WO2010041445A1 - ドライポンプ - Google Patents
ドライポンプ Download PDFInfo
- Publication number
- WO2010041445A1 WO2010041445A1 PCT/JP2009/005224 JP2009005224W WO2010041445A1 WO 2010041445 A1 WO2010041445 A1 WO 2010041445A1 JP 2009005224 W JP2009005224 W JP 2009005224W WO 2010041445 A1 WO2010041445 A1 WO 2010041445A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pump
- pump chamber
- dry
- dry pump
- refrigerant passage
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C25/00—Adaptations of pumps for special use of pumps for elastic fluids
- F04C25/02—Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/10—Outer members for co-operation with rotary pistons; Casings
- F01C21/104—Stators; Members defining the outer boundaries of the working chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/123—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially or approximately radially from the rotor body extending tooth-like elements, co-operating with recesses in the other rotor, e.g. one tooth
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/08—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C2/12—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C2/14—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
- F04C2/18—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/001—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/04—Heating; Cooling; Heat insulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/30—Casings or housings
Definitions
- the present invention relates to a volume transfer type dry pump. This application claims priority based on Japanese Patent Application No. 2008-263939 filed on Oct. 10, 2008, the contents of which are incorporated herein by reference.
- a dry pump is used to exhaust.
- the dry pump includes a pump chamber in which a rotor is accommodated in a cylinder.
- the dry pump compresses and moves the exhaust gas by rotating the rotor in the cylinder, and exhausts the sealed space provided in the suction port to reduce the pressure (for example, see Patent Document 1).
- a multistage dry pump in which a plurality of pump chambers are connected in series from an exhaust gas suction port to a discharge port is used (for example, , See Patent Document 2).
- the internal pressure may increase in the pump chamber closer to the atmosphere side (discharge side). For this reason, the heat generation amount may increase as the pump chamber is closer to the atmosphere side (discharge side).
- a temperature difference occurs between the pump chambers, and the entire dry pump cannot be maintained at a uniform temperature.
- the temperature is biased inside the dry pump, the dry pump is locally deformed and expanded, resulting in a problem that exhaust efficiency is lowered.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a dry pump capable of enhancing exhaust efficiency by reducing local temperature non-uniformity.
- the present invention provides the following dry pump. That is, the dry pump of the present invention includes a plurality of cylinders, a pump chamber formed in each of the plurality of cylinders, a partition wall that partitions the pump chambers adjacent to each other, and a plurality of chambers housed in the pump chamber. And a rotor shaft that is a rotating shaft of the rotor, and a refrigerant passage that is formed inside the partition and allows the refrigerant to flow therethrough.
- the refrigerant passage is formed inside a partition that partitions at least the pump chamber on the highest pressure side among the plurality of pump chambers having different internal pressures.
- the refrigerant passage is formed at least inside a partition partitioning the pump chamber on the most discharge side among the plurality of pump chambers connected in series from the suction side to the discharge side. It is preferable that In the dry pump according to the aspect of the invention, it is preferable that the refrigerant passage is formed at least inside a partition partitioning a pump chamber that is at a highest temperature during operation among the plurality of pump chambers having different internal pressures. .
- a pump that is close to the atmosphere side (discharge side) is formed by forming a refrigerant passage in the partition that defines the pump chamber that is the highest pressure side among the plurality of pump chambers and flowing the refrigerant.
- the chamber can be efficiently cooled.
- the temperature imbalance between the pump chamber close to the atmosphere side (discharge side) and the pump chamber arranged in the preceding stage is eliminated.
- the coolant chamber is formed inside the partition wall that partitions the pump chamber that becomes the highest temperature during operation, and the pump chamber that becomes the highest temperature is efficiently cooled by flowing the coolant. be able to.
- FIG. 1 is a side sectional view showing a dry pump of the present invention.
- 2 is a front sectional view taken along line AA in FIG.
- a plurality of rotors 21, 22, 23, 24, and 25 having different thicknesses are accommodated in cylinders 31, 32, 33, 34, and 35, respectively.
- a plurality of pump chambers 11, 12, 13, 14, 15 are formed along the axial direction L of the rotor shaft 20.
