EP0663045A1 - Verfahren zum betrieb einer klauenvakuumpumpe und für die durchführung dieses betriebsverfahrens geeignete klauenvakuumpumpe. - Google Patents

Verfahren zum betrieb einer klauenvakuumpumpe und für die durchführung dieses betriebsverfahrens geeignete klauenvakuumpumpe.

Info

Publication number
EP0663045A1
EP0663045A1 EP93919226A EP93919226A EP0663045A1 EP 0663045 A1 EP0663045 A1 EP 0663045A1 EP 93919226 A EP93919226 A EP 93919226A EP 93919226 A EP93919226 A EP 93919226A EP 0663045 A1 EP0663045 A1 EP 0663045A1
Authority
EP
European Patent Office
Prior art keywords
vacuum pump
pump according
claw
cooler
claw vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93919226A
Other languages
English (en)
French (fr)
Other versions
EP0663045B1 (de
Inventor
Andreas Kobus
Uwe Gottschlich
Lothar Brenner
Hartmut Kriehn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG filed Critical Leybold AG
Publication of EP0663045A1 publication Critical patent/EP0663045A1/de
Application granted granted Critical
Publication of EP0663045B1 publication Critical patent/EP0663045B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Definitions

  • the invention relates to a method for operating a claw vacuum pump with two or more stages, each of which has a scooping chamber with a pair of claw rotors and suction or outlet openings arranged on the end face.
  • the invention also relates to a claw vacuum pump suitable for carrying out this operating method.
  • a claw vacuum pump is known from EU-A 365 695.
  • Each rotor of the claw rotor pairs is equipped with a claw (tooth) and a recess. They perform their rotary movement in a combing and non-contact manner in the ladle.
  • the claws have the task of separating the suction side from the pressure side.
  • the peripheral surface areas of the claws form the necessary sealing gaps with the peripheral scoop inner wall.
  • the claws cannot fulfill their task of separating the suction side from the pressure side, since they no longer move in this phase Move close to the peripheral inner chamber wall. In this phase it is therefore necessary that the Separation of the suction and pressure side is ensured by the fact that the suction or outlet opening - or both - is / are closed. This is done in a known manner by the rotors themselves.
  • the suction and outlet openings are arranged and designed on the end face in such a way that they can be opened or closed with the aid of the recesses in the rotors.
  • the object of the present invention is to operate and design a claw vacuum pump in such a way that its operation is not endangered by liquids entering the pump - be it condensation or by operating errors of the system to be evacuated - liquids entering the pump.
  • this object is achieved in that the pump is operated without internal compression and in that the gases emerging from at least one - preferably all - stage (s) are cooled.
  • "Without internal compression” means that there must be no smaller delivery volumes that are not connected to the respective outlet opening. For the design and arrangement of the respective outlet opening, this means that they must open immediately after the completion of the immersion phase and must remain open until the beginning of the next immersion phase.
  • the operation of a claw vacuum pump operated or designed in this way is not endangered even if the scooping spaces are completely filled with liquid.
  • Shrinking, closed delivery volumes which would lead to the pump being blocked due to the incompressibility of the liquids, do not occur.
  • the compression work to be performed is greater than with a pump operated with internal compression.
  • Thermal problems that occur as a result are avoided by the cooling provided.
  • the gases are expediently cooled with the aid of a cooling device which is arranged downstream of the respective outlet opening of the pump stages.
  • the gas ejected from one stage is in cooled at the outlet opening cooling device. Since during the operation of the pump - except in the start-up phase - the suction pressure of one stage is lower than the discharge pressure, part of the cooled gases flows back into the pumping chamber immediately after opening the outlet opening and reduces the temperature in the next Extraction phase of extracted gases.
  • a particularly expedient development of the invention consists in the fact that a disc separating the two scoops of successive stages is designed as a cooler.
  • the cooler is arranged immediately downstream of the outlet opening of the first of the two stages, so that effective cooling of the gas components flowing back is effected.
  • FIG. 1 shows a section through a two-stage claw vacuum pump at one of the two shafts
  • Figure 2 is a plan view of a pair of rotors in the suction-side stage or - in the case of more than two stages - in an intermediate stage and
  • Figure 3 is a plan view of a pair of rotors in the pressure side stage.
  • FIGS. 1 to 3 are each parts of a claw vacuum pump 1 with two shafts 2, 3, on which the rotor pairs 4, 5 and 6, 7 are fastened.
  • the rotor pairs 4, 5 and 6, 7 are of the claw type. They rotate in the scoops 8, 9, which are formed by a plurality of housing parts 11, 12, 13.
