EP0748442A1 - Elektrochemischer messfühler - Google Patents

Elektrochemischer messfühler

Info

Publication number
EP0748442A1
EP0748442A1 EP95941593A EP95941593A EP0748442A1 EP 0748442 A1 EP0748442 A1 EP 0748442A1 EP 95941593 A EP95941593 A EP 95941593A EP 95941593 A EP95941593 A EP 95941593A EP 0748442 A1 EP0748442 A1 EP 0748442A1
Authority
EP
European Patent Office
Prior art keywords
sealing ring
sensor element
housing
metallic sleeve
sensor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95941593A
Other languages
English (en)
French (fr)
Inventor
Helmut Weyl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0748442A1 publication Critical patent/EP0748442A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C29/00Joining metals with the aid of glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4078Means for sealing the sensor element in a housing

Definitions

  • the invention relates to an electrochemical sensor according to the preamble of the main claim.
  • Measuring sensors are designed, for example, with a sensor element in the so-called finger design.
  • the sensor element is. a solid electrolyte body, which is designed as a closed tube and is fixed gas-tight in a metallic housing.
  • the finger probes With the finger probes, a distinction is made between the floating and the floating probes.
  • the conductor track of the outer electrode is contacted with the housing by means of an electrically conductive sealing ring.
  • each electrode connection is tapped separately, so that no electrical contact with the housing is permitted. A seal between the solid electrolyte body and the housing must be implemented in both cases.
  • the sensor according to the invention with the characterizing features of the main claim has the advantage that both a gas-tight and gasoline-resistant and an electrically insulating installation of the solid electrolyte body in the metallic housing is possible.
  • the insulation effect of the cover layer is not impaired by the use of the sealing arrangement.
  • a particularly gas-tight and gasoline-proof installation is achieved by a metallic sleeve which is connected to the solid electrolyte body to form a structural unit, the metallic sleeve being welded to the metallic housing.
  • An additional pressure-distributing sealing ring reduces pressure peaks on the sealing arrangement.
  • the additional sealing ring also improves the resistance to hot corrosion.
  • a slightly higher coefficient of thermal expansion of the metallic sleeve is not harmful, since the resulting compressive stresses can be compensated for by the ceramic sealing ring.
  • FIG. 1 shows a cross section through an exhaust-side part of a sensor according to the invention and
  • FIG. 2 shows an enlarged section of a sealing zone in FIG. 1.
  • the electrochemical sensor 10 shown in a section according to FIG. 1 has a metallic housing 11 with a thread 12 as a fastening means for installation in an exhaust pipe (not shown) and a sensor element 13.
  • the housing 11 has a longitudinal bore 15 with a sealing seat 16 on the housing side Sealing seat 16 forms between sensor element 13 and housing 11
  • Sealing zone 30, which is shown enlarged in Figure 2.
  • the sensor element 13 is tightly connected to the housing 11 by means of a sealing arrangement 31.
  • the connection-side end of the housing 11 is surrounded by an encapsulation 20 in which the connection-side components are accommodated.
  • the sensor element 13 is a tubular one
  • Solid electrolyte body 17 the measuring gas-side end section 22 is closed.
  • connection-side end section 23 there is a bulge-shaped head 18 on the solid electrolyte body 17 formed on an annular end face 25.
  • a shoulder-shaped sealing seat 19 is formed on the bead-shaped head 18, with which the sensor element 13 bears against the sealing arrangement 31.
  • a measuring electrode, not shown, is arranged on the solid electrolyte body 17 on the outside exposed to the measuring gas, and a reference electrode, also not shown, exposed to the reference gas, for example air, is arranged on the side facing the interior.
  • the measuring electrode and reference electrode are each guided with conductor tracks, also not shown, to electrode contacts 24 arranged on the end face 25.
  • contact parts 26 On the electrode contacts 24 there are contact parts 26 which are each contacted with a connecting cable 27.
  • the connecting cables 27 are led out of the encapsulation 20 remote from the measuring gas through a sealing part (not shown) and connected to a measuring or control device.
  • an insulating sleeve 28 In the longitudinal bore 15 of the housing 11 there is also an insulating sleeve 28, which preferably consists of a ceramic material. With the help of a mechanical means, not shown, the insulating sleeve 28 is pressed onto the contact parts 26, as a result of which the electrical connection to the electrode contacts 24 is realized.
  • the sensor element 13 protruding from the longitudinal bore 15 on the measuring gas side is surrounded at a distance by a protective tube 40 which has openings 41 for the entry and exit of the measuring gas and is held on the measuring gas end of the housing 11.
  • the interior of the sensor element 13 is filled, for example, by a rod-shaped heating element 45 which, not shown, is provided with line connections.
  • the sealing arrangement 31 comprises a ceramic sealing ring 33, a metallic sleeve 34 and a glass melt 35.
  • the metallic sleeve 34 is largely modeled on the contour of the longitudinal bore 15. At the connection end, the sleeve 34 is flanged to form an annular collar 36.
  • the collar 36 overlaps an edge 14 formed on the housing 11.
  • the metallic sleeve 34 is designed with an annular support 37.
  • Forsterite for example, is suitable as the material for the ceramic sealing ring 33.
  • Ferritic or martensitic steels are preferably used for the metallic sleeve 34.
  • the sintered sensor element 13 is connected to the ceramic sealing ring 33, the metallic sleeve 34 and the glass melt 35 to form a structural unit. This is done by inserting the ceramic sealing ring 33 into the metallic sleeve 34, the sealing ring 33 resting on the support 37. In the ceramic sealing ring 33, the sensor element 13 is inserted so that it with the
  • Sealing seat 19 rests on the sealing ring 33.
  • a glass powder for example barium silicate glass powder, is introduced into the gaps between sensor element 13 and sealing ring 33 and between sealing ring 33 and metallic sleeve 34. This arrangement becomes a thermal
  • a pressure-distributing sealing ring 38 is first positioned on the sealing seat 16.
  • the assembly consisting of the sensor element 13 and the sealing arrangement 31 is now placed on the sealing ring 38.
  • the collar 36 of the metallic sleeve 34 is placed on the edge 14 of the housing 11.
  • the encapsulation 20 is then pushed over the collar 36, the insulating sleeve 28 additionally pressing on the sensor element 13 and thus on the structural unit.
  • pressure is exerted on the pressure-distributing sealing ring 38.
  • the encapsulation 20 is welded gas-tight together with the collar 36 to the housing 11, for example by laser welding.
  • a further embodiment of the sealing arrangement 31 consists in that the ceramic sealing ring 33 is provided with a glass layer at least on its inner and outer lateral surface. By means of a thermal treatment, the glass layer changes into a molten phase, which forms the glass melt 35 between the sensor element 13 and the metallic sleeve 34.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