- the dry pump 1 includes a pair of rotors 25a and 25b and a pair of rotor shafts 20a and 20b.
- the pair of rotors 25a and 25b are arranged so that the convex portion 29p of one rotor 25a (first rotor) and the concave portion 29q of the other rotor 25b (second rotor) mesh with each other.
- the rotors 25a and 25b rotate inside the cylinders 35a and 35b as the rotor shafts 20a and 20b rotate.
- a plurality of rotors 21 to 25 are arranged along the axial direction L of the rotor shaft 20. Each of the rotors 21 to 25 is engaged with a groove portion 26 formed on the outer peripheral surface of the rotor shaft 20 and is restricted from moving in the circumferential direction and the axial direction.
- the rotors 21 to 25 are accommodated in the cylinders 31 to 35, respectively, and a plurality of pump chambers 11 to 15 are configured.
- the pump chambers 11 to 15 are connected in series from the exhaust gas suction port 5 to the discharge port 6 to constitute a multistage dry pump 1.
- the pump chamber (first-stage pump chamber) 11 in contact with the suction port 5 is the vacuum side, that is, the low pressure side.
- a pump chamber (fifth-stage pump chamber) 15 in contact with the discharge port 6 is the normal pressure side, that is, the high pressure side.
- a pump chamber 12 (second stage pump chamber), a pump chamber 13 (third stage pump chamber), and a pump chamber 14 (fourth stage pump chamber) are provided. It has been.
- exhaust gas is compressed from the first-stage pump chamber 11 of the suction port 5 (vacuum side, low-pressure stage) to the fifth-stage pump chamber 15 of the discharge port 6 (atmosphere side, high-pressure stage), and the pressure is increased.
- the exhaust capacity of the pump chamber is reduced step by step. Specifically, the gas compressed in the first-stage pump chamber 11 on the vacuum side flows into the second-stage pump chamber 12. The gas compressed in the second stage pump chamber 12 flows into the third stage pump chamber 13. The gas compressed in the third stage pump chamber 13 flows into the fourth stage pump chamber 14. The gas compressed in the fourth stage pump chamber 14 flows into the fifth stage pump chamber 15. The gas compressed in the fifth stage pump chamber 15 is exhausted from the discharge port 6. Accordingly, the gas supplied from the suction port 5 is gradually compressed through the pump chambers 11 to 15 and exhausted from the discharge port 6.
- the exhaust capacity of the pump chambers 11 to 15 is proportional to the scraped volume and the rotational speed of the rotor. Since the scraping volume of the rotor is proportional to the number of leaves (number of blades, number of convex portions) and thickness of the rotor, the thickness gradually decreases from the low pressure stage pump chamber 11 toward the high pressure stage pump chamber 15. The thickness of the rotor is set.
- the first stage pump chamber 11 is disposed on the free bearing 56 side described later
- the fifth stage pump chamber 15 is disposed on the fixed bearing 54 side.
- the cylinders 31 to 35 are formed inside the center cylinder 30.
- Side cylinders 44 and 46 are fixed to both ends of the center cylinder 30 in the axial direction.
- Bearings 54 and 56 are fixed to the pair of side cylinders 44 and 46, respectively.
- the first bearing 54 fixed to one side cylinder 44 is a bearing having a small axial play such as an angular bearing, and is a fixed bearing 54 that restricts the axial movement of the rotor shaft.
- the side cylinder 44 is preferably filled with lubricating oil 58 of the fixed bearing 54.
- the second bearing 56 fixed to the other side cylinder 46 is a bearing having a large axial play such as a ball bearing, and is a free bearing 56 that allows the axial movement of the rotor shaft. Function.
- the fixed bearing 54 rotatably supports the vicinity of the center portion of the rotor shaft 20, and the free bearing 56 rotatably supports the vicinity of the end portion of the rotor shaft 20.
- a cap 48 is attached to the side cylinder 46 so as to cover the free bearing 56. It is preferable that the lubricating oil 58 of the free bearing 56 is enclosed inside the cap 48.
- a motor housing 42 is fixed to the side cylinder 44.
- a motor 52 such as a DC brushless motor is disposed inside the motor housing.
