkung um 90 Grad auf das Blech 9a gerichtet wird. Dabei gelangt der Laserstrahl 2a durch einen zweiten Laserstrahlaustritt 34 an dem Schneidkopf 5a auf die Blechoberfläche. Der zweite Laserstrahlaustritt 34 wird in Fig. 2 durch die darüber liegenden Teile des Schneidkopfs 5a verdeckt. Eine sich bei Verfahren des Schneidkopfs 5a in dem Blech 9a ergebende Schneidspur 31 ist in Figur 2 angedeutet.
Der Schneidkopf 5a ist an dem mit dem Abzweigstück 27 versehenen Querträger in Richtung des Doppelpfeils 21 verfahrbar. In dieser Richtung verläuft auch ein erster Teil 25a des Faltenbalges 25. Dabei schließen sich Segmente des ersten Teiles 25a des Faltenbalges 25 beidseits an das Abzweigstück 27 und somit beidseits an den ersten Laserstrahlaustritt 30 an. Ein zweiter Teil 25b des Faltenbalges 25 geht von dem Laserstrahlaustritt 30 des Abzweigstücks 27 aus und erstreckt sich in Richtung des Doppelpfeils 22. Auch dieser zweite Teil 25b des Faltenbalges 25 besitzt zwei Abschnitte. Beide Abschnitte dieses Teiles 25b werden getrennt durch den Schneidkopf 5a mit seinem zu dem Blech 9a gerichteten Laserstrahlaustritt 34.
Über eine Luftzufuhreinrichtung 12a wird der Faltenbalg 25 mit Luft beaufschlagt, deren CO2-Gehalt weniger als 300 ppm. beträgt. Der Aufbau der Luftzufuhreinrichtung 12a stimmt mit dem Aufbau der Luftzufuhreinrichtung 12 gemäß Figur 1 überein. Den Bauelementen der Luftzufuhreinrichtung 12 nach Figur 1 entsprechende Einrichtungen sind in Figur 2 unter übernahme der in Figur 1 zugeordneten Bezugszeichen sowie unter jeweiliger Hinzufügung des Buchstabens a gekennzeichnet.
Die mittels der Luftzufuhreinrichtung 12a in den Faltenbalg 25 eingeleitete Luft füllt sowohl den ersten Teil 25a als auch den zweiten Teil 25b des Faltenbalges 25 aus. Der Luftaustritt erfolgt über eine Austrittsöffnung 32a, wobei die austretende Luftmenge bzw. der im Innern des Faltenbalges 25 herrschende überdruck mittels einer steuerbaren Austrittsblende 33a einstellbar ist. Die beidseits des Abzweigstücks 27 sowie des Schneidkopfes 5a angeordneten Abschnitte des Faltenbalges 25 stehen über den Strahldurchlaß 26 bzw. eine Luftausgleichsbohrung 35 miteinander in Strömungsverbindung.
Verfährt nun der Schneidkopf 5a in Richtung des Doppelpfeiles 21, so verkürzt sich die wirksame Länge der an der in Verfahrrichtung gelegenen Seite des Abzweigstücks 27 angeordneten Segmente des ersten Teiles 25a des Faltenbalges 25 in demselben Maße, wie sich die wirksame Länge der an der gegenüberliegenden Seite des Abzweigstückes 27 angeordneten Segmente vergrößert. Demzufolge besitzt der erste Teil 25a des Faltenbalges 25 ungeachtet der momentanen Position des Schneidkopfes 5a in Richtung des Doppelpfeils 21 ein gleichbleibendes Volumen. Entsprechendes gilt hinsichtlich des Volumens des zweiten Teils 25b des Faltenbalges 25. Verfährt nämlich der Schneidkopf 5a entlang der Querführung 23 in Richtung des Doppelpfeils 22, so verkürzt sich der auf der einen Seite des Schneidkopfs 5a angeordnete Abschnitt des Faltenbalges 25 in demselben Maße, wie sich der an der gegenüberliegenden Seite des Schneidkopfs 5a angeordnete Abschnitt des Faltenbalges 25 verlängert. Insgesamt ist das Volumen innerhalb des Faltenbalges 25 also unabhängig von der Bearbeitungsstellung des Schneidkopfs 5a in der durch die Doppelpfeile 21,22 aufgespannten Ebene.

