EP0640761B2 - Steuerbare Zündanlage - Google Patents

Steuerbare Zündanlage Download PDF

Info

Publication number
EP0640761B2
EP0640761B2 EP94112180A EP94112180A EP0640761B2 EP 0640761 B2 EP0640761 B2 EP 0640761B2 EP 94112180 A EP94112180 A EP 94112180A EP 94112180 A EP94112180 A EP 94112180A EP 0640761 B2 EP0640761 B2 EP 0640761B2
Authority
EP
European Patent Office
Prior art keywords
ignition
value
spark
current
burning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94112180A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0640761A2 (de
EP0640761A3 (de
EP0640761B1 (de
Inventor
Karsten Prof.Dr. Ehlers
Christoph Dömland
Andreas Sprysch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6495949&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0640761(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by DaimlerChrysler AG, Volkswagen AG filed Critical DaimlerChrysler AG
Publication of EP0640761A2 publication Critical patent/EP0640761A2/de
Publication of EP0640761A3 publication Critical patent/EP0640761A3/de
Application granted granted Critical
Publication of EP0640761B1 publication Critical patent/EP0640761B1/de
Publication of EP0640761B2 publication Critical patent/EP0640761B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/045Layout of circuits for control of the dwell or anti dwell time
    • F02P3/0453Opening or closing the primary coil circuit with semiconductor devices
    • F02P3/0456Opening or closing the primary coil circuit with semiconductor devices using digital techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/06Other installations having capacitive energy storage
    • F02P3/08Layout of circuits
    • F02P3/0853Layout of circuits for control of the dwell or anti-dwell time
    • F02P3/0861Closing the discharge circuit of the storage capacitor with semiconductor devices
    • F02P3/0869Closing the discharge circuit of the storage capacitor with semiconductor devices using digital techniques