  • FIG. 1 shows that the housing part 11 is a disk into which the exhaust channels 14, 15 are inserted.
  • the disc 11 is supported on a housing part 16, in which the shafts 2, 3 are mounted lying in the bearings 17 f and in which the drive motor, not shown, is located.
  • the scoops 8, 9 are formed by the pot-like housing parts 12, 13 which are placed on the disk 11.
  • the housing part 12 simultaneously forms the separating disk 18 between the two scoops 8, 9.
  • the shafts 2, 3 pass through the disks 11 and 18. At the level of these disks, they are equipped with bushings 21, 22, the outside of which is disks 11, Form 18 labyrinth seals. In a manner not shown, the individual housing parts are held together by bolts.
  • the intake duct 24 passes through the housing part 13 and opens into. the suction opening 25 arranged at the end (FIG. 2).
  • the slot-shaped suction opening 25, which extends along an arc of a circle, is concentric with the shaft 2 and is controlled by the recess 26 in the rotor 4.
  • the outlet opening 27, which also extends along an arc, is of slot-shaped design and is arranged concentrically to the shaft 3 and is located in the disk 18. Its open or closed state is controlled by the cutout 28 in the rotor 5.
  • the outlet opening 27 is followed by a channel 29 passing through the disk 18 and opening into the suction opening 30 (FIG. 3) of the second stage.
  • Exhaust pipes 33, 34 connect to the exhaust gas channels 14, 15 outside the pump 1 and open into the housing 35 of a cooler 36. Gases sucked in from a recipient (not shown) connected to the suction channel 24 and conveyed by the pump 1 leave the cooler 36 through the outlet connection 37. In the jacket regions of the housing parts 12, 13 there are cooling channels 38, 39 which during operation of are flowed through a coolant. Additional cooling channels 40 can be provided in the disks 11, 18 if they also function as a cooler.
  • the claw rotor pair 4, 5 is shown in two different positions. In their position shown in long lines, the claws and recesses of the rotors 4, 5 have just ended their immersion phase.
  • the continuation of the rotary movement (cf. arrows 41, 42) causes an enlargement of the (small) space 43 located between the claws and a reduction of the (large) space 44 also located between the claws.
  • the small, enlarging space 43 is the suction space and will be connected to the suction opening 25 after a brief continuation of the rotary movement.
  • the large, decreasing extension space 44 is connected to the outlet opening 27 immediately after the immersion phase so that internal compression does not occur.
  • the claws and recesses are just beginning their immersion phase.
  • the suction space 43 ' has its largest volume.
  • the recess 26 has just closed the suction opening 25.
  • the extension space 44 ' has assumed its smallest volume.
  • the outlet opening 27 was continuously open during the previous reduction in the volume of the extension space 44 '. There was no compression of the conveyed gases.
  • the cutout 28 has just closed the outlet opening 27.
  • FIG. 3 shows a top view of a pressure stage.
  • the rotors 6, 7 with their cutouts 45, 46 are again shown in different positions, the positions shown in short and long lines corresponding to the exemplary embodiment according to FIG. 2. Another position is shown in dash-dotted lines in order to explain a difference to the embodiment according to FIG. 2.
  • the second stage pressure stage according to FIG. 3 differs from the suction stage shown in FIG. 2 (or intermediate stage for a pump with more than two stages) in that two outlet openings (31, 32) are provided. So that the goal of "no internal compression" remains fulfilled, the distance between the two outlet openings must not be greater than the width of the recess 46, all based on the circular arc on which the outlet openings 31, 32 lie. It is thereby achieved that the shrinking extension space 44 is constantly connected to one of the two outlet openings 31, 32.
  • Claw vacuum pump for performing the method according to claim 1 with two or more stages, each having a scooping chamber (8, 9) with a pair of claw rotors (4, 5; 6, 7) and suction or outlet openings (25, 27) arranged on the end face 30, 31, 32), characterized in that in each stage the outlet opening (27; 31, 32) is arranged and designed such that it opens immediately after the end of a dive phase and only at the beginning of the next dive phase is closed.
  • claw vacuum pump according to claim 2, characterized in that the cooling of the gases takes place with the aid of a cooling device (18, 38; 36) which is arranged downstream of the respective outlet opening (27; 31, 32).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betrieb einer Klauenvakuumpumpe (1) mit zwei oder mehr Stufen, die jeweils einen Schöpfraum (8, 9) mit einem Klauenrotorpaar (4, 5; 6, 7) und stirnseitig angeordnete Ansaug- bzw. Austrittsöffnungen (25, 27; 30, 31, 32) aufweisen; um Gefährdungen des Betriebs der Pumpe durch Flüssigkeiten zu beseitigen, wird vorgeschlagen, dass die Pumpe (1) ohne innere Verdichtung betrieben wird und dass die aus mindestens einer - vorzugsweise allen - Stufe(n) austretenden Gase gekühlt werden.