Es wird ein elektrochemischer Meßfühler, insbesondere zur Bestimmung des Sauerstoffgehaltes in Abgasen von Verbrennungsmotoren vorgeschlagen, mit einem potentialfrei angeordneten Sensorelement (13) mit einem sauerstoffionenleitenden Festelektrolytkörper (17) in Form eines einseitig geschlossenen Rohres. Das Sensorelement (13) ist mittels einer Dichtungsanordnung (31) in ein metallisches Gehäuse (11) eingesetzt. Die Dichtungsanordnung (31) weist eine metallische Hülse (34) auf, mit der das Sensorelement (13) mittels eines keramischen Dichtrings (33) und einer Glaseinschmelzung (35) verbunden ist, so daß das Sensorelement (17), der keramische Dichtring (33) und die metallische Hülse (34) eine Baueinheit bilden. Die Glaseinschmelzung (35) ist zwischen Sensorelement (13) und keramischem Dichtring (33) sowie zwischen keramischem Dichtring (33) und metallischer Hülse (38) ausgebildet. Die metallische Hülse (34) ist mit dem Gehäuse (11) gasdicht verschweißt.

Description

Elektrochemischer Meßfühler
Stand der Technik
Die Erfindung geht aus von einem elektrochemischen Meßfühler nach der Gattung des Hauptanspruchs. Elektrochemische
Meßfühler sind beispielsweise mit einem Sensorelement in der sogenannten Fingerbauform ausgeführt. Das Sensorelement ist. ein Festelektrolytkörper, der als geschlossenes Rohr ausgebildet und in einem metallischen Gehäuse gasdicht festgelegt ist. Bei den Fingersonden unterscheidet man zwischen den potentialfreien und den potentialgebundenen Meßfühlern. Bei den potentialgebundenen Meßfühlern wird die Leiterbahn der äußeren Elektrode mittels eines elektrisch leitenden Dichtrings mit dem Gehäuse kontaktiert. Bei den potentialfreien Meßfühlern wird jeder Elektrodenanschluß separat abgegriffen, so daß keine elektrische Kontaktierung mit dem Gehäuse erlaubt ist. Eine Dichtung zwischen dem Festelektrolytkörper und dem Gehäuse muß in beiden Fällen realisiert sein.
Besondere Schwierigkeiten bereitet bei potentialfreien Meßfühlern der gasdichte und benzinfeste Einbau des Sensorelements im metallischen Gehäuse. Dazu wird entweder ein metallischer Dichtring oder ein elektrisch isolierender, keramischer Dichtring verwendet. Keramische Dichtringe sind nicht absolut gasdicht und benzinfest. Bei der Verwendung von metallischen Dichtringen muß die an der äußeren Oberfläche des Festelektrolytkörpers verlaufende Leiterbahn im Bereich des Dichtrings mit einer elektrisch isolierenden Deckschicht abgedeckt sein. Nachteilig ist jedoch, daß vom metallischen Dichtring ausgehende Druckspitzen auftreten, die die Deckschicht beschädigen und dadurch deren Isolationswirkung beeinträchtigen.
Vorteile der Erfindung
Der erfindungsgemäße Meßfühler mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß sowohl ein gasdichter und benzinfester als auch ein elektrisch isolierender Einbau des Festelektrolytkörpers im metallischen Gehäuse möglich ist. Durch den Einsatz der Dichtungsanordnung wird die Isolationswirkung der Deckschicht nicht beeinträchtigt.