EP0654145A1 - Capteur de champs magnetiques constitue d'un conducteur d'inversion magnetique et d'une ou plusieurs resistances magnetoresistives - Google Patents

Capteur de champs magnetiques constitue d'un conducteur d'inversion magnetique et d'une ou plusieurs resistances magnetoresistives

Info

Publication number
EP0654145A1
EP0654145A1 EP94920425A EP94920425A EP0654145A1 EP 0654145 A1 EP0654145 A1 EP 0654145A1 EP 94920425 A EP94920425 A EP 94920425A EP 94920425 A EP94920425 A EP 94920425A EP 0654145 A1 EP0654145 A1 EP 0654145A1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
magnetoresistive
layer strips
field sensor
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94920425A
Other languages
German (de)
English (en)
Inventor
Fritz Dettmann
Uwe Loreit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMO Institut fur Mikrostrukturtechnologie und Optoelektronik eV
Original Assignee
IMO Institut fur Mikrostrukturtechnologie und Optoelektronik eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMO Institut fur Mikrostrukturtechnologie und Optoelektronik eV filed Critical IMO Institut fur Mikrostrukturtechnologie und Optoelektronik eV
Publication of EP0654145A1 publication Critical patent/EP0654145A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices

Definitions

  • Magnetic field sensor made up of a magnetic reversal line and one or more magnetoresistive resistors
  • a method for eliminating zero drift in magnetoresistive sensor bridges is described in Technical Information 901 228 from Philips Components.
  • the magnetoresistive sensor bridge is placed in a wound coil.
  • Short current pulses in alternating directions through the spu generate enough magnetic field to set the self-magnetization of the magnetoresistive layer strips in the corresponding direction. Since the sensor sign changes its polarity when the direction of magnetization is reversed, the separation of the alternating component proportional to the magnetic field from the direct component means that the zero voltage of the sensor bridge also contains its drift.
  • the manufacture of such coils is expensive. Their inductance limits the measuring frequency.
  • the adjustment of the sensor elements in the coil is a complex operation, especially if all three magnetic field components are to be measured in a rough arrangement.
  • the object of the invention is to provide a magnetic field sensor with a minimal zero point drift, d can be produced inexpensively entirely in thin-film technology and in which restrictions i of the measurement frequency are not caused by the sensor element.
  • the object is achieved by the thin-film arrangements described in the claims.
  • a single magnetic field-dependent resistor which consists of one or more magnetoresistive layer strips, on a highly conductive thin-layer conductor strip perpendicular to its longitudinal direction.
  • the highly conductive thin-film conductor strip i, however, has a meandering structure. So that despite the alternating magnetic field direction alternating across the meandering stripes, a current arises which flows in the same direction in all sub-areas under the influence of a field to be measured.
  • meandering the hodüeitßhige Thin-layer conductor strip advantageously results in that only a small current is required for reversing the direction of magnetization.
  • the magnetic stray field outside the sensor chip is very small, since the magnetic fields of the meandering strips lying next to one another largely remain due to their opposite direction.
  • the magnetic field sensors can thus be operated in close proximity to one another.
  • the magnetic reversal conductor also has a very low inductance, so that the measuring frequency is no longer limited by it.
  • the magnetic field sensor When the magnetic field sensor is operated with a magnetoresistive resistor, a constant current is fed into this. The voltage at the magnetoresistive resistor is measured as the output signal. After a current pulse in a specific direction through the highly conductive thin-film conductor strip, the self-magnetization in the areas of the magnetoresistive resistance is defined in a certain way. In this state, the magnetic field to be measured causes an increase in the resistance value of the magnetoresistive resistor. The output voltage is therefore greater than i case free of magnetic fields. If a current pulse m in the opposite direction to the previous one is now fed into the highly conductive thin-film conductor strips, the directions d self-magnetizations are reversed.
  • the field to be measured thus reduces the resistance and the output voltage is smaller than in the case without a magnetic field.
  • an AC voltage is present at the output, the amplitude of which is proportional to the magnetic field to be measured. Any influences, such as the temperature, which lead to a slow dri of the resistance value of the magnetoresistive layer strip, have no influence on the AC output voltage. However, the decrease in the magnetoressitive effect with increasing temperature is noticeable in the output AC voltage ampute.
  • a further highly conductive layer strip is present under each magnetoresistive layer strip isolated in the same direction.
  • the current through this highly conductive layer strip is controlled by the sensor output voltage so that the applied z measuring magnetic field is just canceled by it.
  • the magnetoresistive magnetic field sensor acts as a zero detector.
  • the output variable of the arrangement is the size of the compensation current, which does not depend on the temperature of the arrangement. Likewise, non-linearities in the sensor characteristic no longer play a role, since the sensor is not controlled.
  • a single magnetoresistive resistor not only a single magnetoresistive resistor is used, but there are four parallel magnetoresistive resistors consisting of several areas above the thin-layer magnetizing conductor and the highly conductive compensation conductor, the areas of which alternate with Barber pole structures with alternating positive and negative angles