Description

Verfahren zum Betrieb einer Klauenvakuumpumpe und für die Durch¬ führung dieses Betriebsverfahrens geeignete Klauenvakuumpumpe
Die Erfindung bezieht sich auf ein Verfahren zum Betrieb einer Klauenvakuumpumpe mit zwei oder mehr Stufen, die jeweils einen Schöpfraum mit einem Klauenrotorpaar und stirnseitig angeordnete Ansaug- bzw. Austrittsöffnungen aufweisen. Außerdem betrifft die Erfindung eine für die Durchführung dieses Betriebsverfahrens geeignete Klauenvakuumpumpe.
Aus der EU-A 365 695 ist eine KlauenVakuumpumpe bekannt. Jeder Rotor der Klauenrotorpaare ist jeweils mit einer Klaue (Zahn) und einer Aussparung ausgerüstet. Sie führen ihre Drehbewegung kämmend und berührungsfrei im Schöpfräum aus. Während der syn¬ chronen Bewegung der Rotoren bilden sich zunächst vergrößernde und dann wieder verkleinernde Räume aus, die das auf der Saug¬ seite eingeströmte Gas zur Druckseite fördern. Die Klauen haben die Aufgabe, die Saugseite von der Druckseite zu trennen. Die peripheren Oberflächenbereiche der Klauen bilden dazu mit der peripheren Schöpfrau innenwand die notwendigen Dichtspalte. Während des kämmenden Durchgangs der Klauen-Aussparung-Zonen der Rotoren durch den zentralen Bereich des Schöpfraumes (Durch- tauchphase) können die Klauen ihre Aufgabe, die Saugseite von der Druckseite zu trennen, nicht erfüllen, da sie sich in dieser Phase nicht mehr in der Nähe der peripheren Schöpfrauminnenwand bewegen. In dieser Phase ist es deshalb erforderlich, daß die Trennung von Ansaug- und Druckseite dadurch sichergestellt ist, daß die Ansaug- oder Austrittεöffnung - oder beide - geschlossen ist/sind. Dieses geschieht in bekannter Weise durch die Rotoren selbst. Die Ansaug- und Austrittsöffnungen sind stirnseitig derart angeordnet und ausgebildet, daß sie mit Hilfe der Ausspa¬ rungen in den Rotoren geöffnet bzw. geschlossen werden können.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Klauenvakuumpumpe derart zu betreiben und auszubilden, daß ihr Betrieb durch in die Pumpe gelangende Flüssigkeiten - seien es Kondensationen oder aufgrund von Betriebsfehlem der zu evakuie¬ renden Anlage in die Pumpe gelangende Flüssigkeiten - nicht gefährdet ist.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß die Pumpe ohne innere Verdichtung betrieben wird und daß die aus mindestens einer - vorzugsweise allen - Stufe(n) austretenden Gase gekühlt werden. "Ohne innere Verdichtung" bedeutet, daß sich verklei¬ nernde, nicht mit der jeweiligen Austrittsöffnung in Verbindung stehende Fördervolumina nicht vorhanden sein dürfen. Für die Ausbildung und Anordnung der jeweiligen Austrittsöffnung heißt das, daß sie sich unmittelbar nach dem Abschluß der Durchtauch¬ phase öffnen und bis zum Beginn der nächsten Durchtauchphase ihre Offenstellung beibehalten muß. Der Betrieb einer in dieser Weise betriebenen bzw. ausgebildeten Klauenvakuumpumpe ist selbst dann nicht gefährdet, wenn sich die Schöpfräume vollständig mit Flüssigkeit füllen. Sich verkleinernde, abgeschlossene Fördervo¬ lumina, die wegen der Inkompressibilität der Flüssigkeiten zu einem Blockieren der Pumpe führen würden, treten nicht auf.
Bei einer ohne innere Verdichtung betriebenen Klauenvakuumpumpe ist die zu leistende Verdichtungsarbeit größer als bei einer mit innerer Verdichtung betriebenen Pumpe. Dadurch auftretende thermische Probleme werden durch die vorgesehene Kühlung ver¬ mieden. Zweckmäßig erfolgt die Kühlung der Gase mit Hilfe einer Kühleinrichtung, die der jeweiligen Austrittsöffnung der Pump¬ stufen nachgeordnet ist. Bei in dieser Weise ausgebildeten Klauenpumpen wird das aus einer Stufe ausgeschobene Gas in der sich an die Austrittsöffnung anschließenden Kühleinrichtung gekühlt. Da während des Betriebs der Pumpe - außer in der An¬ fahrphase - der Ansaugdruck einer Stufe kleiner ist als der Ausschubdruck, strömt unmittelbar nach dem öffnen der Austritts¬ öffnung ein Teil der gekühlten Gase in den Schöpfraum zurück und reduziert die Temperatur der in der nächsten Ausschubphase geförderten Gase.
Eine besonders zweckmäßige Weiterbildung der Erfindung besteht darin, daß eine die beiden Schöpfräume aufeinanderfolgender Stufen trennende Scheibe als Kühler ausgebildet ist. Bei dieser Lösung ist der Kühler der Austrittsöffnung der ersten der beiden Stufen unmittelbar nachgeordnet, so daß eine wirksame Kühlung der jeweils zurückströmenden Gasanteile bewirkt wird.
