EP0647775B1 - Vorrichtung zur Leerlaufregelung einer Kraftfahrzeug-Brennkraftmaschine - Google Patents

Vorrichtung zur Leerlaufregelung einer Kraftfahrzeug-Brennkraftmaschine Download PDF

Info

Publication number
EP0647775B1
EP0647775B1 EP94113276A EP94113276A EP0647775B1 EP 0647775 B1 EP0647775 B1 EP 0647775B1 EP 94113276 A EP94113276 A EP 94113276A EP 94113276 A EP94113276 A EP 94113276A EP 0647775 B1 EP0647775 B1 EP 0647775B1
Authority
EP
European Patent Office
Prior art keywords
catalytic converter
temperature
engine
internal combustion
injection valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94113276A
Other languages
English (en)
French (fr)
Other versions
EP0647775A2 (de
EP0647775A3 (de
Inventor
Gerhart Huemer
Heinz Lemberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP0647775A2 publication Critical patent/EP0647775A2/de
Publication of EP0647775A3 publication Critical patent/EP0647775A3/de
Application granted granted Critical
Publication of EP0647775B1 publication Critical patent/EP0647775B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • F02D41/1443Plural sensors with one sensor per cylinder or group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/02Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by cutting out a part of engine cylinders

Definitions

  • the invention relates to a device according to the preamble of the claim 1.
  • the internal combustion engine is idling when the motor vehicle is stationary is operated by firing all cylinders, this can be especially in the case of large-volume, four-cylinder internal combustion engines to critical thermal behavior lead if the amount of heat generated by the combustion is missing Airflow through the coolant can not be dissipated.
  • a method for fuel injection is known from DE 36 23 040 A1 which the injection is switched off sequentially in overrun mode. A lifting the injection shutdown due to a low catalyst temperature not known from this document.
  • This object is achieved in a device for idle control of a motor vehicle internal combustion engine with exhaust gas catalytic converter and lambda probe solved in that the means for switching off the injection valves are designed such that the injection valves in idle mode of the internal combustion engine depending on the internal combustion engine firing order can be switched off sequentially according to a specified program are.
  • This embodiment of the invention is also suitable for 6-cylinder internal combustion engines.
  • the exhaust gas catalytic converter does not fall below that for a proper exhaust gas conversion can cool down the required temperature.
  • This has an improved exhaust emission behavior of the internal combustion engine Episode.
  • the invention can, in particular, the thermal behavior in large-volume internal combustion engines in idle mode when the cooling Impact of the airstream is missing, can be significantly improved.
  • the sequential shutdown takes place the injection valves only when the internal combustion engine is idling, if the coolant temperature of the internal combustion engine is greater than 80 ° C and / or the air temperature in the intake air collector is greater than 20 ° C. So that is achieved that the single cylinder shutdown only when the engine is idling when the internal combustion engine is warm and / or when the outside temperature is sufficiently warm he follows.
  • the sequential shutdown of the injection valves only at one Vehicle speed greater than 5 km / h canceled.
  • the temperature of the catalytic converter by measuring or monitoring the electrical voltage of the lambda probe assigned to the exhaust gas catalytic converter.
  • the logic diagram of FIG. 1 shows the functioning of a device for idle control of a motor vehicle internal combustion engine with two rows of cylinders, each of which is assigned an exhaust gas catalytic converter with a lambda probe.