  • the longitudinal direction of the magnetoresistive layer strips are provided in such a way that they alternately begin with areas of positive and negative Barberpolst ⁇ ikturwinkel.
  • the vi resistors are connected to a Wheatstone bridge. If the magnetic reversal conductor is again operated in alternating pulses in the opposite direction, an AC voltage signal appears at the bridge output. Only a DC voltage signal is now superimposed on this, which results from d possibly unequal four resistance values of the bridge. However, this DC voltage component i is significantly lower than that when using a single resistor, which enables simple evaluation. Of course, the compensation of the magnetic field to be measured can also be used hi.
  • the bridge arrangement can consist of four resistors, all of which are formed from an even number of regions. Only the order of the angle of the barber pole structure changes from one resistance to another.
  • the magnetization direction is set in the areas by a first strong current pulse through the ummagnetization conductor.
  • the sensor bridge is thus sensitive to magnetic fields and can be used in the usual way without further magnetic reversal. Since all four resistors of the bridge consist of the same areas, the same changes can be expected in all resistors when the temperature of the sensor arrangement changes. This also applies to the proportion of change that arises from the variable layer tensions and, as a result, from magnetostriction.
  • the sensor bridge therefore has a reduced zero point drift compared to known sensor bridge arrangements and is therefore also suitable for measuring smaller fields in normal operation.
  • FIG. 1 shows a magnetoresistive resistor over a flat magnetic reversal conductor.
  • FIG. 2 shows how a flat compensation conductor is additionally arranged.
  • Figure 3 contains a complex arrangement with sensor bridge, magnetic reversal conductor and compensation conductor.
  • FIG. 1 shows a meandered, highly conductive, flat thin-film conductor 6, which is located on a layer support, into which a current IM can be fed when connected at both ends.
  • Areas 1 of magnetoresistive layer strips with their longitudinal direction perpendicular to the meander strips of the thin layer conductor 6 are insulated above this thin layer conductor 6.
  • Barber pole structures are located on the areas 1 of the magnetoresistive layer strips, which alternately form a negative angle 3 and a positive angle 4 with the longitudinal direction of the areas 1.
  • the areas 1 are all electrically connected in series by means of highly conductive, non-magnetic connections 2, so that a single resistor is present.
  • the series connection is electrical at the contact surfaces 5 connectable.
  • a constant current is fed in during operation of the magnetic field sensor.
  • the magnetization directions in the areas 1 are set as indicated by the corresponding arrows.
  • An external magnetic field H g to be measured causes an increase in the resistance value in all areas 1 compared to the field-free state in the magnetization directions shown.
  • a current pulse in the opposite direction through the magnetic reversal conductor 6 rotates the magnetizations of all areas 1 in the opposite direction.
  • the external magnetic field H g thus causes a decrease in resistance.
  • an alternating voltage can be tapped off the magnetoresistive resistor, the amplitude of which is proportional to the magnetic field strength of H. A certain minimum field strength is required to remagnetize the magnetoresistive areas.
  • the field strength that is generated by the re-magnetization current is inversely proportional to the width of the thin-film conductor.
  • the meandering significantly reduces the width and thus drastically reduces the current value required for magnetic reversal.
  • a high resistance value can easily be achieved. Since the change in resistance is proportional to the resistance value and this in turn is included as a proportionality factor in the AC output voltage, a high output voltage amplitude is also ensured.
  • the fact that the magnetoresistive resistance through the connections is also in the form of a meander has the advantage that the sensor element can be accommodated on a chip surface of small dimensions.
  • the arrangement shown in FIG. 2 differs from that in FIG. 1 only by an additional, highly conductive layer meander 7, which is arranged under the magnetoresistive regions 1.
  • the magnetic field of the current 1 ⁇ through this meander 7 is directed against the external magnetic field H g at the location of the areas 1.
  • a signal can be derived from the AC output voltage of the magnetoresistive resistor, which ensures that the current 1 ⁇ is set precisely to such a value that the external magnetic field at the location of the regions 1 is eliminated.
  • the compensation current Ij ⁇ set in this way now represents the sensor output signal.
  • the magnetoresistive resistor now only acts as a zero detector. Temperature dependencies and non-linearities in its characteristic are thus eliminated.
  • regions 1 of the magnetoresistive resistors are connected to one another by connecting lines 2 and 10 in such a way that a bridge is created.
  • the contact surfaces 8 are provided for the bridge operating voltage, the contact surfaces 9 for the bridge output voltage.
  • a magnetic reversal conductor 6 and a compensation line 7 are also present here, as in FIG. 2. Compensation of the external magnetic field to be measured is of course also possible here if the alternating voltage signal of the bridge output is used to regulate the current 1 ⁇ .
  • each bridge resistor consists of an even number of regions 1. The only difference is the angle of the barber pole structures of the regions 1 located next to one another. Bridge resistors are therefore composed of completely identical components. Temperature changes, the resistances will also change by the same values.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

