JP2004300964A - 真空ポンプ - Google Patents

真空ポンプ Download PDF

Info

Publication number
JP2004300964A
JP2004300964A JP2003092877A JP2003092877A JP2004300964A JP 2004300964 A JP2004300964 A JP 2004300964A JP 2003092877 A JP2003092877 A JP 2003092877A JP 2003092877 A JP2003092877 A JP 2003092877A JP 2004300964 A JP2004300964 A JP 2004300964A
Authority
JP
Japan
Prior art keywords
pump
housing
flow path
refrigerant flow
insertion hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003092877A
Other languages
English (en)
Inventor
Yoshihiro Naito
喜裕 内藤
Toshiyuki Horio
敏幸 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2003092877A priority Critical patent/JP2004300964A/ja
Publication of JP2004300964A publication Critical patent/JP2004300964A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】ポンプハウジングに設けられるシール部材や軸受の寿命を犠牲にしないで、ポンプハウジングへの凝縮性ガスの凝縮を防止することができる真空ポンプを提供する。
【解決手段】複数のポンプ室を有するロータハウジング22と、該ロータハウジング22と接触するフロントハウジング9と、リアハウジング10と、を有し、リアハウジング10内の軸受の径方向外周側に、リアハウジング10を貫通する冷媒流路42を形成する。さらに、ポンプハウジングを回転軸3、3’と直交する方向から投影したときに、ポンプ室31、32、33、34、35の形成領域と冷媒流路42の形成領域とが重ならないようになっている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、真空ポンプに関し、特にポンプ内部における凝縮性ガスの凝縮を防止しつつ、軸受やシール部材の劣化を抑制することができる真空ポンプに関する。
【0002】
【従来の技術】
半導体製造装置に使用される真空ポンプは、半導体製造装置のチャンバー内で、半導体製造プロセスに用いられるプロセスガスや、半導体製造プロセス中に生じる反応生成ガスを吸引する場合がある。このプロセスガスや反応生成物には、凝縮性を有するものがあり、これらを吸引する真空ポンプにおいては、真空ポンプ内部で上記のプロセスガスや反応生成ガスが凝縮してしまう問題がある。上記プロセスガスや反応生成ガスが真空ポンプのポンプ室内に凝縮すると、ポンプ室内で回転するロータが焼きついたり、一方、ガスが排出される排出管路の内面に凝縮すると、排気効率が低下してしまう。
【0003】
上記のような問題を解決するためには、ポンプハウジングの温度を高く維持して、プロセスガスや反応生成ガスが気体の状態を維持しながら排気させるのが効果的である。しかしながら、真空ポンプのポンプハウジングには、ロータを回転させる為の回転軸を軸支する軸受や、回転軸のギアを潤滑するための潤滑油がロータハウジング内に進入することを防止するためのシール部材等が配置されており、これらの温度が上昇しすぎると、これら軸受やシール部材の寿命が短くなってしまう。そのため、ポンプハウジングの温度は、軸受やシール部材の寿命を考慮すれば、適度に低い温度に抑えておく必要がある。
【0004】
上記のような問題を解決するために、下記特許文献1のように、ポンプハウジングを冷却して、ポンプハウジングの温度を比較的低く保持する技術が開示されている。以下、図4、図5を用いて、特許文献1に開示されている真空ポンプについて説明する。図4に示す真空ポンプ1は、ポンプハウジングとしてポンプ室内にロータを固設するためのロータハウジング2と、ロータハウジング2に取付けられるフロントハウジング9、リアハウジング10と、ギア室11aを有するギアハウジングで構成されている。ロータハウジング2内には、回転軸15、15’が挿通されており、この回転軸15、15’により該回転軸15、15’に取付けられたロータ3、3‘が、ポンプ室内で回転することにより、吸引口5からガスを吸引して、排出口6に排気するようにしたものである。この回転軸15、15’の一方の回転軸15は、モータ14により回転するようになっており、回転軸15に取付けられたギア4により回転軸15と同期回転する回転軸15’が設けられている。この回転軸15と回転軸15’は、回転軸15に取付けられたギア4と、回転軸15’に取付けられたギア4’を介してかみ合わされており、回転軸15と回転軸15’は互いに逆方向に回転するようになっている。また、回転軸15、15’を軸支する軸受7、7’、8、8’がフロントハウジング9とリアハウジング10に形成されている。
