EP0699097B1 - Gleitkörper, insbesondere ski oder gleitkufe - Google Patents

Gleitkörper, insbesondere ski oder gleitkufe Download PDF

Info

Publication number
EP0699097B1
EP0699097B1 EP95908279A EP95908279A EP0699097B1 EP 0699097 B1 EP0699097 B1 EP 0699097B1 EP 95908279 A EP95908279 A EP 95908279A EP 95908279 A EP95908279 A EP 95908279A EP 0699097 B1 EP0699097 B1 EP 0699097B1
Authority
EP
European Patent Office
Prior art keywords
slide body
oscillation
regions
body according
anyone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95908279A
Other languages
English (en)
French (fr)
Other versions
EP0699097A1 (de
Inventor
Georg Ignatius
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0699097A1 publication Critical patent/EP0699097A1/de
Application granted granted Critical
Publication of EP0699097B1 publication Critical patent/EP0699097B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C5/00Skis or snowboards
    • A63C5/06Skis or snowboards with special devices thereon, e.g. steering devices
    • A63C5/075Vibration dampers

Definitions

  • the invention relates to a sliding body, in particular one Skis or a skid like those used in equipment and vehicles can be used, especially for snow, ice, but also Water sports.
  • the object of the invention is therefore to create in terms of the aforementioned aspects further improved sliding bodies.
  • the middle and higher frequency ranges or natural vibration frequencies and above all that Find resonance spectrum in these areas.
  • the basic idea of the invention is therefore the realization with at least one vibration-active structure Multiple natural frequencies from at least one row successive spatial or surface areas whose Vibration parameters progressively in the respective subsequent direction or degressive variant.
  • the vibration parameters specified in the form of mutual distances Sections within the successive areas or also in the form of the local mass density, bending deformation stiffness or damping within the successive Areas.
  • vibration active in the sense of Invention is an outline whose in at least one row successively, especially in mutual coupling arranged excellent or differentiated from their surroundings Areas in terms of their own vibration parameters or in terms of that is given by coupling with their environment Vibration parameters in the range of natural frequencies or the the one given as the starting object or the one with certain Characteristics of the body to be realized.
  • a quantitative one Delimitation of the vibration activity must therefore be the circumstances of the respective application. This delimitation is theoretical based on criteria known per se or can be determined mathematically or experimentally, often even immediately evident.
  • the effect of such a vibration active Outline is accordingly aimed at a desired Design of the natural frequency spectrum.
  • Target can be e.g.
  • a Compression of the natural frequencies i.e. an increase in the number of natural frequencies in a given frequency range, or the creation of new natural frequencies as well as an equalization, Increase or decrease the course of the Resonance amplitudes in one frequency range or more the same. All of this can be used for targeted influencing Sliders in terms of their sliding and running properties and / or their maneuverability or maneuverability, but also their durability against dynamic loads be used.
  • sliding bodies are generally subject to wear during operation a permanent but irregular, i.e. consistently not periodic, exposure to more or less jerky Compressive forces and / or bending and / or torsional moments. This results in a correspondingly irregular sequence of stimulated with the natural frequencies of the body.
  • Appropriate elastic deformations mostly have deeper ones Frequency ranges have undesirable effects, but are currently in to dampen these frequency ranges relatively difficult.
  • a Shifting the natural frequencies to higher frequency ranges or an increase in the resonance amplitudes in these areas suitably designed, vibration-active structures can be found here To remedy this, often with relatively little construction work.
  • the excitation energy on the part of the successive, sudden loads in one certain distribution on the natural frequencies of the body becomes.
  • a relatively large number of natural frequencies or an increased natural frequency density, as can be seen by using the Features of the invention can be easily reached, accordingly for a general reduction in the maximum vibration or deformation amplitudes are used, preferably in Connection with a shift of the vibrational energy in relatively little disruptive frequency ranges.
  • At least one sequence with is advantageous a variety of excellent areas, especially with at least 5 such areas.
  • An important feature further consists in that at least one oscillating variant row of excellent areas.
  • At least one oscillating variant row of excellent areas In particular also come with different room or structure Area-extending rows of excellent Areas into consideration.
  • the outlines with their rows of marked areas can be in at least one surface section and / or at least one wall section a cavity of the sliding body or along at least one Edge of a sliding body can be arranged distributed.
  • a further inventive idea is characterized by at least one vibrationally structured surface layer or at least one layer section, in particular in the form of a Granulate, lacquer and / or film coating, preferably with Metal content.
  • the excellent areas can - especially with regard to their Dimensions - be determined by differences in their vibration parameters in terms of the area environment within the Sliding body. So the stiffness, the mass or in mass density or the damping within an excellent Area in terms of its surroundings higher or also have lower values. This can be done in a technically simple manner embedded in a surrounding body or in another suitably associated with this, in terms of material and / or dimensions compared to the surrounding base body contrasting elements or by means of cutouts or Depressions, in particular e.g. in the form of domes or notches can be achieved.
  • At least one vibration-active structure the at least one is linear, flat or spatial extending overlay structure consisting of at least two spacing and / or Subdivision and / or value series contains. It can in a special form of this feature at least one vibration-active Outline with at least one linear, areal or spatial overlay structure be provided, which contains at least two equidistance series.
  • the values and / or distribution of at least one vibration parameter in the successive excellent areas one row at a time, e.g. within each equidistance row, can in turn be dimensioned at least approximately the same, however, these values are preferably at least in sections correspondingly at least one harmonic or at least one geometric series or according to an overlay of such Dimension rows. Rows of the latter type also have no in overlaid outlines have often proven special advantages.
  • Fig. 1 is a thrust resistant with a sliding body wall RB connected stiffening rib in the form of an elongated Vibrating element SE indicated.
  • this element In addition to its static support function to reinforce the slider has this element as Part of the whole body significantly affects that Resonance spectrum and the transient response.
  • Special is here an unevenly distributed structure G des over the length of the bar Longitudinal profile provided from a profile height additive superposition of four equidistant rows R1 to R4 consists. Each of these rows includes excellent areas A1 or A2 or A3 or A4 with increased bending deformation stiffness as well as excellent areas arranged alternately with the latter B1 or B2, etc. reduced bending deformation stiffness.
  • stiffened areas are due to the larger beam cross-section also a larger mass allocation before, if not by additional measures - such as reducing the profile width or a reduction in the cross-sectional area in the middle Section height range, e.g. in the form of recesses or Breakthroughs - compensation or even overcompensation this increase in mass is made.
