EP0635148B1 - System zum betreiben eines heizelements für einen keramischen sensor in einem kraftfahrzeug - Google Patents

System zum betreiben eines heizelements für einen keramischen sensor in einem kraftfahrzeug Download PDF

Info

Publication number
EP0635148B1
EP0635148B1 EP94900746A EP94900746A EP0635148B1 EP 0635148 B1 EP0635148 B1 EP 0635148B1 EP 94900746 A EP94900746 A EP 94900746A EP 94900746 A EP94900746 A EP 94900746A EP 0635148 B1 EP0635148 B1 EP 0635148B1
Authority
EP
European Patent Office
Prior art keywords
temperature
internal combustion
combustion engine
ceramic sensor
operating state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94900746A
Other languages
English (en)
French (fr)
Other versions
EP0635148A1 (de
Inventor
Eberhard Schnaibel
Erich Schneider
Konrad Henkelmann
Frank Blischke
Georg Mallebrein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0635148A1 publication Critical patent/EP0635148A1/de
Application granted granted Critical
Publication of EP0635148B1 publication Critical patent/EP0635148B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G23/00Means for ensuring the correct positioning of parts of control mechanisms, e.g. for taking-up play
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater

Definitions

  • the invention relates to a system for operating a heating element for a ceramic sensor in a motor vehicle according to the preamble of claim 1.
  • Such a system for operating a heating element for a ceramic Sensor in a motor vehicle is from US Pat. No. 4,348,583 known.
  • the current is pulsed, so that in the second time interval with reduced Power is heated.
  • This type of control of the The heating element becomes high during the first time interval provided to a desired temperature if possible to reach quickly.
  • In the second time interval is reduced Power heated to maintain the temperature.
  • the invention has for its object in a system of the beginning mentioned type for operating a heating element for a ceramic Sensor in a motor vehicle depending on the operating state an internal combustion engine driving the motor vehicle different Set sensor temperatures.
  • Another object of the invention is the ceramic Protect the sensor from damage caused by impinging liquid. At the same time, the ceramic sensor should be ready for operation as quickly as possible and the sensor signals should be affected as little as possible become.
  • the invention is also intended to protect the ceramic Sensor without any structural changes to the sensor or with allow only minor structural changes and inexpensive be.
  • the invention has the advantage that it is one on the respective Operating state of the internal combustion engine adjusted setting of Temperature TSe of the ceramic sensor enables. It is a first Operating state (phase I) of the internal combustion engine defined in which it is to be expected that liquid in the exhaust duct of the internal combustion engine is present and a second operating state (phase II), in which is not to be expected that in the exhaust duct of the internal combustion engine Liquid is present. If the internal combustion engine is in the first operating state, the heating element is not in Started or the heating element is controlled so that the ceramic sensor operated below a critical temperature TSeK becomes. The critical temperature TSeK is chosen so that the Operation of the ceramic sensor below the critical temperature TSeK no significant risk of damage to the ceramic Sensor in contact with liquid. Is the Internal combustion engine in the second operating state, so the control the heating element, for example, to an optimal operating temperature of the ceramic sensor.
  • the distinction between the two operating states mentioned in the control the heating element has the advantage that the risk of damage of the ceramic sensor through contact with liquid is cleared and thus the life of the ceramic sensor can be extended without constructive changes to the sensor must be made.
  • the heating element is exemplary embodiment during the first operating state the internal combustion engine is not put into operation or Operated with reduced power or first with high and then operated with reduced power. The transition from the high to reduced performance occurs if since the start of the Internal combustion engine has passed a selectable period of time or if it can be assumed that the temperature TSe of the ceramic Sensor has exceeded a threshold TSel. Whether the threshold TSel is exceeded, can result from the temperature-dependent properties of the ceramic sensor or the signal of one in thermal Contact with the ceramic sensor standing temperature sensor be determined.
  • the last one has the advantage that the ceramic sensor is very quickly to the maximum permissible temperature under the given circumstances is heated. This ensures that the optimal operating temperature of the ceramic sensor within a short time the transition from the first to the second operating state of the internal combustion engine can be adjusted. All three measures to Protection of the ceramic sensor is common in that they are only taken if necessary, i.e. during the first Operating state.
  • the first operating state is after a cold start of the internal combustion engine in front.
  • a cold start is assumed if the coolant temperature the engine at the start below one Threshold value TKM1 lies.
  • the transition from the first to the second operating state the internal combustion engine takes place if from the beginning a selectable period of time has elapsed from the first operating state or if it can be assumed that the temperature TAbg of the exhaust system a threshold value TTau in the vicinity of the ceramic sensor has exceeded.
  • the latter can be derived from the signal from a temperature sensor, which is installed in the vicinity of the ceramic sensor or from a model that the temperature TAbg of the exhaust system in describes the environment of the ceramic sensor approximately become.
  • the system according to the invention can be particularly advantageous with a Use oxygen probe in the exhaust gas duct of the internal combustion engine seen in the flow direction of the exhaust gases before or after a catalyst is appropriate.
  • FIG. 1 is a schematic representation of an internal combustion engine the components essential to the invention
  • Figure 2 is a flow diagram of the system for operation according to the invention a heating element for an oxygen probe
  • FIG. 3 shows diagrams for the time profile of the heating element electrical power (top), the temperature TSe of the Oxygen probe (center) and the temperature TAbg of the exhaust system in the environment of the oxygen probe (below) and
  • Figure 4 is a block diagram of a device used to determine can be determined whether the temperature TSe of the oxygen probe Has exceeded the threshold TSel.
  • the invention is described below using the example of an oxygen probe, which is located in the exhaust duct of an internal combustion engine.
  • the oxygen probe is used to measure the oxygen content of the Exhaust gas to record and a device for controlling the To provide air / fuel ratio. So far the oxygen probe is usually very far forward in the exhaust duct, i.e. close to the internal combustion engine, attached to rapid heating the oxygen probe through the exhaust gases of the internal combustion engine to ensure. To heat the oxygen probe even faster it is usually provided with an electric heating element. Furthermore, it can be ensured by the heating element that the oxygen probe even under operating conditions under which the Exhaust gas temperature is low and / or only a very small amount Exhaust gas is present, is kept at operating temperature.
  • FIG. 1 shows a schematic representation of an internal combustion engine 100 with the components essential to the invention.
  • an intake tract 102 and an exhaust duct 104 are attached on the internal combustion engine 100 .
  • a sensor 108 for detection the temperature of the intake air and an injector 110.
  • Im Exhaust gas duct 104 of internal combustion engine 100 is located in the flow direction of the exhaust gases - an oxygen probe 112 with a heating element 114, a sensor 116 for detecting the temperature TAbg of the exhaust gases or the wall of the exhaust duct 104 in the vicinity of the oxygen probe 112, a catalyst 118 and optionally another Oxygen probe 120 with heating element 122 and another sensor 124 for recording the temperature TAbg of the exhaust gases or the wall of the Exhaust gas duct 104 in the vicinity of the oxygen probe 120.
  • a sensor 126 for detecting the coolant temperature of the engine 100 attached.
  • a control unit 128 is via supply lines with the air mass or air flow meter 106 the sensor 108, the injection nozzle 110, the oxygen probe 112, the heating element 114, the sensor 116, the oxygen probe 120, the Heating element 122, the sensor 124 and the sensor 126 connected.
  • the oxygen probe 120 is used to regulate the air / fuel ratio not absolutely necessary, so today's systems are out Often only equipped with oxygen probe 112 due to cost reasons are. For the future, a two-probe concept appears to be both contains the oxygen probe 112 as well as the oxygen probe 120, but gain in importance. For the description below the principle of operation of the invention becomes an embodiment with only one oxygen probe 112.
  • the Transfer to an embodiment with two oxygen probes 112 and 120 is very simple since each heating element 114, 122 is by itself on the same principle as in the embodiment with only one Oxygen probe 112 is controlled. A separate control is necessary because it can generally be assumed that that the oxygen probes 112 and 120 have different conditions are exposed. The differences can be particularly great after one Cold start of the internal combustion engine 100.
  • the catalyst has 118 a low temperature - usually around ambient temperature - and can initially large amounts of condensation store so that the exhaust gases on their way from the oxygen probe 112 cooled to oxygen probe 120 and enriched with liquid become.
  • the risk of damage from contact with liquid is therefore essential for the oxygen probe 120 longer period than with oxygen probe 112, so that the Protective measures for the oxygen probe 120 are accordingly longer are to be maintained.
  • the first operating state is usually after a cold start the internal combustion engine 100 as long as the temperature TAbg of the exhaust gas duct in the vicinity of the oxygen probe 112 is lower than the dew point temperature TTau of approx. 50 - 60 ° C.
  • the period within which is the internal combustion engine in the first operating state is referred to as Phase I below. Will the dew point temperature TTau exceeded, there is a transition to second operating state and a phase II begins.
  • the signal of Sensor 126 which is the temperature of the coolant of the internal combustion engine 100 recorded, evaluated. If the evaluation shows that the Temperature of the coolant is greater than a threshold TKM1, the For example, if it is 75 ° C, there is no cold start.
  • TKM1 a threshold
  • the Internal combustion engine 100 is in the second operating state and there are no further measures to protect the oxygen probe 112 required before damage due to contact with liquid, i.e. the control of the heating element 114 is subject to FIG no restrictions in this context. Is the temperature of the Coolant, on the other hand, is less than the threshold value TKM1 Cold start before and it can initially be assumed that the Internal combustion engine 100 is in the first operating state.
  • the heating element 114 remains switched off.
  • the heating element 114 is reduced with respect to its nominal power P1 Power P2 operated.
  • the heating element 114 is initially operated at its nominal power P1 and then if it can be assumed that the temperature TSe the Oxygen probe 112 has exceeded a threshold TSel the heating power P is reduced such that the temperature TSe Oxygen probe 112 no longer rises or only rises slightly.
  • the threshold TSel is approx. 50 K below a critical one Temperature TSeK of z. B. 300 to 350 ° C, above which the danger damage to oxygen probe 112 upon contact with liquid consists.
  • the temperature TSe of the oxygen probe 112 can be off the time that has passed since the heating element 114 was switched on is estimated or from the output signals of the oxygen probe 112 or from the signals of a temperature sensor, the is in thermal contact with oxygen probe 112 or determined by other methods familiar to the person skilled in the art.
  • phase I ends and phase II begins can either from empirical values collected during the application were determined approximately (option 1) or as follows be determined:
  • Figure 2 shows a flow diagram of a preferred embodiment of the system according to the invention for operating the heating element 114 of an oxygen probe 112.
  • measure 3 described above and the transition from phase I to phase II is according to one of those described above Possibilities 1, 2 or 3 determined.
  • the flow chart begins with a first step 200, in which the Internal combustion engine 100 is started. Then in one Step 202 queries whether the engine coolant temperature 100 is less than the threshold value TKMI. Is this condition a step 204 follows. In step 204 the heating element 114 is put into operation with the nominal power P1. Then in step 206 it is queried whether the temperature TSe Oxygen probe 112 has exceeded the threshold TSel. This The query is repeated until the queried condition is met is. If the condition is met, step 208 follows Step 208 asks whether it is to be assumed that liquid is present in the vicinity of the oxygen probe 112. To answer This question will address at least one of the three above Options 1, 2 or 3 used.
  • step 210 in which it is caused that the heating element 114 is reduced with respect to its nominal power P1 Power P2 is operated.
  • the reduction in power P can, for example, be clocked by the heating element 114 flowing electrical current.
  • Step 210 follows again Step 208.
  • step follows 212 in which the heating element 114 is caused to run at nominal power P1 is operated. You can also go to step 212 directly from step 202 come out when the condition of the step 202 is not satisfied, i.e. if there is no cold start and thus also no measures to protect the oxygen probe 112 from damage due to contact with liquid are required.
  • FIG. 3 shows diagrams for the time course of the heating element 114 supplied electrical power P (top), the temperature TSe of the oxygen probe 112 (middle) and the temperature TAbg in the Environment of the oxygen probe 112 (below).
  • Phase I which has already been defined further above, is in two Sub-phases divided. A sub-phase Ia and a subsequent one Sub-phase Ib. Phase II follows on from phase Ib. The single ones Phases or sub-phases are by vertical dashed lines separated from each other.
  • the temperature is on the ordinate TSe of the oxygen probe 112 plotted.
  • TSe the temperature of the oxygen probe 112 plotted.
  • an increase in temperature TSe from time t t0 as a result the heating by the heating element 114 to recognize.
  • the rise in temperature is additionally achieved by the oxygen sensor 112 passing exhaust affects.
  • the temperature is on the ordinate TAbg of the exhaust gas or the exhaust gas duct 104 is plotted.
  • phase Ia The end point of phase Ia is reached when the temperature TSe of the oxygen probe 112, the threshold TSel, for example 250 to 300 ° C.
  • the threshold TSel for example 250 to 300 ° C.
  • the sub-phase Ia ends and the sub-phase begins Ib.
  • the reduction the electrical power P has the consequence that the temperature TSe the oxygen probe 112 assumes an approximately constant value (see Figure 3, middle diagram).
  • the time of transition from sub-phase Ib to phase II results derive from the time course of the temperature TAbg.
  • TAbg remains on this Value until the liquid in the exhaust duct 104 in the vicinity of the Oxygen probe 112 and completely upstream in the gaseous Condition has passed.
  • the rise in temperature TAbg against End of sub-phase Ib thus indicates that in the area there is no more liquid in the oxygen probe 112. Out for this reason the time for the transition from sub-phase Ib falls after phase II with an increase in temperature TAbg above the dew point temperature Tau together.
  • the system according to the invention works more reliably the more precisely the times for the transition from phase Ia to Ib and for the Transition from sub-phase Ib to phase II can be determined. in the The following is explained using preferred exemplary embodiments, how to determine these times.
  • the properties of ceramic sensors are often temperature-dependent, so that the temperature TSe of the sensors in these cases without additional thermocouples determined from the behavior of the sensors can be. This also applies to the oxygen probe described here 112, whose electrical resistance increases with temperature decreases sharply.
  • Figure 4 shows a circuit known per se, from which electrical resistance of the oxygen probe 112 is determined whether the oxygen probe 112 has exceeded a threshold value TSel, i.e. the circuit serves the time of transition from Determine sub-phase Ia after sub-phase Ib.
  • the Oxygen probe 112 In addition to the change in resistance, when the temperature rises the Oxygen probe 112 has another effect. Usually delivers the oxygen probe 112 is already below the critical temperature TSeK a voltage that depends on the oxygen content of the exhaust gas, for example, when the threshold TSel is exceeded. So there is usually a temperature range in which the oxygen probe 112 is ready for operation without any noteworthy warning there is damage on contact with liquid.
  • the time of transition from phase Ib to phase II can be determine without the temperature sensor 116 using the following method, d. H. the temperature sensor 116 is for the invention System not absolutely necessary and can also be omitted. Then is using a model that shows the temperature profile of the exhaust gases simulates when the exhaust gases reach the dew point temperature TTau have exceeded.
  • the input variable is that of air mass or Airflow meter 106 senses air mass or airflow into the model fed.
  • the air mass or air volume is integrated in the model and the integral is determined empirically with one Threshold compared.
  • the threshold value represents that of the internal combustion engine 100 air masses sucked in since the cold start or the amount of air at which the temperature TAbg is known to be the Dew point temperature exceeds TTau. Once the under the model carried out comparison shows that the threshold reached , it can be assumed that the temperature TAbg is the dew point temperature TTau has exceeded.
  • Heating element 114 even before the engine 100 starts To take operation.
  • the commissioning triggered by a process that occurs before the start of the internal combustion engine 100 lies, for example opening the vehicle door, switching on the interior lighting, actuation of the belt buckle or Driver seat load. This allows the time between Start of the internal combustion engine 100 and the operational readiness of the Shorten oxygen probe 112, which z. B. in connection with a heated catalyst can be important. This variant too can the described measures to protect the oxygen probe 112 can be used.
  • the temperature TAbg represents the temperature in the vicinity of the Oxygen probe 112 or 120. Depending on the embodiment, it can the temperature of the exhaust gases, the wall of the exhaust duct 104 or the catalyst 118 act. If there is a possibility TAbg can also record several of these temperatures by Averaging over at least two of these temperatures can be determined.
  • the temperature of the wall can also be changed of the exhaust duct (104) or the temperature of the catalyst (118) can be used to determine whether a cold start of the internal combustion engine (100) is present.
  • the prerequisite for this is that a corresponding temperature sensor is available. If at Start of the internal combustion engine (100) that detected by this sensor Temperature is lower than the dew point temperature (TTau) Cold start before.
  • TTau dew point temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Die Erfindung betrifft ein System zum Betreiben eines Heizelements (114) eines keramischen Sensors (112), der im Abgaskanal (104) einer Brennkraftmaschine (100) angebracht ist und durch das Heizelement (114) aufheizbar ist. Befindet sich die Brennkraftmaschine (100) in einem Betriebszustand, in dem damit zu rechnen ist, daß im Abgaskanal (114) der Brennkraftmaschine (100) Flüssigkeit vorhanden ist, so wird das Heizelement (114) nicht in Betrieb genommen oder so angesteuert, daß der keramische Sensor (112) unterhalb einer kritischen Temperatur (TSeK) betrieben wird. Oberhalb der kritischen Temperatur (TSe) besteht die Gefahr, daß der keramische Sensor (112) durch Kontakt mit Flüssigkeit beschädigt wird.