Un capteur qui fonctionne sur la base de l'effet de magnétorésistance contient un conducteur sinueux d'inversion magnétique (6) intégré dans le dispositif à couche mince. Les bandes qui forment la couche magnétorésistive sont pourvues de zones (1) ayant une structure à zébrures (3) inclinées alternativement positives et négatives, adaptées à la structure sinueuse du conducteur. Le courant requis pour inverser l'aimantation des zones (1) est particulièrement faible. Par inversion magnétique périodique des zones (1), on obtient comme signal de sortie du capteur une tension alternative exempte de dérive. Cette absence de dérive constitue une condition préalable d'utilisation du capteur de champs magnétiques pour mesurer avec précision de faibles champs magnétiques.
EP94920425A 1993-06-09 1994-05-31 Capteur de champs magnetiques constitue d'un conducteur d'inversion magnetique et d'une ou plusieurs resistances magnetoresistives Withdrawn EP0654145A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4319146 1993-06-09
DE4319146A DE4319146C2 (de) 1993-06-09 1993-06-09 Magnetfeldsensor, aufgebaut aus einer Ummagnetisierungsleitung und einem oder mehreren magnetoresistiven Widerständen
PCT/EP1994/001789 WO1994029740A1 (fr) 1993-06-09 1994-05-31 Capteur de champs magnetiques constitue d'un conducteur d'inversion magnetique et d'une ou plusieurs resistances magnetoresistives

Publications (1)

Publication Number Publication Date
EP0654145A1 true EP0654145A1 (fr) 1995-05-24

Family

ID=6489983

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94920425A Withdrawn EP0654145A1 (fr) 1993-06-09 1994-05-31 Capteur de champs magnetiques constitue d'un conducteur d'inversion magnetique et d'une ou plusieurs resistances magnetoresistives

Country Status (5)