- the motor 52 applies a rotational driving force only to one rotor shaft 20a (first rotor shaft) of the pair of rotor shafts 20a and 20b.
- a rotational driving force is transmitted to the other rotor shaft 20b (second rotor shaft) via a timing gear 53 disposed between the motor 52 and the fixed bearing 54.
- the plurality of pump chambers 11 to 15 are partitioned by partition walls 36 to 39 between adjacent pump chambers.
- the partition walls 36 to 39 are made of, for example, a material that is integral with the center cylinder 30.
- the partition wall 36 first partition wall
- the partition wall 37 second partition wall
- the partition wall 38 third partition wall
- the partition wall 39 fourth partition wall is provided between the pump chambers 14 and 15.
- partition walls 36 to 39 the partition adjacent to the fifth-stage pump chamber 15 on the highest pressure side, that is, the fifth-stage pump chamber 15 in contact with the discharge port 6 (atmosphere side, high-pressure stage), and the fourth stage in the preceding stage.
- a refrigerant passage 38 is formed inside the partition wall 39 that partitions the pump chamber 14.
- the refrigerant passage 38 is a tubular channel having a circular cross section extending in a substantially U shape, for example, inside the partition wall 39.
- the one end 38a side of the refrigerant passage 38 is connected to a refrigerant supply source (not shown). Further, the refrigerant passage 38 circulated inside the partition wall 39 is not led to the inside of the partition walls 36 to 38, but is passed only through the outer peripheral portion 30a of the center cylinder 30. As a result, the pump chambers 12 to 14 are cooled from the outer peripheral side with a cooling power weaker than the cooling power for cooling the pump chamber 15.
- the fifth stage pump chamber 15 having the highest temperature can be efficiently cooled.
- the high-pressure side (discharge side) fifth-stage pump chamber 15 is particularly concentrated and cooled, so that the rotational speed of the rotor can be increased, and the dry pump capable of operating efficiently with enhanced exhaust efficiency. 1 can be realized.
- fever is suppressed, the quality change of the constituent material of the rotor 25 can be prevented.
- the refrigerant passage only needs to be formed at least inside the partition that partitions the pump chamber 15 on the high-pressure side (discharge side), but it is also formed inside the partition that partitions the pump chambers 11 to 14 as the previous stage. May be. In that case, the range in which the refrigerant passage is formed from the partition wall 39 toward the partition wall 36 (for example, the size (area) of the region in which the refrigerant passage is formed or the length of the refrigerant passage) is gradually reduced. Thus, it is preferable to change the cooling capacity stepwise according to the amount of heat generated in each of the pump chambers 11-15.
- the refrigerant passage only needs to be formed inside the partition wall that divides the pump chamber that generates the maximum amount of heat according to the operating conditions of the dry pump. That is, depending on the operating conditions, the amount of heat generated in the pump chamber on the high pressure side (discharge side) is not necessarily maximized. For this reason, for example, when the pump chamber that generates the largest amount of heat is on the low pressure side (suction side), a refrigerant passage may be formed inside the partition that partitions the pump chamber adjacent to the low pressure side (suction side). good.
- FIGS. 1 and 2 Examples that verified the effects of the present invention are shown below.
- a dry pump was used in which the refrigerant passage 35 was formed inside the partition wall 39 and the fifth-stage pump chamber 15 on the atmosphere side (discharge side) was cooled.
- a conventional dry pump that does not particularly form a refrigerant passage is used in a partition wall that partitions a pump chamber on the atmosphere side (discharge side).
- the dry pump of this invention example and the dry pump of the comparative example are each operated for a certain period of time, and the temperature of the pump chamber on the atmosphere side (discharge side), the temperature of the pump chamber on the vacuum side (suction side), and the space between them.
- the temperature of the pump chamber was measured.
- the measurement results are shown in FIG. According to the measurement result shown in FIG. 3, the dry pump of the example of the present invention was able to lower the temperature of the pump chamber as a whole than the dry pump of the comparative example.
- the dry pump of the present invention example it was confirmed that the temperature of the pump chamber on the atmosphere side (discharge side) was significantly reduced as compared with the dry pump of the comparative example, and the overall temperature distribution was stabilized.
