EP0654145A1 - Capteur de champs magnetiques constitue d'un conducteur d'inversion magnetique et d'une ou plusieurs resistances magnetoresistives - Google Patents
Capteur de champs magnetiques constitue d'un conducteur d'inversion magnetique et d'une ou plusieurs resistances magnetoresistivesInfo
- Publication number
- EP0654145A1 EP0654145A1 EP94920425A EP94920425A EP0654145A1 EP 0654145 A1 EP0654145 A1 EP 0654145A1 EP 94920425 A EP94920425 A EP 94920425A EP 94920425 A EP94920425 A EP 94920425A EP 0654145 A1 EP0654145 A1 EP 0654145A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic field
- magnetoresistive
- layer strips
- field sensor
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 29
- 239000010409 thin film Substances 0.000 claims description 9
- 238000002955 isolation Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 3
- 230000005415 magnetization Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/096—Magnetoresistive devices anisotropic magnetoresistance sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
Definitions
- Magnetic field sensor made up of a magnetic reversal line and one or more magnetoresistive resistors
- a method for eliminating zero drift in magnetoresistive sensor bridges is described in Technical Information 901 228 from Philips Components.
- the magnetoresistive sensor bridge is placed in a wound coil.
- Short current pulses in alternating directions through the spu generate enough magnetic field to set the self-magnetization of the magnetoresistive layer strips in the corresponding direction. Since the sensor sign changes its polarity when the direction of magnetization is reversed, the separation of the alternating component proportional to the magnetic field from the direct component means that the zero voltage of the sensor bridge also contains its drift.
- the manufacture of such coils is expensive. Their inductance limits the measuring frequency.
- the adjustment of the sensor elements in the coil is a complex operation, especially if all three magnetic field components are to be measured in a rough arrangement.
- the object of the invention is to provide a magnetic field sensor with a minimal zero point drift, d can be produced inexpensively entirely in thin-film technology and in which restrictions i of the measurement frequency are not caused by the sensor element.
- the object is achieved by the thin-film arrangements described in the claims.
- a single magnetic field-dependent resistor which consists of one or more magnetoresistive layer strips, on a highly conductive thin-layer conductor strip perpendicular to its longitudinal direction.
- the highly conductive thin-film conductor strip i, however, has a meandering structure. So that despite the alternating magnetic field direction alternating across the meandering stripes, a current arises which flows in the same direction in all sub-areas under the influence of a field to be measured.
- meandering the hodüeitßhige Thin-layer conductor strip advantageously results in that only a small current is required for reversing the direction of magnetization.
- the magnetic stray field outside the sensor chip is very small, since the magnetic fields of the meandering strips lying next to one another largely remain due to their opposite direction.
- the magnetic field sensors can thus be operated in close proximity to one another.
- the magnetic reversal conductor also has a very low inductance, so that the measuring frequency is no longer limited by it.
- the magnetic field sensor When the magnetic field sensor is operated with a magnetoresistive resistor, a constant current is fed into this. The voltage at the magnetoresistive resistor is measured as the output signal. After a current pulse in a specific direction through the highly conductive thin-film conductor strip, the self-magnetization in the areas of the magnetoresistive resistance is defined in a certain way. In this state, the magnetic field to be measured causes an increase in the resistance value of the magnetoresistive resistor. The output voltage is therefore greater than i case free of magnetic fields. If a current pulse m in the opposite direction to the previous one is now fed into the highly conductive thin-film conductor strips, the directions d self-magnetizations are reversed.
- the field to be measured thus reduces the resistance and the output voltage is smaller than in the case without a magnetic field.
- an AC voltage is present at the output, the amplitude of which is proportional to the magnetic field to be measured. Any influences, such as the temperature, which lead to a slow dri of the resistance value of the magnetoresistive layer strip, have no influence on the AC output voltage. However, the decrease in the magnetoressitive effect with increasing temperature is noticeable in the output AC voltage ampute.
- a further highly conductive layer strip is present under each magnetoresistive layer strip isolated in the same direction.
- the current through this highly conductive layer strip is controlled by the sensor output voltage so that the applied z measuring magnetic field is just canceled by it.
- the magnetoresistive magnetic field sensor acts as a zero detector.
- the output variable of the arrangement is the size of the compensation current, which does not depend on the temperature of the arrangement. Likewise, non-linearities in the sensor characteristic no longer play a role, since the sensor is not controlled.
- a single magnetoresistive resistor not only a single magnetoresistive resistor is used, but there are four parallel magnetoresistive resistors consisting of several areas above the thin-layer magnetizing conductor and the highly conductive compensation conductor, the areas of which alternate with Barber pole structures with alternating positive and negative angles
- the longitudinal direction of the magnetoresistive layer strips are provided in such a way that they alternately begin with areas of positive and negative Barberpolst ⁇ ikturwinkel.