  • the vibration pattern of a resonance body generally exists from a diverse overlay of standing waves different Wavelength and amplitude. In the node areas there is a slight or vanishing in the abdominal areas a maximum, elastic bending deformation. In the Areas of increased or decreased bending stiffness are consequently the formation of vibration nodes or antinodes favored. While now a simple, equidistant Distribution of areas of increased and decreased stiffness Formation of a standing wave only concentrated in the area of one Favored resonance frequency, which already has certain desired accentuations within the resonance spectrum can be achieved different equidistant overlays Rows of excellent areas increased and decreased Stiffness a highlighting of a corresponding frequency band.
  • the areas of the resonance spectrum in which the stresses appear can be set in a largely targeted and reproducible manner.
  • the stiffness differences can be measured differently within the individual rows, advantageously in such a way that these differences are graduated from row to row in the same direction as the distance value.
  • Such an embodiment is indicated in Fig. 1 by the profile contour shown in solid lines.
  • the partial contours of the sequences R1 and R2 are indicated by dashed lines.
  • the difference in stiffness can also be varied in each case, for example in such a way that it decreases from both sides starting from a center point of the oscillating element or of an oscillating element section. This then results, for example, in an outline G1, as indicated by dash-dotted lines in FIG. 1.
  • FIG. 2 shows a plate-shaped vibrating element SE2 with superimposition structure G3 on both sides of the surface.
  • This Outlines already correspond in their cross-sectional profile explained edge superimposition G according to Fig. 1.
  • Die Areas of increased or reduced bending stiffness form one here Group of adjacent, elongated combs or Troughs that are transverse to their longitudinal direction form explained type.
  • Fig. 3 schematically represents the possibility of a further refined surface overlay outline, namely in the form of two itself on a surface side of a plate-shaped Swinging element SE3 crossing sheets of comb-shaped Areas A1, A2, A3 of increased bending stiffness, the two superimpositions Form G3 and G4 in the manner of Fig.2.
  • Outlines of this type allow the two-dimensional, standing wave formations and come with big ones Efficiency especially for extended resonance structures into consideration. If places with thin-walled plate resonators avoided with a particularly small remaining cross-sectional thickness the crossing arrangement is recommended one each Comb-trough structure on both surface sides of the plate.
  • mass classifications can be made without essential ones Influencing the stiffness also favorable in terms of production technology with the help of all sides within the vibrating surface delimited, i.e. spot-shaped elevations or depressions achieve.
  • the latter can in particular also in the form of Breakthroughs with a smaller surface area within a plate-shaped vibrating element are executed while advantageous for the areas of increased vibration mass allocation the application of additional masses comes into consideration.
  • stiffness and mass classifications can also be made in an arrangement with mutually reinforcing Combine effect.
  • Fig. 4 shows a plate-shaped surface Vibrating element SE4 extending, grid-shaped mass structure G5 with e.g. circular areas AA1, AA2, .... increased Vibrating mass and with the same areas BB1, BB2, .... reduced vibration mass.
  • This grid distribution corresponds to their basic structure along a two-dimensional structure crossing sets of lines according to Fig. 3.
  • FIG. 5 shows in cross section the formation of the areas BB1, BB2, .... in the form of holes within the thin-walled Plate element and the formation of areas of increased mass in the form of additional elements ZM1, ZM2, ZM3, Vietnamese Latter can e.g. glued on as button-like elements of simple shape become.
  • the production is particularly advantageous the possibility of the elements ZM2 and ZM3 indicated Application in the form of thin layers of high material Density, for which heavy metals and corresponding alloys, especially precious metals.
  • This Elements can be conveniently shaped in the form of sections of film manufacture and glue, but also in the form of metal-filled Apply molding compounds or varnishes. The latter offers the particular advantage of simplicity in terms of production.
  • the cross-sectional design of a stiffening rib according to Fig. 6 is based on the knowledge that even in relatively compact Form relevant transverse vibrations in the solid occur, in the present case i.a. Bending vibrations in different directions parallel to the cross-sectional area.
  • Standing waves with a longitudinal direction transverse to the longitudinal direction of the ribs are determined by the superimposition structure G8a, b, c distributed areas of increased or decreased Flexural rigidity in their training according to a harmonious Row favors.
  • Corresponding effects can be found in the vibrating solid body embedded areas or elements ED higher density according to the rib design according to Fig. 7 achieve that in the form of two intersecting at right angles Superpositions G9a and G9b are arranged.
  • Fig. 8 again shows a stiffening rib with edge or Cross-sectional height structure G10a, but with towards the ends on average decreasing cross-sectional height and with an arcuate Overall education.
  • G10a are superimposed on the flanks of the rib G10b with wave or wave ridge-like depressions VT or increases EH provided, and with respect to the structure G8a in Fig. 6 with right angles offset longitudinal extent of the outline.
  • Fig. 9 shows an overlay structure on a plane Plate element with rib-shaped attachment stiffening elements AV.
  • the structure extends in the direction transverse to the ribs.
  • the individual ribs are here only with the ordinal numbers 1 to 8 of the corresponding harmonics designated the denominator of the distance division ratio of the concerned Overlap sequence.
  • the rib height and thus the The stiffening effect decreases with the atomic number, which is special depending on the application conditions to a balanced Resonance course can contribute.
  • Such an essentially one - dimensional structure favors the formation of Standing waves only in one direction of the plate.
  • Figures 10 to 14 show various other examples vibrationally active structures according to the invention on one Ski. 10 and 11 schematically illustrate a longitudinal structure LX with cross profile elevations and recesses according to the type of basic design according to FIG. 1. Such a design mainly affects the flexural vibration behavior of the ski.
  • FIGS. 12 and 13 are inherently in the width direction of the ski-stretching vibration-active structures QX1 or QX2, in the form of strip-shaped, depressions or hollows extending in the longitudinal direction of the ski on the top or inside of the ski body cross-section. In the form of recesses, a corresponding one is obvious Cover provided that is not vibration-active Needs to have an effect.
  • Fig. 14 shows schematically one active vibration extending in the vertical direction of the ski cross-section HX structure in the form of lamellar, stiffening and / or mass-increasing inserts in the ski body. Essential is the structure of the structure for all these versions, namely a multiple overlay structure according to the type of Fig. 1.
  • Vibration-active structure can for example consist of longitudinal or Transverse ribs as connected to the inner wall of the fuselage, excellent areas.
  • Fig. 17 shows two vibrationally active divisions KOX and KSX, again in the manner of Fig. 1, with Increases and depressions along the inside or outside Extend edge areas of a skate blade.
  • KOX and KSX again in the manner of Fig. 1, with Increases and depressions along the inside or outside Extend edge areas of a skate blade.
  • a relative reduction in friction due to stress high-frequency deformation vibrations of the skid body achievable.