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des erfindungsgemäßen Meßfühlers möglich. Ein besonders gasdichter und benzinfester Einbau wird durch eine metallische Hülse erreicht, die mit dem Festelektrolytkörper zu einer Baueinheit verbunden wird, wobei die metallische Hülse mit dem metallischen Gehäuse verschweißt wird. Durch einen zusätzlich verwendeten druckverteilenden Dichtring werden Druckspitzen auf die Dichtungsanordnung reduziert. Außerdem wird durch den zusätzlichen Dichtring die Beständigkeit gegen Heißkorrosion verbessert. Zur Vermeidung von Rissen im keramischen Dichtring und/oder in der Glaseinschmelzung, ist es außerdem zweckmäßig, wenn die thermischen Ausdehnungskoeffizienten der in Verbindung stehenden Materialien möglichst nahe beieinander liegen. Es konnte jedoch festgestellt werden, daß ein geringfügig höherer thermischer Ausdehnungskoeffizient der metallischen Hülse nicht schädlich ist, da die entstehenden Druckspannungen vom keramischen Dichtring kompensiert werden können.
Zeichnung
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 einen Querschnitt durch einen abgasseitigen Teil eines erfindungsgemäßen Meßfühlers und Figur 2 einen vergrößerten Ausschnitt einer Dichtzone in Figur 1.
Ausführungsbeispiel
Der in einem Ausschnitt dargestellte elektrochemische Meßfühler 10 gemäß Figur 1 hat ein metallisches Gehäuse 11 mit einem Gewinde 12 als Befestigungsmittel für den Einbau in ein nicht dargestelltes Abgasrohr und ein Sensorelement 13. Das Gehäuse 11 hat eine Längsbohrung 15 mit einem gehäuseseitgen Dichtsitz 16. Am gehäuseseitigen Dichtsitz 16 bildet sich zwischen Sensorelement 13 und Gehäuse 11 eine
Dichtzone 30 aus, die in Figur 2 vergrößert dargestellt ist. Das Sensorelement 13 ist mittels einer Dichtungsanordnung 31 mit dem Gehäuse 11 dicht verbunden. Das anschlußseitige Ende des Gehäuses 11 ist von einer Umkapselung 20 umgeben, in der die anschlußseitigen Bauelemente untergebracht sind.
Das Sensorelement 13 ist ein rohrförmiger
Festelektrolytkörper 17, dessen meßgasseitiger Endabschnitt 22 verschlossen ist. Am anschlußseitigen Endabschnitt 23 ist am Festelektrolytkörper 17 ein wulstfδrmigen Kopf 18 mit einer ringförmigen Stirnfläche 25 angeformt. Am wulstförmigen Kopf 18 ist ein schulterförmiger Dichtsitz 19 ausgebildet, mit dem das Sensorelement 13 an der Dichtungsanordnung 31 anliegt. Auf der dem Meßgas ausgesetzten Außenseite ist am Festelektrolytkörper 17 eine nicht näher dargestellte Meßelektrode und auf der dem Innenraum zugewandten Seite eine dem Referenzgas, zum Beispiel Luft, ausgesetzte, ebenfalls nicht näher dargestellte Referenzelektrode angeordnet. Meßelektrode und Referenzelektrode sind jeweils mit ebenfalls nicht näher dargestellten Leiterbahnen zu auf der Stirnfläche 25 angeordneten Elektrodenkontakten 24 geführt.
Auf den Elektrodenkontakten 24 liegen jeweils Kontaktteile 26 auf, die jeweils mit einem Anschlußkabel 27 kontaktiert sind. Die Anschlußkabel 27 werden durch ein nicht dargestelltes Dichtungsteil aus der meßgasfernen Umkapselung 20 herausgeführt und an ein Meß- oder Steuergerät angeschlossen. In der Längsbohrung 15 des Gehäuses 11 ist ferner eine Isolierhülse 28 angeordnet, welche bevorzugt aus einem keramischen Material besteht. Mit Hilfe eines nicht dargestellten mechanischen Mittels wird die Isolierhülse 28 auf die Kontaktteile 26 gedrückt, wodurch die elektrische Verbindung zu den Elektrodenkontakten 24 realisiert wird.