- the vi resistors are connected to a Wheatstone bridge. If the magnetic reversal conductor is again operated in alternating pulses in the opposite direction, an AC voltage signal appears at the bridge output. Only a DC voltage signal is now superimposed on this, which results from d possibly unequal four resistance values of the bridge. However, this DC voltage component i is significantly lower than that when using a single resistor, which enables simple evaluation. Of course, the compensation of the magnetic field to be measured can also be used hi.
- the bridge arrangement can consist of four resistors, all of which are formed from an even number of regions. Only the order of the angle of the barber pole structure changes from one resistance to another.
- the magnetization direction is set in the areas by a first strong current pulse through the ummagnetization conductor.
- the sensor bridge is thus sensitive to magnetic fields and can be used in the usual way without further magnetic reversal. Since all four resistors of the bridge consist of the same areas, the same changes can be expected in all resistors when the temperature of the sensor arrangement changes. This also applies to the proportion of change that arises from the variable layer tensions and, as a result, from magnetostriction.
- the sensor bridge therefore has a reduced zero point drift compared to known sensor bridge arrangements and is therefore also suitable for measuring smaller fields in normal operation.
- FIG. 1 shows a magnetoresistive resistor over a flat magnetic reversal conductor.
- FIG. 2 shows how a flat compensation conductor is additionally arranged.
- Figure 3 contains a complex arrangement with sensor bridge, magnetic reversal conductor and compensation conductor.
- FIG. 1 shows a meandered, highly conductive, flat thin-film conductor 6, which is located on a layer support, into which a current IM can be fed when connected at both ends.
- Areas 1 of magnetoresistive layer strips with their longitudinal direction perpendicular to the meander strips of the thin layer conductor 6 are insulated above this thin layer conductor 6.
- Barber pole structures are located on the areas 1 of the magnetoresistive layer strips, which alternately form a negative angle 3 and a positive angle 4 with the longitudinal direction of the areas 1.
- the areas 1 are all electrically connected in series by means of highly conductive, non-magnetic connections 2, so that a single resistor is present.
- the series connection is electrical at the contact surfaces 5 connectable.
- a constant current is fed in during operation of the magnetic field sensor.
- the magnetization directions in the areas 1 are set as indicated by the corresponding arrows.
- An external magnetic field H g to be measured causes an increase in the resistance value in all areas 1 compared to the field-free state in the magnetization directions shown.
- a current pulse in the opposite direction through the magnetic reversal conductor 6 rotates the magnetizations of all areas 1 in the opposite direction.
- the external magnetic field H g thus causes a decrease in resistance.
- an alternating voltage can be tapped off the magnetoresistive resistor, the amplitude of which is proportional to the magnetic field strength of H. A certain minimum field strength is required to remagnetize the magnetoresistive areas.
- the field strength that is generated by the re-magnetization current is inversely proportional to the width of the thin-film conductor.
- the meandering significantly reduces the width and thus drastically reduces the current value required for magnetic reversal.
- a high resistance value can easily be achieved. Since the change in resistance is proportional to the resistance value and this in turn is included as a proportionality factor in the AC output voltage, a high output voltage amplitude is also ensured.
- the fact that the magnetoresistive resistance through the connections is also in the form of a meander has the advantage that the sensor element can be accommodated on a chip surface of small dimensions.
- the arrangement shown in FIG. 2 differs from that in FIG. 1 only by an additional, highly conductive layer meander 7, which is arranged under the magnetoresistive regions 1.
- the magnetic field of the current 1 ⁇ through this meander 7 is directed against the external magnetic field H g at the location of the areas 1.
- a signal can be derived from the AC output voltage of the magnetoresistive resistor, which ensures that the current 1 ⁇ is set precisely to such a value that the external magnetic field at the location of the regions 1 is eliminated.
- the compensation current Ij ⁇ set in this way now represents the sensor output signal.
- the magnetoresistive resistor now only acts as a zero detector. Temperature dependencies and non-linearities in its characteristic are thus eliminated.
- regions 1 of the magnetoresistive resistors are connected to one another by connecting lines 2 and 10 in such a way that a bridge is created.
- the contact surfaces 8 are provided for the bridge operating voltage, the contact surfaces 9 for the bridge output voltage.
- a magnetic reversal conductor 6 and a compensation line 7 are also present here, as in FIG. 2. Compensation of the external magnetic field to be measured is of course also possible here if the alternating voltage signal of the bridge output is used to regulate the current 1 ⁇ .