Definitions

  • the invention relates to a method for controlling an ignition system for internal combustion engines according to the preamble of claim 1.
  • a generic ignition system is from the DE-OS 39 28 726 known, compared to conventional Ignition systems, for example so-called transistor ignitions with static high-voltage distribution, has the advantage that small and therefore cost-effective Ignition coils are used. Furthermore, according to the o. G. Document ensuring the optimal ignition thereby that they are independent for the entire burning time from the speed, remains on. Such Ignition system is referred to as AC ignition system, because it generates a bipolar spark current.
  • a likewise a bipolar ignition current generating Ignition system describes the DE-OS 24 44 242, after which after generation of a spark the spark plug with a relatively small Voltage of the sparking current for a certain period of time is maintained. This is done by means of a Multivibrators a transistor during each ignition period so clocked that thereby in the secondary winding the ignition transformer is a relatively constant Voltage of, for example, 3 kV is induced, the sufficient, at the spark plug a voltage of more as to generate 800 V, which is required to spark current uphold if this before was built.
  • the spark burning time can be this way be chosen, as is the requirements of the internal combustion engine equivalent.
  • the object of the present invention is therein, a method for controlling an ignition system specify according to the type mentioned, so that the spark plug replacement intervals at least 100,000 km.
  • This task is characterized by the characterizing Characteristics of claim 1 solved.
  • hereafter is the value of the spark current and its Burning time depending on the motor parameters Motor load and speed controlled.
  • Ignition current map stored in a control unit a base value for the value of spark spark current and from one also in the controller stored burn duration map a base value for the burning time taken.
  • Such ignition with controlled parameters causes a much lower Burning on the spark plugs as a common one Series ignition. This will change the spark plug replacement intervals significantly extended.
  • these basic values for the Zündstromwert and the Burning time according to the current operating state the internal combustion engine corrected. So a temperature compensation is performed if the engine temperature is a certain threshold has not reached yet. This will cause the cold start feature of the engine improved.
  • the underlying asset for the Zündstromwert at a dynamic Change of state of the motor with a dynamic Factor applied proportional to the load value change is and decreases with time. After a certain Delay time has the dynamic factor Value zero is reached, with the corrected base value the Underlying for the new load state.
  • the process according to the invention can be advantageous for controlling AC or high voltage capacitor firings be used.
  • FIG. 1 shows a block diagram of an AC ignition for carrying out the method according to the invention for a 4-cylinder engine.
  • an ignition output stage Z1-Z4 is provided for each spark plug ZK1.
  • These ignition output stages are connected via a circuit 9 for cylinder selection with a control unit 1, which generates an ignition signal 1 to 4 for each ignition output stage and simultaneously outputs a modulation voltage U Mod for all ignition output stages, which is processed by a current control circuit 10.
  • This modulation voltage sets a target value of the ignition current I is intended to represent and is by means of a comparator with an on a shunt resistor R (see FIG. 2) of the primary circuit of the ignition actual value I generated is compared. The result of the comparison is supplied to the cylinder selecting circuit 9.
  • control unit 1 with sensors 4, 5 and 6 for detecting the rotational speed n, the load L and the engine temperature T and with a device 7 for cylinder 1 detection and via lines 1a for controlling the electronic injection with an injection system 11, which contains the corresponding actuators connected.
  • a switching power supply 3 generates the supply voltages (18 V / 180 V) for the ignition output stages Z1-Z4, which is supplied by an on-board battery 2.
  • FIG. 2 An embodiment of an ignition output stage for driving a single ignition coil of Figure 1 is shown in Figure 2 and consists essentially of a transistor T, in the embodiment of an IGBT transistor (insulated gate bipolar transistor), an energy recovery diode D, a primary resonant circuit capacitor C. , One composed of a primary and secondary winding coil Tr with a coupling of about 50%, a spark plug ZK and a simple control circuit 10, which corresponds to the current control circuit 10 of Figure 1, but additionally includes a gate of the cylinder selection circuit 9.
  • This control circuit 10 are therefore supplied to the prepared by the control unit 1 control signals, namely the ignition signal 1 and the modulation voltage U Mod .
  • the first-mentioned control signal sets the ignition time and the burning time t B
  • the second-mentioned control signal U Mod defines the value of the primary current I p and, as a result, the ignition voltage U k , ie the value of the spark current i B.
  • the generation according to the invention of these two control signals ignition signal 1 and U mod will be explained below.
  • the ignition output according to the figure 2 operates in current-controlled blocking and fürflußwandler horr.
  • a collector current I k flows , which corresponds to the primary coil current I p according to FIG.
  • This collector current I k is limited by the control circuit 10 to a value determined by the modulation voltage U mod I soll .
  • the ignition output stage is supplied with a already explained in connection with the figure 1 switching power supply with a voltage of 180 V. If the collector current I k has reached the value predetermined by I soll , the transistor T is switched off. The energy contained in the storage coil excites the output circuit (secondary inductance, spark plug capacitance) to oscillate.
  • the capacitively stored energy is again fed to the primary coil inductance until the voltage U c at the capacitor C reaches zero (see FIG. 3).
  • the primary-side voltage U c can not be negative by the diode D.
  • the oscillation continues because of the only approx. 50% strong coupling between primary and secondary inductance.