Landscapes

  • Vibration Prevention Devices (AREA)
  • Lubricants (AREA)
  • Sliding-Contact Bearings (AREA)

Description

Die Erfindung betrifft einen Gleitkörper, insbesondere einen Ski oder eine Gleitkufe, wie sie bei Geräten und Fahrzeugen verwendbar sind, insbesondere für Schnee- Eis- aber auch Wassersport.
Wesentlich für die Gleitfreundlichkeit sowie für die Richtungsstabilität bzw. für die Lenkbarkeit oder Manövrierbarkeit und auch für die Haltbarkeit gegen stossartige und schwingende Belastungen ist das Schwingungsverhalten des Körpers bzw. seiner mit dem Gleitmedium in Wechselwirkung tretenden Aussenteile. Gemäss üblicher Technik wird dabei im wesentlichen nur auf das Schwingungsverhalten in sehr niedrigen Frequenzbereichen Bedacht genommen.
So sind aus den Schriften FR-A-2 643 431 und DE-U-93 16 692 Gleitkörper mit äquidistanten Folgen von gegeneinander abgegrenzten Bereichen bestimmter Flächen-Massendichte, Biege-Verformungssteifheit oder Dämpfung bekannt. Damit lassen sich allenfalls grossräumige bzw. makroskopische und niederfrequente Schwingungseffekte beeinflussen, jedoch bestehen nach wie vor wesentliche Verbesserungsbedürfnisse hinsichtlich der Schwingungseigenschaften von Gleitkörpern.
Aufgabe der Erfindung ist daher die Schaffung von hinsichtlich der vorgenannten Gesichtspunkte weiter verbesserten Gleitkörpern. Insbesondere sollen dabei die mittleren und höheren Frequenzbereiche bzw. Eigenschwingungsfrequenzen und vor allem das Resonanzspektrum in diesen Bereichen Berücksichtigung finden.
Die erfindungsgemässe Lösung der gestellten Aufgabe ist bestimmt durch die Merkmale der Patentansprüche 1 bzw. 2. Die Merkmale der abhängigen Ansprüche verkörpern wesentliche Weiterbildungen der erfindungsgemässen Lehre, die insbesondere auch in verschiedenen anspruchsgemäβen Kombinationen anwendbar sind.
Der Grundgedanke der Erfindung besteht also in der Verwirklichung wenigstens einer schwingungsaktiven Gliederung mit Mehrfach-Eigenfrequenzen durch mindestens eine Reihe aus aufeinanderfolgenden Raum- oder Flächenbereichen, deren Schwingungsparameter in der jeweiligen Folgerichtung progressiv oder degressiv variant bemessen sind. Dabei können die Schwingungsparameter in Form von gegenseitigen Abständen vorgegebener Abschnitte innerhalb der aufeinanderfolgenden Bereiche oder auch in Form der örtlichen Massendichte, Biege-Verformungssteifheit oder Dämpfung innerhalb der aufeinanderfolgenden Bereiche vorliegen.
Im Folgenden werden die Raum- bzw. Flächenbereiche mit in ihrer Aufeinanderfolge varianten Schwingungsparametern kurz "ausgezeichnete Bereiche" genannt.
Zur gemeinsamen Grundlage der Erfindungsvarianten sei noch folgender Hinweis gegeben: Schwingungsaktiv im Sinne der Erfindung ist eine Gleiderung, deren in mindestens einer Reihe aufeinanderfolgend, insbesondere in gegenseitiger Koppelung angeordnete ausgezeichnete bzw. von ihrer Umgebung differenzierte Bereiche hinsichtlich ihrer eigenen Schwingungsparameter bzw. hinsichtlich der durch Koppelung mit ihrer Umgebung gegebenen Schwingungsparameter im Bereich von Eigenfrequenzen oder des des als Ausgangsobjekt gegebenen oder des mit bestimmten Eigenschaften zu verwirklichenden Körpers liegen. Eine quantitative Abgrenzung der Schwingungsaktivität muss sich daher nach den Gegebenheiten des jeweiligen Anwendungsfalles richten. Diese Abgrenzung ist aufgrund an sich bekannter Kriterien theoretisch bzw. rechnerisch oder experimentell ermittelbar, oft sogar unmittelbar evident. Die Wirkung einer solchen schwingungsaktiven Gliederung richtet sich demgemäss auf eine angestrebte Gestaltung des Eigenfrequenzspektrums. Ziel kann sein z.B. eine Verdichtung der Eigenfrequenzen, d.h. eine Erhöhung der Anzahl von Eigenfrequenzen in einem gegebenen Frequenzbereich, bzw. die Schaffung neuer Eigenfrequenzen wie auch eine Vergleichmässigung, Überhöhung oder Absenkung des Verlaufes der Resonanzamplituden in einem Frequenzbereich oder mehrerer derselben. All dies kann für eine gezielte Beeinflussung von Gleitkörpern hinsichtlich ihrer Gleit- und Laufeigenschaften und/oder ihrer Lenkbarkeit bzw. Manövrierbarkeit, aber auch ihrer Haltbarkeit gegenüber dynamischen Beanspruchungen eingesetzt werden.
Vielfach, insbesondere z.B. für Skier und Gleitkufen, grundsätzlich aber auch für in Medien bewegte Trag- und Auftriebskörper wie Bootsrümpfe und dergl., wird eine Verminderung der Oberflächenreibung angestrebt. Dazu kann eine Verstärkung oder Neuschaffung von relativ hohen Eigenfrequenzen im Oberflächenbereich des Körpers dienen.
Andererseits unterliegen Gleitkörper im Betrieb im allgemeinen einer ständigen, jedoch unregelmässigen, d.h. durchweg nicht periodischen, Beaufschlagung mit mehr oder weniger stossartigen Druckkräften und/oder Biege- und/oder Torsionsmomenten. Dadurch wird eine entsprechend unregelmässige Folge von mit den Eigenfrequenzen des Körpers angeregt. Entsprechende elastische Verformungen haben meist vor allem in tieferen Frequenzbereichen unerwünschte Wirkungen, sind aber gerade in diesen Frequenzbereichen relativ schwierig zu dämpfen. Eine Verlagerung der Eigenfrequenzen in höhere Frequenzbereiche oder eine Erhöhung der Resonanzamplituden in diesen Bereichen mittels geeignet ausgelegter, schwingungsaktiver Gliederungen kann hier Abhilfe schaffen, und zwar oft mit relativ geringem Bauaufwand. Insbesondere ist festzuhalten, dass die Anregungsenergie seitens der aufeinanderfolgenden, stossartigen Beanspruchungen in einer gewissen Verteilung auf die Eigenfrequenzen des Körpers aufgenommen wird. Eine relativ grosse Anzahl von Eigenfrequenzen bzw. eine erhöhte Eigenfrequenzdichte, wie sie durch Anwendung der Erfindungsmerkmale einfach erreichbar ist, kann demgemäss für eine generelle Verminderung der maximal auftretenden Schwingungs- bzw. Verformungsamplituden genutzt werden, bevorzugt in Verbindung mit einer Verlagerung der Schwingungsenergie in relativ wenig störende Frequenzbereiche.
