EP0701519A1 - Embarcation a propulsion musculaire - Google Patents

Embarcation a propulsion musculaire

Info

Publication number
EP0701519A1
EP0701519A1 EP95902829A EP95902829A EP0701519A1 EP 0701519 A1 EP0701519 A1 EP 0701519A1 EP 95902829 A EP95902829 A EP 95902829A EP 95902829 A EP95902829 A EP 95902829A EP 0701519 A1 EP0701519 A1 EP 0701519A1
Authority
EP
European Patent Office
Prior art keywords
boat
blades
propulsion
flotation
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95902829A
Other languages
German (de)
English (en)
Inventor
Rodolphe Proverbio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0701519A1 publication Critical patent/EP0701519A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/30Propulsive elements directly acting on water of non-rotary type
    • B63H1/36Propulsive elements directly acting on water of non-rotary type swinging sideways, e.g. fishtail type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H16/00Marine propulsion by muscle power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H16/00Marine propulsion by muscle power
    • B63H16/08Other apparatus for converting muscle power into propulsive effort
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H16/00Marine propulsion by muscle power
    • B63H2016/005Marine propulsion by muscle power used on vessels dynamically supported, or lifted out of the water by hydrofoils

Definitions

  • the present invention relates to a muscular propulsion boat comprising flotation and propulsion means having at least two blades. These blades can be in one piece or in some cases in two symmetrical parts but connected by the same axis which makes them so united that we consider them as a single blade although in two parts.
  • this invention relates to a muscular propulsion boat comprising flotation and propulsion means having at least two rigid blades relative to the forces to which they are intended to be subjected, characterized in that the front edges of these blades are articulated along respective axes transverse to the axis of propulsion of the boat, which are spaced from each other along said axis of propulsion, on either side of the center of gravity of the boat, each of these blades extending symmetrically to said axis of propulsion, abutment means being intended to limit the angle of freedom of each blade around its axis of articulation and in that the volume of water capable of being displaced by immersion of said flotation means is chosen to correspond to 1 to 2 times, preferably 1.2 to 1.5 times the total loaded weight of the boat, so as to allow its passenger to print at the emb arcation a sinusoidal immersion / emersion movement by pitching the latter and thereby making the blades work in phase opposition between said stops, these flotation means having bearing surfaces for the feet distributed around the center of
  • the advantage of this boat comes from two elements which, in combination, allow to considerably improve the propulsion efficiency.
  • One of these elements is the use of rigid blades articulated freely between two stops which is a simple and effective system
  • the other is the use of flotation means which allow, following the movement of pitch communicated to the boat to give it a sinusoidal immersion / emersion movement. Thanks to this movement the two blades located on either side of the center of gravity of the boat work in phase opposition, but produce forces directed alternately upwards and downwards which each have a component in the direction of propulsion.
  • the sinusoid can have a large amplitude so that the dead times during which the phase reversal occurs of the blades which rock from one stop to the other represent only a small proportion of the total propulsion movement.
  • this blade tilting phase does not constitute a loss of efficiency because the vertical force directed downwards or upwards is exerted at this moment empty (it only takes a slope part of the force to cause the tilting itself). Not encountering resistance, the speed of movement increases and when arriving at the stop at higher speed, the force is restored.
  • each user can adjust the buoyancy of their boat according to their weight and muscular strength, which makes it possible to obtain sinusoidal immersion / emersion movements of greater or lesser amplitude.
  • FIGURE 1 is a plan view of the first embodiment.
  • FIGURE 2 is a longitudinal sectional view of FG.1 according to section AA '.
  • FIGURE 3 is an elevational view of the boat carrying a passenger.
  • FIGURES 4a to 4d are side elevational views of this boat showing four phases of the sinusoidal immersion movement.
  • FIGURE 5 is a plan view of the second embodiment.
  • FIGURE 6 is a sectional view along V-V of Figure 5.
  • FIGURES 7a and 7b are elevation views of the boat carrying a passenger, in the two support phases.
  • FIGURES 8a to 8d are four elevation views of the FIG boat. 5 showing the different phases of the sinusoidal movement.
  • FIGURE 9 is a view of a third embodiment.
  • FIGURE 10 is a sectional view along VI-VI of FIG. 9.
  • FIGURES 11a to 11d are four elevation views of the FIG boat. 9 showing the different phases of the sinusoidal movement.
  • FIGURES 1 and 2 illustrate a boat comprising a central buoyancy body 1 to which two blades 2 and 3 are hinged by their respective front edges. These blades extend transversely and are located respectively in front of and behind the center of gravity of the boat.
  • FIGURE 2 we have located the axes of the front and rear blades on the central longitudinal axis of the float but these axes can be outside this alignment, in particular lowered so that the blades remain well submerged during work for r avoid cavit ation phenomena
  • the buoyancy body contains a free volume 4 which can be accessed by a shutter 5, making it possible to adjust the buoyancy coefficient of the boat by means of an appropriate ballast, for example water.
  • the ballast is preferably formed by a liquid phase, a solid phase divided into particles, preferably in the form of beads or a mixture of the two. This allows it to fulfill two functions.
  • One used to adjust the buoyancy of the boat, the other thanks to the mobility of the ballast allowing, by accompanying the oscillating movement of the boat, to amplify this movement and thus to reduce muscular effort or increase its yield by moving freely in free volume 4, as a flyweight would do.
  • its shape and volume can be studied with a view to optimizing the amplifying effect of the ballast. This is how this shape and this volume can be studied with a view to creating zones capable of controlling the flow of the liquid or of the beads or of their mixture inside the volume in order to maximize the effect.
  • the mass of the ballast in motion on the propulsion of the boat.