Country Link
US (1) US5521501A (fr)
EP (1) EP0654145A1 (fr)
JP (1) JP3465059B2 (fr)
DE (1) DE4319146C2 (fr)
WO (1) WO1994029740A1 (fr)

Families Citing this family (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4436876A1 (de) * 1994-10-15 1996-04-18 Lust Antriebstechnik Gmbh Sensorchip
DE19521617C1 (de) * 1995-06-14 1997-03-13 Imo Inst Fuer Mikrostrukturtec Sensorchip zur Bestimmung eines Sinus- und eines Cosinuswertes sowie seine Verwendung zum Messen eines Winkels und einer Position
US5929636A (en) * 1996-05-02 1999-07-27 Integrated Magnetoelectronics All-metal giant magnetoresistive solid-state component
DE19648879C2 (de) * 1996-11-26 2000-04-13 Inst Mikrostrukturtechnologie Magnetfeldsensor mit parallelen magnetoresistiven Schichtstreifen
EP1329695B1 (fr) * 1997-05-09 2005-10-05 Tesa SA Capteur de type magnétorésistif pour mesure de dimension
DE19722834B4 (de) * 1997-05-30 2014-03-27 Sensitec Gmbh Magnetoresistives Gradiometer in Form einer Wheatstone-Brücke zur Messung von Magnetfeldgradienten sowie dessen Verwendung
US5976681A (en) * 1997-06-30 1999-11-02 Ford Global Technologies, Inc. Giant magnetoresistors with high sensitivity and reduced hysteresis
DE19747255A1 (de) * 1997-10-25 1999-05-12 Danfoss As Schutzimpedanz für eine netzspannungsgespeiste elektronische Schaltung
DE19810838C2 (de) * 1998-03-12 2002-04-18 Siemens Ag Sensoreinrichtung mit mindestens einem magnetoresistiven Sensor auf einer Substratschicht eines Sensorsubstrats
US6529114B1 (en) * 1998-05-27 2003-03-04 Honeywell International Inc. Magnetic field sensing device
JP2001028485A (ja) * 1999-07-15 2001-01-30 Ricoh Co Ltd 機器の転倒防止装置
JP3782915B2 (ja) * 2000-02-16 2006-06-07 セイコーインスツル株式会社 磁気センサを有する電子機器
AU2001261775A1 (en) * 2000-05-18 2001-11-26 Stefaan De Schrijver Apparatus and method for secure object access
AU2001261795A1 (en) * 2000-05-22 2001-12-03 Stefaan De Schrijver Electronic cartridge writing instrument
WO2001097165A2 (fr) * 2000-06-16 2001-12-20 Stefaan De Schrijver Dispositif peripherique equipe d'un capteur piezoelectrique
JP2003075157A (ja) * 2001-09-06 2003-03-12 Seiko Instruments Inc 電子機器
DE10158053A1 (de) * 2001-11-27 2003-06-05 Philips Intellectual Property Sensoranordnung
US7046117B2 (en) * 2002-01-15 2006-05-16 Honeywell International Inc. Integrated magnetic field strap for signal isolator
JP2004301741A (ja) * 2003-03-31 2004-10-28 Denso Corp 磁気センサ
US7239000B2 (en) * 2003-04-15 2007-07-03 Honeywell International Inc. Semiconductor device and magneto-resistive sensor integration
US7206693B2 (en) * 2003-04-15 2007-04-17 Honeywell International Inc. Method and apparatus for an integrated GPS receiver and electronic compassing sensor device
US7265543B2 (en) * 2003-04-15 2007-09-04 Honeywell International Inc. Integrated set/reset driver and magneto-resistive sensor
DE102005047413B8 (de) * 2005-02-23 2012-05-10 Infineon Technologies Ag Magnetfeldsensorelement und Verfahren zum Durchführen eines On-Wafer-Funktionstests, sowie Verfahren zur Herstellung von Magnetfeldsensorelementen und Verfahren zur Herstellung von Magnetfeldsensorelementen mit On-Wafer-Funktionstest
DE102005037036B4 (de) * 2005-08-06 2007-07-12 Sensitec Gmbh Magnetoresistiver Sensor mit Offsetkorrektur und dafür geeignetes Verfahren
JP2007048847A (ja) * 2005-08-08 2007-02-22 Tokai Rika Co Ltd 磁気抵抗素子
US7420365B2 (en) * 2006-03-15 2008-09-02 Honeywell International Inc. Single chip MR sensor integrated with an RF transceiver
DE102006046736B4 (de) * 2006-09-29 2008-08-14 Siemens Ag Verfahren zum Betreiben eines Magnetfeldsensors und zugehöriger Magnetfeldsensor
DE102006046739B4 (de) * 2006-09-29 2008-08-14 Siemens Ag Verfahren zum Betreiben eines Magnetfeldsensors und zugehöriger Magnetfeldsensor
WO2008146184A2 (fr) * 2007-05-29 2008-12-04 Nxp B.V. Détermination d'un angle de champ magnétique externe
DE102007040183A1 (de) 2007-08-25 2009-03-05 Sensitec Naomi Gmbh Magnetfeldsensor zur Erfassung eines äußeren magnetischen Felds, insbesondere des Erdmagnetfelds, sowie mit solchen Magnetfeldsensoren gebildetes Magnetfeldsensorsystem