Vorteilhaft wird dabei wenigstens eine Aufeinanderfolge mit einer Vielzahl von ausgezeichneten Bereichen, insbesondere mit mindestens 5 solcher Bereiche, vorgesehen. Ein wichtiges Merkmal besteht ferner darin, dass mindestens eine oszillierend variante Reihe von ausgezeichneten Bereichen mit vorgesehen ist. Insbesondere kommen auch Gliederungen mit sich in unterschiedliche Raum-oder Flächenrichtungen erstreckenden Reihen von ausgezeichneten Bereichen in Betracht. Die Gliederungen mit ihren Reihen von ausgezeichneten Bereichen können in wenigstens einem Oberflächenabschnitt und/oder wenigstens einem Wandungsabschnitt eines Hohlraumes des Gleitkörpers bzw. längs wenigstens einer Kante eines Gleitkörpers verteilt angeordnet sein.
Ein weiterführender Erfindungsgedanke ist gekennzeichnet durch mindestens eine schwingungsaktiv gegliederte Oberflächenschicht bzw. mindestens einen Schichtabschnitt, insbesondere in Form einer Granulat-, Lack- und/oder Folienbeschichtung, vorzugsweise mit Metallgehalt.
Die ausgezeichneten Bereiche können - vor allem hinsichtlich ihrer Abmessungen - bestimmt sein durch Unterschiede ihrer Schwingungsparameter in Bezug auf die Bereichsumgebung innerhalb des Gleitkörpers. So können die Verformungssteifheit, die Masse oder in Massendichte bzw. die Dämpfung innerhalb eines ausgezeichneten Bereichs in Bezug auf dessen Umgebung höhere oder auch niedrigere Werte aufweisen. Dies kann in technisch einfacher Weise mittels in einen umgebenden Grundkörper eingebetten oder in sonst geeigneter Weise mit diesem verbundenen, hinsichtlich Material und/oder Abmessungen gegenüber dem umgebenden Grundkörper kontrastierenden Elementen bzw. auch mittels Aussparungen oder Einsenkungen, insbesondere z.B. in Form von Kalotten oder Kerben erreicht werden.
Eingehende Untersuchungen und praktische Versuche haben gezeigt, dass die Abstands- und/oder Unterteilungs- und/oder Wertefolge wenigstens annähernd entsprechend einer harmo- nischen, in besonderen Fällen gegebenenfalls entsprechend einer geometrischen Reihe zu bemessen ist.
Eine sprunghafte Weiterbildung der Erfindungsgedanken besteht darin, wenigstens eine schwingungsaktive Gliederung vorzusehen, die mindestens eine sich linienförmig, flächenhaft oder räumlich erstreckende Ueberlagerungsstruktur aus wenigstens zwei Abstands-und/oder Unterteilungs- und/oder Wertereihen enthält. Dabei kann in spezieller Ausformung dieses Merkmals wenigstens eine schwingungsaktive Gliederung mit mindestens einer sich linienförmig, flächenhaft oder räumlich erstreckenden Ueberlagerungsstruktur vorgesehen werden, die wenigstens zwei Aequidistanzreihe enthält.
Die Werte und/oder Verteilung mindestens eines Schwingungsparameters in den aufeinanderfolgenden ausgezeichneten Bereichen jeweils einer Reihe, z.B. innerhalb jeweils einer Aequidistanzreihe, können wiederum wenigstens annähernd gleich bemessen sein, vorzugsweise werden diese Werte jedoch wenigstens abschnittsweise entsprechend mindestens einer harmonischen oder mindestens einer geometrischen Reihe oder entsprechend einer Ueberlagerung solcher Reihen bemessen. Reihen der letztgenannten Art haben auch in nicht überlagerten Gliederungen vielfach besondere Vorteile bewiesen.
Besonders eingehend sind die Erfindungsmerkmale an Skiern bzw. Gleitkufen untersucht und optimiert worden. Dabei hat es sich als wesentlich erwiesen, dass wenigstens eine schwingungsaktive Gliederung mit mindestens einer sich in Längs- bzw. Laufrichtung des Ski- oder Kufenkörpers erstreckenden Aufeinanderfolge von ausgezeichnet Raum- und/oder Flächen- und/oder Linienbereichen mit jeweils mindestens einem in Bezug auf wenigstens einen Nach-barbereich oder innerhalb eines Bereiches selbst unterschiedlich bemessenen bzw. verteilten Schwingungsparameter verwirklicht ist.
Die Erfindung wird weiter anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen erläutert.
In Fig. 1 ist eine mit einer Gleitkörperwandung RB schubfest verbundene Versteifungsrippe in Form eines langgestreckten Schwingelementes SE angedeutet. Neben seiner statischen Tragfunktion zur Verstärkung des Gleitkörpers hat dieses Element als Bestandteil des Gesamtkörpers wesentlichen Einfluss auf das Resonanzspektrum und das Einschwingverhalten. Speziell ist hier eine über die Balkenlänge ungleichförmig verteilte Gliederung G des Längsprofils vorgesehen, die aus einer hinsichtlich der Profilhöhe additiven Ueberlagerung von vier äquidistanten Reihen R1 bis R4 besteht. Jede dieser Reihen umfasst ausgezeicchnete Bereiche A1 bzw. A2 bzw. A3 bzw. A4 erhöhter Biege-Verformungssteifheit sowie mit letzteren alternierend angeordnete ausgezeichnete Bereiche B1 bzw. B2 usw. verminderter Biege-Verformungssteifheit. In den versteiften Bereichen liegt wegen des grösseren Balkenquerschnitts auch eine grössere Massenbelegung vor, sofern nicht durch zusätzliche Massnahmen - etwa eine Verminderung der Profilbreite oder eine Verminderung der Querschnittsfläche im mittleren Bereich der Querschnittshöhe, z.B. in Form von Aussparungen oder Durchbrechungen - eine Kompensation oder sogar Ueberkompensation dieser Massenvergrösserung vorgenommen wird.
Das Schwingungsbild eines Resonanzkörpers besteht im allgemeinen aus einer vielfältigen Ueberlagerung von stehenden Wellen unterschiedlicher Wellenlänge und Amplitude. In den Knotenbereichen herrscht dabei eine geringe bzw. verschwindende, in den Bauchbereichen eine maximale, elastische Biegeverformung. In den Bereichen erhöhter bzw. verminderter Biegesteifheit wird infolgedessen die Ausbildung von Schwingungsknoten bzw. Schwingungsbäuchen begünstigt. Während nun eine einfache, äquidistante Verteilung von Bereichen erhöhter und verminderter Steifheit die Ausbildung einer stehenden Welle nur konzentriert im Bereich einer Resonanzfrequenz begünstigt, womit allerdings bereits gewisse, erstrebte Betonungen innerhalb des Resonanzspektrums erreichbar sind, ermöglicht die Ueberlagerung verschiedener äquidistanter Reihen von ausgezeichneten Bereichen erhöhter und verminderter Steifheit eine Hervorhebung eines entsprechenden Frequenzbandes.