Das meßgasseitig aus der Längsbohrung 15 herausragende Sensorelement 13 ist mit Abstand von einem Schutzrohr 40 umgeben, welches für den Ein- beziehungsweise Austritt des Meßgases Öffnungen 41 besitzt und am meßgasseitigen Ende des Gehäuses 11 gehalten ist. Der Innenraum des Sensorelements 13 ist beispielsweise durch ein stabförmiges Heizelement 45 ausgefüllt, welches, nicht dargestellt, mit Leitungsanschlüssen versehen ist. Die Dichtungsanordnung 31 umfaßt einen keramischen Dichtring 33, eine metallische Hülse 34 und eine Glaseinschmelzung 35. Die metallische Hülse 34 ist der Kontur der Längsbohrung 15 weitgehend nachgebildet. Am anschlußseitigen Ende ist die Hülse 34 zu einem ringförmigen Kragen 36 umgebördelt. Der Kragen 36 übergreift einen am Gehäuses 11 angeformten Rand 14. Am meßgasseitigen Ende ist die metallische Hülse 34 mit einer ringförmigen Auflage 37 ausgeführt.
Als Material für den keramischen Dichtring 33 eignet sich beispielsweise Forsterit. Für die metallische Hülse 34 kommen vorzugsweise ferritische oder martensitische Stähle zum Einsatz. Als druckverteilender Dichtring 38 wird beispielsweise ein gepreßter Ring aus Steatit-Pulver verwendet. Steatit weist eine gute Beständigkeit gegen
Heißkorrosion auf, dadurch wird meßgasseitig die metallische Hülse 34 vor Korrosion geschützt.
Zunächst wird das fertiggesinterte Sensorelement 13 mit dem keramischen Dichtring 33, der metallischen Hülse 34 und der Glaseinschmelzung 35 zu einer Baueinheit verbunden. Dies geschieht dadurch, daß der keramische Dichtring 33 in die metallische Hülse 34 eingelegt wird, wobei der Dichtring 33 auf der Auflage 37 aufliegt. In den keramischen Dichtring 33 wird das Sensorelement 13 eingesteckt, so daß es mit dem
Dichtsitz 19 auf dem Dichtring 33 aufliegt. Nun wird in die Spalten zwischen Sensorelement 13 und Dichtring 33 sowie zwischen Dichtring 33 und metallischer Hülse 34 ein Glaspulver, beispielsweise Bariumsilikatglaspulver eingebracht. Diese Anordnung wird einer thermischen
Behandlung unterzogen, wobei die Temperatur der thermischen Behandlung über der Schmelztemperatur des Bariumsilikatglases liegt. Dadurch bildet sich zwischen Sensorelement 13 und Dichtring 33 sowie zwischen Dichtring 33 und metallischer Hülse 34 die gasdichte Glaseinschmelzung 35 aus. Sensorelement 13, keramischer Dichtring 33, metallische Hülse 34 und Glaseinschmelzung 35 bilden danach eine Baueinheit.
Zur Herstellung der Dichtung wird auf dem Dichtsitz 16 zunächst ein druckverteilender Dichtring 38 positioniert. Auf den Dichtring 38 wird nun die Baueinheit bestehend aus dem Sensorelement 13 und der Dichtungsanornung 31 aufgesetzt. Dazu wird der Kragen 36 der metallischen Hülse 34 auf den Rand 14 des Gehäuses 11 gesteckt. Anschließen wird die Umkapselung 20 über den Kragen 36 geschoben, wobei zusätzlich die Isolierhülse 28 auf das Sensorelement 13 und damit auf die Baueinheit drückt. Dadurch wird Druck auf den druckverteilenden Dichtring 38 ausgeübt. In dieser Position, bei der auf die Baueinheit aus Sensorelement 13, keramischer Dichtring 33, metallische Hülse 34 und Glaseinschmelzung 35 ein Druck wirkt, wird die Umkapselung 20 gemeinsam mit dem Kragen 36 mit dem Gehäuse 11, beispielsweise durch Laserschweißen gasdicht verschweißt.
Eine weitere Ausführungsform der Dichtungsanordnung 31 besteht darin, daß der keramische Dichtring 33 zumindest an seiner inneren und äußeren Mantelfläche mit einer Glasschicht versehen ist. Durch eine thermische Behandlung geht die Glasschicht in eine schmelzflüssige Phase über, die die Glaseinschmelzung 35 zwischen dem Sensorelement 13 und der metallischen Hülse 34 ausbildet.