  • the mass of the ballast can be adjusted according to the desired behavior of the boat. It can be weighed down for long distances by reducing muscular effort. It can be lightened to make the boat more manageable.
  • the blades have a density close to that of water so that being submerged they do not go up or down by their own fact.
  • the front blade 2 has a cutout 7 whose front edge 7a serves as an axis and is engaged in a groove 6 formed towards the front of the float and whose rear edge 7b can be formed by an attached rod engaged in an opening 8 in arc.
  • Two stops 9a and 9b constituted for example by adjustable screws serve to limit the angle of freedom of the blade 2. Any other arrangement aimed at producing the same effect can be envisaged, in particular the elimination of the arm 7b and of the opening 8.
  • the stops can then be constituted by lateral projections formed on the float.
  • the groove 6 may be a hole.
  • the rear blade 3 is articulated between two preferably adjustable stops 10a and 10b secured to the central buoyancy body 1.
  • Spring blades for these blades, ngides and pivoting as before, the stops are replaced by return springs or elastic blocks, either wound around the articulation axis, or directly connecting the blades to the float. Such blades, honzontales at rest, pivot under the vertical forces Ff. Fr. by compressing the springs and taking approximately the same propulsive positions as they previously took on the stops. During the next phase the springs restore part of the stored force.
  • Semi rigid rigid blades These blades have elasticity to transverse pressure and flexibility increasing from front to back. These blades can be made of a reinforcing fiber - polymer material composite, the fabric layers of which decrease from front to back, but also of any elastic material having a decreasing profile and a suitable modulus of elasticity. Such blades can be pivoted between two stops or fixed, their front axis no longer pivoting and their progressive elasticity profile being calculated so that the rear part takes a correct propulsive inclination during vertical thrusts Ff. Fr.
  • the buoyancy coefficient of the boat is adjusted between 1 and 2, that is to say so that the volume of water moves is between 1 and 2 times the total weight of the boat. preferably between 1.2 and 1.5 times depending on the muscular strength of the user and the desired amplitude of the dive.
  • FIGURE 4a shows the boat in an apogee position of its sinusoidal movement, where the positions of the blades 2 and 3 are reversed, the blade 2 tilting in the direction of the arrow F1 and the blade 3 in the direction of the arrow F2. This is the top dead time of the sinusoidal movement.
  • FIGURE 4b shows the sinusoidal downward immersion movement, with the blades 2 and 3 in high and low stops respectively. Each produces a force perpendicular to its plane with a component in the direction of propulsion. This component is all the greater the greater the angle made by the blade with the direction of propulsion.
  • FIGURE 4c shows the perigee of the sinusoidal movement at the moment when the blade 2 rocks in a clockwise direction towards the bottom stop while the rear blade has already tilted into the top stop and is exerting its thrust. It can therefore be seen that the dead moments of the two blades do not completely coincide so that the boat receives almost constantly a propelling force.
  • FIGURE 4d shows the boat in the ascending phase of the sinusoidal movement where the two blades 2 and 3, working in phase opposition, generate two propulsive forces which add up.
  • the sinusoidal movement of the boat is generated by applying, alternately releasing the weight of the passenger's body at the locations of the arrows Ff. and Fr. who are sometimes dinging down or up depending on whether the passenger weighs with all his weight on a point and pushes it or else by pressing alternately on the other point the first goes up under the effect of the Archimede thrust and rocking game due to the fact that the buoyancy is greater than 1 and preferably 1.2.
  • the passenger can hold onto a rope 11 fixed to the front of the boat.
  • the turning radius of the boat depends on the angle of movement of the foot (s).
  • the rear blade 3 is brought out more or less from the water, so that it no longer stabilizes the direction of the boat which allows a rotation practically on the spot and on the desired angle.
  • the position of the axis of oscillation 6 of the front blade 2 is of great importance.
  • the second embodiment of the boat according to FIGURES 5 to 8 differs essentially from the previous one in that the flotation element is essentially constituted by the blades themselves 12 and 13, the element which connects them 14 carrying the transverse joints 15 and 16 of the two blades 12 and 13. As in the previous embodiment, two stops 18a, 18b, 19a, 19b serve to limit the amplitude of movement of the blades 12 and 13.
  • these stops can be replaced by return spring systems whose force is calculated so that the blades 12 and 13 take approximately the same propulsive inclination as they took on the stops during the vertical thrusts Ff. and Fr.
  • a ballast is also provided in each blade to adjust the buoyancy of the boat to the weight of the passenger.
  • the propulsion itself is provided exactly according to the same principle as in the case of the first embodiment as can be seen with the aid of FIGURES 8a to 8d which do not require additional explanations.
  • FIGURES 9, 10, 11 comprises a sort of floating mat consisting of four floating elements 20, 21, 22, 23 articulated to each other with limited degrees of freedom with respect to each other
  • FIGURES 11a to 11 d show the different phases of the sinusoidal movement with the resulting propulsion forces.
  • the float may have for a passenger of 60/70 kg, about 1.8 m in length, 50 cm wide at the mast, 28 cm maximum thickness for a volume d '' about 100 liters Front blade area about 0.50 m 2 Rear blade area about 0.25 m 2 .
  • the bearing face of the feet on the surface of the float will be designed to allow their angular displacement in order to steer and propel the boat as previously explained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Toys (AREA)
  • Cleaning Or Clearing Of The Surface Of Open Water (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Embarcation comprenant des moyens de flottaison (1) et de propulsion comprenant ici deux pales (2, et 3) articulées au corps flottant. Celui-ci présente un coefficient de flottabilité tel que le volume d'eau déplacé en position d'immersion corresponde à 1 à 2 fois le poids total en charge de l'embarcation. Ceci permet de donner, par un mouvement de tangage, un mouvement d'immersion/émersion sinusoïdal à l'embarcation et de faire ainsi osciller les pales (2 et 3) autour de leurs articulations respectives entre des butées, communiquant ainsi à l'embarcation une poussée dans la direction de propulsion.