【0005】
図5は、真空ポンプ1の冷却機構の概要を説明するものである。図5において、冷媒入口52より供給された水は、導管54により制御装置50、モータ14などの冷却器16を経由して切換弁55に入る。該切換弁55はポンプ温度が低いとき、冷媒を導管57へ流し、冷媒出口53へ送り出す。ポンプ温度が高くなると、切換弁55は、リアハウジング10の外表面に取付けられたリアハウジング10、冷却器15及びロータハウジング2の外表面に取付けられる冷却器17に導管56を介して冷媒を流し、リアハウジング10内に設置された軸受8、8’及びシール部材13、13’を冷却できるようになっている。
【0006】
【特許文献1】
特開2001−271777号公報
【0007】
【発明が解決しようとする課題】
しかしながら、特許文献1の方法のようにリアハウジング10やロータハウジング2の外表面から軸受8、8’やシール部材13、13’を冷却する方法では、軸受8、8’やシール部材13、13’を冷却すると同時に、リアハウジング10の端面(ロータハウジング2との合せ面)や、ロータハウジング2のポンプ室の壁面を構成する部分も冷却されることになる。さらに、軸受8、8’やシール部材13、13’は、リアハウジング10外表面からは遠い内部に形成されているので、リアハウジング10の端面のうち外表面に近い部分や、ロータハウジング2のポンプ室の壁面を構成する部分のほうが温度が低くなる場合もある。そのため、これらポンプハウジング2の温度が低い部分に凝縮性ガスが凝縮するのを防止できるとは言えず、ポンプのトラブルを招きやすい。また、凝縮性ガスの凝縮を防止するためにポンプハウジングの温度をさらに上昇させると、シール部材13、13’や軸受8、8’の耐熱性を高くしなければならず、ポンプの寿命や信頼性の低下、コスト高を招く。このように、ポンプハウジング内での凝縮性ガスの凝縮を防止しつつ、軸受8、8’やシール部材13、13’等の寿命を維持するのは従来の技術では困難であった。
【0008】
本発明は、上記問題を鑑みてなされたものであり、凝縮性ガスの凝縮が問題となる領域においては、該凝縮性ガスの凝縮が防止できるように、ポンプハウジングの温度を比較的高く維持できるとともに、軸受やシール部材等が配置される近傍では、ポンプハウジングの温度を比較的低くして、軸受やシール部材等の寿命を維持しつつ、ポンプハウジング内での凝縮性ガスの凝縮を防止することができる真空ポンプを提供することを課題とする。
【0009】
【課題を解決するための手段及び作用・効果】
上記課題を解決する為に、本発明の真空ポンプは、所定の方向に回転軸挿通孔が形成され、該回転軸挿通孔と連通する形で該回転軸挿通孔の形成方向にポンプ室が形成されているポンプハウジングと、前記ポンプ室内に配置されるロータと、前記ポンプ室と前記ギア室と前記回転軸挿通孔とを挿通して、前記ポンプ室内において前記ロータと一体に固設される回転軸と、前記回転軸挿通孔に配置され、前記回転軸を前記ポンプハウジングに対して回転可能に軸支する軸受と、を有する真空ポンプにおいて、前記ポンプハウジングの前記軸受の径方向外周側に、前記軸受を冷却するための冷媒流路が形成されていることを特徴とする。
【0010】
上記の構成においては、冷媒流路が、ポンプハウジングを貫通する形態で、軸受の径方向外周側に形成されているので、冷媒流路を流れる冷媒で軸受を冷却することができる。さらに、ポンプハウジングを貫通する形態で形成されているので、ポンプハウジングの外表面より軸受を冷却する場合と比較して、ポンプハウジングのうちポンプ室の壁面を構成する部分は、冷却されにくくなる。そのため、ポンプハウジングのポンプ室近傍では、ポンプハウジングの温度を比較的高く維持することができるとともに、軸受が設けられている部分は、冷媒流路により、比較的低い温度に冷却することができるので、軸受の寿命を犠牲にすることなく、ポンプハウジングへの凝縮性ガスの凝縮を防止することができる。
【0011】
さらに、本発明の真空ポンプは、前記ポンプハウジングには、前記回転軸挿通孔と連通する形で該回転軸挿通孔の長手方向に、前記ポンプ室とギア室とが形成されており、前記ポンプ室と前記ギア室との間の前記回転軸挿通孔に配置され、前記ギア室と前記ポンプ室とをシールするシール部材を有し、前記シール部材の径方向外周側に前記冷媒流路が形成されているのがよい。前述したように、ポンプハウジングの回転軸挿通孔において、ポンプ室とギア室との間をシールするシール部材も、高温になると強度が低下して寿命が短くなる。そのため、このシール部材も冷却できるように、シール部材の径方向外周側に冷媒流路を形成するのがよい。これにより、シール部材の寿命を犠牲にすることなく、凝縮性ガスがポンプハウジングに凝縮するのを防止することができる。