  • the transistor T is turned on again, because now there are the same voltage conditions as before the first turn on of the transistor. Power control always guarantees the same energy input into the primary coil. The portion of the injected energy that was not needed in the spark channel is completely fed back into the electrical system.
  • the coupling of approx. 50% prevents total attenuation of the primary resonant circuit (primary coil, capacitor C) due to the strongly attenuated secondary resonant circuit in the event of a spark break.
  • the duration of the complete cycle (charging of the primary coil, decay operation up to the zero crossing of the voltage U c across the capacitor C) is about 80 ⁇ s.
  • the charging time of the coil can be neglected. Therefore, in contrast to the transistor coil ignition, a closing angle control is not required.
  • the burning time t B per ignition process can be changed as desired by the variation of the number of switching cycles.
  • the modulation of the spark-burning current i B takes place via the change in the primary-side fed energy.
  • the secondary-side high-voltage supply U k at the spark plug ZK also changes in certain areas in parallel to the spark-burning current. In the reduction of the spark current i B thus also the decrease of the maximum high voltage must be considered in each case.
  • This technique of self-oscillating ignition output leaves a significant reduction in volume the ignition coil, because in contrast to the transistor coil ignition not all the energy for one Ignition must be stored in the coil, but replenished in several small units. For storing the smaller amount of energy is therefore only a reduced coil volume needed.
  • Another advantage for the structure of the ignition coil is the needed coupling of only about 50%, since this with a simple rod core can be realized.
  • the control unit 1 represents a ⁇ -controller system, for example, based on a Motorola device MC68HC811E2, which is an 8-bit controller with internal EEPROM program memory.
  • the power supply of this control unit 1 takes place from the electrical system powered by the battery 2.
  • the control unit 1 requires a signal about the cylinder sequence (Cylinder 1 detection 7 according to Figure 1).
  • Cylinder 1 detection 7 For this purpose, for example, on the toothed wheel to attach a magnet to the camshaft, which is queried by a Hall sensor. This delivers all 360 ° of the camshaft or every 720 ° of the crankshaft a signal: the cylinder 1 mark.
  • the AC ignition system according to FIG. 1 becomes an ignition system, which makes it possible to control the ignition energy with the aid of two parameters.
  • the first parameter is the modulation voltage U Mod , by means of which the primary current I p (see FIG. 2) of the ignition coil is regulated. With this current I p , the high voltage U k of the secondary coil or the spark current i B , with which the spark burns, influenced.
  • This is a higher-frequency PWM signal, which is smoothed via an RC filter in the ignition output stage and which is output jointly for all 4 cylinders, as shown in FIG.
  • the control unit 1 has a PWM output.
  • the individual cylinders are ignited with the ignition signals 1 to 4.
  • the burning time t B of the ignition process represents the second parameter and is also determined by the control unit 1 and realized over the pulse width of the respective ignition signal.
  • the control program stored in the control unit 1 for the ignition output stages ensures, on the one hand, the correct ignition distribution and, on the other hand, the calculation of the optimum ignition parameters, namely in the form of the modulation voltage U Mod and the burning time t B and their output.
  • the control unit 1 Before the triggering of the ignition output stages can begin, the control unit 1 must be synchronized, ie, it waits for the first signal of the cylinder 1 detection of the device 7 (see FIG. This is followed by an infinite loop in which all calculations are performed and repeated at each ignition. In this loop, an analog-to-digital conversion is performed to detect the engine parameters generated by the sensors 5 and 6, such as load and temperature. The speed is determined by evaluating the time interval between successive pulses of the speed sensor.
  • the new ignition parameters are calculated, for which purpose from two stored in the memory of the control unit 1 maps the corresponding base values U base and t basis of the modulation voltage U Mod and the burning time t B are taken. These two maps are shown in Figures 4 and 5, namely the fuel flow map and the ignition duration map. The interpretation of these maps depends on the ignition energy requirements.
  • the characteristic diagram for the spark-burning current i B according to FIG. 4 takes into account the offered current with a safety factor of 1.2. The highest current at idle speed is required regardless of the load.
  • U Mod U Base + U Temp + U dyn .
  • U base is the base value determined from the load-speed map
  • U Temp is the temperature correction value
  • U Dyn is the dynamic correction value.
  • T 70 ° C is a certain threshold temperature, for example 70 ° C
  • T is the current engine temperature
  • k T is a proportional factor.
  • the temperature correction is a proportional correction, that is, the motor temperature falls below a certain threshold, ie z. B. 70 ° C
  • a factor U Temp is calculated by which the modulation voltage U Mod is increased. This factor U Temp is proportional to the difference between the motor temperature and the temperature threshold. When the engine is warm, this correction is not performed.
  • t B t Base + t Temp .
  • t basis is the combustion duration base value determined from the load-speed characteristic map
  • T is 70 ° C a certain threshold, for example 70 ° C and T is the current engine temperature, while k Tt as in the corresponding temperature correction of the modulation voltage U Temp is a proportionality factor.
  • the temperature is taken into account only when the engine temperature T is below the threshold temperature, that is, for example, of 70 ° C.
  • the electrode burn of these spark plugs was over a factor of 3.9 smaller than the one with the the series ignition operated spark plugs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
EP94112180A 1993-08-25 1994-08-04 Steuerbare Zündanlage Expired - Lifetime EP0640761B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4328524 1993-08-25
DE4328524A DE4328524A1 (de) 1993-08-25 1993-08-25 Steuerbare Zündanlage