Description

EMBARCATION A PROPULSION MUSCULAIRE
La présente invention se rapporte à une embarcation à propulsion musculaire comprenant des moyens de flottaison et de propulsion présentant au moins deux pales.Ces pales peuvent être d'un seul tenant ou dans certains cas en deux parties symétriques mais reliées par le même axe qui les rend solidaires si bien que nous les considérons comme une seule pale bien qu'en deux parties.
Il existe une quantité d'embarcations de ce type, tout au moins dans la littérature, aucune d'elles, pour ainsi dire n'ayant connu un succès commercial tant le rendement énergétique est mauvais et souvent la gestuelle ingrate, en sorte que le public leur préfère des embarcations plus classiques telles que les barques à rames ou les pédalos. La recherche de la présente invention a porté sur trois points : d'abord sur un geste sportif ludique, équilibrant et capable de donner le sens de l'eau, ensuite sur l'améhorahon sensible du rendement énergétique et enfin sur un type de fonctionnement original consistant à faire plonger l'embarcation sous l'eau pour la faire ensuite remonter selon une trajectoire sinusoïdale constamment propulsive. A cet effet cette invention a pour objet une embarcation à propulsion musculaire comprenant des moyens de flottaison et de propulsion présentant au moins deux pales rigides par rapport aux efforts auxquels elles sont destinées à être soumises, caractérisée en ce que les bords avants de ces pales sont articulés selon des axes respectifs transversaux à l'axe de propulsion de l'embarcation, qui sont espacés l'un de l'autre le long dudit axe de propulsion, de part et d'autre du centre de gravité de l'embarcation, chacune de ces pales s'étendant symétriquement au dit axe de propulsion, des moyens de butée étant destinés à limiter l'angle de liberté de chaque pale autour de son axe d'articulation et en ce que le volume d'eau susceptible d'être déplacé par immersion desdits moyens de flottaison est choisi pour correspondre à 1 à 2 fois, de préférence 1,2 à 1,5 fois le poids total en charge de l'embarcation, de manière à permettre à son passager d'imprimer à l'embarcation un mouvement d'immersion/émersion sinusoïdal par tangage de celle-ci et de faire ainsi travailler les pales en opposition de phase entre lesdites butées, ces moyens de flottaison présentant des surfaces d'appui pour les pieds reparties autour du centre de gravité de l'embarcation. L'avantage de cette embarcation provient de deux éléments qui, en combinaison, permettent d'améliorer considérablement le rendement de propulsion. L'un de ces éléments est l'utihsation de pales rigides articulées librement entre deux butées ce qui est un système simple et efficace, l'autre est l'utilisation de moyens de flottaison qui permettent, suite au mouvement de tangage communiqué a l'embarcation de lui imprimer un mouvement d'immersion/émersion sinusoïdal. Grâce à ce mouvement les deux pales situées de part et d'autre du centre de gravité de l'embarcation travaillent en opposition de phase, mais produisent des forces dirigées alternativement vers le haut et vers le bas qui ont chacune une composante dans la direction de propulsion. La sinusoïde peut avoir une grande amplitude de sorte que les temps morts pendant lesquels se produit l'inversion de phase des pales qui basculent d'une butées à l'autre ne représentent qu'une faible proportion du mouvement total de propulsion.De toutes façons cette phase de basculement des pales ne constitue pas une perte de rendement car la force verticale dirigée vers le bas ou vers le haut s'exerce à ce moment-là à vide (il ne faut qu'une pente partie de la force pour provoquer le basculement lui-même). Ne rencontrant pas de résistance, la vitesse du mouvement augmente et lors de l'arrivée en butée à vitesse plus grande, la force est restituée. De plus, chaque utilisateur peut ajuster la capacité de flottabilité de son embarcation en fonction de son poids et de sa force musculaire, ce qui permet d'obtenir des mouvements d'immersion/émersion sinusoïdaux de plus ou mois grande amplitude.
Les dessins annexés illustrent, schématiquement et à titre d'exemple trois formes d'exécution de l'embarcation objet de la présente invention.