Description

Stand der Technik
Die Erfindung betrifft ein System zum Betreiben eines Heizelements für einen keramischen Sensor in einem Kraftfahrzeug gemäß dem Oberbegriff des Anspruchs 1.
Ein solches System zum Betreiben eines Heizelements für einen keramischen Sensor in einem Kraftfahrzeug ist aus der US-PS 4 348 583 bekannt. Dort wird ein Heizelement in einem ersten Zeitintervall mit einem konstanten Strom beaufschlagt. In einem zweiten Zeitintervall wird der Strom gepulst, so daß im zweiten Zeitintervall mit reduzierter Leistung geheizt wird. Mit dieser Art der Ansteuerung des Heizelements wird während des ersten Zeitintervalls eine hohe Heizleistung zur Verfügung gestellt, um eine gewünschte Temperatur möglichst schnell zu erreichen. Im zweiten Zeitintervall wird mit reduzierter Leistung geheizt, um die Temperatur zu halten.
Der Erfindung liegt die Aufgabe zugrunde, bei einem System der eingangs genannten Art zum Betreiben eines Heizelements für einen keramischen Sensor in einem Kraftfahrzeug abhängig vom Betriebszustand einer das Kraftfahrzeug antreibenden Brennkraftmaschine unterschiedliche Sensortemperaturen einzustellen.
Eine weitere Aufgabe der Erfindung besteht darin, den keramischen Sensor vor Beschädigung durch auftreffende Flüssigkeit zu schützen. Gleichzeitig soll der keramische Sensor möglichst schnell betriebsbereit sein und die Sensorsignale sollen möglichst wenig beeinträchtigt werden. Weiterhin soll die Erfindung einen Schutz des keramischen Sensors ganz ohne bauliche Veränderungen des Sensors bzw. mit nur geringen baulichen Veränderungen ermöglichen und kostengünstig sein.
Diese Aufgabe wird durch den Anspruch 1 und die nachfolgend gekennzeichneten Merkmale gelöst.
Vorteile der Erfindung
Die Erfindung besitzt den Vorteil, daß sie eine auf den jeweiligen Betriebszustand der Brennkraftmaschine abgestimmte Einstellung der Temperatur TSe des keramischen Sensors ermöglicht. Es ist ein erster Betriebszustand (Phase I) der Brennkraftmaschine definiert, in dem damit zu rechnen ist, daß im Abgaskanal der Brennkraftmaschine Flüssigkeit vorhanden ist und ein zweiter Betriebszustand (Phase II), in dem nicht damit zu rechnen ist, daß im Abgaskanal der Brennkraftmaschine Flüssigkeit vorhanden ist. Wenn sich die Brennkraftmaschine im ersten Betriebszustand befindet, wird das Heizelement nicht in Betrieb genommen oder das Heizelement wird so angesteuert, daß der keramische Sensor unterhalb einer kritischen Temperatur TSeK betrieben wird. Die kritische Temperatur TSeK wird so gewählt, daß beim Betrieb des keramischen Sensors unterhalb der kritischen Temperatur TSeK keine nennenswerte Gefahr einer Beschädigung des keramischen Sensors bei Kontakt mit Flüssigkeit besteht. Befindet sich die Brennkraftmaschine im zweiten Betriebszustand, so kann die Ansteuerung des Heizelements beispielsweise auf eine optimale Betriebstemperatur des keramischen Sensors ausgerichtet sein.
Die Unterscheidung der beiden genannten Betriebszustände bei der Ansteuerung des Heizelements hat den Vorteil, daß die Gefahr einer Beschädigung des keramischen Sensors durch Kontakt mit Flüssigkeit ausgeräumt wird und sich somit die Lebensdauer des keramischen Sensors verlängern läßt, ohne daß konstruktive Änderungen am Sensor vorgenommen werden müssen.
Ein weiterer Vorteil der Erfindung besteht darin, daß unterschiedlich aufwendige Maßnahmen zum Schutz des keramischen Sensors zur Verfügung stehen, mit denen sich in einem weiten Einsatzbereich ein guter Kompromiß zwischen Aufwand und Nutzen erzielen läßt. Je nach Ausführungsbeispiel wird das Heizelement während des ersten Betriebszustands der Brennkraftmaschine nicht in Betrieb genommen oder mit reduzierter Leistung betrieben oder zunächst mit hoher und anschließend mit reduzierter Leistung betrieben. Der Übergang von der hohen zur reduzierten Leistung erfolgt, wenn seit dem Start der Brennkraftmaschine eine wählbare Zeitspanne verstrichen ist oder wenn davon auszugehen ist, daß die Temperatur TSe des keramischen Sensors einen Schwellwert TSel überschritten hat. Ob der Schwellwert TSel überschritten ist, kann aus den temperaturabhängigen Eigenschaften des keramischen Sensors oder dem Signal eines in thermischen Kontakt mit dem keramischen Sensor stehenden Temperatursensors ermittelt werden.
Von den drei genannten Maßnahmen zum Schutz des keramischen Sensors bietet die letzte den Vorteil, daß der keramische Sensor sehr schnell auf die unter den gegebenen Umständen höchstzulässige Temperatur geheizt wird. Dadurch wird erreicht, daß die optimale Betriebstemperatur des keramischen Sensors innerhalb kurzer Zeit nach dem Übergang vom ersten in den zweiten Betriebszustand der Brennkraftmaschine eingestellt werden kann. Allen drei Maßnahmen zum Schutz des keramischen Sensors ist gemeinsam, daß sie nur dann ergriffen werden, wenn es erforderlich ist, d.h. während des ersten Betriebszustands.
Der erste Betriebszustand liegt nach einem Kaltstart der Brennkraftmaschine vor. Von einem Kaltstart geht man aus, falls die Kühlmitteltemperatur der Brennkraftmaschine beim Start unterhalb eines Schwellwerts TKM1 liegt. Der Übergang vom ersten zum zweiten Betriebszustand der Brennkraftmaschine erfolgt dann, wenn seit Beginn des ersten Betriebszustands eine wählbare Zeitspanne verstrichen ist oder wenn davon auszugehen ist, daß die Temperatur TAbg der Abgasanlage in der Umgebung des keramischen Sensors einen Schwellwert TTau überschritten hat. Letzteres kann aus dem Signal eines Temperatursensors, der in der Umgebung des keramischen Sensors angebracht ist oder aus einem Modell, das die Temperatur TAbg der Abgasanlage in der Umgebung des keramischen Sensors näherungsweise beschreibt, ermittelt werden.
In dem Modell wird die seit dem Starten der Brennkraftmaschine angesaugte Luftmenge oder Luftmasse aufintegriert und das Integral wird mit einem Schwellwert verglichen. Die Vielzahl der hier dargestellten Kriterien, nach denen der Übergang vom ersten zum zweiten Betriebszustand ermittelt werden kann, erschließen der Erfindung ein weites Einsatzgebiet, indem sie viel Freiraum für die Berücksichtigung der jeweiligen technischen Gegebenheiten bieten.
Besonders vorteilhaft läßt sich das erfindungsgemäße System bei einer Sauerstoff-Sonde einsetzen, die im Abgaskanal der Brennkraftmaschine in Stromrichtung der Abgase gesehen vor oder nach einem Katalysator angebracht ist.
Zeichnung
Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen erläutert.
Es zeigen
Figur 1 eine schematische Darstellung einer Brennkraftmaschine mit den erfindungswesentlichen Komponenten,
Figur 2 ein Flußdiagramm des erfindungsgemäßen Systems zum Betrieb eines Heizelements für eine Sauerstoff-Sonde,
Figur 3 Diagramme für den zeitlichen Verlauf der dem Heizelement zugeführten elektrischen Leistung (oben), der Temperatur TSe der Sauerstoff-Sonde (Mitte) und der Temperatur TAbg der Abgasanlage in der Umgebung der Sauerstoff-Sonde (unten) und
Figur 4 ein Blockschaltbild einer Einrichtung, mit der ermittelt werden kann, ob die Temperatur TSe der Sauerstoff-Sonde einen Schwellwert TSel überschritten hat.
Beschreibung der Ausführungsbeispiele
Die Erfindung wird im folgenden am Beispiel einer Sauerstoff-Sonde, die sich im Abgaskanal einer Brennkraftmaschine befindet, beschrieben. Prinzipiell ist ein Einsatz im Zusammenhang mit beliebigen beheizbaren keramischen Sensoren im Abgaskanal der Brennkraftmaschine denkbar. Die Sauerstoff-Sonde dient dazu, den Sauerstoffgehalt des Abgases zu erfassen und einer Einrichtung zur Regelung des Luft/Kraftstoff-Verhältnisses zur Verfügung zu stellen. Bislang wurde die Sauerstoff-Sonde in der Regel sehr weit vorne im Abgaskanal, d.h. nahe der Brennkraftmaschine, angebracht, um eine schnelle Erwärmung der Sauerstoff-Sonde durch die Abgase der Brennkraftmaschine zu gewährleisten. Um die Sauerstoff-Sonde noch schneller aufzuheizen ist sie in der Regel mit einem elektrischen Heizelement versehen. Des weiteren kann durch das Heizelement sichergestellt werden, daß die Sauerstoff-Sonde auch unter Betriebsbedingungen, unter denen die Abgastemperatur niedrig ist und/oder nur eine sehr geringe Menge an Abgas vorhanden ist, auf Betriebstemperatur gehalten wird.