- the present invention is useful for a dry pump capable of increasing exhaust efficiency by reducing local temperature non-uniformity.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
本願は、2008年10月10日に出願された特願2008-263938号に基づき優先権を主張し、その内容をここに援用する。
すなわち、本発明のドライポンプは、複数のシリンダと、前記複数のシリンダにそれぞれ形成されたポンプ室と、互いに隣接する前記ポンプ室どうしを区画する隔壁と、前記ポンプ室の内部に収容された複数のロータと、前記ロータの回転軸であるロータシャフトと、前記隔壁の内部に形成され、冷媒を流通させる冷媒通路と、を含む。
本発明のドライポンプにおいては、前記冷媒通路は、吸込側から吐出側に向けて直列に接続された複数の前記ポンプ室のうち、少なくとも、最も吐出側のポンプ室を区画する隔壁の内部に形成されている、ことが好ましい。
本発明のドライポンプにおいては、前記冷媒通路は、互いに内圧が異なる複数の前記ポンプ室のうち、少なくとも、運転時に最も高温となるポンプ室を区画する隔壁の内部に形成されている、ことが好ましい。
また、本発明のドライポンプによれば、運転時に最も高温となるポンプ室を区画する隔壁の内部に冷媒通路を形成し、冷媒を流すことによって、最も高温となるポンプ室を効率的に冷却することができる。
この構成においては、吸込口5(真空側、低圧段)の第1段ポンプ室11から吐出口6(大気側、高圧段)の第5段ポンプ室15にかけて、排気ガスが圧縮されて圧力が上昇するので、ポンプ室の排気容量は段階的に小さくされる。
具体的に、真空側の第1段ポンプ室11において圧縮されたガスは、第2段ポンプ室12に流動する。第2段ポンプ室12において圧縮されたガスは、第3段ポンプ室13に流動する。第3段ポンプ室13において圧縮されたガスは、第4段ポンプ室14に流動する。第4段ポンプ室14において圧縮されたガスは、第5段ポンプ室15に流動する。第5段ポンプ室15において圧縮されたガスは、吐出口6から排気される。従って、吸込口5から供給されたガスは、ポンプ室11~15を通じて徐々に圧縮されて、吐出口6から排気される。
ここで、隔壁36(第1隔壁)は、ポンプ室11,12の間に設けられている。隔壁37(第2隔壁)は、ポンプ室12,13の間に設けられている。隔壁38(第3隔壁)は、ポンプ室13,14の間に設けられている。隔壁39(第4隔壁)は、ポンプ室14,15の間に設けられている。
隔壁36~39のうち、最も高圧側となる第5段ポンプ室15に隣接した隔壁、即ち吐出口6(大気側、高圧段)に接する第5段ポンプ室15と、その前段の第4段ポンプ室14とを区画する隔壁39の内部には、冷媒通路38が形成されている。
図3に示す測定結果によれば、本発明例のドライポンプは、比較例のドライポンプよりも全体的にポンプ室の温度を低くすることができた。特に、本発明例のドライポンプは、大気側(吐出側)のポンプ室の温度が、比較例のドライポンプと比べて大幅に低減され、全体的な温度分布が安定することが確認された。
Claims (4)
- ドライポンプであって、
複数のシリンダと、
前記複数のシリンダにそれぞれ形成されたポンプ室と、
互いに隣接する前記ポンプ室どうしを区画する隔壁と、
前記ポンプ室の内部に収容された複数のロータと、
前記ロータの回転軸であるロータシャフトと、
前記隔壁の内部に形成され、冷媒を流通させる冷媒通路と、
を含む、
ことを特徴とするドライポンプ。 - 請求項1に記載のドライポンプであって、
前記冷媒通路は、互いに内圧が異なる複数の前記ポンプ室のうち、少なくとも、最も高圧側のポンプ室を区画する隔壁の内部に形成されている、
ことを特徴とするドライポンプ。 - 請求項1に記載のドライポンプであって、
前記冷媒通路は、吸込側から吐出側に向けて直列に接続された複数の前記ポンプ室のうち、少なくとも、最も吐出側のポンプ室を区画する隔壁の内部に形成されている、
ことを特徴とするドライポンプ。 - 請求項1に記載のドライポンプであって、
前記冷媒通路は、互いに内圧が異なる複数の前記ポンプ室のうち、少なくとも、運転時に最も高温となるポンプ室を区画する隔壁の内部に形成されている、
ことを特徴とするドライポンプ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980139935.5A CN102177346B (zh) | 2008-10-10 | 2009-10-07 | 干泵 |
JP2010532818A JP5313260B2 (ja) | 2008-10-10 | 2009-10-07 | ドライポンプ |
KR1020117007905A KR101297743B1 (ko) | 2008-10-10 | 2009-10-07 | 드라이 펌프 |
EP09818985.5A EP2345813A4 (en) | 2008-10-10 | 2009-10-07 | DRY PUMP |
US13/123,090 US8573956B2 (en) | 2008-10-10 | 2009-10-07 | Multiple stage dry pump |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008263938 | 2008-10-10 | ||
JP2008-263938 | 2008-10-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010041445A1 true WO2010041445A1 (ja) | 2010-04-15 |
Family