La FIGURE 1 est une vue en plan de la première forme d'exécution. La FIGURE 2 est une vue en coupe longitudinale de la FG.1 selon la coupe AA'.
La FIGURE 3 est une vue en élévation de l'embarcation portant un passager.
Les FIGURES de 4a à 4d sont des vues en élévation latérales de cette embarcation montrant quatre phases du mouvement d'immersion sinusoïdal.
La FIGURE 5 est une vue en plan de la deuxième forme d'exécution. La FIGURE 6 est une vue en coupe selon V-V de la figure 5.
Les FIGURES de 7a et 7b sont des vues en élévation de l'embarcation portant un passager, dans les deux phases d'appui.
Les FIGURES de 8a à 8d sont quatre vue en élévation de l'embarcation de la FIG. 5 montrant les différentes phases du mouvement sinusoïdal. La FIGURE 9 est une vue d'une troisième forme d'exécution.
La FIGURE 10 est une vue en coupe selon VI-VI de la FIG. 9.
Les FIGURES de 11a à 11d sont quatre vues en élévation de l'embarcation de la FIG. 9 montrant les différentes phases du mouvement sinusoïdal.
Les FIGURES 1 et 2 illustrent une embarcation comprenant un corps de flottaison central 1 auquel sont articulées deux pales 2 et 3 par leurs bords avant respectifs. Ces pales s'étendent transversalement et se situent respectivement en avant et en arri re du centre de gravité de l'embarcation. Dans la FIGURE 2 nous avons situé les axes des pales avant et arrière sur l'axe central longitudinal du flotteur mais ces axes peuvent être en dehors de cet alignement notamment abaissés de manière à ce que les pales restent bien immergées en cours de travail pou r éviter des phéno mènes de cavit ation
Le corps de flottaison renferme un volume libre 4 auquel on peut accéder par un obturateur 5, permettant d'ajuster le coefficient de flottabilité de l'embarcation au moyen d'un ballast approp rié, par exemple de l'eau.
Le ballast est de préférence formé par une phase liquide, une phase solide divisée en particules, de préférence, sous forme de billes ou d'un mélange des deux. Ceci lui permet de remplir deux fonctions . L'une servant à régler la flottabilité de l'embarcation, l'autre grâce à la mobilité du ballast permettant, en accompagnant le mouvement oscillant de l'embarcation, d'amplifier ce mouvement et de diminuer ainsi l'effort musculaire ou d'augmenter son rendement en se déplaçant librement dans le volume libre 4, comme le ferait une masselotte. Bien entendu, la forme et le volume de celui-ci pourront être étudies en vue d'optimiser l'effet amplificateur du ballast. C'est ainsi que cette forme et ce volume peuvent être étudiés en vue de créer des zones susceptibles de contrôler l'écoulement du liquide ou des billes ou de leur mélange à l'intérieur du volume en vue d'accroître au maximum l'effet de la masse du ballast en mouvement sur la propulsion de l'embarcation. La masse du ballast peut être ajustée en fonction du comportement souhaité de l'embarcation . On peut l'alourdir pour parcounr de longues distances en réduisant l'effort musculaire. On peut l'alléger pour rendre l'embarcation plus maniable.
Les pales ont une densité voisine de celle de l'eau de sorte qu'étant immergées elles ne montent ni ne descendent de leur propre fait. La pale avant 2 présente une découpe 7 dont le bord avant 7a sert d'axe et est engagé dans une gorge 6 ménagée vers l'avant du flotteur et dont le bord arnère 7b peut être formé par une tige rapportée engagée dans une ouverture 8 en arc de cercle. Deux butées 9a et 9b constituées par exemples par des vis réglables servent à limiter l'angle de liberté de la pale 2 . Tout autre agencement visant à produire le même effet peut être envisagé notamment la suppression du bras 7b et de l'ouverture 8. Les butées peuvent être alors constituées par des saillies latérales ménagées sur le flotteur. La gorge 6 peut être un trou.
La pale arnère 3 est articulée entre deux butées de préférence réglables 10a et 10b solidaires du corps de flottaison central 1 .
En ce qui concerne les pales nous avons expénmenté d'autres formules que celle cidessus exposée. Ces formules utilisent l'élasticité contrôlée des matériaux ce qui peut avoir certains avantages notamment une nage moins heurtée de l'embarcation, mais en général le rendement énergétique est moins bon du fait qu'un système élastique ne rend qu'une partie de l'énergie qu'il reçoit.