Claims (13)

  1. Laserbearbeitungsmaschine mit einem Lasergenerator (3, 3a) und einem Bearbeitungskopf (5, 5a), an welcher der Laserstrahl (2, 2a) zwischen dem Lasergenerator (3, 3a) und dem Bearbeitungskopf (5, 5a) in einem wenigstens teilweise geschlossenen und mit Luft gefüllten Strahlführungsraum (4, 25) verläuft, dadurch gekennzeichnet, dass der Strahlführungsraum (4, 25) mit CO2 enthaltender Luft mit einem CO2-Gehalt von weniger als 300 ppm. gefüllt ist.
  2. Laserbearbeitungsmaschine nach Anspruch 1, dadurch gekennzeichnet, daß der Strahlführungsraum (4,25) über eine Luftzufuhreinrichtung (12, 12a) mit Luft mit einem CO2-Gehalt von weniger als 300 ppm belüftbar ist.
  3. Laserbearbeitungsmaschine nach Ansprüch 1 oder 2, dadurch gekennzeichnet, daß die Luftzufuhreinrichtung (12, 12a) wenigstens eine vorzugsweise steuerbare Belüftungsvorrichtung, insbesondere eine Pumpe (13, 13a) aufweist.
  4. Laserbearbeitungsmaschine nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Strahlführungsraum (4,25) über eine Vorrichtung (20, 20a) zur Einstellung des CO2-Gehalts der dem Strahlführungsraum (4,25) zugeführten Luft belüftbar ist.
  5. Laserbearbeitungsmaschine nach Anspruch 4, dadurch gekennzeichnet, daß die Vorrichtung (20, 20a) zur Einstellung des CO2-Gehalts wenigstens ein Molekularsieb aufweist, mittels dessen der CO2-Gehalt der dem Strahlführungsraum (4,25) zugeführten Luft auf eine Konzentration unterhalb 300 ppm. einstellbar ist.
  6. Laserbearbeitungsmaschine nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, daß die Vorrichtung (20, 20a) zur Einstellung des CO2-Gehalts wenigstens einen Gaswäscher aufweist, mittels dessen der CO2-Gehalt der dem Strahlführungsraum (4,25) zugeführten Luft auf eine Konzentration unterhalb 300 ppm. einstellbar ist.
  7. Laserbearbeitungsmaschine nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Strahlführungsraum (4,25) mit einem ansonsten abgeschlossenen Behälter (17,17a) für dem Strahlführungsraum (4,25) zuzuführende Luft in Verbindung steht.
  8. Laserbearbeitungsmaschine nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Strahlführungsraum (4,25) mit der freien Atmosphäre in Verbindung steht.
  9. Laserbearbeitungsmaschine nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Strahlführungsraum (4,25) über die Luftzufuhreinrichtung (12, 12a) mit dem Nahbereich der Laserbearbeitungsmaschine (1, 1a) in Verbindung steht.
  10. Laserbearbeitungsmaschine nach einem der Ansprüche 1 bis 9, an welcher der Bearbeitungskopf (5, 5a) relativ zu dem Lasergenerator (3, 3a) bewegbar ist, dadurch gekennzeichnet, daß der Strahlführungsraum (4, 25) ein bei der Bewegung des Bearbeitungskopfs (5, 5a) relativ zu dem Lasergenerator (3, 3a) gleichbleibendes Volumen aufweist.
  11. Laserbearbeitungsmaschine nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Wandung des Strahlführungsraums (25) aus Segmenten besteht, von denen jeweils wenigstens zwei in Bewegungsrichtung (21,22) des Bearbeitungskopfs (5a) relativ zu diesem bewegbar beidseits eines Laserstrahlaustritts (30,34) angeordnet sind, wobei sich die wirksame Länge der an einer Seite des Laserstrahlaustritts (30,34) angeordneten Segmente in Bewegungsrichtung (21,22) des Bearbeitungskopfs (5a) bei dessen Bewegung in gleichem Maße verringert, wie sich die wirksame Länge der an der gegenüberliegenden Seite des Laserstrahlaustritts (30,34) angeordneten Segmente bei der Bewegung des Bearbeitungskopfs (5a) vergrößert.
  12. Laserbearbeitungsmaschine nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Wandung des Strahlführungsraumes als Faltenbalg (25) mit Segmenten in Form von Ringfalten ausgebildet ist.
  13. Laserbearbeitungsmaschine nach einem der Ansprüche 1 bis 12, an welcher der Bearbeitungskopf (5a) relativ zu dem Lasergenerator (3a) in zwei zueinander senkrechten Richtungen (21,22) bewegbar ist, dadurch gekennzeichnet, daß der Strahlführungsraum (25) einen ersten aus beidseits eines ersten und in der einen Bewegungsrichtung (21) des Bearbeitungskopfs (3, 3a) bewegbaren Laserstrahlaustritts (30) angeordneten Segmenten bestehenden und in der einen Bewegungsrichtung (21) des Bearbeitungskopfs (5a) verlaufenden Teil (25a) sowie einen entsprechenden, sich in der anderen Bewegungsrichtung (22) des Bearbeitungskopfs (5a) an den Laserstrahlaustritt (30) des ersten Teils (25a) anschließenden zweiten Teil (25b) aufweist, wobei an letzterem der Bearbeitungskopf (5a) mit einem zugeordneten zweiten Laserstrahlaustritt (34) in der anderen Bewegungsrichtung (22) bewegbar vorgesehen ist.
EP96108815A 1995-06-19 1996-06-01 Laserbearbeitungsmaschine mit gasgefülltem Strahlführungsraum Revoked EP0749800B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE29509648U 1995-06-19
DE29509648U DE29509648U1 (de) 1995-06-19 1995-06-19 Laserbearbeitungsmaschine mit gasgefülltem Strahlführungsraum