Claims

Ansprüche
1. Elektrochemischer Meßfühler, insbesondere zur Bestimmung des Saüerstoffgehaltes in Abgasen von Verbrennungsmotoren, mit einem Sensorelement in Form eines einseitig geschlossenen Rohres, welches in einem metallischen Gehäuse mit einer Dichtung eingesetzt ist, dadurch gekennzeichnet, daß die Dichtung (31) eine Glaseinschmelzung (35) aufweist, mit der das Sensorelement (13) mit dem Gehäuse (11) gasdicht verbunden ist.
2. Meßfühler nach Anspruch 1, dadurch gekennzeichnet, daß eine metallische Hülse (34) vorgesehen ist, in der das Sensorelement (13) mittels der Glaseinschmelzung (35) befestigt ist, so daß Sensorelement (13) und metallische Hülse (34) eine Baueinheit bilden.
3. Meßfühler nach Anspruch 2, dadurch gekennzeichnet, daß die metallische Hülse (34) einen ringförmigen Kragen (36) aufweist, der über einen am Gehäuse (11) angeformten ringförmigen Rand (14) greift, und daß die metallische Hülse (34) mit dem Kragen (36) mit dem Gehäuse (11) gasdicht verschweißt ist.
4. Meßfühler nach Anspruch 3, dadurch gekennzeichnet, daß über den ringförmigen Kragen (36) eine anschlußseitige Umkapselung (20) gelegt ist und daß die Umkapselung (20) zusammen mit der metallischen Hülse (34) mit dem Gehäuse (11) verschweißt ist.
5. Meßfühler nach Anspruch 2, dadurch gekennzeichnet, daß ein keramischer Dichtring (33) vorgesehen ist, der zwischen Sensorelement (13) und metallischer Hülse (34) angeordnet ist, und daß die Glaseinschmelzung (35) zwischen Sensorelement (13) und keramischem Dichtring (33) sowie zwischen keramischem Dichtring (33) und metallischer Hülse (34) eingebracht ist.
6. Meßfühler nach Anspruch 5, dadurch gekennzeichnet, daß der keramische Dichtring (33) aus Forsterit besteht.
7. Meßfühler nach Anspruch 5, dadurch gekennzeichnet, daß die Glaseinschmelzung (35) durch Einbringen von Glaspulver in die Spalten zwischen Sensorelement (13) und keramischem Dichtring (33) sowie zwischen keramischem Dichtring (33) und metallischer Hülse (34) herstellbar ist, wobei das Glaspulver durch eine thermische Behandlung in den schmelzflüssigen Zustand überführbar ist.
8. Meßfühler nach Anspruch 5, dadurch gekennzeichnet, daß der keramische Dichtring (33) zumindest an seiner inneren und äußeren Mantelfläche mit einer Glasschicht versehen ist, wobei die Glasschicht durch eine thermische Behandlung über die schmelzflüssige Phase eine Verbindung mit dem Sensorelement (13) einerseits und der metallischen Hülse (34) andererseits eingeht.
9. Meßfühler nach Anspruch 5, dadurch gekennzeichnet, daß das Gehäuse (11) einen Dichtsitz (16) aufweist, auf dem ein druckverteilender Dichtring (38) aufliegt, auf dem der keramische Dichtring (33) aufsitzt.
10. Meßfühler nach Anspruch 9, dadurch gekennzeichnet, daß der druckverteilende Dichtring (38) ein aus Steatit-Pulver gepreßter Ring ist.
11. Meßfühler nach Anspruch 1, dadurch gekennzeichnet, daß die Glaseinschmelzung (35) ein Bariumsilikatglas ist.
EP95941593A 1995-01-04 1995-12-18 Elektrochemischer messfühler Withdrawn EP0748442A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19500147A DE19500147A1 (de) 1995-01-04 1995-01-04 Elektrochemischer Meßfühler
DE19500147 1995-01-04
PCT/DE1995/001809 WO1996021148A1 (de) 1995-01-04 1995-12-18 Elektrochemischer messfühler