Pales à ressort : pour ces pales , ngides et pivotantes comme précédemment , les butées sont remplacées par des ressorts de rappel ou blocs élastiques, soit enroulés autour de l'axe d'articulation, soit reliant directement les pales au flotteur. De telles pales, honzontales au repos , pivotent sous les forces verticales Ff. Fr. en compnmant les ressorts et prennent approximativement les mêmes positions propulsives qu'elles prenaient précédemment sur les butées. Lors de la phase suivante les ressorts restituent une partie de la force emmagasinée. Pales semi rigides élastiques : Ces pales présentent une élasticité à la pression transverse et une flexibilité augmentant de l'avant vers l'arrière. Ces pales peuvent être en composite fibre de renfort - matière polymère dont les couches de tissu décroissent de l'avant vers l'arrière mais aussi en toute matière élastique présentant un profil décroissant et un module d'élasticité adapté. De telles pales peuvent être pivotantes entre deux butées ou fixes, leur axe avant n'étant plus pivotant et leur profil d'élasticité progressive étant calculé pour que la partie arnère prenne une inclinaison propulsive correcte lors des poussées verticales Ff. Fr.
Le coefficient de flottabilité de l'embarcation est ajusté entre 1 et 2 , c'est à dire pour que le volume d'eau déplace soit entre 1 et 2 fois le poids total en charge de l'embarcation. de préférence entre 1,2 et 1,5 fois suivant la force musculaire de l'utilisateur et l'amplitude recherchée de la plongée.
La FIGURE 4a montre l'embarcation dans une position d'apogée de son mouvement sinusoïdal, où les positions des pales 2 et 3 s'inversent , la pale 2 basculant dans le sens de la flèche F1 et la pale 3 dans le sens de la flèche F2. Il s'agit là du temps mort haut du mouvement sinusoïdal.
La FIGURE 4b montre le mouvement sinusoïdal d'immersion descendant, avec les pales 2 et 3 en butée haute respectivement basse. Chacune produit une force perpendiculaire à son plan avec une composante dans la direction de propulsion. Cette composante est d'autant plus grande que l'angle que fait la pale avec la direction de propulsion est grand.
La FIGURE 4c montre le périgée du mouvement sinusoïdal au moment ou la pale 2 bascule dans le sens des aiguilles de la montre vers la butée basse alors que la pale arrière a déjà basculé en butée haute et exerce sa poussée. On voit donc que les moments morts des deux pales ne coïncident pas complètement de sorte que l'embarcation reçoit pratiquement constamment une force de propulsion.
Enfin la FIGURE 4d montre l'embarcation dans la phase ascendante du mouvement sinusoïdal où les deux pales 2 et 3 , travaillant en opposition de phases , engendrent deux forces de propulsion qui s'additionnent.
Bien entendu, le mouvement sinusoïdal de l'embarcation est engendré en appliquant, alternativement relâchant le poids du corps du passager aux endroits des flèches Ff. et Fr. qui sont tantôt dingées vers le bas ou vers le haut selon que le passager pèse de tout son poids sur un point et l'enfonce ou bien qu'appuyant alternativement sur l'autre point le premier remonte sous l'effet de la poussée d'Archimede et du jeu de bascule dû au fait que la flottabilité est supérieure à 1 et de préférence à 1,2. Le passager peut se tenir à une corde 11 fixée à l'avant de l'embarcation. Pour se diriger, il déplace les points d'application des forces par rapport à l'axe longitudinal A-A' en les faisant pivoter autour du centre de gravité, dans le sens des aiguilles d'une montre pour virer à gauche et en sens inverse pour virer à droite, changeant la direction de poussée des pales 2 et 3 par rapport à l'axe longitudinal A-A'. En pratique, il s'avère que le pied arrière n'a pas besoin de se déplacer sauf lors d'un déplacement angulaire important du pied avant qui ne permettrait alors plus de tenir l'équilibre sur le flotteur.