Weitere Vorteile und Einzelheiten der Erfindung sollen an Hand von in den Figuren 1 bis 3 dargestellten Ausführungsbeispielen erläutert werden. Es zeigen
Figur 1 einen Schnitt durch eine zweistufige Klauenvakuum- pumpe in Höhe einer der beiden Wellen,
Figur 2 eine Draufsicht auf ein Rotorpaar in der saugsei- tigen Stufe oder - bei mehr als zwei Stufen - in einer Zwischenstufe und
Figur 3 eine Draufsicht auf ein Rotorpaar in der drucksei¬ tigen Stufe.
Bei den in den Figuren 1 bis 3 dargestellten Ausführungsbei- spielen handelt es sich jeweils um Teile einer Klauenvakuumpumpe 1 mit zwei Wellen 2, 3, auf denen die Rotorpaare 4, 5 bzw. 6, 7 befestigt sind. Die Rotorpaare 4, 5 und 6, 7 sind vom Klauentyp. Sie rotieren in den Schöpfräumen 8, 9, die von mehreren Gehäuse¬ teilen 11, 12, 13 gebildet werden. Figur 1 zeigt, daß das Gehäu¬ seteil 11 eine Scheibe ist, in die Abgaskanäle 14, 15 eingelassen sind. Die Scheibe 11 stützt sich auf einem Gehäuseteil 16 ab, in dem die Wellen 2, 3 in den Lagern 17 f liegend gelagert sind und in dem sich der nicht dargestellte Antriebmotor befindet. Die Schöpfräume 8, 9 werden von den topfähnlich gestalteten Gehäuse¬ teilen 12, 13 gebildet, die auf die Scheibe 11 aufgesetzt sind. Das Gehäuseteil 12 bildet gleichzeitig die Trennscheibe 18 zwischen den beiden Schöpfräumen 8, 9. Die Wellen 2, 3 durchset¬ zen die Scheiben 11 und 18. In Höhe dieser Scheiben sind sie mit Buchsen 21, 22 ausgerüstet, deren Außenseite mit den Scheiben 11, 18 Labyrinthdichtungen bilden. In nicht näher dargestellter Weise werden die einzelnen Gehäuseteile durch Bolzen zusammengehalten.
Der Ansaugkanal 24 durchsetzt das Gehäuseteil 13 und mündet in . die stirnseitig angeordnete Ansaugöffnung 25 (Figur 2). Die sich entlang eines Kreisbogens erstreckende, schlitzförmige Ansaug¬ öffnung 25 liegt konzentrisch zur Welle 2 und wird von der Aussparung 26 im Rotor 4 gesteuert. Die sich ebenfalls entlang eines Kreisbogens erstreckende, schlitzförmig ausgebildete und konzentrisch zur Welle 3 angeordnete Austrittsöffnung 27 befindet sich in der Scheibe 18. Ihr Offen- bzw. Schließzustand wird von der Aussparung 28 im Rotor 5 gesteuert. An die Austrittsöffnung 27 schließt sich ein die Scheibe 18 durchsetzender Kanal 29 an, der in die Ansaugöffnung 30 (Figur 3) der zweiten Stufe mündet. In der Scheibe 11 befinden sich zwei Austrittsöffnungen 31 und 32, an die sich jeweils die Abgaskanäle 14, 15 anschließen.
An die Abgaskanäle 14, 15 schließen sich außerhalb der Pumpe 1 Abgasleitungen 33, 34 an, die in das Gehäuse 35 eines Kühlers 36 münden. Aus einem nicht dargestellten, mit dem Ansaugkanal 24 verbundenen Rezipienten angesaugte und durch die Pumpe 1 geför¬ derte Gase verlassen den Kühler 36 durch den Austrittsstutzen 37. In den Mantelbereichen der Gehäuseteile 12, 13 befinden sich Kühlkanäle 38, 39, die während des Betriebes von einem Kühlmittel durchströmt sind. Weitere Kühlkanäle 40 können in den Scheiben 11, 18 vorgesehen sein, wenn diese gleichzeitig die Funktion eines Kühlers haben.
Um das dargestellte Ausführungsbeispiel einer Klauenvakuumpumpe ohne innere Verdichtung betreiben zu können, ist eine besondere Gestaltung und Anordnung der Austrittsöffnungen 27 bzw. 31, 32 erforderlich.
Zur Erläuterung dieser Anordnung in der ersten Stufe (Ansaugstu¬ fe, Fig. 2) ist das Klauenrotorpaar 4, 5 in zwei verschiedenen Positionen dargestellt. In ihrer langgestrichelt dargestellten Position haben die Klauen und Aussparungen der Rotoren 4, 5 soeben ihre Durchtauchphase beendet. Die Fortsetzung der Drehbe¬ wegung (vgl. Pfeile 41, 42) bewirkt eine Vergrößerung des zwi¬ schen den Klauen befindlichen (kleinen) Raumes 43 und eine Verkleinerung des ebenfalls zwischen den Klauen befindlichen (großen) Raumes 44. Der kleine, sich vergrößernde Raum 43 ist der Ansaugraum und wird nach kurzer Fortsetzung der Drehbewegung mit der Ansaugöffnung 25 in Verbindung stehen. Der große, sich verkleinernde Ausschubraum 44 wird unmittelbar nach der Durch¬ tauchphase mit der Austrittsöffnung 27 verbunden, damit eine innere Kompression nicht eintritt.