Bei einer Montage der Sauerstoff-Sonde nahe der Brennkraftmaschine kann es aber zu Problemen kommen:
  • 1. Wenn die Brennkraftmaschine längere Zeit bei hoher Leistung betrieben wird, fällt eine große Menge sehr heißer Abgase an, durch die die Sauerstoff-Sonde möglicherweise auf unzulässig hohe Temperaturen aufgeheizt wird. Dadurch kann sich die Lebensdauer der Sauerstoff-Sonde verkürzen.
  • 2. Es ist in der Regel schwierig, im Abgaskanal nahe der Brennkraftmaschine eine geeignete Einbaustelle für die Sauerstoff-Sonde zu finden, von der aus die Abgase aller Zylinder der Brennkraftmaschine erfaßt werden können.
  • Diese Schwierigkeiten lassen sich umgehen, indem man die Sauerstoff-Sonde stromabwärts, d.h. weg von der Brennkraftmaschine, im Abgaskanal anbringt. Diese zweite Art der Montage wirft allerdings ein neues Problem auf. In der Anfangsphase nach Start der kalten Brennkraftmaschine ist der Abgaskanal stromauf der Sauerstoff-Sonde noch relativ kalt. Dadurch kommt es zur Kondensation des im Abgas enthaltenen Wassers. Werden die kondensierten Wassertröpfchen beispielsweise von der Wandung des Abgaskanals durch vorbeiströmende Abgase losgerissen und auf die Sauerstoff-Sonde geschleudert, so wird die Sauerstoff-Sonde an den Auftreffstellen lokal sehr rasch abgekühlt. Diese Abkühlung kann zu einer Beschädigung der Sauerstoff-Sonde, beispielsweise Risse in der Keramik, führen. Das Risiko der Beschädigung ist besonders hoch, wenn sich die Sauerstoff-Sonde schon auf einer hohen Temperatur befindet. Die Erfindung sieht vor, die Temperatur TSe der Sauerstoff-Sonde durch entsprechende Ansteuerung des Heizelements derart zu beeinflussen, daß das Risiko einer Beschädigung der Sauerstoff-Sonde durch auftreffendes Kondenswasser sehr gering gehalten werden kann.
    Figur 1 zeigt eine schematische Darstellung einer Brennkraftmaschine 100 mit den erfindungswesentlichen Komponenten. An der Brennkraftmaschine 100 sind ein Ansaugtrakt 102 und ein Abgaskanal 104 angebracht. Im Ansaugtrakt 102 der Brennkraftmaschine 100 befinden sich - in Stromrichtung der angesaugten Luft gesehen - der Reihe nach ein Luftmassen- oder Luftmengenmesser 106, ein Sensor 108 zur Erfassung der Temperatur der angesaugten Luft und eine Einspritzdüse 110. Im Abgaskanal 104 der Brennkraftmaschine 100 befinden sich - in Stromrichtung der Abgase gesehen - eine Sauerstoff-Sonde 112 mit Heizelement 114, ein Sensor 116 zur Erfassung der Temperatur TAbg der Abgase oder der Wandung des Abgaskanals 104 in der Umgebung der Sauerstoff-Sonde 112, ein Katalysator 118 und optional eine weitere Sauerstoff-Sonde 120 mit Heizelement 122 und ein weiterer Sensor 124 zur Erfassung der Temperatur TAbg der Abgase oder der Wandung des Abgaskanals 104 in der Umgebung der Sauerstoff-Sonde 120. An der Brennkraftmaschine 100 ist ein Sensor 126 zur Erfassung der Kühlmitteltemperatur der Brennkraftmaschine 100 angebracht. Ein Steuergerät 128 ist über Zuleitungen mit dem Luftmassen- oder Luftmengenmesser 106 dem Sensor 108, der Einspritzdüse 110, der Sauerstoff-Sonde 112, dem Heizelement 114, dem Sensor 116, der Sauerstoff-Sonde 120, dem Heizelement 122, dem Sensor 124 und dem Sensor 126 verbunden.
    Die Sauerstoff-Sonde 120 ist zur Regelung des Luft/Kraftstoff-Verhältnisses nicht unbedingt erforderlich, so daß heutige Systeme aus Kostengründen häufig nur mit der Sauerstoff-Sonde 112 ausgestattet sind. Für die Zukunft scheint ein Zwei-Sonden-Konzept, das sowohl die Sauerstoff-Sonde 112 als auch die Sauerstoff-Sonde 120 enthält, aber an Bedeutung zu gewinnen. Für die weiter unten folgende Beschreibung des Funktionsprinzips der Erfindung wird ein Ausführungsbeispiel mit nur einer Sauerstoff-Sonde 112 herangezogen. Die Übertragung auf ein Ausführungsbeispiel mit zwei Sauerstoff-Sonden 112 und 120 ist sehr einfach, da jedes Heizelement 114, 122 für sich nach dem gleichen Prinzip wie beim Ausführungsbeispiel mit nur einer Sauerstoff-Sonde 112 angesteuert wird. Eine getrennte Ansteuerung ist deshalb erforderlich, weil in der Regel davon auszugehen ist, daß die Sauerstoff-Sonden 112 und 120 unterschiedlichen Bedingungen ausgesetzt sind. Besonders groß können die Unterschiede nach einem Kaltstart der Brennkraftmaschine 100 sein. Dann besitzt der Katalysator 118 eine niedrige Temperatur - in der Regel ungefähr Umgebungstemperatur - und kann zunächst große Mengen an Kondenswasser speichern, so daß die Abgase auf dem Weg von der Sauerstoff-Sonde 112 zur Sauerstoff-Sonde 120 abgekühlt und mit Flüssigkeit angereichert werden. Die Gefahr der Beschädigung durch Kontakt mit Flüssigkeit besteht somit bei der Sauerstoff-Sonde 120 für einen wesentlich längeren Zeitraum als bei der Sauerstoff-Sonde 112, so daß die Schutzmaßnahmen für die Sauerstoff-Sonde 120 dementsprechend länger aufrecht zu erhalten sind.
    Im folgenden soll das Funktionsprinzip der Erfindung an Hand eines Ausführungsbeispiels mit nur einer Sauerstoff-Sonde 112 erläutert werden:
    Nach Starten der Brennkraftmaschine 100 wird zunächst ermittelt in welchem Betriebszustand sich die Brennkraftmaschine 100 befindet. Es wird zwischen zwei Betriebszuständen unterschieden:
    In einem ersten Betriebszustand ist davon auszugehen, daß im Abgaskanal 104 in der Umgebung der Sauerstoff-Sonde 112 Flüssigkeit, in der Regel Kondenswasser vorhanden ist. In einem zweiten Betriebszustand ist davon auszugehen, daß im Abgaskanal 104 in der Umgebung der Sauerstoff-Sonde 112 keine Flüssigkeit vorhanden ist. Eine Gefahr der Beschädigung der Sauerstoff-Sonde 112 durch Kontakt mit Flüssigkeit besteht somit nur beim ersten Betriebszustand und folglich sind auch nur während des ersten Betriebszustands Maßnahmen zum Schutz der Sauerstoff-Sonde 112 zu treffen.
    Der erste Betriebszustand liegt in der Regel nach einem Kaltstart der Brennkraftmaschine 100 vor, solange die Temperatur TAbg des Abgaskanals in der Umgebung der Sauerstoff-Sonde 112 niedriger ist als die Taupunkt-Temperatur TTau von ca. 50 - 60 °C. Der Zeitraum, innerhalb dessen sich die Brennkraftmaschine im ersten Betriebszustand befindet, wird im folgenden als Phase I bezeichnet. Wird die Taupunkt-Temperatur TTau überschritten, so erfolgt ein Übergang zum zweiten Betriebszustand und es beginnt eine Phase II.
    Um zu ermitteln ob ein Kaltstart vorliegt, wird unmittelbar vor oder unmittelbar nach Starten der Brennkraftmaschine 100 das Signal des Sensors 126, der die Temperatur des Kühlmittels der Brennkraftmaschine 100 erfaßt, ausgewertet. Ergibt die Auswertung, daß die Temperatur des Kühlmittels größer ist als ein Schwellwert TKM1, der beispielsweise 75° C beträgt, so liegt kein Kaltstart vor. Die Brennkraftmaschine 100 befindet sich im zweiten Betriebszustand und es sind keine weitergehenden Maßnahmen zum Schutz der Sauerstoff-Sonde 112 vor Beschädigung durch Kontakt mit Flüssigkeit erforderlich, d.h. die Ansteuerung des Heizelemets 114 unterliegt in diesem Zusammenhang keinen Beschränkungen. Ist die Temperatur des Kühlmittels dagegen kleiner als der Schwellwert TKM1, so liegt ein Kaltstart vor und es ist zunächst davon auszugehen, daß sich die Brennkraftmaschine 100 im ersten Betriebszustand befindet. Demgemäß sind solange Maßnahmen zum Schutz der Sauerstoff-Sonde 112 zu treffen, bis der zweite Betriebszustand erreicht ist. Diese Maßnahmen sollen jeweils verhindern, daß die Sauerstoff-Sonde 112 durch das Heizelement 114 während der Phase I auf Temperaturen geheizt wird, bei dem die Gefahr einer Beschädigung der Sauerstoff-Sonde 112 durch Kontakt mit Flüssigkeit besteht. Im einzelnen stehen folgende Maßnahmen zur Verfügung:
    Maßnahme 1:
    Das Heizelement 114 bleibt ausgeschaltet.
    Maßnahme 2:
    Das Heizelement 114 wird mit gegenüber seiner Nennleistung P1 reduzierter Leistung P2 betrieben.
    Maßnahme 3:
    Das Heizelement 114 wird anfangs mit seiner Nennleistung P1 betrieben und dann, wenn davon auszugehen ist, daß die Temperatur TSe der Sauerstoff-Sonde 112 einen Schwellwert TSel überschritten hat, wird die Heizleistung P derart reduziert, daß die Temperatur TSe der Sauerstoff-Sonde 112 nicht mehr oder nur noch geringfügig steigt. Der Schwellwert TSel liegt ca. 50 K unterhalb einer kritischen Temperatur TSeK von z. B. 300 bis 350° C, oberhalb derer die Gefahr der Beschädigung der Sauerstoff-Sonde 112 bei Kontakt mit Flüssigkeit besteht. Die Temperatur TSe der Sauerstoff-Sonde 112 kann aus der Zeit, die seit dem Einschalten des Heizelements 114 verstrichen ist, abgeschätzt werden oder aus den Ausgangssignalen der Sauerstoff-Sonde 112 oder aus den Signalen eines Temperatursensors, der sich in thermischen Kontakt mit der Sauerstoff-Sonde 112 befindet oder nach anderen dem Fachmann geläufigen Verfahren ermittelt werden.
    Der Zeitpunkt, zu dem Phase I endet und Phase II beginnt, kann entweder aus Erfahrungswerten, die während der Applikation gesammelt wurden, näherungsweise festgelegt werden (Möglichkeit 1) oder folgendermaßen ermittelt werden:
    Möglichkeit 2:
    Aus den Signalen des Temperatursensors 116 wird ermittelt ob die Taupunkt-Temperatur TTau in der Umgebung der Sauerstoff-Sonde 112 überschritten ist.
    Möglichkeit 3:
    Aus einem mathematischen Model für die Abgastemperatur, in das die seit Starten der Brennkraftmaschine 100 aufsummierte Luftmenge bzw. Luftmasse eingeht, wird ermittelt, ob die Taupunkt-Temperatur TTau in der Umgebung der Sauerstoff-Sonde 112 überschritten ist.
    Denkbar wäre auch der Einsatz eines Feuchtigkeitssensors in der Umgebung der Sauerstoff-Sonde 112, um zu ermitteln, ob der erste oder der zweite Betriebszustand der Brennkraftmaschine 100 vorliegt. Im Augenblick kommt dieser Variante aus Kostengründen noch keine große Bedeutung zu. Dies könnte sich im Laufe der technischen Entwicklung aber durchaus ändern.
    Figur 2 zeigt ein Flußdiagramm eines bevorzugten Ausführungsbeispiels des erfindungsgemäßen Systems zum Betreiben des Heizelements 114 einer Sauerstoff-Sonde 112. Bei diesem Ausführungsbeispiel wird während der Phase I die obenbeschriebene Maßnahme 3 ergriffen und der Übergang von Phase I nach Phase II wird gemäß einer der obenbeschriebenen Möglichkeiten 1, 2 oder 3 ermittelt.
    Das Flußdiagramm beginnt mit einem ersten Schritt 200, in dem die Brennkraftmaschine 100 gestartet wird. Anschließend wird in einem Schritt 202 abgefragt, ob die Kühlmittelttemperatur der Brennkraftmaschine 100 kleiner ist als der Schwellwert TKMI. Ist diese Bedingung erfüllt, so schließt sich ein Schritt 204 an. Im Schritt 204 wird das Heizelement 114 mit Nennleistung P1 in Betrieb genommen. Danach wird in Schritt 206 abgefragt, ob die Temperatur TSe der Sauerstoff-Sonde 112 den Schwellwert TSel überschritten hat. Diese Abfrage wird solange wiederholt, bis die abgefragte Bedingung erfüllt ist. Ist die Bedingung erfüllt, so folgt Schritt 208. In Schritt 208 wird abgefragt, ob davon auszugehen ist, daß Flüssigkeit in der Umgebung der Sauerstoff-Sonde 112 vorhanden ist. Zur Beantwortung dieser Frage wird wenigstens eine der drei obengenannten Möglichkeiten 1, 2 oder 3 herangezogen. Ist die Bedingung 208 erfüllt, so schließt sich ein Schritt 210 an, in dem veranlaßt wird, daß das Heizelement 114 mit relativ zu seiner Nennleistung P1 reduzierter Leistung P2 betrieben wird. Die Reduzierung der Leistung P läßt sich beispielsweise durch Takten des durch das Heizelement 114 fließenden elektrischen Stroms erreichen. Auf Schritt 210 folgt wieder Schritt 208. Ist Bedingung 208 nicht erfüllt, so folgt Schritt 212, in dem veranlaßt wird, daß das Heizelement 114 mit Nennleistung P1 betrieben wird. Zu Schritt 212 kann man auch direkt von Schritt 202 aus gelangen, und zwar dann, wenn die Bedingung des Schrittes 202 nicht erfüllt ist, d.h. wenn kein Kaltstart vorliegt und somit auch keine Maßnahmen zum Schutz der Sauerstoff-Sonde 112 vor Beschädigung durch Kontakt mit Flüssigkeit erforderlich sind.
    Figur 3 zeigt Diagramme für den zeitlichen Verlauf der dem Heizelement 114 zugeführten elektrischen Leistung P (oben), der Temperatur TSe der Sauerstoff-Sonde 112 (Mitte) und der Temperatur TAbg in der Umgebung der Sauerstoff-Sonde 112 (unten). Die Zeitskala der Abszisse beginnt bei jedem der drei Diagramme mit dem Starten der Brennkraftmaschine 100 oder mit dem Einschalten des Heizelements 114 bei t = t0. Die weiter oben bereits näher definierte Phase I ist in zwei Teilphasen unterteilt. Eine Teilphase Ia und eine sich anschließende Teilphase Ib. An Teilphase Ib schließt sich Phase II an. Die einzelnen Phasen bzw. Teilphasen sind durch vertikale gestrichelte Linien voneinander getrennt.
    Sämtliche Kurvenverläufe der Figur 3 beschreiben den Fall, bei dem die Kühlmitteltemperatur der Brennkraftmaschine 100 unmittelbar vor oder unmittelbar nach dem Start der Brennkraftmaschine 100 unterhalb des Schwellwerts TKM1 liegt, d.h. es liegt ein Kaltstart vor. Bezieht man sich auf das in Figur 2 dargestellte Flußdiagramm, so bedeutet dies, daß die in Schritt 202 abgefragte Bedingung erfüllt ist. Folglich wird entsprechend Schritt 204 des Flußdiagramms der Figur 2 das Heizelement 114 zunächst mit Nennleistung P1 betrieben, beispielsweise 18 W. Dies kann aus dem oberen Diagramm der Figur 3 abgelesen werden, bei dem auf der Ordinate die dem Heizelement 114 zugeführte elektrische Leistung P aufgetragen ist. Während der Teilphase Ia liegt die elektrische Leistung P konstant beim Wert P1.
    Im mittleren Diagramm der Figur 3 ist auf der Ordinate die Temperatur TSe der Sauerstoff-Sonde 112 aufgetragen. Innerhalb der Teilphase Ia ist ein Anstieg der Temperatur TSe ab der Zeit t = t0 als Folge der Beheizung durch das Heizelement 114 zu erkennen. Der Temperaturanstieg wird zusätzlich durch das an der Sauerstoff-Sonde 112 vorbeistreichende Abgas beeinflußt.
    Im unteren Diagramm der Figur 3 ist auf der Ordinate die Temperatur TAbg des Abgases bzw. des Abgaskanals 104 aufgetragen. Die Temperatur TAbg steigt zunächst ab der Zeit t = t0 stark an und strebt dann gegen Ende der Teilphase Ia einem konstanten Wert von ca. 50 bis 60° C zu, also etwa der Taupunkt-Temperatur TTau.
    Der Endpunkt der Teilphase Ia ist dann erreicht, wenn die Temperatur TSe der Sauerstoff-Sonde 112 den Schwellwert TSel, beispielsweise 250 bis 300° C, überschreitet. Im Flußdiagramm der Figur 2 ist das der Fall, wenn die Bedingung der Abfrage 206 erstmals erfüllt ist. Zu diesem Zeitpunkt endet die Teilphase Ia und es beginnt die Teilphases Ib. Die elektrische Leistung P, mit der das Heizelement 114 beaufschlagt wird, wird auf einen reduzierten Wert P2, beispielsweise 11 W, abgesenkt (siehe Figur 3, oberes Diagramm). Die Reduzierung der elektrischen Leistung P hat zur Folge, daß die Temperatur TSe der Sauerstoff-Sonde 112 einen annähernd konstanten Wert annimmt (siehe Figur 3, mittleres Diagramm).