【0012】
さらに、本発明の真空ポンプにおいては、前記冷媒流路は、該冷媒流路の外縁と冷媒が直接接触する第一領域と、前記冷媒流路の外縁と冷媒が直接接触しない第二領域とで構成されており、ポンプハウジングの内部側が前記第一領域とされ、前記ポンプハウジングの外表面側が前記第二領域とされているのがよい。冷媒流路を、このような構成にすれば、ポンプハウジングのうち、冷媒流路の第一領域と隣接する部分は効果的に冷却されるが、冷媒流路の第二領域と隣接する部分は、冷媒により冷却が効果的に行われない。そして、ポンプハウジングを貫通する冷媒流路のうち、軸受やシール部材が配置されるポンプハウジングの内部側は、冷却を効果的に行うことができる第一領域とし、ポンプハウジングの外表面側は、冷却が効果的に行われない第二領域としているので、軸受やシール部材を効果的に冷却しつつ、ポンプハウジングの外表面側における冷却は抑制することができる。そのため、ポンプハウジングのうち軸受やシール部材が設けられている部分のみが優先的に冷却されることになり、ポンプ室の壁面を構成する部分は冷却されにくくなるので、軸受やシール部材の寿命を犠牲にすることなく、ポンプハウジングへの凝縮性ガスの凝縮を防止することができる。
【0013】
さらに、上記の第二領域を冷媒流路に設けるには、前記冷媒流路の前記第二領域は、前記冷媒流路内に、該冷媒流路の外縁の内径よりも外径の小さな内管が、前記冷媒流路の外縁との間に断熱層を介して挿入されて形成されているとすることができる。上記のように内管を設けて、この内管と冷媒流路の外縁との間に断熱層を設ければ、冷媒流路の外縁と接触するポンプハウジングが内管を流通する冷媒により冷却されにくくなる。そのため、冷媒流路の第二領域とすることができる。なお、上記断熱層とは、該断熱層を設けることで、内管と冷媒流路の外縁との間で熱伝導が抑制されればよく、必ずしも熱を完全に伝達しないようにするものを指すのではない。断熱層としては、内管と外管との間に空隙を設けておき、この空隙を断熱層とすることができる。
【0014】
さらに、冷媒流路に前述の第一領域と第二領域とを形成する場合、前記冷媒流路のうち、少なくとも前記第一領域が、前記回転軸挿通孔に対して、前記冷媒流路と最も近接して設けられる前記ポンプ室の吐出側に形成されているのがよい。ポンプハウジングのうち、ポンプ室の吐出側は、吸引されたガスが圧縮されて排出されるので温度が特に高くなる。そして、冷媒流路と最も近接して配置されるポンプ室、すなわち、シール部材あるいは軸受と最も近接して配置されるポンプ室の吐出側の温度が高いと、この部分からシール部材や軸受が設けられている部分に熱が伝導して、シール部材や軸受の寿命が低下してしまうことにつながる。そこで、冷媒流路の少なくとも第一領域を、冷媒流路と最も近接するポンプ室の回転軸挿通孔に対して吐出側に設けることにより、この部分からのシール部材や軸受への熱伝導を緩和することができ、シール部材や軸受の寿命が低下しにくくなる。
【0015】
さらに、本発明においては、前記ポンプハウジングを前記回転軸挿通孔と直交する方向から投影したとき、冷媒流路のうち、少なくとも第一領域がの形成領域がポンプ室の形成領域と重ならないように、前記冷媒流路が形成されているのがよい。ポンプハウジングを回転軸挿通孔と直交する方向から投影したとき、ポンプ室の形成領域と、冷媒流路の形成領域とが重ならないようにしているので、より一層ポンプ室を冷却しにくくなり、軸受やシール部材のみを冷却しやすくなる。そのため、軸受やシール部材の寿命を犠牲にせずに、ポンプ室等への凝縮性ガスの凝縮を防止することができる。
【0016】
なお、本明細書において、冷媒流路がポンプハウジングを貫通するとは、必ずしも一方向に貫通することを指すものではない。ポンプハウジング外表面に入口と出口とが、一対形成されている冷媒流路がポンプハウジング内に形成されている場合は、貫通しているものとする。
【0017】
【発明の実施の形態】
以下、本発明の実施形態の一例について、添付の図面を参照しつつ説明する。図1は、本発明の真空ポンプの一例としてのドライポンプ20を示す側面断面図である。図2は、図1のA−A断面図である。図2においては、図面の見易さを優先して、ポンプハウジング21の断面にハッチングをしていない。ドライポンプ20は、本実施形態の場合、複数のポンプ室が形成されているポンプハウジング21とポンプ室(例えば、ポンプ室22)内に内設されるロータ23、23’と、該ロータ23、23’に固設される回転軸3、3’と、該回転軸3、3’を回転させる駆動機構14とを有する。回転軸3、3’は、図2に示すように、互いに平行に設けられており、この回転軸3、3’にそれぞれロータ23、23’が固設されている。
【0018】