Durch Wahl der Distanzwerte D1, D2 usw. (siehe Fig. 1) der einander überlagerten Reihenfolgen und ihres gegenseitigen Verhältnisses lassen sich die Bereiche des Resonanzspektrums, in denen die Betonungen erscheinen, weitgehend gezielt und reproduzierbar einstellen. Im Interesse eines ausgeglichenen Spektralverlaufes und einer gezielten Einstellung kontinuierlicher Uebergänge können die Steifheitsdifferenzen innerhalb der einzelnen Reihen unterschiedlich bemessen werden, vorteilhaft in der Weise, dass diese Differenzen von Reihe zu Reihe gleichsinnig zum Distanzwert abgestuft sind. Eine solche Ausführung ist in Fig. 1 durch die in ausgezogener Linie wiedergegebene Profilkontur angedeutet. Die Teilkonturen der Folgen R1 und R2 sind dazu strichliert angedeutet. Andererseits kann die Steifheitsdifferenz im Interesse besonders weicher Uebergänge auch innerhalb jeweils einer Reihenfolge variiert werden, etwa in der Weise, dass sie von einem Mittelpunkt des Schwingelementes oder eines Schwingelementabschnitts ausgehend nach beiden Seiten hin abnimmt.
Es ergibt sich dann beispielsweise eine Gliederung G1, wie sie in Fig. 1 strichpunktiert angedeutet ist.
Fig.2 zeigt ein plattenförmiges Schwingelement SE2 mit Ueberlagerungsgliederung G3 an beiden Oberflächenseiten. Diese Gliederungen entsprechen in ihrem Querschnittsprofil der bereits erläuterten Kanten-Ueberlagerungsgliederung G gemäss Fig. 1. Die Bereiche erhöhter bzw. verminderter Biegesteifheit bilden hier eine Schar von nebeneinanderliegenden, langgestreckten Kämmen bzw. Mulden, die quer zu ihrer Längsrichtung Ueberlagerungsreihen der erläuterten Art bilden.
Fig. 3 stellt in schematischer Weise die Möglichkeit einer weiter verfeinerten Oberflächen-Ueberlagerungsgliederung dar, nämlich in Form zweier sich auf einer Oberflächenseite eines plattenförmigen Schwingelementes SE3 kreuzenden Scharen von kammförmigen Bereichen A1, A2, A3 erhöhter Biegesteifheit, die zwei Ueberlagerungsgliederungen G3 und G4 nach Art von Fig.2 bilden. Zwischen den kammförmigen Bereichen ergeben sich muldenförmige Oberflächenbereiche verminderter Biegesteifheit, die der Uebersichtlichkeit halber nicht näher beziffert sind. Gliederungen dieser Art erlauben eine gezielte Beeinflussung der zweidimensionalen, stehenden Wellengebilde und kommen mit grosser Wirksamkeit insbesondere für ausgedehntere Resonanzgebilde in Betracht. Wenn bei dünnwandigen Plattenresonatoren Stellen mit besonders geringer verbleibender Querschnittsdicke vermieden werden sollen, so empfiehlt sich die kreuzende Anordnung je einer Kamm-Muldengliederung auf beiden Oberflächenseiten der Platte.
Entsprechende Gliederungseffekte können grundsätzlich auch mit Hilfe einer ungleichförmigen Massenverteilung erzielt werden, und zwar insbesondere bei Plattenresonatoren. Unter Annahme einer gleichförmigen Verteilung der Verformungssteifheit kehren sich dabei die bevorzugten Lagen von Wellenknoten und Wellenbäuchen um, d.h. im Bereich erhöhter Schwingmasse ergeben sich bevorzugt Wellenbäuche, im Bereich verminderter Schwingmasse Wellenknoten. Selbstverständlich müssen die Rand-und Einspannbedingungen des Schwingelementabschnitts mit einer solchen Ausbildung vereinbar sein, was aber auch für die Steifheitsgliederungen in sinngemässer Weise gilt. Unter Beachtung dieser Verhältnisse sind mit Vorteil auch kombinierte Steifheits- und Massengliederungen anwendbar. Im übrigen treten - wie bereits angedeutet - ungleichförmige Massenverteilungen im allgemeinen auch bei einer ungleichförmigen Steifheitsverteilung auf. Bei der allgemein anzuwendenden Steifheitsvariation durch entsprechende Bemessung der Querschnittshöhe eines Biegeschwingers tritt jedoch die Wirkung der Massenerhöhung im Bereich erhöhter Querschnitts höhe relativ zurück, weil die Steifheit infolge des Zusammenhanges mit dem Querschnitts-Flächenträgheitsmoment mit einer höheren Potenz der Querschnittshöhe wirksam wird. Die Massenzunahme kann dann vielfach vernachlässigt werden, stört aber jedenfalls im allgemeinen nicht.
Andererseits lassen sich Massengliederungen ohne wesentliche Beeinflussung der Steifheit auch herstellungstechnisch günstig mit Hilfe von innerhalb der schwingenden Oberfläche allseitig umgrenzten, also fleckförmigen Erhöhungen bzw. Vertiefungen erzielen. Dazu können letztere insbesondere auch in Form von Durchbrechungen geringerer Flächenausdehnung innerhalb eines plattenförmigen Schwingelementes ausgeführt werden, während für die Bereiche erhöhter Schwingmassenbelegung vorteilhaft die Anbringung von Zusatzmassen in Betracht kommt. Auf diese Weise lassen sich insbesondere auch Steifheits- und Massengliederungen in einer Anordnung mit gegenseitig verstärkender Wirkung vereinigen.
Fig.4 zeigt eine sich über die Oberfläche eines plattenförmigen Schwingelementes SE4 erstreckende, rasterförmige Massengliederung G5 mit z.B. kreisförmigen Bereichen AA1, AA2, .... erhöhter Schwingmasse und mit ebensolchen Bereichen BB1, BB2,.... verminderter Schwingmasse. Diese Rasterverteilung entspricht in ihrem Grundaufbau einer zweidimensionalen Gliederung längs sich kreuzender Linienscharen gemäss Fig.3.
Fig. 5 zeigt hierzu im Querschnitt die Ausbildung der Bereiche BB1, BB2, .... in Form von Löchern innerhalb des dünnwandigen Plattenelementes und die Ausbildung der Bereiche erhöhter Masse in Form von Zusatzelementen ZM1, ZM2, ZM3, .... . Letztere können z.B. als knopfartige Elemente einfacher Form aufgeklebt werden. Besonders vorteilhaft in der Herstellung ist aber die an den Elementen ZM2 und ZM3 angedeutete Möglichkeit der Aufbringung in Form von dünnen Schichten aus Material hoher Dichte, wofür Schwermetalle und entsprechende Legierungen, insbesondere auch Edelmetalle, in Betracht kommen. Diese Elemente lassen sich bequem in Form von Folienabschnitten herstellen und aufkleben, aber auch in Form von metallgefüllten Formmassen oder Lacken aufbringen. Letzteres bietet den besonderen Vorteil herstellungstechnischer Einfachheit.