Publications (3)

Publication Number Publication Date
EP0749800A2 EP0749800A2 (de) 1996-12-27
EP0749800A3 EP0749800A3 (de) 1997-12-03
EP0749800B1 true EP0749800B1 (de) 2003-03-19

Family

ID=8009266

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96108815A Revoked EP0749800B1 (de) 1995-06-19 1996-06-01 Laserbearbeitungsmaschine mit gasgefülltem Strahlführungsraum

Country Status (4)

Country Link
US (1) US5811753A (de)
EP (1) EP0749800B1 (de)
JP (1) JPH0999387A (de)
DE (2) DE29509648U1 (de)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19734715A1 (de) 1997-08-11 1999-02-25 Lambda Physik Gmbh Vorrichtung zum Spülen des Strahlenganges eines UV-Laserstrahles
DE29714489U1 (de) * 1997-08-13 1997-10-09 Trumpf Gmbh & Co Laserbearbeitungsmaschine mit Gasausgleichsvolumen
US5906760A (en) * 1997-11-04 1999-05-25 Robb; David K. Exhaust system for a laser cutting device
US6191382B1 (en) * 1998-04-02 2001-02-20 Avery Dennison Corporation Dynamic laser cutting apparatus
US6490307B1 (en) 1999-03-17 2002-12-03 Lambda Physik Ag Method and procedure to automatically stabilize excimer laser output parameters
US6424666B1 (en) 1999-06-23 2002-07-23 Lambda Physik Ag Line-narrowing module for high power laser
US6795473B1 (en) 1999-06-23 2004-09-21 Lambda Physik Ag Narrow band excimer laser with a prism-grating as line-narrowing optical element
US6381256B1 (en) 1999-02-10 2002-04-30 Lambda Physik Ag Molecular fluorine laser with spectral linewidth of less than 1 pm
US6426966B1 (en) 1999-02-10 2002-07-30 Lambda Physik Ag Molecular fluorine (F2) laser with narrow spectral linewidth
US6442182B1 (en) 1999-02-12 2002-08-27 Lambda Physik Ag Device for on-line control of output power of vacuum-UV laser
US6463086B1 (en) 1999-02-10 2002-10-08 Lambda Physik Ag Molecular fluorine laser with spectral linewidth of less than 1 pm
US6965624B2 (en) 1999-03-17 2005-11-15 Lambda Physik Ag Laser gas replenishment method
US6717973B2 (en) 1999-02-10 2004-04-06 Lambda Physik Ag Wavelength and bandwidth monitor for excimer or molecular fluorine laser
US6421365B1 (en) 1999-11-18 2002-07-16 Lambda Physik Ag Narrow band excimer or molecular fluorine laser having an output coupling interferometer
US6678291B2 (en) 1999-12-15 2004-01-13 Lambda Physik Ag Molecular fluorine laser
US6546037B2 (en) 1999-02-10 2003-04-08 Lambda Physik Ag Molecular fluorine laser with spectral linewidth of less than 1 pm
US6389052B2 (en) 1999-03-17 2002-05-14 Lambda Physik Ag Laser gas replenishment method
US6327290B1 (en) 1999-02-12 2001-12-04 Lambda Physik Ag Beam delivery system for molecular fluorine (F2) laser
US6219368B1 (en) 1999-02-12 2001-04-17 Lambda Physik Gmbh Beam delivery system for molecular fluorine (F2) laser
US6700915B2 (en) 1999-03-12 2004-03-02 Lambda Physik Ag Narrow band excimer laser with a resonator containing an optical element for making wavefront corrections
US6727731B1 (en) 1999-03-12 2004-04-27 Lambda Physik Ag Energy control for an excimer or molecular fluorine laser
DE29907349U1 (de) 1999-04-26 2000-07-06 Lambda Physik Gmbh Laser zur Erzeugung schmalbandiger Strahlung
US6785316B1 (en) 1999-08-17 2004-08-31 Lambda Physik Ag Excimer or molecular laser with optimized spectral purity
US6553050B1 (en) 1999-11-18 2003-04-22 Lambda Physik Ag Narrow band excimer or molecular fluorine laser having an output coupling interferometer
US6529533B1 (en) 1999-11-22 2003-03-04 Lambda Physik Ag Beam parameter monitoring unit for a molecular fluorine (F2) laser
US6603788B1 (en) 1999-11-23 2003-08-05 Lambda Physik Ag Resonator for single line selection
US6795456B2 (en) 1999-12-20 2004-09-21 Lambda Physik Ag 157 nm laser system and method for multi-layer semiconductor failure analysis
DE10190427T1 (de) 2000-01-25 2002-06-06 Lambda Physik Ag Energieüberwachungsvorrichtung für einen Fluormolekül-Laser
US7075963B2 (en) 2000-01-27 2006-07-11 Lambda Physik Ag Tunable laser with stabilized grating
US6735232B2 (en) 2000-01-27 2004-05-11 Lambda Physik Ag Laser with versatile output energy
US6618403B2 (en) 2000-03-16 2003-09-09 Lambda Physik Ag Method and apparatus for compensation of beam property drifts detected by measurement systems outside of an excimer laser