なお、本実施形態のドライポンプ20は、前述のように複数のポンプ室を有し、各ポンプ室にロータが設けられた多段式ドライポンプであるが、図1では、各ポンプ室に配置されるロータのうちロータ23、23’にのみ符号をつけている。以下の説明では、ロータ23、23’が各ポンプ室に設けられるロータを代表する。
【0019】
さらに、本実施形態のドライポンプ20においては、ポンプハウジング21にロータ23、23’を回転させるための回転軸3、3’を挿通する回転軸挿通孔(図示せず)が形成されている。そして、この回転軸挿通孔に、ポンプハウジング21に対して回転軸3、3’を回転可能に軸支する軸受が設けられている。この軸受は、回転軸3、3’をポンプハウジング21に対して吸引口5側で軸支するフロント側軸受7、7’と、回転軸3、3’をポンプハウジング21に対して排出口36側で軸支するリア側軸受8、8’とである。そして、特にリア側軸受8、8’が設けられている回転軸挿通孔には、リア側軸受8、8’とポンプ室との間にシール部材13、13’が設けられている。これは、本実施形態において、回転軸3、3’に取り付けられるギア4、4’は、ポンプハウジング21の排出口36側に形成されたギア室11a内に設けられており、ギア室11aに設けられた潤滑油が、ポンプ室内に進入するのを防止するためである。
【0020】
さらに、本実施形態において、ポンプハウジング21は、それぞれ複数のロータ23、23’が配置される複数のポンプ室を有するロータハウジング22と、該ロータハウジング22の排出孔側に配置され、回転軸を軸支する軸受が設けられるリアハウジング10と、ギア室11aが設けられたギアハウジング11と、ロータハウジング22の吸引口5側に配置されるとともに、吸引口5側でフロント側軸受7、7’を軸支するフロントハウジング9とにより構成されている。
【0021】
ロータハウジング22には、本実施形態の場合、吸引口5側から第一段目ポンプ室31、第二段目ポンプ室32、第三段目ポンプ室33、第四段目ポンプ室34、第五段目ポンプ室35と、5つのポンプ室が形成されており、第一段目ポンプ室31から第五段目ポンプ室35に向かって、順番にポンプ室の容積が小さくなっている。これは、第一段目ポンプ室31から第五段目ポンプ室35に向かうにつれて、吸引側と吐出側との圧力の差が大きくなる結果、第五段目ポンプ室35側ほど、圧縮仕事が大きくなりやすいため、第一段目ポンプ室31と第五段目ポンプ室35との圧縮仕事の差が過剰に大きくならないようにするために、第五段目ポンプ室35側ほどポンプ室の容積を小さくしているのである。
【0022】
また、ロータハウジング22において、第一段目ポンプ室31と第五段目ポンプ室35とは、ロータハウジング22の端面に露出する形態で形成されている。つまり、ロータハウジング22とフロントハウジング9とが合わされて、ロータハウジング22の、フロントハウジング9との合わせ面に形成されているポンプ室となる開口部が、フロントハウジング9により覆われることにより、フロントハウジング9の端面が第一段目ポンプ室31の壁面となるように形成されている。同様に、排出側の端面(リアハウジング10との合わせ面)に第五段目ポンプ室35となる開口部が形成されたロータハウジング22とリアハウジング10とを合わせることにより、第五段目ポンプ室35の壁面をリアハウジング10が構成するようになっている。
【0023】
また、リアハウジング10のロータハウジング22とは反対側には、ギアハウジング11が設けられており、このギアハウジング11に設けられているギア室11aに、回転軸3、3’に取付けられる形でギア14、14’が配置されている。このギアハウジング11に設けられるギア室11aには、回転軸3、3’の回転を潤滑する目的で潤滑油が充填されており、そして、ギアハウジング11のリアハウジング10とは反対側にモータ等の駆動機構を含む駆動部14が備えられている。
【0024】
さらに、フロントハウジング9には回転軸3、3’を吸引口5側で軸支する為に、回転軸挿通孔とフロント側軸受7、7’が設けられている。一方、リアハウジング10にも、回転軸3、3’を排出口36側で軸支するために、回転軸挿通孔とリア側軸受8、8’が設けられている。これらフロント側軸受7、7’、リア側軸受8、8’により回転軸3、3’がポンプハウジング21に対して回転可能に軸支されている。また、リアハウジング10には、リア側軸受8、8’よりも第五段目ポンプ室35側にシール部材13、13’が設けられている。このシール部材13、13’により、ギア室11aに充填されている潤滑油がロータハウジング22のポンプ室に侵入するのを防止するようになっている。このシール部材としては、公知のオイルシールが例示できる。
【0025】