  • the OR gate 1 receives as input variables the information as to whether the coolant temperature T K is greater than 80 ° C and the further information as to whether the air temperature T S in the intake air collector of the internal combustion engine is greater than 20 ° C. In the case of an internal combustion engine that is at operating temperature and not exactly extremely wintry ambient temperatures, the OR gate 1 then emits an enable signal to a first AND gate 2. As a further input variable, this first AND gate 2 is supplied with the information as to whether the speed V FZG of the motor vehicle is less than 5 km / h.
  • the first AND gate 2 outputs a logic signal "1" to the second AND gate 3.
  • the second AND gate 3 receives a further logic signal "1" at its second input. This fulfills all of the requirements that the injection valves of one of the two cylinder rows can be switched off when the internal combustion engine is idling. This result is stored in the memory element 4 until any change. The memory element 4 passes this information on to the two subsequent AND elements 5 and 6.
  • the AND gate 5 receives the information about the voltage U L1 of the first lambda probe of the first exhaust gas catalytic converter at its second input
  • the AND gate 6 receives the information about the voltage U L2 of the second lambda probe of the second input second catalytic converter.
  • the logic diagram of Fig. 2 represents the operation of the invention. It is identical to the logic diagram of FIG. 1 in the first three logic elements 1, 2 and 3. Also in the embodiment of FIG. 2, the AND gate 3 sends a logical "1" signal to the AND gate 8 when the coolant temperature T K is greater than 80 ° C and / or the air temperature T S in the air collector of the internal combustion engine is greater Is 20 ° and in addition the vehicle speed V FZG is less than 5 km / h and finally the internal combustion engine is operated at idle, ie the idle contact is closed. At its second input, this AND gate 8 receives the information as to whether the electrical voltage U L of the lambda probe of the exhaust gas catalytic converter is greater or less than a limit voltage U G.
  • the injectors can be switched off sequentially depending on the engine ignition sequence according to a predetermined program when the internal combustion engine is idling.
  • the voltage of the lambda probe U L falls below the limit value U G , then this means that the exhaust gas catalytic converter has already cooled down to its minimum temperature required for the proper conversion, and consequently the sequential injection valve shutdown is canceled again at least for a predetermined period of time got to. Only when the exhaust gas catalytic converter has reached a sufficiently high operating temperature again, that is, when the electrical voltage U L of the lambda probe is again greater than the limit voltage U G , can the injection valves be switched off sequentially again. The sequential shutdown of the injection valves of the internal combustion engine is then carried out by the internal combustion engine control unit 9.
  • the diagram of FIG. 3 shows the relationship between the electrical voltage U L of the lambda probe as a function of the temperature T of the associated exhaust gas catalytic converter.
  • the electrical voltage U L of the lambda probe decreases with decreasing temperature T of the exhaust gas catalytic converter.
  • the limit temperature T G shown in the diagram of FIG. 3 represents the minimum temperature that the exhaust gas catalytic converter must have in order for it to function properly. In the diagram, this limit temperature T G corresponds to a limit voltage U G. If the exhaust gas catalytic converter of the internal combustion engine cools below the operating temperature T G due to an excessively long sequential shutdown of the injection valves, then the electrical voltage U L of the associated lambda probe drops below the limit value U G. Because of this relationship, the voltage U L of the lambda probe can be used as a measure of the temperature of the associated exhaust gas catalytic converter, so that a separate temperature sensor can be saved.
  • the internal combustion engine becomes a reduction while maintaining the exhaust gas quality fuel consumption and an improvement in thermal behavior the internal combustion engine reached.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