Publications (1)

Publication Number Publication Date
EP0748442A1 true EP0748442A1 (de) 1996-12-18

Family

ID=7751002

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95941593A Withdrawn EP0748442A1 (de) 1995-01-04 1995-12-18 Elektrochemischer messfühler

Country Status (5)

Country Link
US (1) US5755941A (de)
EP (1) EP0748442A1 (de)
JP (1) JPH09510299A (de)
DE (1) DE19500147A1 (de)
WO (1) WO1996021148A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19735559A1 (de) * 1997-08-16 1999-02-18 Bosch Gmbh Robert Gasmeßfühler
JP3648381B2 (ja) * 1998-06-04 2005-05-18 日本特殊陶業株式会社 ガスセンサ及びその製造方法
JP3994561B2 (ja) * 1998-08-12 2007-10-24 株式会社デンソー ガスセンサ
DE19937160C2 (de) * 1999-08-06 2003-07-10 Bosch Gmbh Robert Gassensor, insbesondere für Abgase von Brennkraftmaschinen, und Verfahren zu dessen Herstellung
DE10123168C1 (de) * 2001-05-12 2002-11-07 Bosch Gmbh Robert Dichtungsanordnung für einen Gasmeßfühler und Verfahren zur Herstellung der Dichtungsanordnung
DE10222789B4 (de) * 2002-05-23 2006-12-07 Robert Bosch Gmbh Gasmeßfühler
JP4068426B2 (ja) * 2002-09-30 2008-03-26 日本特殊陶業株式会社 センサおよびセンサ製造方法
DE10259524B4 (de) * 2002-12-19 2006-07-20 Robert Bosch Gmbh Gasmessfühler
DE102005051704A1 (de) * 2005-10-28 2007-05-03 Robert Bosch Gmbh Gasmessfühler und Verfahren zur Herstellung des Gasmessfühlers
US8658013B2 (en) * 2005-12-01 2014-02-25 Delphi Technologies, Inc. Sensor and sensing method
DE102006015427B3 (de) * 2006-03-31 2007-11-29 Anton Gensler Gmbh Messfühler für Hochtemperaturanwendungen
JP4018733B2 (ja) * 2006-11-16 2007-12-05 日本特殊陶業株式会社 ガスセンサ
US20080118423A1 (en) * 2006-11-17 2008-05-22 Fattic Gerald T Closed loop control of air/fuel ratio in a reformer for modulating diesel exhaust
DE102010050802A1 (de) 2010-11-09 2012-05-10 Tesona Gmbh & Co. Kg Messfühleranordnung zur Bestimmung mindestens einer Messgröße
JP6796462B2 (ja) * 2016-11-16 2020-12-09 東京窯業株式会社 固体電解質センサ及び固体電解質センサの製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2343428A1 (de) * 1972-03-10 1975-03-13 Bosch Gmbh Robert Elektrochemischer messfuehler fuer die bestimmung des sauerstoffgehaltes in abgasen, insbesondere in abgasen von verbrennungsmotoren
FR2215873A6 (de) * 1973-01-30 1974-08-23 Bosch Gmbh Robert
DE2343429A1 (de) * 1973-08-29 1975-03-13 Bosch Gmbh Robert Elektrochemischer messfuehler
DE2632249C3 (de) * 1976-07-17 1981-05-14 Brown, Boveri & Cie Ag, 6800 Mannheim Elektrochemischer Meßfühler
US4119513A (en) * 1977-03-07 1978-10-10 Uop Inc. Oxygen sensor for industrial air/fuel control
JPS5417414A (en) * 1977-07-08 1979-02-08 Nippon Soken Inc Exhaust gas purifying system
US4184934A (en) * 1978-09-13 1980-01-22 The Bendix Corporation Protective shield having omni-directional diverter for sensing means
US4229275A (en) * 1979-07-09 1980-10-21 Uop Inc. Solid electrolyte oxygen sensor and method of making same
DE3405162A1 (de) * 1984-02-14 1985-08-22 Bosch Gmbh Robert Polarographischer sauerstoffmessfuehler
JPS60183857U (ja) * 1984-05-07 1985-12-06 株式会社デンソー 酸素濃度検出器
JPH0754313B2 (ja) * 1984-09-14 1995-06-07 株式会社日立製作所 酸素濃度検出器
US4818364A (en) * 1987-04-13 1989-04-04 Allied-Signal Inc. Terminal member for 02 sensor
AU614392B2 (en) * 1988-10-31 1991-08-29 Fujikura Ltd. An oxygen sensor device
DE3922331C2 (de) * 1989-07-07 1998-12-03 Bosch Gmbh Robert Gasmeßfühler
JP2708915B2 (ja) * 1989-11-25 1998-02-04 日本特殊陶業株式会社 ガス検出センサ
EP0520528A1 (de) * 1991-06-10 1992-12-30 General Motors Corporation Elektrochemische Sauerstoffsonde für Auspuffgase mit verbesserter keramischer Dichtung
DE4318789A1 (de) * 1993-06-05 1994-12-08 Bosch Gmbh Robert Dichtung für ein Sensorelement eines Gassensors
DE4342731B4 (de) * 1993-07-27 2004-09-09 Robert Bosch Gmbh Elektrochemischer Meßfühler mit einem potentialfrei angeordneten Sensorelement und Verfahren zu seiner Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9621148A1 *