さらに、ロータハウジング22には、第五段目ポンプ室35の吐出側と、排出口36とを連通する排出管路37が形成されている。この排出管路37はリアハウジング10と隣接する第五段目ポンプ室35からフロントハウジング9に隣接する第一段目ポンプ室31に向かって、第四段目ポンプ室34、第三段目ポンプ室33、第二段目ポンプ室32に沿って、延在する形で形成されている。吸引口5に連通する真空対象空間(例えば、半導体製造装置のチャンバー等)から吸引されるガスは、第一段目ポンプ室31から第五段目ポンプ室35に向かって吸引するにしたがって、しだいに温度が上昇することになるが、第五段目ポンプ室35の吐出側から排出されるときに、最もガスの温度が高くなる。そして、この温度が高くなったガスは、ロータハウジング22に形成されている排出管路37を流通し、第一段目ポンプ室31側に向かって排出されてゆくので、第一段目ポンプ室31側のロータハウジング22も暖められることになり、ロータハウジング22の温度が均一となりやすい。
【0026】
さらに、本実施形態においては、図1及び図2に示すように、ポンプハウジング21内に、冷媒流路42が形成されている。この冷媒流路42は、本実施形態においては、特に、リア側軸受8、8’とシール部材13、13’とが設けられているリアハウジング10に形成されている。より具体的には、リアハウジング10を貫通し、リア側軸受8、8’及びシール部材13、13’の径方向外周側に形成されており、回転軸挿通孔(回転軸3、3’)に対して、ロータハウジング22に形成されている第五段目ポンプ室35の吐出側に形成されている。さらに、冷媒流路42は、図2に示すように、リアハウジング10を貫通する形態で形成されており、一重管構造となる第一領域42aと、二重管構造となる第二領域42bとで構成されている。一重管構造となる第一領域42aは、リアハウジング10を挿通する回転軸3、3’、排出側軸受8、8’、シール部材13、13’近傍に設けられており、リアハウジング10の略中央部に設けられている。一方、二重管構造となる第二領域42bは、第一領域42aの両側、つまりリアハウジング10の外表面側に設けられている。
【0027】
冷媒流路42の第二領域42bは、冷媒流路42の外縁を構成する外管40に、該外管40の内径よりも外径の小さな内管41が挿入されて構成されている。より具体的には、内管41は、その先端に、外管40の内径と略同等の外径を有し、管の長手方向に一定長さを有するシール部43が設けられているものである。さらに、このシール部43には、その外周面方向に溝部43aが設けられ、この溝部43aにシールリング44が取付けられている。このシールリング44が取付けられている位置でのシール部43の外径は、外管40の内径よりも若干大きめに設定されており、内管41を外管40に挿入した際に、内管41が外管40に対してシール部43により位置固定されるようになっている。内管41のシール部43以外の部分では、外管40の内径よりも外径が小さく設定されているので、内管41のシール部43以外の部分では内管41と外管40は接触せず、内管41と外管40との間に、断熱層としての空隙45が設けられている。
【0028】
上記のような冷媒流路42に冷媒を流通させると、冷媒流路42の第二領域42bでは、冷媒は内管41の内部を流通し、第一領域42aでは、冷媒流路42の外縁を構成する外管40の内部を流通する。つまり、冷媒流路42の第二領域42bを流通する冷媒は、内管41の内部のみを流通し、外管40との間に空隙が設けられているので、リアハウジング10を直接冷却することはない。一方、冷媒流路42の第一領域42aを流通する冷媒は、外管40の内面と直接接触して流通するので、リアハウジング10を冷媒流路42の外管40を介して直接冷却することができる。
【0029】
以上、本実施形態のドライポンプの構成について説明したが、次に、このドライポンプ20の作用について説明する。まず、図1のドライポンプ20を作動させると、モータにより回転軸3、3’が回転されて、それぞれのポンプ室内に内設されているロータ23、23’が回転する。このとき、回転軸3、3’には、ギア4、4’が取り付けられており、回転軸3、3’の一方がモータにより回転駆動されると、回転軸3、3’は互いに逆方向に同期回転するようになっている。さらに、回転軸3、3’に固設されているロータ23、23’は、回転軸3、3’に固設されているロータ23、23’と90°の位相差をもって配置されており、これらのロータ23、23’が、それぞれが内設されるポンプ室内において、互いに僅かな隙間を持って接触することなく、互いに逆回転することになる。これにより、真空対象空間に連通されている吸引口5から第一段目ポンプ室31に真空対象空間内のガスが吸引され、ついで順次第五段目ポンプ室35まで吸引されたのち、第五段目ポンプ室35の吐出側から排出され、排出管路37を流通したのち、排出口36から排出されるようになっている。
【0030】