Die Querschnittsgestaltung einer Versteifngsrippe nach Fig.6 beruht auf der Erkenntnis, dass auch in relativ kompakten Gebilden relevante Transversalschwingungen im Festkörper auftreten, im vorliegenden Fall u.a. Biegeschwingungen in verschiedenen Richtungen parallel zur Querschnittsfläche. Stehende Wellen mit Längsrichtung quer zur Rippenlängsrichtung werden dabei durch die gemäss Ueberlagerungsgliederungen G8a, b, c verteilten Bereiche erhöhter bzw. verminderter Biegesteifheit in ihrer Ausbildung entsprechend einer harmonischen Reihe begünstigt. Entsprechende Wirkungen lassen sich mit in den schwingenden Festkörper eingebetteten Bereichen bzw. Elementen ED höherer Dichte gemäss der Rippenausführung nach Fig.7 erzielen, die in Form von zwei sich rechtwinklig durchdringenden Ueberlagerungsgliederungen G9a und G9b angeordnet sind.
Fig.8 zeigt nochmals eine Versteifungsrippe mit Kanten- bzw. Querschnitts-Höhengliederung G10a, jedoch mit zu den Enden hin im Mittel abnehmender Querschnittshöhe sowie mit bogenförmiger Gesamtausbildung. Zusätzlich zu den genannten Gliederungen G10a sind an den Flanken der Rippe Ueberlagerungsgliederungen G10b mit in Richtung der Rippenhöhe verlaufenden, wellen- bzw. gratartigen Vertiefungen VT bzw. Erhöhungen EH vorgesehen, und zwar mit bezüglich der Gliederung G8a in Fig.6 mit rechtwinklig versetzter Längserstreckung der Gliederung.
Fig.9 zeigt eine Ueberlagerungsgliederung an einem ebenen Plattenelement mit rippenförmigen Aufsatz-Versteifungselementen AV. Hier erstreckt sich die Gliederung allein in Richtung quer zu den Rippen. Die einzelnen Rippen sind hier nur mit den Ordnungszahlen 1 bis 8 der entsprechenden Harmonischen bezeichnet, die dem Nenner des Distanz-Teilungsverhältnisses der betreffenden Ueberlagerungsfolge entsprechen. Die Rippenhöhe und damit die Versteifungswirkung nimmt mit der Ordnungszahl ab, was speziell je nach Anwendungsgegebenheiten zu einem ausgeglichenen Resonanzverlauf beitragen kann. Eine solche im wesentlichen eindimensionale Gliederung begünstigt die Ausbildung von Stehwellen nur in einer Richtung der Platte.
Es ist hervorzuheben, dass durch die erfindungsgemässen Gliederungen - je nach spezieller Ausbildung - nicht nur eine gezielte Tendenz zur Bildung von Stehwellenknoten bzw. Stehwellenbäuchen erzielt werden kann. Vielmehr gilt entsprechendes auch für eine angestrebte Verteilung der Schwingungsdämpfung. Hierfür sind sinngemäss geeignete Dämpfüngselemente in einer schwingungsaktiven Gliederung einzusetzen.
Die Figuren 10 bis 14 zeigen als weitere Beispiele verschiedene schwingungsaktive Gliederungen gemäss der Erfindung an einem Ski. Fig. 10 und 11 veranschaulichen schematisch eine Längsgliederung LX mit Querprofilerhebungen und -vertiefungen nach Art der grundsätzlichen Ausführung gemäss Fig. 1. Eine solche Ausführung beeinflusst vor allem das Biegeschwingungsverhalten des Skis.
Die Ausführungen nach Figuren 12 und 13 sind mit sich in Breitenrichtung des Skis erstreckenden schwingungsaktiven Gliederungen QX1 bzw. QX2 versehen, und zwar in Form von streifenförmigen, sich in Skilängsrichtung erstreckenden Vertiefungen oder Aushöhlungen an der Oberseite bzw. im Inneren des Skikörper-Querschnitts. In Form von Ausnehmungen wird naheliegenderweise eine entsprechende Abdeckung vorgesehen, die keine schwingungsaktive Wirkung zu haben braucht. Fig. 14 zeigt wiederum schematisch eine sich in Höhenrichtung des Skiquerschnitts erstreckende schwingungsaktive Gliederung HX in Form von lamellenartigen, versteifenden und/oder masseerhöhenden Einfügungen im Skikörper. Wesentlich ist für alle diese Ausführungen die Struktur der Gliederung, nämlich einer Mehrfach-Überlagerungsgliederung nach Art von Fig. 1. Die Äquidistanzen der überlagerten Einzelreihen, gemessen in Teilen der Länge bzw. der Querschnittsbreite bzw. der Querschnittshöhe des Skikörpers, sind für die einzelnen Reihen in ganzen Zahlen eingetragen. Die Gliederungen gemäss Figuren 12 bis 14 beeinflussen vor allem das Verhalten des Skis hinsichtlich Torsionsschwingungen.
Eingehende praktische Erprobungen, vor allem auch in rennartigen Testläufen, haben gezeigt, dass mit den erfindungsgemässen Gliederungen an Skiern unterschiedlicher Grundbauart bemerkenswerte Verbesserungen hinsichtlich Laufruhe auch auf rauher Piste sowie hinsichtlich Spursicherheit, überraschenderweise sogar in Verbindung mit einer verbesserten Lenkbarkeit, erzielt werden können. Erwähnenswert ist auch ein intensivierter sensorischer Kontakt des Fahrers mit der jeweiligen Bahnbeschaffenheit. Gleitkörper dieser Art können insbesondere vorteilhaft mit Gliederungen versehen werden, die sich aus bis zu fünf überlagerten Reihen unterschiedlicher Teilung zusammensetzen. Die Distanzen der Reihen werden dabei vorzugsweise gemäss harmonischen oder geometrischen Reihen bemessen, wiederum vorzugsweise mit in sich äquidistanten Reihen gemäss Fig. 1.
Als Beispiele für zahlreiche Anwendungen im Bereich der Medien-Gleitkörper sind in den Figuren 15 und 16 rein schematisch Bootskörper im Quer- bzw. Längsschnitt angedeutet, und zwar jeweils mit sich in Backbord/Steuerbord-Richtung bzw. in Kielrichtung erstreckenden Überlagerungsgliederungen BSX bzw. KLX. Solche schwingungsaktive Gliederung können beispielsweise aus Längs-bzw. Querrippen als mit der Rumpfinnenwandung verbundenen, ausgezeichneten Bereichen gebildet werden.
Als letztes Beispiel zeigt Fig. 17 zwei schwingungsaktive Gliederungen KOX und KSX, wiederum nach Art von Fig. 1, die sich mit Erhöhungen und Einsenkungen längs innenliegender bzw. aussenliegender Kantenbereiche einer Schlittschuhkufe erstrecken. Hier ist insbesondere eine Reibungsminderung infolge Betonung relativ hochfrequenter Verformungsschwingungen des Kufenkörpers erzielbar.