In ihrer in Figur 2 kurzgestrichelt dargestellten Position beginnen die Klauen und Aussparungen soeben ihre Durchtauchphase. Der Ansaugraum 43' hat sein größtes Volumen. Die Aussparung 26 hat soeben die Ansaugöffnung 25 geschlossen. Der Ausschubraum 44' hat sein kleinstes Volumen angenommen. Während der vorhergegan¬ genen Verkleinerung des Volumens des Ausschubraumes 44' war die Austrittsöffnung 27 ständig offen. Eine Kompression der geför¬ derten Gase ist nicht eingetreten. In der kurzgestrichelt darge¬ stellten Positon der Rotoren hat die Aussparung 28 die Austritts¬ öffnung 27 soeben geschlossen.
In Figur 3 ist eine Draufsicht auf eine Druckstufe dargestellt. Die Rotoren 6,7 mit ihren Aussparungen 45, 46 sind wieder in verschiedenen Positionen dargestellt, wobei die kurz- und lang- gestrichelt dargestellten Positionen dem Ausführungsbeispiel nach Fig. 2 entsprechen. Eine weitere Stellung ist strichpunktiert dargestellt, um einen Unterschied zur Ausführung nach Figur 2 zu erläutern. Die zweite Stufe (Druckstufe nach Fig. 3) unterschei¬ det sich von der in Figur 2 dargestellten Saugstufe (oder Zwi¬ schenstufe bei einer Pumpe mit mehr als zwei Stufen) dadurch, daß zwei Austrittsöffnungen (31, 32) vorgesehen sind. Damit das Ziel "keine innere Kompression" erfüllt bleibt, darf der Abstand der beiden Austrittsöffnungen nicht größer sein als die Weite der Aussparung 46, alles bezogen auf den Kreisbogen, auf dem die Austrittsöffnungen 31, 32 liegen. Dadurch wird erreicht, daß der sich verkleinernde Ausschubraum 44 ständig mit einer der beiden Austrittsöffnungen 31, 32 verbunden ist.
Aufgrund der Tatsache, daß zwei Austrittsöffnungen 31, 32 vor¬ handen sind, wird erreicht, daß ein Teil der durch die Aus¬ trittsöffnung 32 ausgestoßenen und über die sich anschließenden Kanäle 15, 34 in den Kühler 36 gelangenden Gase (Pfeil 47) über die Kanäle 33, 14 (Pfeil 48) durch die Austrittsöffnung 31 in den Schöpfräum 9 zurückströmt, wenn sich die Austrittsöffnung 31 bei der nächsten Umdrehung des Rotors 7 wieder öffnet. Da die Lei¬ tungen 33, 34 derart an das Gehäuse des Kühlers 36 angeschlossen sind, daß der zurückströmende Anteil auch den Kühler selbst durchströmt hat, kann ein Kühlluftkreislauf aufrechterhalten werden, der die aufgrund der erhöhten Verdichtungsarbeit entste¬ hende Wärme abführt.
Auch bei der ohne innere Verdichtung betriebenen Saug- oder Zwischenstufe mit den Rotoren 4,5 (Fig. 2) tritt der Effekt des Einströmens von Gasen in den Schöpfraum 8 unmittelbar nach der Öffnung der Austrittsöffnung 27 auf, solange der Ansaugdruck ausreichend niedrig ist. Nur bei hohen Ansaugdrücken in der Anfahrphase ist das nicht der Fall. Durch Kühlung der Zwischen¬ scheibe 18 (Kühlkanal 40) mit dem Gasförderkanal 29 kann die entstehende Wärme abgeführt werden. Wird eine Aufteilung der Austrittsöffnung 27 entsprechend Fig. 3 (Austrittsöffnungen 31, 32) vorgenommen, dann wird der Kühleffekt noch verbessert. Zweckmäßig hat der Abgaskanal 29 einen vergrößerten Strömungs- querschnitt, so daß die Gasverweilzeit und damit die Kühlwirkung ebenfalls größer wird. Durch die Kühlung insbesondere im Kanal 29 entstehendes Kondensat gelangt über die Ansaugöffnung 30 in die sich anschließende Stufe und wird durch diese Stufe ausgefördert. Verfahren zum Betrieb einer Klauenvakuumpumpe und für die Durch¬ führung dieses Betriebsverfahrens geeignete Klauenvakuumpumpe
PATENTANSPRÜCHE
1. Verfahren zum Betrieb einer Klauenvakuumpumpe (1) mit zwei oder mehr Stufen, die jeweils einen Schöpfräum (8, 9) mit einem Klauenrotorpaar (4, 5; 6, 7) und stirnseitig angeord¬ nete Ansaug- bzw. Austrittsöffnungen ( 25, 27; 30, 31, 32) aufweisen, dadurch gekennzeichnet, daß die Pumpe (1) ohne innere Verdichtung betrieben wird und daß die aus mindestens einer - vorzugsweise allen - Stufe(n) austretenden Gase gekühlt werden.
2. Klauenvakuumpumpe zur Durchführung des Verfahrens nach Anspruch 1 mit zwei oder mehr Stufen, die jeweils einen Schöpfräum (8, 9) mit einem Klauenrotorpaar (4, 5; 6, 7) und stirnseitig angeordnete Ansaug- bzw. Austrittsöffnungen (25, 27: 30, 31, 32) aufweisen, dadurch gekennzeichnet, daß in jeder Stufe die Austrittsöffnung (27; 31, 32) derart ange¬ ordnet und ausgebildet ist, daß sie unmittelbar nach dem Ende einer Durchtauchphase geöffnet und erst mit dem Beginn der nächst folgenden Durchtauchphase geschlossen wird.
3. Klauenvakuumpumpe nach Anspruch 2, dadurch gekennzeichnet, daß die Kühlung der Gase mit Hilfe eint.- Kühleinrichtung (18, 38; 36) erfolgt, die der jeweiligen Austrittsöffnung (27; 31, 32) nachgeordnet ist.