Die Erfindung betrifft eine Vorrichtung nach dem Oberbegriff des Patentanspruchs 1.
Es ist bereits bekannt, auch bei nur kurzfristigem Stillstand eines Kraftfahrzeuges, dessen Brennkraftmaschine während der Stillstandsphase abzuschalten. Diese bekannte Vorrichtung wird häufig als "Start-Stop-Automatik" bezeichnet. Bei dieser "Start-Stop-Automatik" werden mit dem Abstellen der Brennkraftmaschine alle Zylinder abgeschaltet. Dies hat den Nachteil, dass der Abgaskatalysator der Brennkraftmaschine sehr schnell auskühlt und folglich nach dem Brennkraftmaschinenstart wieder auf die erforderliche Konvertierungstemperatur durch entsprechendes Anfetten des Ansauggemisches gebracht werden muss. Dies wirkt sich jedoch negativ auf die Abgasemissionen sowie auf den Kraftstoffverbrauch aus.
Wenn dagegen die Brennkraftmaschine bei stehendem Kraftfahrzeug im Leerlauf durch Befeuerung aller Zylinder betrieben wird, kann dies insbesondere bei großvolumigen, vierzylindrigen Brennkraftmaschinen zu einem kritischen thermischen Verhalten führen, wenn die durch die Verbrennung erzeugte Wärmemenge bei fehlendem Fahrtwind durch das Kühlmittel nicht abgeführt werden kann.
In der gattungsbildenden US 4,134,261 ist ein Verbrennungsmotor mit zwei Zylinderreihen beschrieben, denen jeweils ein Katalysator und eine Lambda-Sonde zugeordnet ist. Bei niedriger Last kann wechselseitig eine Zylinderreihe abgeschaltet werden, wobei dann auf die andere Zylinderreihe umgeschaltet wird, wenn deren Katalysator eine vorgegebene Grenztemperatur unterschreitet. Durch die Zuordnung jeweils eines Katalysators und einer Lambda-Sonde zu einer bestimmten Zylinderreihe kann eine fehlerverursachende Beeinflussung der Motorsteuerung über den abgeschalteten Strang vermieden werden. Ein teilweiser Betrieb jeweils eines Abgasstranges wird damit nicht Erwägung gezogen.
Aus der DE 36 23 040 A1 ist ein Verfahren zur Kraftstoffeinspritzung bekannt, bei dem die Einspritzung im Schubbetrieb sequentiell abgeschaltet wird. Eine Aufhebung der Einspritzabschaltung aufgrund einer niedrigen Katalysatortemperatur ist aus diesem Dokument nicht bekannt.
Ausgehend vom gattungsbildenden Stand der Technik ist es daher Aufgabe der Erfindung, eine Vorrichtung eingangs genannter Art derart weiterzubilden, dass bei jeder Motorkonstruktion je nach Anforderung eine stufenweise Leistungsreduktion möglich ist, wobei aber weiterhin die Abgasqualität im Leerlauf beibehalten wird.
Diese Aufgabe wird bei einer Vorrichtung zur Leerlaufsteuerung einer Kraftfahrzeug-Brennkraftmaschine mit Abgaskatalysator und Lambda-Sonde dadurch gelöst, dass die Mittel zum Abschalten von Einspritzventilen so ausgebildet sind, dass die Einspritzventile im Leerlaufbetrieb der Brennkraftmaschine abhängig von der Brennkraftmaschinen-Zündfolge nach einem vorgegebenen Programm sequentiell abschaltbar sind.
Diese Ausgestaltung der Erfindung eignet sich auch bereits bei 6-Zylinder-Brennkraftmaschinen.
Durch die Erfindung wird erreicht, dass der Abgaskatalysator nicht unter die für eine ordnungsgemäße Abgaskonvertierung erforderliche Temperatur abkühlen kann. Dies hat ein verbessertes Abgasemissionsverhalten der Brennkraftmaschine zur Folge. Femer kann durch die Abschaltung einzelner Zylinder im Leerlaufbetrieb der Brennkraftmaschine deren Kraftstoffverbrauch im Leerlauf um ca. 35 % reduziert werden. Schließlich kann durch die Erfindung das thermische Verhalten, insbesondere bei großvolumigen Brennkraftmaschinen im Leerlaufbetrieb, wenn die kühlende Wirkung des Fahrtwindes fehlt, deutlich verbessert werden.