Claims (19)

  1. Gleitkörper, insbesondere Ski oder Gleitkufe, mit einer Vielzahl von Raum- oder Flächenbereichen, die sich durch unterschiedliche Masse, Massendichte, Verformungssteifheit oder Dämpfung von wenigstens einem Teil ihrer jeweiligen Umgebung unterscheiden, und die entsprechend mindestens einer mathematischen Reihe aufeinanderfolgen,
    dadurch gekennzeichnet, dass mindestens in einem Teil einer der Reihen (R1 ..... R4) die Abstände (D1 ..... D4) vorgegebener Abschnitte innerhalb aufeinanderfolgender Bereiche in der Folgerichtung der Reihe derart progressiv oder degressiv variant bemessen sind, dass sich eine schwingungsaktive Gliederung des Gleitkörpers mit Mehrfach-Eigenfrequenzen ergibt.
  2. Gleitkörper, insbesondere Ski oder Gleitkufe, mit einer Vielzahl von Raum- oder Flächenbereichen, die sich durch unterschiedliche Masse, Massendichte, Verformungssteifheit oder Dämpfung von wenigstens einem Teil ihrer jeweiligen Umgebung unterscheiden, und die entsprechend mindestens einer mathematischen Reihe aufeinanderfolgen, insbesondere Gleitkörper nach Anspruch 1,
    dadurch gekennzeichnet, dass mindestens in einem Teil einer der Reihen (R1 ..... R4) die Extrem-oder Mittelwerte oder die Verteilung der Werte der Masse, Massendichte, Verformungssteifheit oder Dämpfung in aufeinanderfolgenden Bereichen (B1 ..... B4) in der Folgerichtung der Reihe derart progressiv oder degressiv variant bemessen sind, dass sich eine schwingungsaktive Gliederung des Gleitkörpers mit Mehrfach-Eigenfrequenzen ergibt.
  3. Gleitkörper nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eine wenigstens abschnittsweise oszillierend variante Reihe von Bereichen mit mindestens einem bezüglich ihrer jeweiligen Umgebung unterschiedlichen Schwingungsparameter vorgesehen ist.
  4. Gleitkörper nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass Abstände und/oder Unterteilungen und/oder Werteverteilungen vorgesehen sind, die wenigstens annähernd entsprechend einer harmonischen Reihe bemessen sind.
  5. Gleilkörper nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass Abstände und/oder Unterteilungen und/oder Werteverteilungen vorgesehen sind, die wenigstens annähernd entsprechend einer geometrischen Reihe bemessen sind.
  6. Gleitkörper nach einem der vorangehenden Ansprüche, gekennzeichnet durch wenigstens eine schwingungsaktive Gliederung (G), die mindestens eine sich linienförmig, flächenhaft oder räumlich erstreckende Ueberlagemngsstruktur aus wenigstens zwei unterschiedlichen Abstands- und/oder Unterteilungs- und/oder Wertereihen (R1, R2, R3 ...) enthält.
  7. Gleitkörper nach Anspruch 6, dadurch gekennzeichnet, dass die Überlagerungsstruktur wenigstens zwei unterschiedliche, in sich jedoch wenigstens annähernd äquidistante Abstands- und/oder Unterteilungs- und/oder Wertereihen (R1, R2, R3 ...) enthält.
  8. Gleitkörper nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Werte und/oder die Verteilung mindestens eines Schwingungsparameters der aufeinanderfolgenden, gegenüber ihrer jeweiligen Umgebung bezüglich mindestens eines Schwingungsparameters unterschiedlichen Bereiche jeweils innerhalb einer der einander überlagerten Reihen wenigstens annähernd gleich bemessen sind.
  9. Gleitkörper nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Werte und/oder die Verteilung mindestens eines Schwingungsparameters der aufeinanderfolgenden, gegenüber ihrer jeweiligen Umgebung bezüglich mindestens eines Schwingungsparameters unterschiedlichen Bereiche jeweils innerhalb einer der einander überlagerten Reihen wenigstens annähernd bzw. wenigstens abschnittsweise entsprechend mindestens einer harmonischen oder mindestens einer geometrischen Reihe oder entsprechend einer Ueberlagerung solcher Reihen bemessen sind.
  10. Gleitkörper nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eine variante, insbesondere harmonisch oder geometrisch variante, sich mehrdimensional bzw. in eine Mehrzahl von Raum- oder Flächenrichtungen erstreckende Reihe von Bereichen mit mindestens einem bezüglich der jeweiligen Bereichsumgebung unterschiedlichen Schwingungsparametern vorgesehen ist.
  11. Gleitkörper nach Anspruch 10, dadurch gekennzeichnet, dass den verschiedenen Dimensionen bzw. Raum- oder Flächenrichtungen, in denen sich eine variant schwingungsaktive Reihe von Bereichen mit mindestens einem bezüglich der jeweiligen Bereichsumgebung unterschiedlichen Schwingungsparametern erstreckt, mindestens teilweise unterschiedliche Abstandsfolgen zwischen diesen Bereichen und/oder unterschiedliche Schwingungsparameter-Veränderungen von Bereich zu Bereich und/oder jeweils innerhalb dieser Bereiche zugeordnet sind.
  12. Gleitkörper nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eine variant schwingungsaktive, vorzugsweise harmonisch oder geometrisch variante, sich wenigstens über fünf Teilungen erstreckende Gliederung, insbesondere eine Mehrzahl von solchen schwingungsaktiven Gliederung in gegenseitiger Überlagerung, vorgesehen ist.
  13. Langgestreckter Gleitkörper nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass mindestens eine sich in Breitenrichtung des Gleitkörpers erstreckende, schwingungsaktiv variante Gliederung vorgesehen ist.
  14. Langgestreckter Gleitkörper nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass mindestens eine sich im Winkel, vorzugsweise wenigstens annähernd rechtwinklig, zu der durch Länge und Breite des Gleitkörpers bestimmten Ebene erstreckende, schwingungsaktiv variante Gliederung vorgesehen ist.
  15. Gleitkörper nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eine längs wenigstens einer Kante des Gleitkörpers verteilt angeordnete, schwingungsaktiv variante Reihe von Bereichen mit mindestens einem bezüglich der jeweiligen Bereichsumgebung unterschiedlichen Schwingungsparameter vorgesehen ist.
  16. Gleitkörper nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass schwingungsaktive Bereiche mit in Bezug auf mindestens einen Teil ihrer Umgebung niedrigeren Werten wenigstens eines Schwingungsparameters, insbesondere der auf die Flächeneinheit bezogenen örtlichen Massenbelegung oder der örtlichen Verformungssteifheit, durch Einsenkungen oder Durchbrechungen, insbesondere in Form von Kerben oder Kalotten, innerhalb einer Gleitkörperfläche gebildet sind.
  17. Gleitkörper nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass schwingungsaktive Bereiche mit in Bezug auf mindestens einen Teil ihrer Umgebung höheren oder niedrigeren Werten wenigstens eines Schwingungsparameters, insbesondere der auf die Flächeneinheit bezogenen örtlichen Massenbelegung oder der örtlichen Verformungssteifheit, durch Einbettungselemente gebildet sind.
  18. Gleitkörper nach Anspruch 17, dadurch gekennzeichnet, dass die Einbettungselemente aus mindestens einem vom jeweiligen Grundmaterial unterschiedlichen Material bestehen, insbesondere aus Material höherer bzw. niedrigerer Dichte und/oder höheren bzw. niedrigeren Elastizitätsmoduls.
  19. Gleitkörper nach einem der vorangehend Ansprüche, gekennzeichnet durch mindestens eine schwingungsaktiv gegliederte Oberflächenschicht bzw. mindestens einen Schichtabschnitt mit Granulat-, Lack- und/oder Folienbeschichtung, insbesondere mit Metallgehalt.
EP95908279A 1994-02-14 1995-02-14 Gleitkörper, insbesondere ski oder gleitkufe Expired - Lifetime EP0699097B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4404475 1994-02-14
DE4404475A DE4404475A1 (de) 1994-02-14 1994-02-14 Gleitkörper, insbesondere Ski oder Gleitkufe
PCT/EP1995/000540 WO1995021663A1 (de) 1994-02-14 1995-02-14 Gleitkörper, insbesondere ski oder gleitkufe