US7923987B2 (en) 2007-10-08 2011-04-12 Infineon Technologies Ag Magnetic sensor integrated circuit with test conductor
US8559139B2 (en) 2007-12-14 2013-10-15 Intel Mobile Communications GmbH Sensor module and method for manufacturing a sensor module
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US7923996B2 (en) * 2008-02-26 2011-04-12 Allegro Microsystems, Inc. Magnetic field sensor with automatic sensitivity adjustment
US8269491B2 (en) * 2008-02-27 2012-09-18 Allegro Microsystems, Inc. DC offset removal for a magnetic field sensor
US8080993B2 (en) 2008-03-27 2011-12-20 Infineon Technologies Ag Sensor module with mold encapsulation for applying a bias magnetic field
US20090315554A1 (en) * 2008-06-20 2009-12-24 Honeywell International Inc. Integrated three-dimensional magnetic sensing device and method to fabricate an integrated three-dimensional magnetic sensing device
US7973527B2 (en) * 2008-07-31 2011-07-05 Allegro Microsystems, Inc. Electronic circuit configured to reset a magnetoresistance element
US8063634B2 (en) * 2008-07-31 2011-11-22 Allegro Microsystems, Inc. Electronic circuit and method for resetting a magnetoresistance element
US7891102B2 (en) * 2008-08-01 2011-02-22 Honeywell International Inc. Nanowire magnetic compass and position sensor
US7926193B2 (en) * 2008-08-01 2011-04-19 Honeywell International Inc. Nanowire magnetic sensor
DE112010000848B4 (de) 2009-02-17 2018-04-05 Allegro Microsystems, Llc Schaltungen und Verfahren zum Erzeugen eines Selbsttests eines Magnetfeldsensors
EP2634592B1 (fr) 2009-07-22 2015-01-14 Allegro Microsystems, LLC Circuits et procédés permettant de générer un mode de diagnostic de fonctionnement dans un capteur de champ magnétique
US8525514B2 (en) * 2010-03-19 2013-09-03 Memsic, Inc. Magnetometer
EP2472280A3 (fr) * 2010-12-31 2013-10-30 Voltafield Technology Corporation Capteur magnéto-résistant
TWI467821B (zh) 2010-12-31 2015-01-01 Voltafield Technology Corp 磁阻感測器及其製造方法
JP5885209B2 (ja) * 2011-02-01 2016-03-15 公立大学法人大阪市立大学 電力計測装置
JP2014509389A (ja) * 2011-02-03 2014-04-17 ゼンジテック ゲゼルシャフト ミット ベシュレンクテル ハフツング 磁界感知デバイス
US20140347047A1 (en) * 2011-02-22 2014-11-27 Voltafield Technology Corporation Magnetoresistive sensor
US8680846B2 (en) 2011-04-27 2014-03-25 Allegro Microsystems, Llc Circuits and methods for self-calibrating or self-testing a magnetic field sensor
US8604777B2 (en) 2011-07-13 2013-12-10 Allegro Microsystems, Llc Current sensor with calibration for a current divider configuration
US9335386B2 (en) * 2011-09-29 2016-05-10 Voltafield Technology Corp. Magnatoresistive component and magnatoresistive device
US8947082B2 (en) 2011-10-21 2015-02-03 University College Cork, National University Of Ireland Dual-axis anisotropic magnetoresistive sensors
US9201122B2 (en) 2012-02-16 2015-12-01 Allegro Microsystems, Llc Circuits and methods using adjustable feedback for self-calibrating or self-testing a magnetic field sensor with an adjustable time constant
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
US9310446B2 (en) * 2012-10-18 2016-04-12 Analog Devices, Inc. Magnetic field direction detector
US9612262B1 (en) 2012-12-21 2017-04-04 Neeme Systems Solutions, Inc. Current measurement sensor and system
US10197602B1 (en) 2012-12-21 2019-02-05 Jody Nehmeh Mini current measurement sensor and system
US9383425B2 (en) 2012-12-28 2016-07-05 Allegro Microsystems, Llc Methods and apparatus for a current sensor having fault detection and self test functionality
EP2778704B1 (fr) * 2013-03-11 2015-09-16 Ams Ag Capteur de champ magnétique
US10725100B2 (en) 2013-03-15 2020-07-28 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an externally accessible coil
JP6149462B2 (ja) * 2013-03-29 2017-06-21 Tdk株式会社 平面コイル、磁気検出装置および電子部品
DE102013104486A1 (de) 2013-05-02 2014-11-20 Sensitec Gmbh Magnetfeldsensorvorrichtung
US9134385B2 (en) 2013-05-09 2015-09-15 Honeywell International Inc. Magnetic-field sensing device
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
DE102013107821A1 (de) 2013-07-22 2015-01-22 Sensitec Gmbh Mehrkomponenten-Magnetfeldsensor
JP6505717B2 (ja) 2013-12-26 2019-04-24 アレグロ・マイクロシステムズ・エルエルシー センサ診断のための方法および装置