- each bridge resistor consists of an even number of regions 1. The only difference is the angle of the barber pole structures of the regions 1 located next to one another. Bridge resistors are therefore composed of completely identical components. Temperature changes, the resistances will also change by the same values.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Measuring Magnetic Variables (AREA)
- Hall/Mr Elements (AREA)
Abstract
Un capteur qui fonctionne sur la base de l'effet de magnétorésistance contient un conducteur sinueux d'inversion magnétique (6) intégré dans le dispositif à couche mince. Les bandes qui forment la couche magnétorésistive sont pourvues de zones (1) ayant une structure à zébrures (3) inclinées alternativement positives et négatives, adaptées à la structure sinueuse du conducteur. Le courant requis pour inverser l'aimantation des zones (1) est particulièrement faible. Par inversion magnétique périodique des zones (1), on obtient comme signal de sortie du capteur une tension alternative exempte de dérive. Cette absence de dérive constitue une condition préalable d'utilisation du capteur de champs magnétiques pour mesurer avec précision de faibles champs magnétiques.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4319146 | 1993-06-09 | ||
DE4319146A DE4319146C2 (de) | 1993-06-09 | 1993-06-09 | Magnetfeldsensor, aufgebaut aus einer Ummagnetisierungsleitung und einem oder mehreren magnetoresistiven Widerständen |
PCT/EP1994/001789 WO1994029740A1 (fr) | 1993-06-09 | 1994-05-31 | Capteur de champs magnetiques constitue d'un conducteur d'inversion magnetique et d'une ou plusieurs resistances magnetoresistives |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0654145A1 true EP0654145A1 (fr) | 1995-05-24 |
Family
ID=6489983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94920425A Withdrawn EP0654145A1 (fr) | 1993-06-09 | 1994-05-31 | Capteur de champs magnetiques constitue d'un conducteur d'inversion magnetique et d'une ou plusieurs resistances magnetoresistives |
Country Status (5)
Country | Link |
---|---|
US (1) | US5521501A (fr) |
EP (1) | EP0654145A1 (fr) |
JP (1) | JP3465059B2 (fr) |
DE (1) | DE4319146C2 (fr) |
WO (1) | WO1994029740A1 (fr) |
Families Citing this family (122)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4436876A1 (de) * | 1994-10-15 | 1996-04-18 | Lust Antriebstechnik Gmbh | Sensorchip |
DE19521617C1 (de) * | 1995-06-14 | 1997-03-13 | Imo Inst Fuer Mikrostrukturtec | Sensorchip zur Bestimmung eines Sinus- und eines Cosinuswertes sowie seine Verwendung zum Messen eines Winkels und einer Position |
US5929636A (en) * | 1996-05-02 | 1999-07-27 | Integrated Magnetoelectronics | All-metal giant magnetoresistive solid-state component |
DE19648879C2 (de) * | 1996-11-26 | 2000-04-13 | Inst Mikrostrukturtechnologie | Magnetfeldsensor mit parallelen magnetoresistiven Schichtstreifen |
EP1329695B1 (fr) * | 1997-05-09 | 2005-10-05 | Tesa SA | Capteur de type magnétorésistif pour mesure de dimension |
DE19722834B4 (de) * | 1997-05-30 | 2014-03-27 | Sensitec Gmbh | Magnetoresistives Gradiometer in Form einer Wheatstone-Brücke zur Messung von Magnetfeldgradienten sowie dessen Verwendung |
US5976681A (en) * | 1997-06-30 | 1999-11-02 | Ford Global Technologies, Inc. | Giant magnetoresistors with high sensitivity and reduced hysteresis |
DE19747255A1 (de) * | 1997-10-25 | 1999-05-12 | Danfoss As | Schutzimpedanz für eine netzspannungsgespeiste elektronische Schaltung |
DE19810838C2 (de) * | 1998-03-12 | 2002-04-18 | Siemens Ag | Sensoreinrichtung mit mindestens einem magnetoresistiven Sensor auf einer Substratschicht eines Sensorsubstrats |
US6529114B1 (en) * | 1998-05-27 | 2003-03-04 | Honeywell International Inc. | Magnetic field sensing device |
JP2001028485A (ja) * | 1999-07-15 | 2001-01-30 | Ricoh Co Ltd | 機器の転倒防止装置 |