このように、真空対象空間からガスを吸引すると、それぞれのポンプ室では、ガスが断熱圧縮されることになり、第一段目ポンプ室31から第五段目ポンプ室35までガスが吸引される間に、ガスの温度が上昇することになる。特に、第五段目ポンプ室35の吐出側から排出された直後のガスの温度は、例えば160〜200℃程度である。このように、ポンプ室内で圧縮された温度が上昇したガスによりポンプハウジング21の温度が上昇することになる。そして、ポンプハウジング21のうちリア側軸受8、8’やシール部材13、13’を備えるリアハウジング10は、第五段目ポンプ室35の壁面を構成していることもあって、温度が上昇しやすい。
【0031】
ここで、本実施形態のドライポンプ20では、リアハウジング10に冷媒流路42が形成されているので、リアハウジング10を冷却することができる。さらに、冷媒流路42を図1及び図2に示すように形成しているので、リア側軸受8、8’やシール部材13、13’近傍のリアハウジング10のみを冷却することが可能である。つまり、図2に示すように、冷媒流路42は、一重管構造である第一領域42aと、二重管構造である第二領域42bとを有し、第二領域42bではリアハウジング10の冷却があまり行われず、第一領域42aでのみリアハウジング10の冷却が行われるので、リア側軸受8、8’やシール部材13、13’が設けられている領域は、効果的に冷却されるが、これらの部材が設けられていない領域では冷却されにくくなるので、リア側軸受8、8’やシール部材13、13’のみを優先的に冷却することができるのである。
【0032】
さらに、ポンプハウジング21の外表面側から一律的にポンプハウジング21を冷却するのではなく、局所的に冷却しているので、凝縮性ガスが凝縮しやすくポンプハウジング21の温度を高く設定する必要がある部分の冷却はほとんど進行しない。
【0033】
これにより、凝縮性ガスの凝縮を効果的に抑制することができるとともに、軸受やシール部材の寿命も低下することがない真空ポンプを実現することができるのである。
【0034】
以上、本発明の実施形態の一例について説明したが、本発明はこれに限られるものではない。つまり、冷媒流路として、図2のような形態に代えて、図3に示すような形態のものを採用することができる。図3に示す冷媒流路52は、図2に示す冷媒流路42のように直線状にリアハウジング10を貫通しているのとはことなり、リア側軸受8、8’やシール部材13、13’を囲むようなコの字状とされている。より具体的には、リアハウジング10のリア側軸受8、8’よりも、第五段目ポンプ室35の吐出側に形成されている底部52cと、該底部52cに続いてリア側軸受8、8’やシール部材13、13’の側周面側に形成される側部52dとにより構成されている。そして、この冷媒流路52の底部52cは、一重管構造の第一領域52aとして構成されている。また側部52dにおいては、底部52cとつながる一端側は一重管構造の第一領域52aとされているが、リアハウジング10の外表面とつながる他端側は、二重管構造の第二領域52bとされている。
【0035】
図3のような形態によれば、冷媒流路52の側部52dのうち第一領域52aからもリア側軸受8、8’やシール部材13、13’の近傍のリアハウジング10を冷却することができ、リア側軸受8、8’やシール部材13、13’が高温となるのを防止することができるとともに、リアハウジング10の外表面につながる一端は二重管構造の第二領域52bとされているので、リアハウジング10の全体を冷却することはない。特に、側部52dからも軸受8、8’及びシール部材13、13’を冷却するようにしているので、冷却効果はより大きくなる。
【0036】
【発明の効果】
以上のように、本発明の真空ポンプにおいては、ポンプハウジングのうち、軸受やシール部材の径方向外周側に冷媒流路を、ポンプハウジングを貫通する形態で形成するとともに、ポンプハウジングを回転軸挿通孔と直交する方向から投影したときに、ポンプ室の形成領域と、冷媒流路の形成領域とが重ならないように冷媒流路を形成しているので、ポンプハウジングの軸受やシール部材が形成されている部分のみを効果的に冷却することができ、ポンプハウジングの他の部分は、あまり冷却されなくなるので、ポンプハウジングに凝縮性ガスが凝縮するのを、軸受やシール部材の寿命を犠牲にすることなく防止することができるのである。
【0037】
さらに、冷媒流路としては、冷媒流路の外縁に冷媒が直接接触する第一領域と、冷媒流路の外縁に冷媒が直接接触しない第二領域にて構成されるものを採用し、第二領域がポンプハウジングの外表面側となるようにしたので、より一層軸受やシール部材のみが冷却されやすくなり、ポンプハウジングへの凝縮性ガスの凝縮を防止しつつ、軸受やシール部材の寿命が長く維持されるようになる。
【図面の簡単な説明】
【図1】本発明の真空ポンプの一例を示す概略図。
【図2】冷媒流路の一形態を示す図1のA−A断面図。
【図3】冷媒流路の図2とは異なる形態を示す断面図。
【図4】従来の真空ポンプを説明する概略図。
【図5】従来の真空ポンプにおける冷却回路の構成を説明する概略図。
【符号の説明】
20 ドライポンプ
31、32、33、34、35 ポンプ室
21 ポンプハウジング
3、3’ 回転軸
23、23’ ロータ
8、8’ 軸受
42 冷媒流路