Claims

. Klauenvakuumpumpe nach Anspruch 3, dadurch gekennzeichnet, daß eine die Schöpfräume (8, 9) von zwei aufeinanderfolgen¬ den Stufen trennende Scheibe (18) oder/und eine vom druck¬ seitigen Auslaßkanal durchsetzte Scheibe (11) als Kühler ausgebildet ist.
5. Klauenvakuumpumpe nach Anspruch 4, dadurch gekennzeichnet, daß der die Scheibe (18) durchsetzende, die beiden Stufen miteinander verbindende Gasförderkanal (29) zum Zwecke der Erhöhung der Verweilzeit der Gase einen vergrößerten Strö¬ mungsquerschnitt hat.
6. Klauenvakuumpumpe nach Anspruch 3, dadurch gekennzeichnet, daß der Kühler (36) extern angeordnet ist.
7. Klauenvakuumpumpe nach Anspruch 2 , 3 oder 4, dadurch ge¬ kennzeichnet, daß die Abgasleitung (14, 15; 29; 33, 34, 37) die sich an eine Austrittsöffnung (27; 31, 32) einer Stufe anschließt, mit einem Kühler (36) in Verbindung steht.
8. Klauenvakuumpumpe nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, daß zwei Austrittsöffnungen (31, 32) vor¬ handen sind und daß ihr Abstand kleiner ist als die Weite der die Austrittsöffnungen steuernden Aussparung (46).
9. Klauenvakuumpumpe nach den Ansprüchen 7 und 8, dadurch gekennzeichnet, daß sich an jede der beiden Austrittsöff¬ nungen (31, 32) eine separate Abgasleitung (33, 34) an¬ schließt und daß beide Abgasleitungen in das Gehäuse (35) des Kühlers (36) münden.
10. Klauenvakuumpumpe nach Anspruch 8, dadurch gekennzeichnet, daß die beiden Abgasleitungen (33, 34) derart in das Gehäus (35) des Kühlers (36) münden, daß durch eine (34) der beide Abgasleitungen in den Kühler eintretendes und durch die zweite Abgasleitung (33) zum Schöpfräum (8, 9) zurückströ¬ mendes Gas den Kühler (36) durchströmt. 11. Klauenvakuumpumpe nach einem der Ansprüche 2 bis 10, dadurch gekennzeichnet, daß sie zweistufig ausgebildet ist, daß die die beiden Stufen trennende Scheibe (18) als Kühler für die aus der Saugstufe angeschobenen Gase ausgebildet ist und daß der Druckstufe ein externer Kühler (36) für die aus der Druckstufe ausgeschobenen Gase zugeordnet ist.
12. Klauenvakuumpumpe nach einem der Ansprüche 2 bis 11, dadurch gekennzeichnet, daß die rotierenden Systeme (Wellen 2, 7; Rotoren 4, 5; 6, 7) fliegend in einem Gehäuse (16) gelagert sind.
13. Klauenvakuumpumpe nach einem der Ansprüche 2 bis 12, dadurch gekennzeichnet, daß topfähnlich gestaltete Gehäuseteile (12, 13) die Schöpfräume (8, 9) bilden.
14. Klauenvakuumpumpe nach einem der Ansprüche 2 bis 13, dadurch gekennzeichnet, daß neben im Gehäusemantel befindlichen Kühlkanälen (38, 39) weitere Kühlkanäle (40) vorgesehen sind, die sich in Scheiben (11, 18) befinden, die die sich an die Austrittsöffnungen (27; 31, 32) anschließenden Abgaskanäle (29; 14, 15) aufnehmen.
EP93919226A 1992-10-02 1993-08-31 Verfahren zum betrieb einer klauenvakuumpumpe und für die durchführung dieses betriebsverfahrens geeignete klauenvakuumpumpe Expired - Lifetime EP0663045B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4233142 1992-10-02
DE4233142A DE4233142A1 (de) 1992-10-02 1992-10-02 Verfahren zum Betrieb einer Klauenvakuumpumpe und für die Durchführung dieses Betriebsverfahrens geeignete Klauenvakuumpumpe
PCT/EP1993/002349 WO1994008141A1 (de) 1992-10-02 1993-08-31 Verfahren zum betrieb einer klauenvakuumpumpe und für die durchführung dieses betriebsverfahrens geeignete klauenvakuumpumpe