Publications (4)

Publication Number Publication Date
EP0640761A2 EP0640761A2 (de) 1995-03-01
EP0640761A3 EP0640761A3 (de) 1996-01-10
EP0640761B1 EP0640761B1 (de) 1997-06-04
EP0640761B2 true EP0640761B2 (de) 2004-01-02

Family

ID=6495949

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94112180A Expired - Lifetime EP0640761B2 (de) 1993-08-25 1994-08-04 Steuerbare Zündanlage

Country Status (5)

Country Link
US (1) US5553594A (ja)
EP (1) EP0640761B2 (ja)
JP (1) JP3443692B2 (ja)
DE (2) DE4328524A1 (ja)
ES (1) ES2105438T5 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19608526C2 (de) * 1996-03-06 2003-05-15 Bremi Auto Elek K Bremicker Gm Verfahren zur Regelung der Mindestzündenergie bei einer Brennkraftmaschine
DE19730908C2 (de) * 1997-07-18 2002-11-28 Daimler Chrysler Ag Verfahren zum Betrieb einer direkteinspritzenden Otto-Brennkraftmaschine
US5913302A (en) * 1997-09-19 1999-06-22 Brunswick Corporation Ignition coil dwell time control system
FR2790793B1 (fr) * 1999-03-12 2001-04-27 Siemens Automotive Sa Procede de determination d'un parametre de fonctionnement d'un moteur a combustion interne en fonction de trois parametres de commande de ce moteur
US6694959B1 (en) 1999-11-19 2004-02-24 Denso Corporation Ignition and injection control system for internal combustion engine
DE10031875A1 (de) * 2000-06-30 2002-01-10 Bosch Gmbh Robert Zündverfahren und entsprechende Zündvorrichtung
US7165542B2 (en) * 2003-11-26 2007-01-23 Autotronic Controls Corporation High energy ignition method and system using pre-dwell control
US6820602B1 (en) 2003-11-26 2004-11-23 Autotronic Controls Corporation High energy ignition method and system
DE102005008458A1 (de) * 2005-02-24 2006-08-31 Bayerische Motoren Werke Ag Zündsteuersystem für ein Kraftfahrzeug
DE102007029953A1 (de) * 2007-06-28 2009-01-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Regelung der Zündenergie
US8584650B2 (en) 2007-11-07 2013-11-19 Ford Global Technologies, Llc Ignition energy control for mixed fuel engine
KR101171905B1 (ko) * 2009-06-09 2012-08-07 기아자동차주식회사 엔진의 점화 시스템 및 이의 제어방법
DE102012200457A1 (de) * 2011-03-03 2012-09-06 Robert Bosch Gmbh Verfahren zum Bestimmen einer Temperatur von Kraftstoff
DE102012214518B3 (de) * 2012-08-15 2014-02-06 Ford Global Technologies, Llc Verfahren zur Steuerung einer Zündanlage einer Brennkraftmaschine sowie Zündanlage
JP5910943B2 (ja) * 2012-08-27 2016-04-27 本田技研工業株式会社 バッテリレスエンジンの点火装置
RU2558720C2 (ru) * 2013-11-21 2015-08-10 Открытое акционерное общество "КБ Электроприбор" Способ улучшения технических и экологических характеристик двигателя внутреннего сгорания с искровым зажиганием
US9771917B2 (en) 2014-10-03 2017-09-26 Cummins Inc. Variable ignition energy management
US9926904B2 (en) * 2014-10-03 2018-03-27 Cummins, Inc. Variable ignition energy management
JP6354710B2 (ja) 2015-09-01 2018-07-11 トヨタ自動車株式会社 内燃機関の制御装置
EP3587792B1 (en) 2018-06-27 2024-07-24 Caterpillar Energy Solutions GmbH Dynamic ignition energy control of a sparkplug in an internal combustion engine
KR101964017B1 (ko) * 2018-10-29 2019-03-29 손양순 터빈 유형별 스파크 조절식 점화장치
WO2020236154A1 (en) 2019-05-21 2020-11-26 Cummins Inc. Variable energy ignition methods, systems, methods, and apparatuses