WO2001084678A2 (en) 2000-04-18 2001-11-08 Lambda Physik Ag Stabilization technique for high repetition rate gas discharge lasers
US6862307B2 (en) * 2000-05-15 2005-03-01 Lambda Physik Ag Electrical excitation circuit for a pulsed gas laser
US6577663B2 (en) 2000-06-19 2003-06-10 Lambda Physik Ag Narrow bandwidth oscillator-amplifier system
US6603789B1 (en) 2000-07-05 2003-08-05 Lambda Physik Ag Narrow band excimer or molecular fluorine laser with improved beam parameters
US6807205B1 (en) 2000-07-14 2004-10-19 Lambda Physik Ag Precise monitor etalon calibration technique
US6721345B2 (en) 2000-07-14 2004-04-13 Lambda Physik Ag Electrostatic precipitator corona discharge ignition voltage probe for gas status detection and control system for gas discharge lasers
EP1180409B1 (de) 2000-08-12 2005-03-30 TRUMPF LASERTECHNIK GmbH Laserbearbeitungsmaschine mit gasgespültem Strahlführungsraum
US6801561B2 (en) 2000-09-25 2004-10-05 Lambda Physik Ag Laser system and method for spectral narrowing through wavefront correction
US6747741B1 (en) 2000-10-12 2004-06-08 Lambda Physik Ag Multiple-pass interferometric device
US6804327B2 (en) * 2001-04-03 2004-10-12 Lambda Physik Ag Method and apparatus for generating high output power gas discharge based source of extreme ultraviolet radiation and/or soft x-rays
US7230964B2 (en) * 2001-04-09 2007-06-12 Cymer, Inc. Lithography laser with beam delivery and beam pointing control
US6998620B2 (en) 2001-08-13 2006-02-14 Lambda Physik Ag Stable energy detector for extreme ultraviolet radiation detection
EP1386690B1 (de) 2002-08-01 2008-05-28 Trumpf Werkzeugmaschinen GmbH + Co. KG Laserbearbeitungsmaschine
DE20304244U1 (de) * 2003-03-14 2003-06-05 Trumpf Werkzeugmaschinen Gmbh Strahlführungsabdeckung, insbesondere Strahlführungsfaltenbelg, einer Laserbearbeitungsmaschine
DE10315853A1 (de) * 2003-04-05 2004-10-14 Scharnebecker Electronic Fertigung Gmbh Laserschweißanlage
DE20306336U1 (de) * 2003-04-22 2003-06-26 Trumpf Werkzeugmaschinen Gmbh Strahlführung einer Laserbearbeitungsmaschine
FR2858474A1 (fr) * 2003-07-28 2005-02-04 Safmatic Machine laser a chemin optique equipe d'une chicane de contournement du miroir de renvoi
JP2005217119A (ja) * 2004-01-29 2005-08-11 Matsushita Electric Ind Co Ltd レーザ発振装置
DE502004008645D1 (de) * 2004-08-06 2009-01-22 Trumpf Werkzeugmaschinen Gmbh Laserbearbeitungskopf
DE502005011214D1 (de) * 2005-02-25 2011-05-19 Trumpf Werkzeugmaschinen Gmbh Verfahren zum Spülen von Leitungen und/oder Hohlräumen einer Laserbearbeitungsmaschine
CN101443154B (zh) 2006-05-09 2012-10-24 通快激光与系统工程有限公司 具有激光束引导装置通风装置的激光加工机和激光加工机的激光束引导装置的通风方法
DE102006055050A1 (de) 2006-11-22 2008-05-29 Eos Gmbh Electro Optical Systems Vorrichtung zum schichtweisen Herstellen eines dreidimensionalen Objekts und Verfahren zum Justieren eines Optiksystems von dieser
DE102007030397B4 (de) * 2007-06-29 2013-04-11 Trumpf Laser- Und Systemtechnik Gmbh Laseranlage mit einer Aufbereitungsvorrichtung für die Druckluft eines Strahlführungsraums und entsprechendes Aufbereitungsverfahren
CN102066035B (zh) 2008-06-20 2014-11-12 通快机床两合公司 激光加工设备
US9242309B2 (en) * 2012-03-01 2016-01-26 Foro Energy Inc. Total internal reflection laser tools and methods
US20120273470A1 (en) * 2011-02-24 2012-11-01 Zediker Mark S Method of protecting high power laser drilling, workover and completion systems from carbon gettering deposits
WO2010042858A1 (en) * 2008-10-10 2010-04-15 J.P. Sercel Associates Inc. Laser machining systems and methods with debris extraction
CN103537815A (zh) * 2013-10-18 2014-01-29 昆山思拓机器有限公司 激光设备光学器件防灰尘系统
JP2016172285A (ja) * 2015-03-16 2016-09-29 株式会社リコー 保護囲い、レーザ照射システム
CN104959729A (zh) * 2015-06-02 2015-10-07 上海御虹激光设备有限公司 一种可精确移位的激光枪头
CN104942448A (zh) * 2015-06-03 2015-09-30 张家港市旭华激光有限公司 一种光纤激光切割机
US20220344889A1 (en) * 2021-04-22 2022-10-27 Northrop Grumman Systems Corporation Apparatus and method for reducing thermal blooming in an optical subsystem of a high energy laser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4661680A (en) * 1985-06-28 1987-04-28 Westinghouse Electric Corp. End-of-arm tooling carousel apparatus for use with a robot
DE4006148C2 (de) * 1989-03-20 1993-04-08 Yefim P. Phoenix Ariz. Us Sukhman