Publications (2)

Publication Number Publication Date
EP0663045A1 true EP0663045A1 (de) 1995-07-19
EP0663045B1 EP0663045B1 (de) 1997-05-14

Family

ID=6469471

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93919226A Expired - Lifetime EP0663045B1 (de) 1992-10-02 1993-08-31 Verfahren zum betrieb einer klauenvakuumpumpe und für die durchführung dieses betriebsverfahrens geeignete klauenvakuumpumpe

Country Status (5)

Country Link
US (1) US5660535A (de)
EP (1) EP0663045B1 (de)
JP (1) JPH09502001A (de)
DE (2) DE4233142A1 (de)
WO (1) WO1994008141A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4438878A1 (de) * 1994-10-31 1996-05-02 Leybold Ag Dichtungssystem für eine vertikal angeordnete Welle
DE4439724A1 (de) * 1994-11-09 1996-05-15 Leybold Ag Trockenverdichtende Zweiwellen-Verdrängermaschine
US6575719B2 (en) 2000-07-27 2003-06-10 David B. Manner Planetary rotary machine using apertures, volutes and continuous carbon fiber reinforced peek seals
JP2006520873A (ja) * 2003-03-19 2006-09-14 株式会社荏原製作所 容積型真空ポンプ
WO2010041445A1 (ja) * 2008-10-10 2010-04-15 株式会社アルバック ドライポンプ
KR101340975B1 (ko) * 2009-08-14 2013-12-12 가부시키가이샤 아루박 드라이 펌프
JP2014029115A (ja) * 2010-11-17 2014-02-13 Ulvac Japan Ltd 真空排気装置の接続構造及び真空排気システム
WO2012066782A1 (ja) * 2010-11-17 2012-05-24 株式会社アルバック 真空排気装置の連結構造及び真空排気システム
JP2014029114A (ja) * 2010-11-17 2014-02-13 Ulvac Japan Ltd 真空排気装置の連結構造及び真空排気装置
JP7008955B1 (ja) * 2021-07-16 2022-01-25 オリオン機械株式会社 クローポンプ
CN116576107B (zh) * 2023-06-08 2024-05-17 北京通嘉宏瑞科技有限公司 转子及真空泵
CN116838609B (zh) * 2023-07-05 2024-02-27 山东亿宁环保科技有限公司 爪式真空泵冷却系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1531607A (en) * 1923-01-24 1925-03-31 Thomas W Green High-pressure rotary pump
DE677150C (de) * 1933-08-25 1939-06-20 Northey Rotary Engines Ltd Drehkolbenpumpe mit zwei in einem Gehaeuse umlaufenden Laeufern, die je einen fluegelartigen Drehkolben und eine den Kolben entsprechende Aussparung aufweisen
US4137022A (en) * 1976-06-02 1979-01-30 Lassota Marek J Rotary compressor and process of compressing compressible fluids
US4504201A (en) * 1982-11-22 1985-03-12 The Boc Group Plc Mechanical pumps
JPS59115489A (ja) * 1982-12-23 1984-07-03 Unozawagumi Tekkosho:Kk 逆流冷却式多段ル−ツ型真空ポンプ
JPS61197793A (ja) * 1985-02-26 1986-09-02 Ebara Corp 多段複葉型真空ポンプにおける冷却方法
JPH0733834B2 (ja) * 1986-12-18 1995-04-12 株式会社宇野澤組鐵工所 ロータ内蔵ハウジングの外周温度が安定化された内部分流逆流冷却多段式の三葉式真空ポンプ
DE3786917D1 (de) * 1987-05-15 1993-09-09 Leybold Ag Ein- oder mehrstufige zweiwellenvakuumpumpe.
DE3785192D1 (de) * 1987-05-15 1993-05-06 Leybold Ag Zweiwellenvakuumpumpe mit schoepfraum.
DE3876243D1 (de) * 1988-10-24 1993-01-07 Leybold Ag Zweiwellenvakuumpumpe mit schoepfraum.
GB8825284D0 (en) * 1988-10-28 1988-11-30 Boc Group Plc Improvements in mechanical pumps
FR2642479B1 (fr) * 1989-02-02 1994-03-18 Alcatel Cit Pompe a vide du type roots, multietagee
JP2537696B2 (ja) * 1990-09-21 1996-09-25 株式会社荏原製作所 多段真空ポンプ
DE59200347D1 (de) * 1991-02-01 1994-09-08 Leybold Ag Trockenlaufende zweiwellenvakuumpumpe.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9408141A1 *