Le rayon de virage de l'embarcation dépend de l'angle de déplacement du ou des pieds. Plus le pied avant est excentré par rapport à l'axe longitudinal, plus les pales 2 et 3 sont inclinées et font déraper l'avant, donc plus le virage est serré. En outre, en exerçant une forte poussée sur le pied avant décalé angulairement par rapport à l'axe longitudinal A-A', on fait sortir la pale arrière 3 plus ou moins de l'eau, de sorte qu'elle ne stabilise plus la direction de l'embarcation ce qui permet d'effectuer une rotation pratiquement sur place et sur l'angle désiré. Concernant la direction, il faut encore signaler que la position de l'axe d'oscillation 6 de la pale avant 2 a une grande importance. Dans le sens longitudinal, plus il est vers l'avant, plus la pale est propulsive, mais plus il rend le virage difficile Inversement plus on le rapproche du centre de gravité moins la pale est propulsive mais plus le virage est facile. Dans le sens vertical, plus il est près de l'axe longitudinal passant par le centre de gravité, plus la stabilité est grande mais il est alors difficile d'incliner les pales latéralement pour virer. Inversement , si l'on abaisse la position, la stabilité diminue mais le virage est plus facile. La seconde forme d'exécution de l'embarcation selon les FIGURES 5 à 8 diffère essentiellement de la précédente par le fait que l'élément de flottaison est essentiellement constitué par les pales elles mêmes 12 et 13, l'élément qui les relie 14 portant les articulations 15 et 16 transversales des deux pales 12 et 13 . Comme dans la forme d'exécution précédente, deux butées 18a, 18b, 19a, 19b servent à limiter l'amplitude de déplacement des pales 12 et 13 .
De même ces butées peuvent être remplacées par des systèmes de ressorts de rappel dont la force est calculée en sorte que les pales 12 et 13 prennent approximativement la même inclinaison propulsive qu'elles prenaient sur les butées lors des poussées verticales Ff. et Fr. .
Un ballast est également prévu dans chaque pale pour ajuster la flottabilité de l'embarcation au poids du passager.
La direction s'obtient de la même manière
La propulsion elle-même est assurée exactement selon le même principe que dans le cas de la première forme d'exécution comme on peut s'en rendre compte a l'aide des FIGURES 8a à 8d qui ne réclament pas d'explications supplémentaires.
Enfin la forme d'exécution des FIGURES 9, 10, 11 comporte une sorte de tapis flottant constitué de quatre éléments flottants 20, 21, 22, 23 articulés les uns aux autres avec des degrés de liberté limités les uns par rapport aux autres
Etant donné que le nombre d'éléments articulés est supérieur à trois et que de ce fait deux pieds ne peuvent pas tous les contrôler, il faut faire en sorte que le tapis flottant ne puisse pas se mettre dans une position de blocage où la propulsion serait neutralisée. Dans ce cas et pour empêcher qu'une telle situation ne se produise, les articulations sont pourvues de lames de ressort 24 dessus et dessous tendant à ramener deux éléments articulés l'un par rapport à l'autre. Les FIGURES 11a à 11 d montrent les différentes phases du mouvement sinusoïdal avec les forces de propulsion résultantes.
Il faut encore signaler que la forme et la longueur du flotteur entrent en ligne de compte dans le comportement de l'embarcation
Dans tous les cas , la meilleure hydrodynamique est recherché et le volume de l'embarcation étant lié au poids du passager, il existera plusieurs tailles de chaque modèle.
A titre d'exemple dans la première forme d'exécution le flotteur peut avoir pour un passager de 60 / 70 kg, environ 1.8 m de longueur, 50 cm de large au maître- bau, 28 cm d'épaisseur maximum pour un volume d'environ 100 litres Surface de la pale avant environ 0.50 m2 Surface de la pale arrière environ 0,25 m2.
Tous ces chiffres pouvant varier dans de grandes proportions selon le but recherché
(vitesse, stabilité, gestuelle sportive )
En outre, il est avantageux d'assurer un appui sans glissement des pieds sur le flotteur A cet effet, on pourra par exemple appliquer un revêtement antidérapant et munir le flotteur de sangles de fixation
Bien entendu, la face d'appui des pieds à la surface du flotteur sera conçue pour permettre leur déplacement angulaire afin de diriger et de propulser l'embarcation comme explique précédemment.