Claims (6)

  1. 所定の一方向に回転軸挿通孔が形成され、該回転軸挿通孔と連通する形で該回転軸挿通孔の長手方向にポンプ室が形成されているポンプハウジングと、前記ポンプ室と前記回転軸挿通孔とを挿通する回転軸と、前記ポンプ室内において前記回転軸と固設されるロータと、前記回転軸挿通孔に配置され、前記回転軸を前記ポンプハウジングに対して回転可能に軸支する軸受と、を有する真空ポンプにおいて、
    前記ポンプハウジング内の前記軸受の径方向外周側に、前記ポンプハウジングを貫通する形態で、前記軸受を冷却するための冷媒流路が形成されていることを特徴とする真空ポンプ。
  2. 前記ポンプハウジングには、前記回転軸挿通孔と連通する形で該回転軸挿通孔の長手方向に、前記ポンプ室とギア室とが形成されており、
    前記ポンプ室と前記ギア室との間の前記回転軸挿通孔に配置され、前記ギア室と前記ポンプ室とをシールするシール部材を有し、前記シール部材の径方向外周側に前記冷媒流路が形成されていることを特徴とする請求項1に記載の真空ポンプ。
  3. 前記冷媒流路は、該冷媒流路の外縁と冷媒が直接接触する第一領域と、前記冷媒流路の外縁と冷媒が直接接触しない第二領域とで構成されており、前記ポンプハウジングの内部側が前記第一領域とされ、前記ポンプハウジングの外表面側が前記第二領域とされていることを特徴とする請求項1又は2に記載の真空ポンプ。
  4. 前記冷媒流路の前記第二領域は、前記冷媒流路内に、該冷媒流路の外縁の内径よりも外径の小さな内管が、前記冷媒流路の外縁との間に断熱層を介して挿入されて形成されてなることを特徴とする請求項3に記載の真空ポンプ。
  5. 前記冷媒流路のうち、少なくとも前記第一領域が、前記回転軸挿通孔に対して、前記冷媒流路と最も近接して設けられる前記ポンプ室の吐出側に形成されていることを特徴とする請求項3又は4に記載の真空ポンプ。
  6. 前記ポンプハウジングを前記回転軸挿通孔と直交する方向から投影したとき、前記冷媒流路のうち、少なくとも前記第一領域の形成領域と前記ポンプ室の形成領域とが重ならないように、前記冷媒流路が形成されていることを特徴とする請求項3ないし5のいずれか1項に記載の真空ポンプ。
JP2003092877A 2003-03-28 2003-03-28 真空ポンプ Withdrawn JP2004300964A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003092877A JP2004300964A (ja) 2003-03-28 2003-03-28 真空ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003092877A JP2004300964A (ja) 2003-03-28 2003-03-28 真空ポンプ