JP3782915B2 (ja) * | 2000-02-16 | 2006-06-07 | セイコーインスツル株式会社 | 磁気センサを有する電子機器 |
AU2001261775A1 (en) * | 2000-05-18 | 2001-11-26 | Stefaan De Schrijver | Apparatus and method for secure object access |
AU2001261795A1 (en) * | 2000-05-22 | 2001-12-03 | Stefaan De Schrijver | Electronic cartridge writing instrument |
WO2001097165A2 (fr) * | 2000-06-16 | 2001-12-20 | Stefaan De Schrijver | Dispositif peripherique equipe d'un capteur piezoelectrique |
JP2003075157A (ja) * | 2001-09-06 | 2003-03-12 | Seiko Instruments Inc | 電子機器 |
DE10158053A1 (de) * | 2001-11-27 | 2003-06-05 | Philips Intellectual Property | Sensoranordnung |
US7046117B2 (en) * | 2002-01-15 | 2006-05-16 | Honeywell International Inc. | Integrated magnetic field strap for signal isolator |
JP2004301741A (ja) * | 2003-03-31 | 2004-10-28 | Denso Corp | 磁気センサ |
US7239000B2 (en) * | 2003-04-15 | 2007-07-03 | Honeywell International Inc. | Semiconductor device and magneto-resistive sensor integration |
US7206693B2 (en) * | 2003-04-15 | 2007-04-17 | Honeywell International Inc. | Method and apparatus for an integrated GPS receiver and electronic compassing sensor device |
US7265543B2 (en) * | 2003-04-15 | 2007-09-04 | Honeywell International Inc. | Integrated set/reset driver and magneto-resistive sensor |
DE102005047413B8 (de) * | 2005-02-23 | 2012-05-10 | Infineon Technologies Ag | Magnetfeldsensorelement und Verfahren zum Durchführen eines On-Wafer-Funktionstests, sowie Verfahren zur Herstellung von Magnetfeldsensorelementen und Verfahren zur Herstellung von Magnetfeldsensorelementen mit On-Wafer-Funktionstest |
DE102005037036B4 (de) * | 2005-08-06 | 2007-07-12 | Sensitec Gmbh | Magnetoresistiver Sensor mit Offsetkorrektur und dafür geeignetes Verfahren |
JP2007048847A (ja) * | 2005-08-08 | 2007-02-22 | Tokai Rika Co Ltd | 磁気抵抗素子 |
US7420365B2 (en) * | 2006-03-15 | 2008-09-02 | Honeywell International Inc. | Single chip MR sensor integrated with an RF transceiver |
DE102006046736B4 (de) * | 2006-09-29 | 2008-08-14 | Siemens Ag | Verfahren zum Betreiben eines Magnetfeldsensors und zugehöriger Magnetfeldsensor |
DE102006046739B4 (de) * | 2006-09-29 | 2008-08-14 | Siemens Ag | Verfahren zum Betreiben eines Magnetfeldsensors und zugehöriger Magnetfeldsensor |
WO2008146184A2 (fr) * | 2007-05-29 | 2008-12-04 | Nxp B.V. | Détermination d'un angle de champ magnétique externe |
DE102007040183A1 (de) | 2007-08-25 | 2009-03-05 | Sensitec Naomi Gmbh | Magnetfeldsensor zur Erfassung eines äußeren magnetischen Felds, insbesondere des Erdmagnetfelds, sowie mit solchen Magnetfeldsensoren gebildetes Magnetfeldsensorsystem |
US7923987B2 (en) | 2007-10-08 | 2011-04-12 | Infineon Technologies Ag | Magnetic sensor integrated circuit with test conductor |
US8559139B2 (en) | 2007-12-14 | 2013-10-15 | Intel Mobile Communications GmbH | Sensor module and method for manufacturing a sensor module |
US9823090B2 (en) | 2014-10-31 | 2017-11-21 | Allegro Microsystems, Llc | Magnetic field sensor for sensing a movement of a target object |
US7923996B2 (en) * | 2008-02-26 | 2011-04-12 | Allegro Microsystems, Inc. | Magnetic field sensor with automatic sensitivity adjustment |
US8269491B2 (en) * | 2008-02-27 | 2012-09-18 | Allegro Microsystems, Inc. | DC offset removal for a magnetic field sensor |
US8080993B2 (en) | 2008-03-27 | 2011-12-20 | Infineon Technologies Ag | Sensor module with mold encapsulation for applying a bias magnetic field |
US20090315554A1 (en) * | 2008-06-20 | 2009-12-24 | Honeywell International Inc. | Integrated three-dimensional magnetic sensing device and method to fabricate an integrated three-dimensional magnetic sensing device |
US7973527B2 (en) * | 2008-07-31 | 2011-07-05 | Allegro Microsystems, Inc. | Electronic circuit configured to reset a magnetoresistance element |