    Der Zeitpunkt des Übergangs von Teilphase Ib nach Phase II ergibt sich aus dem zeitlichen Verlauf der Temperatur TAbg. Die Temperatur TAbg in der Umgebung der Sauerstoff-Sonde 112 ist nach einem Anstieg ab der Zeit t = t0 für einen größeren Zeitraum in den Teilphasen Ia und Ib annähernd konstant und beträgt ca. 50 bis 60° C, was ungefähr der Taupunkt-Temperatur TTau entspricht. TAbg verharrt auf diesem Wert, bis die Flüssigkeit im Abgaskanal 104 in der Umgebung der Sauerstoff-Sonde 112 und stromaufwärts vollständig in den gasförmigen Zustand übergegangen ist. Der Anstieg der Temperatur TAbg gegen Ende der Teilphase Ib weist somit darauf hin, daß in der Umgebung der Sauerstoff-Sonde 112 keine Flüssigkeit mehr vorhanden ist. Aus diesem Grund fällt der Zeitpunkt für den Übergang von Teilphase Ib nach Phase II mit einem Anstieg der Temperatur TAbg über die Taupunkt-Temperatur TTau zusammen.
    Aus dem oberen Diagramm der Figur 3 kann man entnehmen, daß mit Beginn der Phase II die elektrische Leistung P, mit der das Heizelement 114 beaufschlagt wird, von P2 auf P1 erhöht wird. Dies entspricht dem Schritt 212 des Flußdiagramms aus Figur 2, der dann ausgeführt wird, wenn die in Schritt 208 abgefragte Bedingung nicht erfüllt ist. Wie aus dem mittleren Diagramm der Figur 3 zu sehen ist, hat die Erhöhung der elektrischen Leistung P eine Erhöhung der Temperatur TSe der Sauerstoff-Sonde 112 zur Folge.
    Das erfindungsgemäße System arbeitet umso zuverlässiger, je genauer die Zeitpunkte für den Übergang von Teilphase Ia nach Ib und für den Übergang von Teilphase Ib nach Phase II festgelegt werden können. Im folgenden wird anhand bevorzugter Ausführungsbeispiele dargelegt, wie man diese Zeitpunkte ermitteln kann.
    Die Eigenschaften keramischer Sensoren sind häufig temperaturabhängig, so daß die Temperatur TSe der Sensoren in diesen Fällen ohne zusätzliche Thermoelemente aus dem Verhalten der Sensoren ermittelt werden kann. Dies gilt auch für die hier beschriebene Sauerstoff-Sonde 112, deren elektrischer Widerstand mit steigender Temperatur stark abnimmt.
    Figur 4 zeigt eine an sich bekannte Schaltung, mit der aus dem elektrischen Widerstand der Sauerstoff-Sonde 112 ermittelt wird, ob die Sauerstoff-Sonde 112 einen Schwellwert TSel überschritten hat, d.h. die Schaltung dient dazu, den Zeitpunkt des Übergangs von Teilphase Ia nach Teilphase Ib zu ermitteln.
    Als Ersatzschaltbild für die Sauerstoff-Sonde 120 (strichpunktiert gezeichnet) kann eine Reihenschaltung aus einer Spannungsquelle 400 und einem Widerstand 402 dienen. Parallel zu dieser Reihenschaltung ist ein Widerstand 404, z. B. 51 k0hm, geschaltet. Der Spannungsabfall am Widerstand 404, der ein Bestandteil des Steuergeräts 128 (strichpunktiert gezeichnet) ist, wird erfaßt und ausgewertet, was durch einen Spannungsmeser 406 angedeutet ist. Die Sauerstoff-Sonde 112 besitzt im kalten Zustand einen Widerstand 402 von etwa 10 M0hm und im heißen Zustand von etwa 50 0hm. Die am Widerstand 404 abfallende Spannung hängt vom Widerstand 402 der Sauerstoff-Sonde 112 ab und ermöglicht somit Rückschlüsse auf die Temperatur TSe der Sauerstoff-Sonde 112.
    Neben der Widerstandsänderung tritt bei Temperaturerhöhung der Sauerstoff-Sonde 112 ein weiterer Effekt auf. In der Regel liefert die Sauerstoff-Sonde 112 bereits unterhalb der kritischen Temperatur TSeK eine Spannung, die vom Sauerstoffgehalt des Abgases abhängt, beispielsweise ab Überschreiten des Schwellwerts TSel. Somit existiert in der Regel ein Temperaturbereich, in dem die Sauerstoff-Sonde 112 betriebsbereit ist ohne daß eine nennenswerte Ge-ahr einer Beschädigung bei Kontakt mit Flüssigkeit besteht.
    Folglich besteht bereits in der Anfangsphase nach dem Kaltstart (Phase I) die Möglichkeit, die Sauerstoff-Sonde 112 auf Betriebstemperatur zu bringen und somit eine Regelung des Luft/Kraftstoff-Verhältnisses zu ermöglichen, ohne daß die Gefahr einer Beschädigung der Sauerstoff-Sonde 112 durch Kontakt mit Flüssigkeit in Kauf genommen werden muß, d.h. die Sauerstoff-Sonde wird in diesem Fall im Temperaturbereich zwischen dem Schwellwert TSel und der kritischen Temperatur TSeK betrieben. Die nach Motorstart frühestmögliche Inbetriebnahme der Sauerstoff-Sonde 112 ist im Sinne einer möglichst geringen Schadstoffemission dringend erwünscht. Eine weitere Erhöhung der Temperatur TSe der Sauerstoff-Sonde 112 in Phase II ist trotzdem erforderlich, da die Sauerstoff-Sonde 112 bei höheren Temperaturen viele funktionelle Vorteile aufweist.
    Der Zeitpunkt des Übergangs von Teilphase Ib nach Phase II läßt sich mit dem folgenden Verfahren auch ohne den Temperatursensor 116 ermitteln, d. h. der Temperatursensor 116 ist für das erfindungsgemäße System nicht unbedingt erforderlich und kann auch entfallen. Dann wird mittels eines Modells, das den Temperaturverlauf der Abgase nachbildet, ermittelt, wann die Abgase die Taupunkt-Temperatur TTau überschritten haben. Als Eingangsgröße wird die vom Luftmassen- oder Luftmengenmesser 106 erfaßte Luftmasse oder Luftmenge in das Modell eingespeist. Im Modell wird die Luftmasse oder Luftmenge aufintegriert und das Integral wird mit einem empirisch ermittelten Schwellwert verglichen. Der Schwellwert stellt die von der Brennkraftmaschine 100 seit dem Kaltstart insgesamt angesaugte Luftmasse oder Luftmenge dar, bei der die Temperatur TAbg erfahrungsgemäß die Taupunkt-Temperatur TTau übersteigt. Sobald der im Rahmen des Modells durchgeführte Vergleich ergibt, daß der Schwellwert erreicht ist, ist davon auszugehen, daß die Temperatur TAbg die Taupunkt-Temperatur TTau überschritten hat.
    Bei der empirischen Ermittlung des Schwellwerts für die aufintegrierte Luftmasse oder Luftmenge während der Applikationsphase ist zu beachten, für welchen Abschnitt des Abgaskanals 104 das Modell angewendet werden soll. So ist der Schwellwert für die Umgebung der Sauerstoff-Sonde 120 wesentlich größer als der Schwellwert für die Umgebung der Sauerstoff-Sonde 112. Der Unterschied wird im wesentlichen dadurch hervorgerufen, daß im Falle der Sauerstoff-Sonde 120 den Abgasen große Wärmeenergiemengen zur Aufheizung des Katalysators 118 entzogen werden und damit ein Verdunsten des im Katalysator 118 anfallenden Kondenswassers 118 verzögert wird. Erst wenn das Kondenswasser stromauf der Sauerstoff-Sonde 120 vollständig verdunstet ist, steigt die Temperatur TAbg des Abgases in der Umgebung der Sauerstoff-Sonde 120 über die Taupunkt-Temperatur TTau an.
    Im Rahmen des erfindungsgemäßen Systems ist es auch möglich, das Heizelement 114 schon vor dem Start der Brennkraftmaschine 100 in Betrieb zu nehmen. In diesem Zusammenhang wird die Inbetriebnahme durch einen Vorgang ausgelöst, der zeitlich vor dem Start der Brennkraftmaschine 100 liegt, beispielsweise Öffnen der Fahrzeugtür, Einschalten der Innenraumbeleuchtung, Betätigung des Gurtschlosses oder Belastung des Fahrersitzes. Dadurch läßt sich die Zeit zwischen dem Start der Brennkraftmaschine 100 und der Betriebsbereitschaft der Sauerstoff-Sonde 112 verkürzen, was z. B. in Zusammenhang mit einem beheizbaren Katalysator wichtig sein kann. Auch bei dieser Variante können die geschilderten Maßnahmen zum Schutz der Sauerstoff-Sonde 112 eingesetzt werden.
    Die Temperatur TAbg repräsentiert die Temperatur in der Umgebung der Sauerstoff-Sonde 112 bzw. 120. Je nach Ausführungsbeispiel kann es sich dabei um die Temperatur der Abgase, der Wandung des Abgaskanals 104 oder des Katalysators 118 handeln. Falls die Möglichkeit besteht, mehrere dieser Temperaturen zu erfassen, kann TAbg auch durch Mittelung über wenigstens zwei dieser Temperaturen ermittelt werden.
    Statt der Kühlmitteltemperatur kann auch die Temperatur der Wandung des Abgaskanals (104) oder die Temperatur des Katalysators (118) herangezogen werden, um zu ermitteln, ob ein Kaltstart der Brennkraftmaschine (100) vorliegt. Voraussetzung dafür ist allerdings, daß ein entsprechender Temperatursensor vorhanden ist. Falls beim Start der Brennkraftmaschine (100) die von diesem Sensor erfaßte Temperatur kleiner ist als die Taupunkttemperatur (TTau), liegt ein Kaltstart vor.