Publications (1)

Publication Number Publication Date
JP2004300964A true JP2004300964A (ja) 2004-10-28

Family

ID=33405800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003092877A Withdrawn JP2004300964A (ja) 2003-03-28 2003-03-28 真空ポンプ

Country Status (1)

Country Link
JP (1) JP2004300964A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041445A1 (ja) * 2008-10-10 2010-04-15 株式会社アルバック ドライポンプ
EP2221482A1 (en) * 2007-11-14 2010-08-25 Ulvac, Inc. Multi-stage dry pump
JP2011226369A (ja) * 2010-04-19 2011-11-10 Ebara Corp ドライ真空ポンプ装置
CN103502648A (zh) * 2011-06-02 2014-01-08 株式会社荏原制作所 真空泵
JP2014055580A (ja) * 2012-09-14 2014-03-27 Ulvac Japan Ltd 真空ポンプ
JP2020524236A (ja) * 2017-06-17 2020-08-13 レイボルド ゲーエムベーハー 多段式回転ピストンポンプ

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2221482A4 (en) * 2007-11-14 2012-09-12 Ulvac Inc MULTI-STAGE DRY PUMP
EP2221482A1 (en) * 2007-11-14 2010-08-25 Ulvac, Inc. Multi-stage dry pump
TWI479078B (zh) * 2007-11-14 2015-04-01 Ulvac Inc 多段式乾式幫浦
US8662869B2 (en) 2007-11-14 2014-03-04 Ulvac, Inc. Multi-stage dry pump
JP5313260B2 (ja) * 2008-10-10 2013-10-09 株式会社アルバック ドライポンプ
KR101297743B1 (ko) 2008-10-10 2013-08-20 가부시키가이샤 아루박 드라이 펌프
WO2010041445A1 (ja) * 2008-10-10 2010-04-15 株式会社アルバック ドライポンプ
US8573956B2 (en) 2008-10-10 2013-11-05 Ulvac, Inc. Multiple stage dry pump
CN102177346A (zh) * 2008-10-10 2011-09-07 株式会社爱发科 干泵
JP2011226369A (ja) * 2010-04-19 2011-11-10 Ebara Corp ドライ真空ポンプ装置
CN103502648A (zh) * 2011-06-02 2014-01-08 株式会社荏原制作所 真空泵
EP2715138A1 (en) * 2011-06-02 2014-04-09 Ebara Corporation Vacuum pump
EP2715138A4 (en) * 2011-06-02 2014-12-17 Ebara Corp VACUUM PUMP
JP2014055580A (ja) * 2012-09-14 2014-03-27 Ulvac Japan Ltd 真空ポンプ
JP2020524236A (ja) * 2017-06-17 2020-08-13 レイボルド ゲーエムベーハー 多段式回転ピストンポンプ

Similar Documents

Publication Publication Date Title
CN103089647B (zh) 多级干式真空泵
EP2361352B1 (en) Scroll-type fluid displacement apparatus with improved cooling system
US7241121B2 (en) Scroll fluid machine
KR101173168B1 (ko) 다단형 건식 진공펌프
US7086844B2 (en) Multi-stage scroll fluid machine having a set a seal elements between compression sections
JP3758550B2 (ja) 多段真空ポンプ
EP1284366A1 (en) Multistage compressor
JP2007255393A (ja) スクロール流体機械
JP2004300964A (ja) 真空ポンプ
JP2009092042A (ja) 回転ロータ式ポンプの軸受保護機構
JP2004293466A (ja) 真空ポンプ
JP3941484B2 (ja) 多段式真空ポンプ
JP2006520873A (ja) 容積型真空ポンプ
JP2004116471A (ja) スクロール式流体機械
JP3909591B2 (ja) スクロール流体機械
JPS62206282A (ja) スクロ−ル圧縮機
JPH04311696A (ja) メカニカル真空ポンプ
JP4085969B2 (ja) 電動ルーツ型圧縮機
TW402665B (en) Vacuum pump
JP2013185472A (ja) スクロール式流体機械
JP2005016742A (ja) ヒートポンプ
JP2002115689A (ja) 真空ポンプにおける冷却構造
JP3653128B2 (ja) スクロール式流体機械
JP2004293377A (ja) 多段式ドライポンプ
JP2014055580A (ja) 真空ポンプ

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060220

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070313