Gemäß einer vorteilhaften Weiterbildung der Erfindung erfolgt die sequentielle Abschaltung der Einspritzventile im Leerlaufbetrieb der Brennkraftmaschine nur dann, wenn die Kühlmitteltemperatur der Brennkraftmaschine größer als 80°C und/oder die Lufttemperatur im Ansaugluftsammler größer als 20°C ist. Damit wird erreicht, dass die Einzelzylinderabschaltung im Leerlaufbetrieb der Brennkraftmaschine nur bei betriebswarmer Brennkraftmaschine und/oder bei hinreichend warmer Außentemperatur erfolgt.
Damit beim Einparken oder langsamen Dahinrollen des Kraftfahrzeuges durch Zuschalten der nichtbefeuerten Zylinder kein unangenehmer Drehmomentsprung am Ausgang der Brennkraftmaschine entsteht, wird gemäß einer weiteren Ausgestaltung der Erfindung die sequentielle Abschaltung der Einspritzventile erst bei einer Fahrzeuggeschwindigkeit größer als 5 km/h aufgehoben.
Bei einer weiteren vorteilhaften Ausgestaltung der Erfindung wird die Temperatur des Abgaskatalysators durch Messen oder Überwachen der elektrischen Spannung der dem Abgaskatalysator zugeordneten Lambda-Sonde bestimmt.
Im folgenden werden die beiden Alternativen der Erfindung jeweils anhand eines Ausführungsbeispieles erläutert.
Es zeigen
Fig. 1
einen Logikplan, der die Schaltlogik einer Zylinderreihenumschaltung wiedergibt,
Fig. 2
einen Logikplan, der die Schaltlogik für die sequentielle Einspritzabschaltung wiedergibt, und
Fig. 3
ein Diagramm, das die Temperaturabhängigkeit der elektrischen Spannung der Lambda-Sonde eines Abgaskatalysators wiedergibt.
Der Logikplan von Fig. 1 gibt die Funktionsweise einer Vorrichtung zur Leerlaufsteuerung einer Kraftfahrzeug-Brennkraftmaschine mit zwei Zylinderreihen wieder, denen jeweils ein Abgaskatalysator mit Lambda-Sonde zugeordnet ist. Das ODER-Glied 1 erhält als Eingangsgrößen die Information, ob die Kühlmitteltemperatur TK größer als 80°C ist sowie die weitere Information, ob die Lufttemperatur TS im Ansaugluftsammler der Brennkraftmaschine größer als 20°C ist. Bei einer betriebswarmen Brennkraftmaschine und nicht gerade extrem winterlichen Umgebungstemperaturen gibt dann das ODER-Glied 1 ein Freigabesignal an ein erstes UND-Glied 2 ab. Diesem ersten UND-Glied 2 wird als weitere Eingangsgröße die Information zugeführt, ob die Geschwindigkeit VFZG des Kraftfahrzeuges kleiner als 5 km/h ist. Für den Fall, dass die Geschwindigkeit VFZG des Kraftfahrzeuges kleiner als 5 km/h ist, gibt das erste UND-Glied 2 an das zweite UND-Glied 3 ein logisches Signal "1" ab. Bei geschlossenem Leerlaufkontakt erhält das zweite UND-Glied 3 an seinem zweiten Eingang ein weiteres logisches Signal "1". Damit sind alle Voraussetzungen erfüllt, dass im Leerlaufbetrieb der Brennkraftmaschine die Einspritzventile einer der beiden Zylinderreihen abgeschaltet werden können. Dieses Ergebnis ist bis zu einer etwaigen Änderung im Speicherglied 4 abgespeichert. Das Speicherglied 4 gibt diese Information an die beiden nachfolgenden UND-Glieder 5 und 6 weiter. Während das UND-Glied 5 an seinem zweiten Eingang die Information über die Spannung UL1 der ersten Lambda-Sonde des ersten Abgaskatalysators erhält, erhält das UND-Glied 6 an seinem zweiten Eingang die Information über die Spannung UL2 der zweiten Lambda-Sonde des zweiten Abgaskatalysators. Für den Fall, dass die Spannung UL1 der ersten Lambda-Sonde des ersten Abgaskatalysators aufgrund der Abkühlung des ersten Abgaskatalysators unter einen Grenzwert UG fällt, dann bedeutet dies, dass die diesem ersten Abgaskatalysator zugeordnete Zylinderreihe wieder zugeschaltet werden muss und damit die bisher befeuerte Zylinderreihe, die dem zweiten Abgaskatalysator zugeordnet ist, abgeschaltet werden kann. Wenn jedoch nach einer bestimmten Abschaltzeit der nun abgeschalteten Zylinderreihe zugeordnete zweite Abgaskatalysator sich so stark abgekühlt hat, dass die Spannung UL2 der zweiten Lambda-Sonde des zweiten Abgaskatalysators einen Grenzwert UG unterschreitet, dann muss die dem zweiten Abgaskatalysator zugeordnete Zylinderreihe erneut befeuert werden, während die dem ersten Abgaskatalysator zugeordnete Zylinderreihe wieder abgeschaltet werden kann. Dieses wechselweise Abschalten der Einspritzventile einer der beiden Zylinderreihen im Leerlaufbetrieb der Brennkraftmaschine wird durch das schematisch dargestellte Brennkraftmaschinen-Steuergerät 7 vorgenommen.