Claims

REVENDICATIONS
1- Embarcation à propulsion musculaire comprenant des moyens de flottaison et de propulsion présentant au moins deux pales ngides par rapport aux efforts auxquels elles sont destinées à être soumises, caractérisée en ce que les bords avants de ces pales sont articulés selon des axes respectifs transversaux à l'axe de propulsion de l'embarcation, qui
sont espacés l'un de l'autre le long dudit axe de propulsion, de part et d'autre du centre de gravité de l'embarcation, chacune de ces pales s'étendant symétriquement au dit axe de propulsion, des moyens de butée étant destinés à limiter l'angle de liberté de chaque pale autour de son axe d'articulation et en ce que le volume d'eau susceptible d'être déplacé par immersion desdits moyens de flottaison est choisi pour correspondre à 1 à 2 fois, de préférence 1,2 à 1,5 fois le poids total en charge de l'embarcation, de manière à permettre à son passager d'imprimer à l'embarcation un mouvement d'immersion/émersion sinusoïdal par tangage de celle-ci et de faire ainsi travailler les pales en opposition de phase entre lesdites butées, ces moyens de flottaison présentant des surfaces d'appui pour les pieds réparties autour du centre de gravité de l'embarcation.
2- Embarcation selon la revendication 1, caractérisée en ce qu'elle comporte des moyens pour varier son coefficient de flottabilité.
3- Embarcation selon la revendication 1, caractérisée en ce que les moyens de flottaison sont constitués par les pales elles mêmes.
4- Embarcation selon la revendication 3, caractérisée en ce que les pales sont articulées à un élément central
5- Embarcation selon la revendication 1, caractérisée en ce que l'embarcation forme un tapis flottant dont tous les éléments sont à la fois des moyens de flottaison et de propulsion
6- Embarcation selon la revendication 2, caractérisée en ce que lesdits moyens sont constitués par une phase liquide ou par une phase solide sous forme de billes ou d'un mélange des deux , disposée dans un volume supérieur à celui de cette phase liquide ou solide et conformée pour permettre son écoulement sous l'effet du tangage communiqué aux dits moyens de flottaison.
7- Embarcation selon la revendication 1, caractérisée en ce que les surfaces d'appui pour les pieds sont réparties de manière à permettre de changer l'angle de poussée des pales par rapport à l'axe longitudinal de l'embarcation.
EP95902829A 1993-12-06 1994-12-05 Embarcation a propulsion musculaire Withdrawn EP0701519A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9314695 1993-12-06
FR9314695 1993-12-06
PCT/FR1994/001412 WO1995015882A1 (fr) 1993-12-06 1994-12-05 Embarcation a propulsion musculaire

Publications (1)

Publication Number Publication Date
EP0701519A1 true EP0701519A1 (fr) 1996-03-20

Family

ID=9453676

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95902829A Withdrawn EP0701519A1 (fr) 1993-12-06 1994-12-05 Embarcation a propulsion musculaire

Country Status (4)