US8063634B2 (en) * | 2008-07-31 | 2011-11-22 | Allegro Microsystems, Inc. | Electronic circuit and method for resetting a magnetoresistance element |
US7891102B2 (en) * | 2008-08-01 | 2011-02-22 | Honeywell International Inc. | Nanowire magnetic compass and position sensor |
US7926193B2 (en) * | 2008-08-01 | 2011-04-19 | Honeywell International Inc. | Nanowire magnetic sensor |
DE112010000848B4 (de) | 2009-02-17 | 2018-04-05 | Allegro Microsystems, Llc | Schaltungen und Verfahren zum Erzeugen eines Selbsttests eines Magnetfeldsensors |
EP2634592B1 (fr) | 2009-07-22 | 2015-01-14 | Allegro Microsystems, LLC | Circuits et procédés permettant de générer un mode de diagnostic de fonctionnement dans un capteur de champ magnétique |
US8525514B2 (en) * | 2010-03-19 | 2013-09-03 | Memsic, Inc. | Magnetometer |
EP2472280A3 (fr) * | 2010-12-31 | 2013-10-30 | Voltafield Technology Corporation | Capteur magnéto-résistant |
TWI467821B (zh) | 2010-12-31 | 2015-01-01 | Voltafield Technology Corp | 磁阻感測器及其製造方法 |
JP5885209B2 (ja) * | 2011-02-01 | 2016-03-15 | 公立大学法人大阪市立大学 | 電力計測装置 |
JP2014509389A (ja) * | 2011-02-03 | 2014-04-17 | ゼンジテック ゲゼルシャフト ミット ベシュレンクテル ハフツング | 磁界感知デバイス |
US20140347047A1 (en) * | 2011-02-22 | 2014-11-27 | Voltafield Technology Corporation | Magnetoresistive sensor |
US8680846B2 (en) | 2011-04-27 | 2014-03-25 | Allegro Microsystems, Llc | Circuits and methods for self-calibrating or self-testing a magnetic field sensor |
US8604777B2 (en) | 2011-07-13 | 2013-12-10 | Allegro Microsystems, Llc | Current sensor with calibration for a current divider configuration |
US9335386B2 (en) * | 2011-09-29 | 2016-05-10 | Voltafield Technology Corp. | Magnatoresistive component and magnatoresistive device |
US8947082B2 (en) | 2011-10-21 | 2015-02-03 | University College Cork, National University Of Ireland | Dual-axis anisotropic magnetoresistive sensors |
US9201122B2 (en) | 2012-02-16 | 2015-12-01 | Allegro Microsystems, Llc | Circuits and methods using adjustable feedback for self-calibrating or self-testing a magnetic field sensor with an adjustable time constant |
US9817078B2 (en) | 2012-05-10 | 2017-11-14 | Allegro Microsystems Llc | Methods and apparatus for magnetic sensor having integrated coil |
US9310446B2 (en) * | 2012-10-18 | 2016-04-12 | Analog Devices, Inc. | Magnetic field direction detector |
US9612262B1 (en) | 2012-12-21 | 2017-04-04 | Neeme Systems Solutions, Inc. | Current measurement sensor and system |
US10197602B1 (en) | 2012-12-21 | 2019-02-05 | Jody Nehmeh | Mini current measurement sensor and system |
US9383425B2 (en) | 2012-12-28 | 2016-07-05 | Allegro Microsystems, Llc | Methods and apparatus for a current sensor having fault detection and self test functionality |
EP2778704B1 (fr) * | 2013-03-11 | 2015-09-16 | Ams Ag | Capteur de champ magnétique |
US10725100B2 (en) | 2013-03-15 | 2020-07-28 | Allegro Microsystems, Llc | Methods and apparatus for magnetic sensor having an externally accessible coil |
JP6149462B2 (ja) * | 2013-03-29 | 2017-06-21 | Tdk株式会社 | 平面コイル、磁気検出装置および電子部品 |
DE102013104486A1 (de) | 2013-05-02 | 2014-11-20 | Sensitec Gmbh | Magnetfeldsensorvorrichtung |
US9134385B2 (en) | 2013-05-09 | 2015-09-15 | Honeywell International Inc. | Magnetic-field sensing device |
US10145908B2 (en) | 2013-07-19 | 2018-12-04 | Allegro Microsystems, Llc | Method and apparatus for magnetic sensor producing a changing magnetic field |
US10495699B2 (en) | 2013-07-19 | 2019-12-03 | Allegro Microsystems, Llc | Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target |
US9810519B2 (en) | 2013-07-19 | 2017-11-07 | Allegro Microsystems, Llc | Arrangements for magnetic field sensors that act as tooth detectors |
DE102013107821A1 (de) | 2013-07-22 | 2015-01-22 | Sensitec Gmbh | Mehrkomponenten-Magnetfeldsensor |
JP6505717B2 (ja) | 2013-12-26 | 2019-04-24 | アレグロ・マイクロシステムズ・エルエルシー | センサ診断のための方法および装置 |