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885927A (en) * 1974-02-05 1975-05-27 Union Carbide Corp Process for removing carbon dioxide from gas streams
JPS58121692A (ja) * 1982-01-13 1983-07-20 Hitachi Ltd レ−ザ発生装置
JPS5954484A (ja) * 1982-09-20 1984-03-29 Mitsubishi Electric Corp レ−ザ加工機
JPS5954488A (ja) * 1982-09-21 1984-03-29 Nippon Sekigaisen Kogyo Kk レ−ザ照射装置
JPS63299884A (ja) * 1987-05-30 1988-12-07 Komatsu Ltd レ−ザ加工装置
US4895144A (en) * 1987-11-09 1990-01-23 Surgical Laser Technologies, Inc. Supply system for sterile fluids and gases in laser surgery
JPH02235012A (ja) * 1989-03-09 1990-09-18 Mitsubishi Heavy Ind Ltd レーザ光通路エアフローシステム
JPH03151185A (ja) * 1989-11-07 1991-06-27 Mitsubishi Electric Corp レーザ加工装置
CH680990A5 (en) * 1990-09-26 1992-12-31 Bystronic Laser Ag Laser machining installation - has an airtight protective cover of the beam set between its source and the machine head
JPH0584590A (ja) * 1991-09-26 1993-04-06 Amada Co Ltd レーザ加工用アシストガス供給装置
US5559584A (en) * 1993-03-08 1996-09-24 Nikon Corporation Exposure apparatus
CN1107570C (zh) * 1994-06-06 2003-05-07 阿曼德有限公司 向激光束机提供气态氮的方法和设备及一种激光束机