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3945362A (en) 1973-09-17 1976-03-23 General Motors Corporation Internal combustion engine ignition system
EP0229643A2 (de) 1986-01-16 1987-07-22 Atlas Fahrzeugtechnik GmbH Zündsystem für einen Verbrennungsmotor
EP0596471A2 (de) 1992-11-04 1994-05-11 VOGT electronic AG Wechselstromzündsystem für Verbrennungskraftmaschinen mit Regelung der Zündenergie

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2455536A1 (de) * 1974-11-23 1976-05-26 Bosch Gmbh Robert Hochspannungskondensator-zuendeinrichtung
JPS6053183B2 (ja) * 1977-11-29 1985-11-25 株式会社日本自動車部品総合研究所 内燃機関用点火装置
DE2759153C2 (de) * 1977-12-31 1986-07-31 Robert Bosch Gmbh, 7000 Stuttgart Zündeinrichtung für Brennkraftmaschinen
DE2759154C2 (de) * 1977-12-31 1985-11-14 Robert Bosch Gmbh, 7000 Stuttgart Zündeinrichtung für Brennkraftmaschinen
JPS6014913B2 (ja) * 1979-04-11 1985-04-16 日産自動車株式会社 エンジンの電子制御点火装置
US4380989A (en) * 1979-11-27 1983-04-26 Nippondenso Co., Ltd. Ignition system for internal combustion engine
JPS57204629A (en) * 1981-06-12 1982-12-15 Nec Corp Control circuit of pulse width
JPS5823281A (ja) * 1981-08-06 1983-02-10 Nissan Motor Co Ltd 内燃機関の点火装置
IT1208855B (it) * 1987-03-02 1989-07-10 Marelli Autronica Sistema di accensione ad energia di scintilla variabile per motori acombustione interna particolarmente per autoveicoli
DE3924985A1 (de) * 1989-07-28 1991-02-07 Volkswagen Ag Vollelektronische zuendeinrichtung fuer eine brennkraftmaschine
DE3928726A1 (de) * 1989-08-30 1991-03-07 Vogt Electronic Ag Zuendsystem mit stromkontrollierter halbleiterschaltung
JP2878764B2 (ja) * 1990-03-15 1999-04-05 株式会社日立製作所 点火通電時間制御装置
US4998526A (en) * 1990-05-14 1991-03-12 General Motors Corporation Alternating current ignition system
US5060623A (en) * 1990-12-20 1991-10-29 Caterpillar Inc. Spark duration control for a capacitor discharge ignition system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3945362A (en) 1973-09-17 1976-03-23 General Motors Corporation Internal combustion engine ignition system
EP0229643A2 (de) 1986-01-16 1987-07-22 Atlas Fahrzeugtechnik GmbH Zündsystem für einen Verbrennungsmotor
EP0596471A2 (de) 1992-11-04 1994-05-11 VOGT electronic AG Wechselstromzündsystem für Verbrennungskraftmaschinen mit Regelung der Zündenergie