US9645220B2 (en) | 2014-04-17 | 2017-05-09 | Allegro Microsystems, Llc | Circuits and methods for self-calibrating or self-testing a magnetic field sensor using phase discrimination |
US9735773B2 (en) | 2014-04-29 | 2017-08-15 | Allegro Microsystems, Llc | Systems and methods for sensing current through a low-side field effect transistor |
US9354284B2 (en) | 2014-05-07 | 2016-05-31 | Allegro Microsystems, Llc | Magnetic field sensor configured to measure a magnetic field in a closed loop manner |
US9739846B2 (en) | 2014-10-03 | 2017-08-22 | Allegro Microsystems, Llc | Magnetic field sensors with self test |
US10712403B2 (en) | 2014-10-31 | 2020-07-14 | Allegro Microsystems, Llc | Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element |
US9719806B2 (en) | 2014-10-31 | 2017-08-01 | Allegro Microsystems, Llc | Magnetic field sensor for sensing a movement of a ferromagnetic target object |
US9720054B2 (en) | 2014-10-31 | 2017-08-01 | Allegro Microsystems, Llc | Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element |
US9823092B2 (en) | 2014-10-31 | 2017-11-21 | Allegro Microsystems, Llc | Magnetic field sensor providing a movement detector |
US9841485B2 (en) | 2014-11-14 | 2017-12-12 | Allegro Microsystems, Llc | Magnetic field sensor having calibration circuitry and techniques |
US9804249B2 (en) | 2014-11-14 | 2017-10-31 | Allegro Microsystems, Llc | Dual-path analog to digital converter |
US10466298B2 (en) | 2014-11-14 | 2019-11-05 | Allegro Microsystems, Llc | Magnetic field sensor with shared path amplifier and analog-to-digital-converter |
US9322887B1 (en) | 2014-12-01 | 2016-04-26 | Allegro Microsystems, Llc | Magnetic field sensor with magnetoresistance elements and conductive-trace magnetic source |
JP2016186476A (ja) * | 2015-03-27 | 2016-10-27 | Tdk株式会社 | 磁気センサ及び磁気式エンコーダ |
US9638764B2 (en) | 2015-04-08 | 2017-05-02 | Allegro Microsystems, Llc | Electronic circuit for driving a hall effect element with a current compensated for substrate stress |
US9632150B2 (en) * | 2015-04-27 | 2017-04-25 | Everspin Technologies, Inc. | Magnetic field sensor with increased field range |
US9851417B2 (en) | 2015-07-28 | 2017-12-26 | Allegro Microsystems, Llc | Structure and system for simultaneous sensing a magnetic field and mechanical stress |
CN105182258A (zh) * | 2015-10-21 | 2015-12-23 | 美新半导体(无锡)有限公司 | 能够实现重置和自检的磁场传感器 |
US10107873B2 (en) | 2016-03-10 | 2018-10-23 | Allegro Microsystems, Llc | Electronic circuit for compensating a sensitivity drift of a hall effect element due to stress |
US11294003B2 (en) | 2016-03-23 | 2022-04-05 | Analog Devices International Unlimited Company | Magnetic field detector |
JP6588371B2 (ja) * | 2016-03-30 | 2019-10-09 | アルプスアルパイン株式会社 | 磁界検出装置およびその調整方法 |
US10132879B2 (en) | 2016-05-23 | 2018-11-20 | Allegro Microsystems, Llc | Gain equalization for multiple axis magnetic field sensing |
US10012518B2 (en) | 2016-06-08 | 2018-07-03 | Allegro Microsystems, Llc | Magnetic field sensor for sensing a proximity of an object |
US10260905B2 (en) | 2016-06-08 | 2019-04-16 | Allegro Microsystems, Llc | Arrangements for magnetic field sensors to cancel offset variations |
US10041810B2 (en) | 2016-06-08 | 2018-08-07 | Allegro Microsystems, Llc | Arrangements for magnetic field sensors that act as movement detectors |
CN205861754U (zh) * | 2016-07-08 | 2017-01-04 | 江苏多维科技有限公司 | 一种无需置位和复位装置的各向异性磁电阻电流传感器 |
US10162017B2 (en) | 2016-07-12 | 2018-12-25 | Allegro Microsystems, Llc | Systems and methods for reducing high order hall plate sensitivity temperature coefficients |
JP6377882B1 (ja) * | 2017-01-27 | 2018-08-22 | 三菱電機株式会社 | 磁気抵抗効果素子デバイスおよび磁気抵抗効果素子装置 |
US10837943B2 (en) | 2017-05-26 | 2020-11-17 | Allegro Microsystems, Llc | Magnetic field sensor with error calculation |