US9645220B2 (en) 2014-04-17 2017-05-09 Allegro Microsystems, Llc Circuits and methods for self-calibrating or self-testing a magnetic field sensor using phase discrimination
US9735773B2 (en) 2014-04-29 2017-08-15 Allegro Microsystems, Llc Systems and methods for sensing current through a low-side field effect transistor
US9354284B2 (en) 2014-05-07 2016-05-31 Allegro Microsystems, Llc Magnetic field sensor configured to measure a magnetic field in a closed loop manner
US9739846B2 (en) 2014-10-03 2017-08-22 Allegro Microsystems, Llc Magnetic field sensors with self test
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9841485B2 (en) 2014-11-14 2017-12-12 Allegro Microsystems, Llc Magnetic field sensor having calibration circuitry and techniques
US9804249B2 (en) 2014-11-14 2017-10-31 Allegro Microsystems, Llc Dual-path analog to digital converter
US10466298B2 (en) 2014-11-14 2019-11-05 Allegro Microsystems, Llc Magnetic field sensor with shared path amplifier and analog-to-digital-converter
US9322887B1 (en) 2014-12-01 2016-04-26 Allegro Microsystems, Llc Magnetic field sensor with magnetoresistance elements and conductive-trace magnetic source
JP2016186476A (ja) * 2015-03-27 2016-10-27 Tdk株式会社 磁気センサ及び磁気式エンコーダ
US9638764B2 (en) 2015-04-08 2017-05-02 Allegro Microsystems, Llc Electronic circuit for driving a hall effect element with a current compensated for substrate stress
US9632150B2 (en) * 2015-04-27 2017-04-25 Everspin Technologies, Inc. Magnetic field sensor with increased field range
US9851417B2 (en) 2015-07-28 2017-12-26 Allegro Microsystems, Llc Structure and system for simultaneous sensing a magnetic field and mechanical stress
CN105182258A (zh) * 2015-10-21 2015-12-23 美新半导体(无锡)有限公司 能够实现重置和自检的磁场传感器
US10107873B2 (en) 2016-03-10 2018-10-23 Allegro Microsystems, Llc Electronic circuit for compensating a sensitivity drift of a hall effect element due to stress
US11294003B2 (en) 2016-03-23 2022-04-05 Analog Devices International Unlimited Company Magnetic field detector
JP6588371B2 (ja) * 2016-03-30 2019-10-09 アルプスアルパイン株式会社 磁界検出装置およびその調整方法
US10132879B2 (en) 2016-05-23 2018-11-20 Allegro Microsystems, Llc Gain equalization for multiple axis magnetic field sensing
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
CN205861754U (zh) * 2016-07-08 2017-01-04 江苏多维科技有限公司 一种无需置位和复位装置的各向异性磁电阻电流传感器
US10162017B2 (en) 2016-07-12 2018-12-25 Allegro Microsystems, Llc Systems and methods for reducing high order hall plate sensitivity temperature coefficients
JP6377882B1 (ja) * 2017-01-27 2018-08-22 三菱電機株式会社 磁気抵抗効果素子デバイスおよび磁気抵抗効果素子装置
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10739165B2 (en) * 2017-07-05 2020-08-11 Analog Devices Global Magnetic field sensor
US10520559B2 (en) 2017-08-14 2019-12-31 Allegro Microsystems, Llc Arrangements for Hall effect elements and vertical epi resistors upon a substrate
US10866117B2 (en) 2018-03-01 2020-12-15 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
DE102018107571A1 (de) * 2018-03-29 2019-10-02 Schaeffler Technologies AG & Co. KG Magnetfeldsensoranordnung und Anordnung zum Messen eines Drehmomentes sowie Verfahren zum Herstellen der Magnetfeldsensoranordnung
JP6900936B2 (ja) * 2018-06-08 2021-07-14 Tdk株式会社 磁気検出装置
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
AU2020272196A1 (en) * 2019-04-11 2021-08-05 Tdw Delaware, Inc. Pipeline tool with composite magnetic field for inline inspection
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11194004B2 (en) 2020-02-12 2021-12-07 Allegro Microsystems, Llc Diagnostic circuits and methods for sensor test circuits
US11169223B2 (en) 2020-03-23 2021-11-09 Allegro Microsystems, Llc Hall element signal calibrating in angle sensor
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
JP7173104B2 (ja) 2020-07-21 2022-11-16 Tdk株式会社 磁気センサ
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11630130B2 (en) 2021-03-31 2023-04-18 Allegro Microsystems, Llc Channel sensitivity matching
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents
US11994541B2 (en) 2022-04-15 2024-05-28 Allegro Microsystems, Llc Current sensor assemblies for low currents