Also Published As

Publication number Publication date
JPH09502001A (ja) 1997-02-25
WO1994008141A1 (de) 1994-04-14
US5660535A (en) 1997-08-26
DE59306466D1 (de) 1997-06-19
DE4233142A1 (de) 1994-04-07
EP0663045B1 (de) 1997-05-14

Similar Documents

Publication Publication Date Title
DE2913548C2 (de) Wellenkühlung für ein Gasturbinentriebwerk
EP0663045B1 (de) Verfahren zum betrieb einer klauenvakuumpumpe und für die durchführung dieses betriebsverfahrens geeignete klauenvakuumpumpe
DE68905026T2 (de) Mehrstufige roots-vakuumpumpe.
DE3243279A1 (de) Kombiniertes schmutzentfernungs- und abblassystem fuer ein zweistromtriebwerk
DE3244099C2 (de)
EP0839283B1 (de) Ölgedichtete drehschiebervakuumpumpe mit einer ölversorgung
EP1073827B1 (de) Turbinenschaufel
EP1444440B1 (de) Gekühlte schraubenvakuumpumpe
DE10244566B3 (de) Zylinderkopfanordnung für einen Kolbenverdichter
DE19840098A1 (de) Verfahren und Vorrichtung zur Schubentlastung eines Turboladers
DE2002075A1 (de) Kreiskolbenverdichter
DE102018205269B4 (de) Schraubenverdichter
DE4327583A1 (de) Vakuumpumpe mit Ölabscheider
EP0603698B1 (de) Wälzkolben-Vakuumpumpe
EP0651162B1 (de) Verdichter
DE10326466B4 (de) Schieber mit Anlaufentlastung
EP1496261A2 (de) Drehschieber-Vakuumpumpe bzw. -Verdichter
DE102018120126A1 (de) Zweiflutiger Abgasturbolader
EP0891489B1 (de) Innenläuferzahnradölpumpe mit saug- und drucknierenerweiterungen
DE4242406C2 (de) Anordnung in einem Schraubenverdichter
DE4205116C2 (de) Saug-Druck-Pumpe
DE4020159C2 (de) Rotationspumpe
DE102004010061B9 (de) Seitenkanal-Drehschieberpumpe
DE3240523A1 (de) Fluegelzellenverdichter
WO2021160677A1 (de) Schraubenverdichter mit einseitig gelagerten rotoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960802

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BALZERS UND LEYBOLD DEUTSCHLAND HOLDING AKTIENGESE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59306466

Country of ref document: DE

Date of ref document: 19970619

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970711

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: GRAHAM PRECISION PUMPS LIMITED

Free format text: UNAXIS DEUTSCHLAND HOLDING GMBH#KREUZHOFSTRASSE 10#81476 MUENCHEN (DE) -TRANSFER TO- GRAHAM PRECISION PUMPS LIMITED#FORGE LANE#CONGLETON CHESHIRE CW12 4HG (GB)

Ref country code: CH

Ref legal event code: PFA

Owner name: UNAXIS DEUTSCHLAND HOLDING GMBH

Free format text: BALZERS UND LEYBOLD DEUTSCHLAND HOLDING AKTIENGESELLSCHAFT#WILHELM-ROHN-STRASSE 25#63450 HANAU (DE) -TRANSFER TO- UNAXIS DEUTSCHLAND HOLDING GMBH#KREUZHOFSTRASSE 10#81476 MUENCHEN (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050831

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060825

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: GRAHAM VACUUM TECHNOLOGY LIMITED

Free format text: GRAHAM PRECISION PUMPS LIMITED#FORGE LANE#CONGLETON CHESHIRE CW12 4HG (GB) -TRANSFER TO- GRAHAM VACUUM TECHNOLOGY LIMITED#ST JAMES'S COURT BROWN STREET#MANCHESTER, M2 2JF (GB)

Ref country code: CH

Ref legal event code: PUE

Owner name: BUSCH GVT LIMITED

Free format text: GRAHAM VACUUM TECHNOLOGY LIMITED#ST JAMES'S COURT BROWN STREET#MANCHESTER, M2 2JF (GB) -TRANSFER TO- BUSCH GVT LIMITED#FORGE LANE#CONGLETON, CHESHIRE CW12 4HG (GB)

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070906

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070821

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070821

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831