US11428755B2 (en) | 2017-05-26 | 2022-08-30 | Allegro Microsystems, Llc | Coil actuated sensor with sensitivity detection |
US10996289B2 (en) | 2017-05-26 | 2021-05-04 | Allegro Microsystems, Llc | Coil actuated position sensor with reflected magnetic field |
US10641842B2 (en) | 2017-05-26 | 2020-05-05 | Allegro Microsystems, Llc | Targets for coil actuated position sensors |
US10324141B2 (en) | 2017-05-26 | 2019-06-18 | Allegro Microsystems, Llc | Packages for coil actuated position sensors |
US10310028B2 (en) | 2017-05-26 | 2019-06-04 | Allegro Microsystems, Llc | Coil actuated pressure sensor |
US10739165B2 (en) * | 2017-07-05 | 2020-08-11 | Analog Devices Global | Magnetic field sensor |
US10520559B2 (en) | 2017-08-14 | 2019-12-31 | Allegro Microsystems, Llc | Arrangements for Hall effect elements and vertical epi resistors upon a substrate |
US10866117B2 (en) | 2018-03-01 | 2020-12-15 | Allegro Microsystems, Llc | Magnetic field influence during rotation movement of magnetic target |
DE102018107571A1 (de) * | 2018-03-29 | 2019-10-02 | Schaeffler Technologies AG & Co. KG | Magnetfeldsensoranordnung und Anordnung zum Messen eines Drehmomentes sowie Verfahren zum Herstellen der Magnetfeldsensoranordnung |
JP6900936B2 (ja) * | 2018-06-08 | 2021-07-14 | Tdk株式会社 | 磁気検出装置 |
US11255700B2 (en) | 2018-08-06 | 2022-02-22 | Allegro Microsystems, Llc | Magnetic field sensor |
US10823586B2 (en) | 2018-12-26 | 2020-11-03 | Allegro Microsystems, Llc | Magnetic field sensor having unequally spaced magnetic field sensing elements |
US11061084B2 (en) | 2019-03-07 | 2021-07-13 | Allegro Microsystems, Llc | Coil actuated pressure sensor and deflectable substrate |
AU2020272196A1 (en) * | 2019-04-11 | 2021-08-05 | Tdw Delaware, Inc. | Pipeline tool with composite magnetic field for inline inspection |
US10955306B2 (en) | 2019-04-22 | 2021-03-23 | Allegro Microsystems, Llc | Coil actuated pressure sensor and deformable substrate |
US11280637B2 (en) | 2019-11-14 | 2022-03-22 | Allegro Microsystems, Llc | High performance magnetic angle sensor |
US11237020B2 (en) | 2019-11-14 | 2022-02-01 | Allegro Microsystems, Llc | Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet |
US11194004B2 (en) | 2020-02-12 | 2021-12-07 | Allegro Microsystems, Llc | Diagnostic circuits and methods for sensor test circuits |
US11169223B2 (en) | 2020-03-23 | 2021-11-09 | Allegro Microsystems, Llc | Hall element signal calibrating in angle sensor |
US11262422B2 (en) | 2020-05-08 | 2022-03-01 | Allegro Microsystems, Llc | Stray-field-immune coil-activated position sensor |
JP7173104B2 (ja) | 2020-07-21 | 2022-11-16 | Tdk株式会社 | 磁気センサ |
US11493361B2 (en) | 2021-02-26 | 2022-11-08 | Allegro Microsystems, Llc | Stray field immune coil-activated sensor |
US11630130B2 (en) | 2021-03-31 | 2023-04-18 | Allegro Microsystems, Llc | Channel sensitivity matching |
US11578997B1 (en) | 2021-08-24 | 2023-02-14 | Allegro Microsystems, Llc | Angle sensor using eddy currents |
US11994541B2 (en) | 2022-04-15 | 2024-05-28 | Allegro Microsystems, Llc | Current sensor assemblies for low currents |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4533872A (en) * | 1982-06-14 | 1985-08-06 | Honeywell Inc. | Magnetic field sensor element capable of measuring magnetic field components in two directions |
JPS59214784A (ja) * | 1983-05-20 | 1984-12-04 | Canon Inc | 磁気センサ装置 |
DE3442278A1 (de) * | 1984-11-20 | 1986-05-22 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Magnetfeldmessgeraet |
JPH07105006B2 (ja) * | 1985-11-05 | 1995-11-13 | ソニー株式会社 | 磁気抵抗効果型磁気ヘツド |
US4851771A (en) * | 1987-02-24 | 1989-07-25 | Kabushiki Kaisha Yaskawa Denki Seisakusho | Magnetic encoder for detection of incremental and absolute value displacement |
GB2202635B (en) * | 1987-03-26 | 1991-10-30 | Devon County Council | Detection of magnetic fields |
JPH077012B2 (ja) * | 1987-08-18 | 1995-01-30 | 富士通株式会社 | 加速度センサ |