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533872A (en) * 1982-06-14 1985-08-06 Honeywell Inc. Magnetic field sensor element capable of measuring magnetic field components in two directions
JPS59214784A (ja) * 1983-05-20 1984-12-04 Canon Inc 磁気センサ装置
DE3442278A1 (de) * 1984-11-20 1986-05-22 Philips Patentverwaltung Gmbh, 2000 Hamburg Magnetfeldmessgeraet
JPH07105006B2 (ja) * 1985-11-05 1995-11-13 ソニー株式会社 磁気抵抗効果型磁気ヘツド
US4851771A (en) * 1987-02-24 1989-07-25 Kabushiki Kaisha Yaskawa Denki Seisakusho Magnetic encoder for detection of incremental and absolute value displacement
GB2202635B (en) * 1987-03-26 1991-10-30 Devon County Council Detection of magnetic fields
JPH077012B2 (ja) * 1987-08-18 1995-01-30 富士通株式会社 加速度センサ
DD275745A1 (de) * 1988-09-26 1990-01-31 Univ Schiller Jena Magnetisches feldeffekt-bauelement mit vier in einer brueckenschaltung angeordneten magnetfeldabhaengigen widerstaenden
US4847584A (en) * 1988-10-14 1989-07-11 Honeywell Inc. Magnetoresistive magnetic sensor
JPH03223685A (ja) * 1990-01-29 1991-10-02 Fujitsu Ltd 外部磁界検出センサ
DE4121374C2 (de) * 1991-06-28 2000-09-07 Lust Electronic Systeme Gmbh Kompensierter Magnetfeldsensor
US5247278A (en) * 1991-11-26 1993-09-21 Honeywell Inc. Magnetic field sensing device
US5351005A (en) * 1992-12-31 1994-09-27 Honeywell Inc. Resetting closed-loop magnetoresistive magnetic sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9429740A1 *