ID=42100406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/005224 WO2010041445A1 (ja) | 2008-10-10 | 2009-10-07 | ドライポンプ |
Country Status (7)
Country | Link |
---|---|
US (1) | US8573956B2 (ja) |
EP (1) | EP2345813A4 (ja) |
JP (1) | JP5313260B2 (ja) |
KR (1) | KR101297743B1 (ja) |
CN (1) | CN102177346B (ja) |
TW (1) | TWI480467B (ja) |
WO (1) | WO2010041445A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5677202B2 (ja) * | 2011-06-02 | 2015-02-25 | 株式会社荏原製作所 | 真空ポンプ |
US11815095B2 (en) * | 2019-01-10 | 2023-11-14 | Elival Co., Ltd | Power saving vacuuming pump system based on complete-bearing-sealing and dry-large-pressure-difference root vacuuming root pumps |
PL3921515T3 (pl) | 2019-02-06 | 2023-10-09 | Ateliers Busch S.A. | Korpus pompy wielostopniowej i wielostopniowa pompa gazowa |
US20200370175A1 (en) * | 2019-05-22 | 2020-11-26 | Asm Ip Holding B.V. | Apparatus operating method and substrate processing apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001020884A (ja) * | 1999-07-05 | 2001-01-23 | Unozawa Gumi Iron Works Ltd | 冷却器により形成される外壁をもつ気体流路を有するロータリ形多段真空ポンプ |
JP2001329985A (ja) * | 2000-05-22 | 2001-11-30 | Toyota Industries Corp | 真空ポンプにおける冷却構造 |
JP2003166483A (ja) | 2001-11-29 | 2003-06-13 | Aisin Seiki Co Ltd | 多段式ルーツ型ポンプ |
JP2004506140A (ja) | 2000-08-10 | 2004-02-26 | ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング | 二軸式真空ポンプ |
JP2004300964A (ja) * | 2003-03-28 | 2004-10-28 | Aisin Seiki Co Ltd | 真空ポンプ |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1531607A (en) * | 1923-01-24 | 1925-03-31 | Thomas W Green | High-pressure rotary pump |
US2938664A (en) * | 1955-01-17 | 1960-05-31 | Leybold S Nachfolger Fa E | Pump |
FR2637655B1 (fr) * | 1988-10-07 | 1994-01-28 | Alcatel Cit | Machine rotative du type pompe a vis |
DE4233142A1 (de) * | 1992-10-02 | 1994-04-07 | Leybold Ag | Verfahren zum Betrieb einer Klauenvakuumpumpe und für die Durchführung dieses Betriebsverfahrens geeignete Klauenvakuumpumpe |
DE19745616A1 (de) * | 1997-10-10 | 1999-04-15 | Leybold Vakuum Gmbh | Gekühlte Schraubenvakuumpumpe |
JP3689755B2 (ja) | 1999-07-09 | 2005-08-31 | 藤村ヒューム管株式会社 | 推進用ヒューム管 |
KR100408153B1 (ko) * | 2001-08-14 | 2003-12-01 | 주식회사 우성진공 | 드라이 진공펌프 |
GB0409139D0 (en) | 2003-09-30 | 2004-05-26 | Boc Group Plc | Vacuum pump |
-
2009
- 2009-10-07 KR KR1020117007905A patent/KR101297743B1/ko active IP Right Grant
- 2009-10-07 EP EP09818985.5A patent/EP2345813A4/en not_active Withdrawn
- 2009-10-07 CN CN200980139935.5A patent/CN102177346B/zh active Active
- 2009-10-07 JP JP2010532818A patent/JP5313260B2/ja active Active