Country Link
US (1) US5816871A (fr)
EP (1) EP0701519A1 (fr)
CA (1) CA2182174A1 (fr)
WO (1) WO1995015882A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5816875A (en) * 1996-01-11 1998-10-06 Bixby; John Anthony Free flow shaft-stringer
US6099369A (en) * 1996-02-12 2000-08-08 Puzey; Michael Roydon Water vehicle
US7736205B2 (en) * 2007-10-23 2010-06-15 Drew Allen Krah Human powered watercraft

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2195527A (en) * 1937-10-29 1940-04-02 Whiting Jasper Water locomotion and apparatus therefor
US3384910A (en) * 1966-07-18 1968-05-28 Union Carbide Corp Watersled
US3606859A (en) * 1968-07-10 1971-09-21 Michael D Skitsko Aquatic vehicle
US3557735A (en) * 1968-07-26 1971-01-26 Flume Stabilization Syst Moving weight ship stabilizer
SE346292B (fr) * 1969-12-02 1972-07-03 J Eriksson
FR2128898A5 (fr) * 1971-03-08 1972-10-27 Gronier Jean
DE2258044A1 (de) * 1972-01-10 1973-07-19 Walter Heinrich Wilhelm Meyer Wasserfahrzeug
US3833956A (en) * 1972-06-29 1974-09-10 J Meehan Water skate
NO143308C (no) * 1979-04-04 1981-01-14 Einar Jakobsen Boelgemotor, saerlig for fremdrift av baater.
DE3121328A1 (de) * 1981-05-29 1982-12-16 Schneider, Gerhard, 7800 Freiburg "wassersportgeraet"
DE8414746U1 (de) * 1984-05-15 1985-09-12 Hupol Plasztik Ipari Szövetkezet, Budapest Wasserfahrzeug
DE8811637U1 (de) * 1987-10-22 1988-12-08 Lewitz, Reinwald, 3100 Celle Flosse
DE4031336A1 (de) * 1990-10-04 1992-04-09 Wilhelm Knaf Tauchboot
DE4212920C2 (de) * 1992-04-15 1995-03-23 Erich Dr Ing Henker Flossenantrieb mit Muskelkraft für Wasserfahrzeuge

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9515882A1 *

Also Published As

Publication number Publication date
WO1995015882A1 (fr) 1995-06-15
US5816871A (en) 1998-10-06
CA2182174A1 (fr) 1995-06-15

Similar Documents

Publication Publication Date Title
FR2903655A1 (fr) Dispositif de stabilisation dynamique d'un engin sous-marin.
WO1980000146A1 (fr) Vehicule transformable pour usages multiples notamment pour pratiquer differents sports et loisirs
WO2004101354A2 (fr) Embarcation nautique a voile
WO1995015882A1 (fr) Embarcation a propulsion musculaire
EP0110896A1 (fr) Voilure a usage sportif et engin composite s'y rapportant.
FR2565193A1 (fr) Procede mecanique pilote de deformation laterale de la structure d'un catamaran
WO2019175067A1 (fr) Dispositif de pilotage d'une paire de skis ou d'une planche de surf
EP0613815B1 (fr) Embarcation sportive
FR2532614A1 (fr) Greement a voilure libre auto-pivotante
FR2519311A1 (fr) Procede et dispositif de reduction du couple de chavirement d'une embarcation a voile
EP0991567A1 (fr) Dispositif de stabilisation pour bateau a voile
EP3568330A1 (fr) Dispositif de pilotage d'une planche de surf
FR2618405A1 (fr) Propulseur aquatique individuel
WO1995000389A1 (fr) fMBARCATION A PROPULSION MUSCULAIRE
EP1809525B1 (fr) Vehicule amphibie propulse par la force du vent ou autre, muni de roues et d'un moyen de flottaison.
FR2829742A1 (fr) Engin aquatique du type bicyclette
FR2548621A1 (fr) Greement pour planche a voile
FR2741589A1 (fr) Embarcation notamment de loisir nautique
WO2022090634A1 (fr) Dispositif aquatique muni d'un flotteur et d'un propulseur pour un baigneur
FR2659057A1 (fr) Planche a voile.
FR2489242A1 (fr) Greement orientable pour bateau a voile
FR2830233A1 (fr) Coque pour structure navigante
FR2932772A1 (fr) Embarcation multicoques rotatives.
FR2782059A1 (fr) Embarcation propulsee par energie musculaire
FR2639017A1 (fr) Engin de navigation a voile monoplace compose de deux coques pouvant etre utilisees seules

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL

17Q First examination report despatched

Effective date: 19970204

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19981212