Der Logikplan von Fig. 2 gibt die Funktionsweise der Erfindung wieder. Er stimmt mit dem Logikplan von Fig. 1 in den ersten drei logischen Gliedern 1, 2 und 3 identisch überein. Auch beim Ausführungsbeispiel von Fig. 2 gibt das UND-Glied 3 ein logisches "1"-Signal an das UND-Glied 8 ab, wenn die Kühlmitteltemperatur TK grösser 80°C ist und/oder die Lufttemperatur TS im Luftsammler der Brennkraftmaschine größer 20° ist und zusätzlich die Fahrzeuggeschwindigkeit VFZG kleiner als 5 km/h ist und schließlich die Brennkraftmaschine im Leerlauf betrieben wird, d. h. der Leerlaufkontakt geschlossen ist. Dieses UND-Glied 8 erhält an seinem zweiten Eingang die Information, ob die elektrische Spannung UL der Lambda-Sonde des Abgaskatalysators größer oder kleiner als eine Grenzspannung UG ist. Solange die Spannung UL der Lambda-Sonde größer als die Grenzspannung UG ist, können im Leerlaufbetrieb der Brennkraftmaschine die Einspritzventile abhängig von der Brennkraftmaschinenzündfolge nach einem vorgegebenen Programm sequentiell abgeschaltet werden. Wenn jedoch die Spannung der Lambda-Sonde UL unter den Grenzwert UG fällt, dann bedeutet dies, dass der Abgaskatalysator schon bis auf seine für die ordnungsgemäße Konvertierung minimal erforderliche Grenztemperatur abgekühlt ist und folglich die sequentielle Einspritzventilabschaltung zumindest für eine vorgegebene Zeitspanne wieder aufgehoben werden muss. Erst wenn der Abgaskatalysator wieder eine ausreichend hohe Betriebstemperatur erreicht hat, d. h., wenn die elektrische Spannung UL der Lambda-Sonde wieder größer als die Grenzspannung UG ist, dann können die Einspritzventile erneut sequentiell abgeschaltet werden. Die sequentielle Abschaltung der Einspritzventile der Brennkraftmaschine erfolgt dann durch das Brennkraftmaschinen-Steuergerät 9.
In dem Diagramm von Fig. 3 ist der Zusammenhang der elektrischen Spannung UL der Lambda-Sonde in Abhängigkeit von der Temperatur T des zugehörigen Abgaskatalysators dargestellt. Wie dem Diagramm von Fig. 3 zu entnehmen ist, nimmt die elektrische Spannung UL der Lambda-Sonde mit abnehmender Temperatur T des Abgaskatalysators ab. Die im Diagramm von Fig. 3 eingezeichnete Grenztemperatur TG stellt die Mindesttemperatur dar, die der Abgaskatalysator für eine ordnungsgemäße Funktion haben muss. Dieser Grenztemperatur TG entspricht im Diagramm eine Grenzspannung UG. Wenn nun der Abgaskatalysator der Brennkraftmaschine aufgrund einer zu lange andauernden sequentiellen Abschaltung der Einspritzventile unter die Betriebstemperatur TG abkühlt, dann sinkt die elektrische Spannung UL der zugehörigen Lambda-Sonde unter den Grenzwert UG. Aufgrund dieses Zusammenhangs kann die Spannung UL der Lambda-Sonde als Maß für die Temperatur des zugehörigen Abgaskatalysators verwendet werden, so dass ein separater Temperaturfühler eingespart werden kann.
Durch die erfindungsgemäße Abschaltung einzelner Einspritzventile im Leerlaufbetrieb der Brennkraftmaschine wird unter Beibehaltung der Abgasqualität eine Verminderung des Kraftstoffverbrauchs sowie eine Verbesserung des thermischen Verhaltens der Brennkraftmaschine erreicht.