Also Published As

Publication number Publication date
JPH08503778A (ja) 1996-04-23
DE4319146A1 (de) 1994-12-15
JP3465059B2 (ja) 2003-11-10
US5521501A (en) 1996-05-28
DE4319146C2 (de) 1999-02-04
WO1994029740A1 (fr) 1994-12-22

Similar Documents

Publication Publication Date Title
WO1994029740A1 (fr) Capteur de champs magnetiques constitue d'un conducteur d'inversion magnetique et d'une ou plusieurs resistances magnetoresistives
DE69425063T2 (de) Magnetoresistiver linearer weggeber, winkelverschiebungssensor und variabler widerstand
DE19539722C2 (de) Vorrichtung zur Erfassung einer Änderung eines Winkels oder der Feldstärke eines magnetischen Feldes
DE19580095C2 (de) Sensor mit magnetoresistiven Elementen
DE69228654T2 (de) Magnetfeldfühler
EP0030041B1 (fr) Transformateur de mesure, notamment d'un champ magnétique généré par un courant de mesure
DE3011462C2 (fr)
EP0054626B1 (fr) Détecteur du courant magnétorésistif
DE10342260B4 (de) Magnetoresistiver Sensor in Form einer Halb- oder Vollbrückenschaltung
DE2433645C3 (de) Magnetoresistives Bauelement
DE4208927C2 (de) Magnetischer Sensor und damit ausgerüsteter Positionsdetektor
EP0807827A2 (fr) Capteur sensible au champ magnétique avec plusieurs éléments capteurs GMR
EP1324063B1 (fr) Capteur magnétorésistif
DE2614165A1 (de) Magnetowiderstandsmagnetkopf
DE19933243A1 (de) Codierer mit Magnetowiderstandselementen
DE4327458C2 (de) Sensorchip zur hochauflösenden Messung der magnetischen Feldstärke
DE19650078A1 (de) Sensorelement zur Bestimmung eines Magnetfeldes oder eines Stromes
DE102005009390B3 (de) Kraftsensor, Verfahren zur Ermittlung einer auf einen Kraftsensor wirkenden Kraft mittels eines Mehrschichtsystems aus magnetischen Schichten
DE19722834A1 (de) Magnetoresistives Gradiometer in Form einer Wheatstone-Brücke zur Messung von Magnetfeldgradienten
DE3447325A1 (de) Positionsgeber
EP0201682B1 (fr) Capteur intégré de la vitesse de rotation à résistances sensibles au champ magnétique
DE19648879C2 (de) Magnetfeldsensor mit parallelen magnetoresistiven Schichtstreifen
DE4318716A1 (de) Magnetfeldsensor in Form einer Brückenschaltung
DE3609006A1 (de) Magnetfeldsensor
DE3931780A1 (de) Magnetisches feldeffekt-bauelement mit vier in einer brueckenschaltung angeordneten magnetfeldabhaengigen widerstaenden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19980113

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980526