Also Published As

Publication number Publication date
ES2105438T5 (es) 2004-09-01
US5553594A (en) 1996-09-10
EP0640761A2 (de) 1995-03-01
DE59402991D1 (de) 1997-07-10
JP3443692B2 (ja) 2003-09-08
DE4328524A1 (de) 1995-03-02
ES2105438T3 (es) 1997-10-16
JPH0777143A (ja) 1995-03-20
EP0640761A3 (de) 1996-01-10
EP0640761B1 (de) 1997-06-04

Similar Documents

Publication Publication Date Title
EP0640761B2 (de) Steuerbare Zündanlage
DE102013102529B4 (de) Verfahren zum Ansteuern einer Funkenstrecke, insbesondere einer Zündkerze
DE4108751C2 (de) Steuerungssystem für Fahrzeuglichtmaschine
DE10057076B4 (de) Zündsteuerungsvorrichtung für Brennkraftmaschinen
DE19581041C2 (de) Verfahren zum Steuern des Zündzeitpunktes von Verbrennungsmotoren
EP0752580B1 (de) Schaltungsanordnung zur Ionenstrommessung
DE10023835B4 (de) System und Verfahren zur Bereitstellung einer Mehrfachladezündung
DE3222496C2 (de) Plasma-Zündsystem für eine mehrzylindrige Brennkraftmaschine
DE4241499C2 (de) Fehlzündungs-Detektorsystem für Verbrennungsmotoren
EP1254313B1 (de) Verfahren zur erzeugung einer folge von hochspannungszündfunken und hochspannungszündvorrichtung
DE10034725B4 (de) Einsatz eines Mehrfachladens zur Maximierung der Energielieferrate an einen Zündkerzenspalt
DE112014003208B4 (de) Zündsteuervorrichtung
EP0034787A1 (de) Zündsystem für Brennkraftmaschinen
EP0739448B1 (de) Verfahren zur funktionsüberwachung einer brennkraftmaschine zum erkennen von verbrennungsaussetzern
WO2012130649A1 (de) Verfahren und vorrichtung zur verlängerung der brenndauer eines von einer zündkerze gezündeten funkens in einem verbrennungsmotor
DE69406066T2 (de) Drehmomentsteuersystem für Brennkraftmaschine
DE2345556C2 (de) Zündzeitpunkt-Regelanordnung
DE19614288C1 (de) Schaltungsanordnung zur Ionenstrommessung im Verbrennungsraum einer Brennkraftmaschine und zur Wechselstromzündung der Brennkraftmaschine
WO1991002153A1 (de) Vollelektronische zündeinrichtung für eine brennkraftmaschine
DE2850534A1 (de) Einrichtung, insbesondere zum steuern der zuend- und/oder kraftstoffeinspritzvorgaenge bei brennkraftmaschinen
EP0801294B1 (de) Hochfrequente Ionenstrommessung nach Wechselstromzündung
DE3404245A1 (de) Hochspannungs-generatorschaltung fuer ein kraftfahrzeugzuendsystem
DE2342455B2 (de) Schaltungsanordnung zur elektronischen drehzahl-messung bei brennkraftmaschinen
DE102014015486A1 (de) Betriebsarten- und kennfeldabhängig umschaltbare Funkenbandzündung
DE2621164A1 (de) Elektronisches zuendsystem fuer brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19960125

17Q First examination report despatched

Effective date: 19960702

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970604

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SPRYSCH, ANDREAS

Inventor name: DOEMLAND, CHRISTOPH

Inventor name: EHLERS, KARSTEN, PROF.DR.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970606

REF Corresponds to:

Ref document number: 59402991

Country of ref document: DE

Date of ref document: 19970710

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2105438

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: VOGT ELECTRONIC AG

Effective date: 19980303

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DAIMLERCHRYSLER AG

Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20040102

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE ES FR GB IT

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040809

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20040329

Kind code of ref document: T5

EN Fr: translation not filed
APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080807

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080816

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080722

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090804

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090804

REG Reference to a national code

Ref country code: FR

Ref legal event code: EERR

Free format text: CORRECTION DE BOPI 05/01 - 3.2.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090805

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120822

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59402991

Country of ref document: DE

Effective date: 20140301