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4661680A (en) * 1985-06-28 1987-04-28 Westinghouse Electric Corp. End-of-arm tooling carousel apparatus for use with a robot
DE4006148C2 (de) * 1989-03-20 1993-04-08 Yefim P. Phoenix Ariz. Us Sukhman

Also Published As

Publication number Publication date
EP0749800A3 (de) 1997-12-03
EP0749800A2 (de) 1996-12-27
US5811753A (en) 1998-09-22
JPH0999387A (ja) 1997-04-15
DE59610230D1 (de) 2003-04-24
DE29509648U1 (de) 1995-09-14

Similar Documents

Publication Publication Date Title
EP0749800B1 (de) Laserbearbeitungsmaschine mit gasgefülltem Strahlführungsraum
DE19822672B4 (de) Verfahren und Vorrichtung zur Erzeugung eines gerichteten Gasstrahls
DE102006004916B3 (de) Vorrichtung zur optischen Messung von Stoffkonzentrationen
DE19537924C2 (de) Verfahren zum Kühlen des Schweißnahtbereichs beim Laserschweißen und Vorrichtung zum Durchführen dieses Verfahrens
WO2007045442A1 (de) Anlage und verfahren zum strahlungshärten einer beschichtung eines werkstückes unter schutzgas
DE2952589A1 (de) Verfahren und vorrichtung zum behandeln eines abstroemenden gases durch bestrahlung mit elektronenstrahlen
EP3697543A1 (de) Vorhang-auftragswerk und verfahren zum auftragen eines auftragsmediums
EP2024132A1 (de) Laserbearbeitungsmaschine mit einer einrichtung zum belüften der laserstrahlführung und verfahren zum belüften der laserstrahlführung einer laserbearbeitungsmaschine
DE3015215A1 (de) Vorrichtung zur dosierten abgabe eines komprimierten gasfoermigen mediums
DD140061A5 (de) Verfahren und vorrichtung zur entgasung von papierstoff
CH712504A2 (de) Gehäuse für ein Laborgerät.
CH426328A (de) Verfahren und Vorrichtung zum Hervorrufen einer Pulsationsbewegung einer Flüssigkeit in einer Kolonne
DE3743598A1 (de) Vorrichtung zur beruehrungsfreien abdichtung einer oeffnung gegen aus- oder eintretendes gas
DE19548496A1 (de) Laserbearbeitungskopf und Verfahren zum Laserschweißen
DE4443214A1 (de) Ausrüstung zum Führen eines Drahtgebildes
DE3416196C2 (de)
DE69627953T2 (de) Installation einer optischen Faser in einem Schutzkanal
DE3717859C2 (de) Ionenquelle für ein Massenspektrometer
DE10016534C2 (de) Verfahren und Vorrichtung zum Staubschutz in einer Laserbearbeitungsvorrichtung
DE19643524A1 (de) Verfahren und Vorrichtung zum Führen einer Warenbahn, insbesondere Textilbahn
DE3828134A1 (de) Verfahren zur waermebehandlung von werkstuecken
DE3102022A1 (de) Vorrichtung zur kontinuierlichen absaugentwaesserung von textilen warenbahnen
DE10006865B4 (de) Verfahren zum Lackieren von Fahrzeugkarosserien
DE102008048059A1 (de) Einrichtung zur Zuführung von Schweißdraht an die Bearbeitungsstelle beim Laserschweißen
DE102017003696A1 (de) Gehäuse für ein Laborgerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19971217

17Q First examination report despatched

Effective date: 20000620

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59610230

Country of ref document: DE

Date of ref document: 20030424

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030724

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

Effective date: 20030902

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: IHARA, YOSHIAKI

Effective date: 20031218

Opponent name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

Effective date: 20030902

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLAO Information deleted related to despatch of communication that opposition is rejected

Free format text: ORIGINAL CODE: EPIDOSDREJ1

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070530

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070808

Year of fee payment: 12

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070531

Year of fee payment: 12

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20071018

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20071018

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080618

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080523

Year of fee payment: 13