    Claims (12)

    1. Vorrichtung zum Betreiben eines Heizelements (114) eines keramischen Sensors (112), der im Abgaskanal (104) einer Brennkraftmaschine (100) angebracht ist und durch das Heizelement (114) aufheizbar ist, gekennzeichnet durch
      Mittel, die das Heizelement (114) abhängig davon ansteuern, in welchem Betriebszustand sich die Brennkraftmaschine befindet,
      Mittel zur Feststellung eines ersten Betriebszustands (Phase I) dann, wenn beim Start der Brennkraftmaschine (100) die Kühlmitteltemperatur unterhalb eines Schwellwerts (TKM1 liegt oder wenn die Temperatur (TAbg) der Abgasanlage unterhalb eines Schwellwertes (TTau) liegt,
      Mittel zur Feststellung eines zweiten Betriebszustandes, der die Betriebspunkte außerhalb des ersten Betriebszustandes umfaßt,
      und durch Mittel, die das Heizelement nicht in Betrieb nehmen, oder das Heizelement (114) so ansteuern, daß der keramische Sensor (112) unterhalb einer kritischen Temperatur (TSeK) betrieben wird, wenn sich die Brennkraftmaschine im ersten Betriebszustand (Phase I) befindet.
    2. System nach den Anspruch 1, dadurch gekennzeichnet, daß das Heizelement (114) des keramischen Sensors (112) während des ersten Betriebszustands (Phase I) der Brennkraftmaschine (100) mit reduzierter Leistung (P2) betrieben wird.
    3. System nach den Anspruch 1, dadurch gekennzeichnet, daß das Heizelement (114) des keramischen Sensors (112) während des ersten Betriebszustands (Phase I) der Brennkraftmaschine (100) zunächst (Teilphase Ia) mit hoher (P1) und anschließend (Teilphase Ib) mit reduzierter Leistung (P2) betrieben wird, wobei der Übergang von der hohen (P1) zur reduzierten Leistung (P2) dann erfolgt, wenn seit dem Start der Brennkraftmaschine (100) eine wählbare Zeitspanne verstrichen ist oder wenn davon auszugehen ist, daß die Temperatur (TSe) des keramischen Sensors (112) einen Schwellwert (TSel) überschritten hat.
    4. System nach Anspruch 3, dadurch gekennzeichnet, daß aus temperaturabhängigen Eigenschaften des keramischen Sensors (112) oder aus dem Signal eines in thermischen Kontakt mit dem keramischen Sensor (112) stehenden Temperatursensors ermittelt wird, ob die Temperatur (TSe) des keramischen Sensors (112) den Schwellwert (TSel) überschritten hat.
    5. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Übergang vom ersten Betriebszustand (Phase I) zum zweiten Betriebszustand (Phase II) der Brennkraftmaschine (100) erfolgt, wenn seit Beginn des ersten Betriebszustands (Phase I) eine wählbare Zeitspanne verstrichen ist.
    6. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Übergang vom ersten Betriebszustand (Phase I) zum zweiten Betriebszustand (Phase II) der Brennkraftmaschine (100) erfolgt, wenn davon auszugehen ist, daß die Temperatur (TAbg) der Abgasanlage in der Umgebung des keramischen Sensors (112) einen Schwellwert (TTau) überschritten hat.
    7. System nach Anspruch 6, dadurch gekennzeichnet, daß aus dem Signal eines Temperatursensors, der in der Umgebung des keramischen Sensors angebracht ist oder aus einem Modell, das die Temperatur (TAbg) in der Umgebung des keramischen Sensors näherungsweise beschreibt, ermittelt wird, ob die Temperatur (TAbg) in der Umgebung des keramischen Sensors (112) den Schwellwert (TTau) überschritten hat.
    8. System nach Anspruch 7, dadurch gekennzeichnet, daß in dem Modell die seit dem Starten der Brennkraftmaschine (110) angesaugte Luftmenge oder Luftmasse aufintegriert wird und das Integral mit einem Schwellwert verglichen wird.
    9. System nach einem der vorhegehenden Ansprüche, dadurch gekennzeichnet, daß die kritische Temperatur (TSeK) so gewählt wird, daß bei einem Betrieb des keramischen Sensors (112) unterhalb der kritischen Temperatur (TSeK) keine nennenswerte Gefahr einer Beschädigung des keramischen Sensors (112) bei Kontakt mit Flüssigkeit besteht.
    10. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der keramische Sensor (112) während des ersten Betriebszustands (Phase I) der Brennkraftmaschine (100) im Temperaturbereich zwischen dem Schwellwert (TSel), oberhalb dessen der keramische Sensor (112) wenigstens bedingt betriebsbereit ist, und der kritischen Temperatur (TSeK) betrieben wird.
    11. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Heizelement (114) des keramischen Sensors (112) auf Veranlassung eines zeitlich vor dem Start der Brennkraftmaschine (100) liegenden Vorgangs einschaltbar ist.
    12. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der keramische Sensor (112) eine Sauerstoff-Sonde ist, die im Abgaskanal (104) der Brennkraftmaschine (100) in Stromrichtung der Abgase gesehen vor oder nach einem Katalysator (118) angeordnet ist.
    EP94900746A 1993-01-12 1993-12-02 System zum betreiben eines heizelements für einen keramischen sensor in einem kraftfahrzeug Expired - Lifetime EP0635148B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE4300530A DE4300530C2 (de) 1993-01-12 1993-01-12 System zum Betreiben eines Heizelements für einen keramischen Sensor in einem Kraftfahrzeug
    DE4300530 1993-01-12
    PCT/DE1993/001149 WO1994016371A1 (de) 1993-01-12 1993-12-02 System zum betreiben eines heizelements für einen keramischen sensor in einem kraftfahrzeug