DD275745A1 (de) * | 1988-09-26 | 1990-01-31 | Univ Schiller Jena | Magnetisches feldeffekt-bauelement mit vier in einer brueckenschaltung angeordneten magnetfeldabhaengigen widerstaenden |
US4847584A (en) * | 1988-10-14 | 1989-07-11 | Honeywell Inc. | Magnetoresistive magnetic sensor |
JPH03223685A (ja) * | 1990-01-29 | 1991-10-02 | Fujitsu Ltd | 外部磁界検出センサ |
DE4121374C2 (de) * | 1991-06-28 | 2000-09-07 | Lust Electronic Systeme Gmbh | Kompensierter Magnetfeldsensor |
US5247278A (en) * | 1991-11-26 | 1993-09-21 | Honeywell Inc. | Magnetic field sensing device |
US5351005A (en) * | 1992-12-31 | 1994-09-27 | Honeywell Inc. | Resetting closed-loop magnetoresistive magnetic sensor |
-
1993
- 1993-06-09 DE DE4319146A patent/DE4319146C2/de not_active Expired - Lifetime
-
1994
- 1994-05-31 EP EP94920425A patent/EP0654145A1/fr not_active Withdrawn
- 1994-05-31 WO PCT/EP1994/001789 patent/WO1994029740A1/fr not_active Application Discontinuation
- 1994-05-31 JP JP50127195A patent/JP3465059B2/ja not_active Expired - Lifetime
- 1994-05-31 US US08/374,795 patent/US5521501A/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
See references of WO9429740A1 * |
Also Published As
Publication number | Publication date |
---|---|
JPH08503778A (ja) | 1996-04-23 |
DE4319146A1 (de) | 1994-12-15 |
JP3465059B2 (ja) | 2003-11-10 |
US5521501A (en) | 1996-05-28 |
DE4319146C2 (de) | 1999-02-04 |
WO1994029740A1 (fr) | 1994-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1994029740A1 (fr) | Capteur de champs magnetiques constitue d'un conducteur d'inversion magnetique et d'une ou plusieurs resistances magnetoresistives | |
DE69425063T2 (de) | Magnetoresistiver linearer weggeber, winkelverschiebungssensor und variabler widerstand | |
DE19539722C2 (de) | Vorrichtung zur Erfassung einer Änderung eines Winkels oder der Feldstärke eines magnetischen Feldes | |
DE19580095C2 (de) | Sensor mit magnetoresistiven Elementen | |
DE69228654T2 (de) | Magnetfeldfühler | |
EP0030041B1 (fr) | Transformateur de mesure, notamment d'un champ magnétique généré par un courant de mesure | |
DE3011462C2 (fr) | ||
EP0054626B1 (fr) | Détecteur du courant magnétorésistif | |
DE10342260B4 (de) | Magnetoresistiver Sensor in Form einer Halb- oder Vollbrückenschaltung | |
DE2433645C3 (de) | Magnetoresistives Bauelement | |
DE4208927C2 (de) | Magnetischer Sensor und damit ausgerüsteter Positionsdetektor | |
EP0807827A2 (fr) | Capteur sensible au champ magnétique avec plusieurs éléments capteurs GMR | |
EP1324063B1 (fr) | Capteur magnétorésistif | |
DE2614165A1 (de) | Magnetowiderstandsmagnetkopf | |
DE19933243A1 (de) | Codierer mit Magnetowiderstandselementen | |
DE4327458C2 (de) | Sensorchip zur hochauflösenden Messung der magnetischen Feldstärke | |
DE19650078A1 (de) | Sensorelement zur Bestimmung eines Magnetfeldes oder eines Stromes | |
DE102005009390B3 (de) | Kraftsensor, Verfahren zur Ermittlung einer auf einen Kraftsensor wirkenden Kraft mittels eines Mehrschichtsystems aus magnetischen Schichten | |
DE19722834A1 (de) | Magnetoresistives Gradiometer in Form einer Wheatstone-Brücke zur Messung von Magnetfeldgradienten | |
DE3447325A1 (de) | Positionsgeber | |
EP0201682B1 (fr) | Capteur intégré de la vitesse de rotation à résistances sensibles au champ magnétique | |
DE19648879C2 (de) | Magnetfeldsensor mit parallelen magnetoresistiven Schichtstreifen | |
DE4318716A1 (de) | Magnetfeldsensor in Form einer Brückenschaltung | |
DE3609006A1 (de) | Magnetfeldsensor | |
DE3931780A1 (de) | Magnetisches feldeffekt-bauelement mit vier in einer brueckenschaltung angeordneten magnetfeldabhaengigen widerstaenden |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19941222 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 19980113 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19980526 |