Also Published As

Publication number Publication date
JPH09510299A (ja) 1997-10-14
US5755941A (en) 1998-05-26
WO1996021148A1 (de) 1996-07-11
DE19500147A1 (de) 1996-07-11

Similar Documents

Publication Publication Date Title
EP0701693B1 (de) Gassensor
WO1996021148A1 (de) Elektrochemischer messfühler
DE3017947C2 (de)
WO1994029710A9 (de) Dichtung für ein sensorelement eines gassensors
DE2937048A1 (de) Elektrochemischer messfuehler fuer die bestimmung des sauerstoffgehaltes in gasen, insbesondere in abgasen von brennkraftmaschinen
DE2452924B2 (de) Elektrochemischer Meßfühler
DE10324956A1 (de) Messfühler
EP0714509B1 (de) Elektrochemischer messfühler
EP0133486A1 (de) Gasmessfühler
WO1998019154A1 (de) Messeinrichtung
EP1047932B1 (de) Gassensor mit dichtung und verfahren zu dessen herstellung
DE19641809C2 (de) Dichtelement für Meßfühler
DE102004063085A1 (de) Gasmessfühler
WO2006056493A1 (de) Gasmessfühler enthaltend ein schutzrohr
DE3035608A1 (de) Elektrochemischer messfuehler zur bestimmung des sauerstoffgehaltes in gasen
DE10359946A1 (de) Gassensor mit verbessertem Aufbau für Einbau von Schutzabdeckung
DE19534918C2 (de) Sensor zur Messung von Gaskonzentrationen
DE102008043219A1 (de) Gassensor
DE19803334A1 (de) Gasmeßfühler, insbesondere zur Bestimmung des Sauerstoffgehaltes in Abgasen von Brennkraftmaschinen
WO1998015819A1 (de) Dichtelement für messfühler und verfahren zu seiner herstellung
DE2350253B2 (de) Elektrochemischer Meßfühler
DE19523903A1 (de) Elektrochemischer Meßfühler
WO1997004306A1 (de) Sensor zur messung von gaskonzentrationen
DE4435885A1 (de) Elektrochemischer Meßfühler und Verfahren zu seiner Herstellung
DE102012201977A1 (de) Sensor und Verfahren zum Bestimmen einer Konzentration eines Bestandteils eines zu analysierenden Fluids

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19970113

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20010703