Claims (4)

  1. Vorrichtung zur Leerlaufsteuerung einer Kraftfahrzeug-Brennkraftmaschine mit Abgaskatalysator und Lambda-Sonde, wobei die Vorrichtung Mittel umfasst, welche im Leerlaufbetrieb Einspritzventile abschalten und die Einspritzventilabschaltung zumindest für eine vorgegebene Zeitspanne aufheben, wenn die Temperatur (T) des Abgaskatalysators eine vorgegebene Grenztemperatur (TG) unterschreitet, dadurch gekennzeichnet, dass die Mittel zum Abschalten von Einspritzventilen so ausgebildet sind, dass die Einspritzventile im Leerlaufbetrieb der Brennrkaftmaschine abhängig von der Brennkraftmaschinenzündfolge nach einem vorgegebenen Programm sequentiell abschaltbar sind.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die sequentielle Abschaltung der Einspritzventile im Leerlaufbetrieb der Brennkraftmaschine nur dann erfolgt, wenn die Kühlmitteltemperatur (TK) der Brennkraftmaschine größer als 80°C und/oder die Lufttemperatur (TS) im Ansaugluftsammler größer als 20°C ist.
  3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die sequentielle Abschaltung der Einspritzventile bei einer Fahrzeuggeschwindigkeit (FFZG) größer als 5 km/h aufgehoben wird.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Temperatur (T) des Abgaskatalysators durch Messen oder Überwachen der elektrischen Spannung (UL) der dem betreffenden Abgaskatalysator zugeordneten Lambda-Sonde bestimmt wird.
EP94113276A 1993-10-11 1994-08-25 Vorrichtung zur Leerlaufregelung einer Kraftfahrzeug-Brennkraftmaschine Expired - Lifetime EP0647775B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4334557 1993-10-11
DE4334557A DE4334557A1 (de) 1993-10-11 1993-10-11 Vorrichtung zur Leerlaufregelung einer Kraftfahrzeug-Brennkraftmaschine