- 2009-10-07 WO PCT/JP2009/005224 patent/WO2010041445A1/ja active Application Filing
- 2009-10-07 US US13/123,090 patent/US8573956B2/en active Active
- 2009-10-08 TW TW098134143A patent/TWI480467B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001020884A (ja) * | 1999-07-05 | 2001-01-23 | Unozawa Gumi Iron Works Ltd | 冷却器により形成される外壁をもつ気体流路を有するロータリ形多段真空ポンプ |
JP2001329985A (ja) * | 2000-05-22 | 2001-11-30 | Toyota Industries Corp | 真空ポンプにおける冷却構造 |
JP2004506140A (ja) | 2000-08-10 | 2004-02-26 | ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング | 二軸式真空ポンプ |
JP2003166483A (ja) | 2001-11-29 | 2003-06-13 | Aisin Seiki Co Ltd | 多段式ルーツ型ポンプ |
JP2004300964A (ja) * | 2003-03-28 | 2004-10-28 | Aisin Seiki Co Ltd | 真空ポンプ |
Also Published As
Publication number | Publication date |
---|---|
KR101297743B1 (ko) | 2013-08-20 |
CN102177346A (zh) | 2011-09-07 |
JP5313260B2 (ja) | 2013-10-09 |
TW201030238A (en) | 2010-08-16 |
EP2345813A4 (en) | 2016-02-17 |
CN102177346B (zh) | 2014-01-15 |
US20110194961A1 (en) | 2011-08-11 |
TWI480467B (zh) | 2015-04-11 |
KR20110046584A (ko) | 2011-05-04 |
JPWO2010041445A1 (ja) | 2012-03-08 |
US8573956B2 (en) | 2013-11-05 |
EP2345813A1 (en) | 2011-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5073754B2 (ja) | 多段式ドライポンプ | |
JP3758550B2 (ja) | 多段真空ポンプ | |
US12116895B2 (en) | Multistage pump body and multistage gas pump | |
JP5313260B2 (ja) | ドライポンプ | |
US20040184943A1 (en) | Fluid machinery | |
JP7132909B2 (ja) | スクリュー式真空ポンプ | |
WO2011019048A1 (ja) | ドライポンプ | |
JP3921551B1 (ja) | 多段ルーツ式コンプレッサ | |
CA2725604C (en) | Rotary sliding vane compressor | |
US6589026B2 (en) | Fluid machinery having a helical mechanism with through holes for ventilation | |
JP2021510404A (ja) | 圧縮機 | |
JP5074511B2 (ja) | 容積形ガス圧縮機 | |
JP2618825B2 (ja) | インタークーラーレス空冷式4段ルーツ型真空ポンプ | |
WO2024116433A1 (ja) | スクリュー圧縮機 | |
KR101954534B1 (ko) | 로터리 압축기 | |
JP2004197687A (ja) | 電動圧縮機 | |
KR20090132947A (ko) | 로터리 압축기 | |
JP2014055580A (ja) | 真空ポンプ | |
JPH07247976A (ja) | インタークーラーレス水冷式4段ルーツ型真空ポンプ | |
EP1788251A1 (en) | Cooling system for compressor | |
JPS5859393A (ja) | ベ−ン形圧縮機 | |
JP2012067685A (ja) | 密閉型圧縮機 | |
JP2009174519A (ja) | 電動圧縮機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980139935.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09818985 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010532818 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20117007905 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13123090 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2009818985 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009818985 Country of ref document: EP |