Publications (2)

Publication Number Publication Date
EP0699097A1 EP0699097A1 (de) 1996-03-06
EP0699097B1 true EP0699097B1 (de) 2001-11-14

Family

ID=6510094

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95908279A Expired - Lifetime EP0699097B1 (de) 1994-02-14 1995-02-14 Gleitkörper, insbesondere ski oder gleitkufe

Country Status (7)

Country Link
US (1) US5884932A (de)
EP (1) EP0699097B1 (de)
JP (1) JP3790791B2 (de)
AT (1) ATE208648T1 (de)
AU (1) AU1665795A (de)
DE (2) DE4404475A1 (de)
WO (1) WO1995021663A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT411572B (de) 2001-09-07 2004-03-25 Fischer Gmbh Gleitkörper, insbesondere ski sowie verfahren zur herstellung eines gleitkörpers, insbesondere für skier
AT500159B8 (de) * 2001-10-01 2007-02-15 Atomic Austria Gmbh Schi, sprungschi oder snowboard mit einer strukturierten oberfläche
EP1693089B1 (de) * 2005-02-16 2009-01-07 Skis Rossignol Gleitbrett
SI22083B (sl) * 2005-07-18 2009-12-31 Elan, D.O.O. Smučka ali snežna deska z izboljšano torzijsko togostjo
WO2008131737A2 (de) * 2007-04-25 2008-11-06 Respa Resonanz Spektral-Abstimmungen Schwingungsmodulierter körper, anordnung aus einem gebilde und einem körper, verwendung eines körpers sowie modulationsverfahren und verfahren zur schwingungsdämpfung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3326006A1 (de) * 1983-07-19 1985-01-31 Georg 7841 Malsburg-Marzell Ignatius Schwing- und/oder reflexionsfaehiger festkoerper fuer geraete und einrichtungen zur erzeugung, abstrahlung, verteilung bzw. weiterleitung von schallschwingungen
US4627635A (en) * 1983-09-20 1986-12-09 Koleda Michael T Vibration damping units and vibration damped products
US4679814A (en) * 1984-01-27 1987-07-14 Tristar Sports Inc. Randomly oriented reinforcing fibers in a snow ski
AT391088B (de) * 1988-05-26 1990-08-10 Head Sportgeraete Gmbh Ski mit daempfungslagen
FR2643431B1 (fr) * 1989-02-20 1994-04-01 Rossignol Sa Skis Dispositif amortisseur comprenant des materiaux visco-elastiques
FR2698012B1 (fr) * 1992-11-19 1994-12-16 Rossignol Sa Structure de ski.

Also Published As

Publication number Publication date
EP0699097A1 (de) 1996-03-06
US5884932A (en) 1999-03-23
AU1665795A (en) 1995-08-29
JPH09500314A (ja) 1997-01-14
ATE208648T1 (de) 2001-11-15
DE59509832D1 (de) 2001-12-20
WO1995021663A1 (de) 1995-08-17
DE4404475A1 (de) 1995-11-23
JP3790791B2 (ja) 2006-06-28

Similar Documents

Publication Publication Date Title
AT403887B (de) Gleitgerät oder gleitbrett zum gleiten auf schnee
DE4404052A1 (de) Golfball
DE1250202B (de) Einrichtung zur Dampfung der Biegeschwmgungen einer Flache
EP0699097B1 (de) Gleitkörper, insbesondere ski oder gleitkufe
AT403124B (de) Ski mit einem anderen als rechteckigen kastenprofil
AT406124B (de) Skiaufbau
EP1562682B1 (de) Alpinski
DE2634934C3 (de) Plattenartiges Siebelement
DE202009003515U1 (de) Matratze für Liegemöbel
DE3422148A1 (de) Siebvorrichtung
EP0524566A1 (de) Schallabsorptionsplatte
AT504001B1 (de) Gleitbrett oder rollbrett mit verbundstruktur
EP0625438B1 (de) Stegglied für Reifenkette
DE102004041011A1 (de) Resonanzplatte in Faserverbund-Bauweise für akustische Musikinstrumente
DE883678C (de) Federsystem, vorzugsweise aus plattenfoermigem Material
AT403888B (de) Ski, insbesondere alpinski
AT390090B (de) Baustein
AT218220B (de) Aus Ober- und Untergurt sowie Verbindungsstegen bestehender Träger, insbesondere Binder für Dachkonstruktionen
DE2343866B2 (de) Aus Kunststoff bestehende Dränageplatte
DE202005021733U1 (de) Hochlochziegel sowie Werkzeug und Mundstück zu dessen Herstellung
DE102021109186A1 (de) Ski oder Snowboard
DE2224770A1 (de) Betonkammerplatte
DE20306117U1 (de) Flächenverkleidungselement, insbesondere zur Wand- oder Deckenverkleidung
AT345704B (de) Laufflaeche fuer langlaufschi
CH694284A5 (de) Blatt fuer einen Ballspiel-Stock.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19960215

17Q First examination report despatched

Effective date: 19970307

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011114

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011114

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011114

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011114

REF Corresponds to:

Ref document number: 208648

Country of ref document: AT

Date of ref document: 20011115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59509832

Country of ref document: DE

Date of ref document: 20011220

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020214

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020214

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20011114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020530

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: IGNATIUS GEORG

Effective date: 20020228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020901

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070214

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: AT

Effective date: 20080929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090224

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090223

Year of fee payment: 15

Ref country code: IT

Payment date: 20090219

Year of fee payment: 15

Ref country code: DE

Payment date: 20090330

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090219

Year of fee payment: 15

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100527

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100214

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100215