Publications (3)

Publication Number Publication Date
EP0647775A2 EP0647775A2 (de) 1995-04-12
EP0647775A3 EP0647775A3 (de) 1996-07-17
EP0647775B1 true EP0647775B1 (de) 2003-04-09

Family

ID=6499846

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94113276A Expired - Lifetime EP0647775B1 (de) 1993-10-11 1994-08-25 Vorrichtung zur Leerlaufregelung einer Kraftfahrzeug-Brennkraftmaschine

Country Status (3)

Country Link
US (1) US5586432A (de)
EP (1) EP0647775B1 (de)
DE (2) DE4334557A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4423344A1 (de) * 1994-07-04 1996-01-11 Bayerische Motoren Werke Ag Verfahren zur Erkennung von seitenverkehrt angeschlossenen Lambda-Sonden
DE19503317A1 (de) 1995-02-02 1996-08-08 Bayerische Motoren Werke Ag Vorrichtung zur Abschaltsteuerung eines Einspritzventils bei Brennkraftmaschinen
US5801499A (en) * 1995-07-11 1998-09-01 Aisin Aw Co., Ltd. Control system for a vehicular drive unit
JP3622279B2 (ja) * 1995-07-31 2005-02-23 日産自動車株式会社 内燃機関の燃料供給制御装置
JP3252793B2 (ja) * 1998-05-15 2002-02-04 トヨタ自動車株式会社 内燃機関の排気浄化装置
FR2780100B1 (fr) * 1998-06-17 2001-01-26 Peugeot Procede pour accroitre rapidement la temperature dans un pot catalytique au demarrage d'un moteur a combustion interne pour vehicule automobile
DE19907851A1 (de) 1999-02-24 2000-08-31 Bayerische Motoren Werke Ag Verfahren zur Zylinderab- und -zuschaltung bei einer Kraftfahrzeug-Brennkraftmaschine
EP1126148B1 (de) * 2000-01-05 2003-07-02 Robert Bosch Gmbh Verfahren zur Regelung der Wärmeverluste eines katalytischen Konverters während Schubbetrieb
DE10003903B4 (de) * 2000-01-29 2009-12-17 Volkswagen Ag Vorrichtung und Verfahren zur Steuerung eines Betriebes eines Mehrzylindermotors für Kraftfahrzeuge mit einer mehrflutigen Abgasreinigungsanlage
DE10161850B4 (de) * 2001-12-15 2010-03-04 Daimler Ag Verfahren zum Betrieb einer Brennkraftmaschine eines Kraftfahrzeuges
JP3963105B2 (ja) * 2002-01-18 2007-08-22 日産自動車株式会社 内燃機関の制御装置
JP4725653B2 (ja) * 2009-01-30 2011-07-13 トヨタ自動車株式会社 多気筒内燃機関の運転制御装置
US8214095B2 (en) * 2009-05-27 2012-07-03 GM Global Technology Operations LLC Method and apparatus for detecting engine firing in a hybrid powertrain system
US8689541B2 (en) 2011-02-16 2014-04-08 GM Global Technology Operations LLC Valvetrain control method and apparatus for conserving combustion heat
KR20170024853A (ko) * 2015-08-26 2017-03-08 현대자동차주식회사 엔진 제어 방법 및 엔진 제어 시스템
JP2017155699A (ja) * 2016-03-03 2017-09-07 株式会社クボタ 多目的車両

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3623040A1 (de) * 1986-07-09 1988-01-14 Bosch Gmbh Robert Verfahren zur kraftstoffeinspritzung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2937490A (en) * 1957-08-12 1960-05-24 Oxy Catalyst Inc Catalytic purification of exhaust gases
US3756205A (en) * 1971-04-26 1973-09-04 Gen Motors Corp Method of and means for engine operation with cylinders selectively unfueled
GB1427637A (en) * 1972-08-30 1976-03-10 Bosch Gmbh Robert Internal combustion engine having an exhaust reactor and a protective device for the reactor
US4103486A (en) * 1974-04-15 1978-08-01 Nissan Motor Company, Ltd. Method of controlling temperature in thermal reactor for engine exhaust gas and ignition system for performing same
JPS549B2 (de) * 1974-06-01 1979-01-05
DE2627286A1 (de) * 1976-06-18 1977-12-29 Daimler Benz Ag Vorrichtung zur regelung einer mehrzylindrigen, grossvolumigen brennkraftmaschine
JPS5334017A (en) * 1976-09-13 1978-03-30 Nissan Motor Co Ltd Control equipment of number of cylinder to be supplied fuel
DE2912796A1 (de) * 1979-03-30 1980-10-09 Daimler Benz Ag Abgassystem fuer vorzugsweise achtzylindrige brennkraftmaschinen
JPS6121537Y2 (de) * 1980-02-01 1986-06-27
JPS5784228A (en) * 1980-11-14 1982-05-26 Shigeo Onchi Device for controlling driving power of automobile
JPS59105941A (ja) * 1982-12-08 1984-06-19 Nissan Motor Co Ltd 自動車用電子式エンジン制御装置用燃料カツト装置
JPS6088833A (ja) * 1983-10-19 1985-05-18 Isuzu Motors Ltd 内燃機関の燃料供給制御装置
SU1315627A1 (ru) * 1985-04-18 1987-06-07 Джезказганский Научно-Исследовательский И Проектный Институт Цветной Металлургии Способ работы двигател внутреннего сгорани
JPS6355337A (ja) * 1986-08-26 1988-03-09 Daihatsu Motor Co Ltd 車両の走行速度制御方法
JPS63134831A (ja) * 1986-11-25 1988-06-07 Toyota Motor Corp 車両用定速走行制御装置
JPH03124907A (ja) * 1989-10-09 1991-05-28 Mitsubishi Motors Corp 触媒活性状態判定装置付き排気ガス浄化システム
DE4228053A1 (de) * 1991-09-30 1993-04-01 Siemens Ag Verfahren zur zylinderspezifischen kennliniensteuerung und -anpassung fuer die elektronische steuerung von mehrzylinder-brennkraftmaschinen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3623040A1 (de) * 1986-07-09 1988-01-14 Bosch Gmbh Robert Verfahren zur kraftstoffeinspritzung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Automotive Handbook, R.Bosch GMBH, 2nd edition, 1986, p. 304-305 *

Also Published As

Publication number Publication date
DE4334557A1 (de) 1995-04-13
US5586432A (en) 1996-12-24
EP0647775A2 (de) 1995-04-12
EP0647775A3 (de) 1996-07-17
DE59410268D1 (de) 2003-05-15

Similar Documents

Publication Publication Date Title
EP0647775B1 (de) Vorrichtung zur Leerlaufregelung einer Kraftfahrzeug-Brennkraftmaschine
DE2845043C2 (de) Regelsystem für Brennkraftmaschinen
DE10001583C2 (de) Verfahren und Einrichtung zur Funktionsüberwachung eines Gasströmungssteuerorgans, insbesondere einer Drallkappe, bei einer Brennkraftmaschine
DE3219021C3 (de)
DE3217287A1 (de) Auspuffgasrueckfuehrungs-steuersystem fuer brennkraftmaschinen
EP1688606B1 (de) Verfahren zur Vergrößerung des Regelbereichs für die Gleichstellung von Einspritzmengenunterschieden
DE102016110517A1 (de) Kraftstoffschätzvorrichtung
EP0640761A2 (de) Steuerbare Zündanlage
DE10129421A1 (de) Anordnung und Verfahren zur Bestimmung der Öltemperatur beim Start eines Motors
WO2001025625A1 (de) Vorrichtung und verfahren zur zündung einer brennkraftmaschine
EP0437559B1 (de) Verfahren und vorrichtung zur steuerung und/oder regelung der motorleistung einer brennkraftmaschine eines kraftfahrzeugs
DE4018800A1 (de) Verfahren und vorrichtung zur bestimmung der steuerwerte eines mehrzylinder-verbrennungsmotors
DE4309854C2 (de) Verfahren und Vorrichtung zur Steuerung der Sekundärluftzufuhr für eine Brennkraftmaschine
DE3014681A1 (de) Verfahren und vorrichtung zur steuerung des zuendzeitpunkts beim anlassen einer brennkraftmaschine
DE4234420C1 (de) Verfahren zur Motorsteuerung
DE19909658A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine mit Benzindirekteinspritzung
EP1269010A1 (de) Verfahren zum starten einer brennkraftmaschine und starteinrichtung für eine brennkraftmaschine
DE3927050A1 (de) Regeleinrichtung fuer brennkraftmaschinen
DE19801187B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE19736522A1 (de) Verfahren zur Steuerung der Abgasrückführung bei einer Brennkraftmaschine
DE3830574A1 (de) Apparat zur steuerung des luft/kraftstoff-verhaeltnisses fuer einen mehrzylindermotor
DE19609922B4 (de) Sekundärluftsystemdiagnoseverfahren
EP0438433B1 (de) Verfahren und vorrichtung zur notlauf-kraftstoffeinstellung
DE102017203445B3 (de) Verfahren und Vorrichtung zur Steuerung eines von einem Abgasturbolader aufgeladenen Verbrennungsmotors
DE102016211388B3 (de) Verfahren zum Erkennen einer Leistungsmanipulation beim Betrieb einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19961206

17Q First examination report despatched

Effective date: 19980219

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APAD Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFNE

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APAD Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFNE

APCB Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPE

APCB Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPE

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030409

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040112

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130724

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130829

Year of fee payment: 20

Ref country code: FR

Payment date: 20130828

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130827

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59410268

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140824