    Publications (2)

    Publication Number Publication Date
    EP0635148A1 EP0635148A1 (de) 1995-01-25
    EP0635148B1 true EP0635148B1 (de) 1999-03-17

    Family

    ID=6477994

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP94900746A Expired - Lifetime EP0635148B1 (de) 1993-01-12 1993-12-02 System zum betreiben eines heizelements für einen keramischen sensor in einem kraftfahrzeug

    Country Status (6)

    Country Link
    US (1) US5616835A (de)
    EP (1) EP0635148B1 (de)
    JP (1) JP3464221B2 (de)
    KR (1) KR100261930B1 (de)
    DE (2) DE4300530C2 (de)
    WO (1) WO1994016371A1 (de)

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102008040593A1 (de) 2008-03-03 2009-09-10 Robert Bosch Gmbh Verfahren zum Ermitteln eines Maßes für einen Wassereintrag in den Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
    DE102009000076A1 (de) 2009-01-08 2010-07-15 Robert Bosch Gmbh Verfahren zum Ermitteln eines Maßes für einen Reagenzmitteltropfeneintrag in den Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
    DE102009001064A1 (de) 2009-02-23 2010-08-26 Robert Bosch Gmbh Verfahren zum Ermitteln eines Maßes für einen Wassertropfeneintrag in den Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
    DE102009028953A1 (de) 2009-08-27 2011-03-03 Robert Bosch Gmbh Verfahren zum Ermitteln eines Maßes für das Auftreten von Reagenzmitteltropfen im Abgasbereich einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens

    Families Citing this family (34)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19729696C2 (de) * 1997-07-11 2002-02-21 Bosch Gmbh Robert Verfahren und Vorrichtung zur Funktionsüberwachung einer Gas-Sonde
    US6304813B1 (en) * 1999-03-29 2001-10-16 Toyota Jidosha Kabushiki Kaisha Oxygen concentration detector and method of using same
    US6848439B2 (en) * 2001-11-08 2005-02-01 Hitachi Unisia Automotive, Ltd. Air-fuel ratio control apparatus, air-fuel ratio detecting apparatus and methods thereof for engine
    JP4110874B2 (ja) * 2002-08-09 2008-07-02 株式会社デンソー 内燃機関のガスセンサの加熱制御装置
    DE10260720A1 (de) * 2002-12-23 2004-07-15 Robert Bosch Gmbh Verfahren zum Betreiben eines Gassensors und Vorrichtung zur Durchführung des Verfahrens
    JP2005207924A (ja) 2004-01-23 2005-08-04 Toyota Motor Corp 排気センサの制御装置
    US7084378B2 (en) * 2004-02-26 2006-08-01 Mack Trucks, Inc. Mass-flow sensor heating element protection method and apparatus
    JP2007162486A (ja) * 2005-12-09 2007-06-28 Denso Corp ディーゼル機関の制御装置
    JP4710615B2 (ja) * 2006-01-10 2011-06-29 株式会社デンソー ガスセンサ用のヒータ制御装置
    JP2007198158A (ja) * 2006-01-24 2007-08-09 Mazda Motor Corp 水素エンジンの空燃比制御装置
    JP5010674B2 (ja) * 2006-03-31 2012-08-29 ロナティ エッセ.ピ.ア. 靴下類等のための円形編機
    JP4325641B2 (ja) 2006-05-24 2009-09-02 トヨタ自動車株式会社 空燃比センサの制御装置
    DE102007031767A1 (de) 2007-07-27 2009-01-29 Audi Ag Beheizbarer Abgassensor mit verbesserter Erkennung von Wasser an einer Oberfläche des Abgassensors
    EP2042714B1 (de) * 2007-09-25 2011-09-07 GM Global Technology Operations LLC Verfahren zur Bestimmung des Taupunkts in einer Abgasstrecke und Vorrichtung zur Bestimmung des Taupunkts in einer Abgasstrecke
    DE102008013515A1 (de) 2008-03-07 2009-09-10 Volkswagen Ag Verfahren zum Betreiben einer Lambdasonde während der Aufwärmphase
    US8584445B2 (en) * 2009-02-04 2013-11-19 GM Global Technology Operations LLC Method and system for controlling an electrically heated particulate filter
    JP4992935B2 (ja) 2009-05-21 2012-08-08 株式会社デンソー 排気ガスセンサの活性化制御装置
    US8950177B2 (en) * 2009-06-17 2015-02-10 GM Global Technology Operations LLC Detecting particulate matter load density within a particulate filter
    US8443590B2 (en) * 2009-07-02 2013-05-21 GM Global Technology Operations LLC Reduced volume electrically heated particulate filter
    US8479496B2 (en) * 2009-07-02 2013-07-09 GM Global Technology Operations LLC Selective catalytic reduction system using electrically heated catalyst
    US8475574B2 (en) * 2009-08-05 2013-07-02 GM Global Technology Operations LLC Electric heater and control system and method for electrically heated particulate filters
    US8511069B2 (en) * 2009-08-12 2013-08-20 GM Global Technology Operations LLC Systems and methods for layered regeneration of a particulate matter filter
    DE102009054127B4 (de) * 2009-11-20 2021-11-25 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Aktivieren der Heizung einer Lambda-Sonde in einer Abgasanlage mit einem über das Abgas heizbaren Katalysator
    DE102009055041B4 (de) 2009-12-21 2021-12-09 Robert Bosch Gmbh Verfahren zum schnellen Erreichen der Betriebsbereitschaft einer beheizbaren Abgassonde
    ITBO20120111A1 (it) * 2012-03-06 2013-09-07 Magneti Marelli Spa Metodo di controllo di una trasmissione manuale automatica provvista di un dispositivo di blocco di parcheggio
    JP5737262B2 (ja) * 2012-10-16 2015-06-17 トヨタ自動車株式会社 内燃機関の制御装置
    DE102013226175A1 (de) 2013-12-17 2015-07-02 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben von Abgassensoren
    KR101619609B1 (ko) 2014-09-05 2016-05-18 현대자동차주식회사 디젤 하이브리드 차량의 공기유량센서 칩 히팅 제어 장치
    DE102016205060A1 (de) * 2016-03-24 2017-04-27 Continental Automotive Gmbh Verfahren zum Betreiben eines Sensors zur Detektion oxidierbarer Gase
    DE102017211024B4 (de) * 2017-06-29 2019-06-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur Aktivierung einer Diagnose eines Partikelfilters einer Brennkraftmaschine
    US10975746B1 (en) * 2019-12-12 2021-04-13 GM Global Technology Operations LLC Varying closed loop gain control to constrain ramp rate of oxygen sensors in exhaust systems
    JP7415903B2 (ja) * 2020-12-08 2024-01-17 トヨタ自動車株式会社 内燃機関の制御装置
    DE102021208577A1 (de) * 2021-08-06 2023-02-09 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines Abgassensors in einem Abgastrakt einer Brennkraftmaschine eines Kraftfahrzeugs
    CN114967785A (zh) * 2021-08-13 2022-08-30 长城汽车股份有限公司 氧传感器加热控制的方法、装置、电子设备及存储介质

    Family Cites Families (20)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE2726458A1 (de) * 1977-06-11 1979-01-04 Bosch Gmbh Robert Elektrisch betriebene schnellheizeinrichtung
    JPS55122143A (en) * 1979-03-15 1980-09-19 Nippon Soken Inc Gas detector
    JPS57203940A (en) * 1981-06-11 1982-12-14 Nissan Motor Co Ltd Gas sensor
    JPS60235047A (ja) * 1984-05-07 1985-11-21 Toyota Motor Corp 内燃機関用ヒ−タ付酸素センサの温度制御方法
    JPS60235048A (ja) * 1984-05-07 1985-11-21 Toyota Motor Corp 酸素センサの抵抗発熱式電気ヒ−タの通電制御方法
    JPS60235050A (ja) * 1984-05-07 1985-11-21 Toyota Motor Corp 酸素センサの電気ヒ−タの通電制御方法
    US4715343A (en) * 1985-09-17 1987-12-29 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling heater for heating air-fuel ratio sensor
    JPS62129754A (ja) * 1985-11-29 1987-06-12 Honda Motor Co Ltd 酸素濃度検出装置の制御方法
    US4753204A (en) * 1986-09-30 1988-06-28 Mitsubishi Denki Kabushiki Kaisha Air-fuel ratio control system for internal combustion engines
    JPH01147138A (ja) * 1987-12-01 1989-06-08 Mitsubishi Electric Corp 空燃比センサのヒータ制御装置
    JPH07122627B2 (ja) * 1987-12-16 1995-12-25 日本電装株式会社 酸素濃度センサ用ヒータの制御装置
    JPH0738844Y2 (ja) * 1988-10-07 1995-09-06 トヨタ自動車株式会社 酸素センサ用ヒータ制御装置
    DE3840148A1 (de) * 1988-11-29 1990-05-31 Bosch Gmbh Robert Verfahren und vorrichtung zum erkennen eines fehlerzustandes einer lambdasonde
    US4993392A (en) * 1989-04-24 1991-02-19 Toyota Jidosha Kabushiki Kaisha Apparatus for controlling heater for heating oxygen sensor
    DE3941995A1 (de) * 1989-12-20 1991-06-27 Bosch Gmbh Robert Verfahren und vorrichtung zur ueberwachung der funktionsfaehigkeit einer sonden-heizeinrichtung
    DE9006431U1 (de) * 1990-06-07 1990-08-30 Ortmann, Helmut, 8900 Augsburg Möbelgleitfuß
    JPH04148856A (ja) * 1990-10-12 1992-05-21 Toyota Motor Corp 酸素濃度検出センサのヒータ制御装置
    DE4106541A1 (de) * 1991-03-01 1992-09-03 Bosch Gmbh Robert Verfahren zur temperatursteuerung und regelung von abgassonden
    DE9109219U1 (de) * 1991-07-26 1992-01-09 Wu, Chia Long, Kuei Ren Hsiang, Tainan Kette mit Kettengliedern
    DE4132008C2 (de) * 1991-09-26 2000-04-06 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überprüfung der Funktionsfähigkeit einer Heizung einer Sauerstoffsonde

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102008040593A1 (de) 2008-03-03 2009-09-10 Robert Bosch Gmbh Verfahren zum Ermitteln eines Maßes für einen Wassereintrag in den Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
    DE102009000076A1 (de) 2009-01-08 2010-07-15 Robert Bosch Gmbh Verfahren zum Ermitteln eines Maßes für einen Reagenzmitteltropfeneintrag in den Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
    DE102009001064A1 (de) 2009-02-23 2010-08-26 Robert Bosch Gmbh Verfahren zum Ermitteln eines Maßes für einen Wassertropfeneintrag in den Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
    DE102009028953A1 (de) 2009-08-27 2011-03-03 Robert Bosch Gmbh Verfahren zum Ermitteln eines Maßes für das Auftreten von Reagenzmitteltropfen im Abgasbereich einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens

    Also Published As

    Publication number Publication date
    JPH07504754A (ja) 1995-05-25
    WO1994016371A1 (de) 1994-07-21
    DE59309465D1 (de) 1999-04-22
    DE4300530C2 (de) 2001-02-08
    KR950700566A (ko) 1995-01-16
    DE4300530A1 (de) 1994-07-14
    KR100261930B1 (ko) 2000-08-01
    EP0635148A1 (de) 1995-01-25
    US5616835A (en) 1997-04-01
    JP3464221B2 (ja) 2003-11-05

    Similar Documents

    Publication Publication Date Title
    EP0635148B1 (de) System zum betreiben eines heizelements für einen keramischen sensor in einem kraftfahrzeug
    DE19643674C2 (de) Vorrichtung zum Ermitteln der Temperatur eines Abgas-Katalysators
    EP3551857B1 (de) Verfahren zum betrieb eines elektrisch beheizbaren katalysators
    DE102006005794B4 (de) Steuervorrichtung für einen Verbrennungsmotor
    DE69320445T2 (de) Vorrichtung zur Reinigung von Abgasen einer Dieselbrennkraftmaschine
    DE19728577C2 (de) Verfahren zur außentaupunktabhängigen Steuerung der Verdampfertemperatur einer Klimaanlage
    EP1983170B1 (de) Verfahren zum Betreiben eines Kältemittelkreislaufs mit einem Ladeluft/Kältemittel-Verdampfer
    EP1807614A1 (de) Verfahren zur steuerung eines betriebs eines beheizbaren abgassensors eines kraftfahrzeugs
    DE102018127409A1 (de) Strategie/verfahren zur regelung eines gleichungsbasierten kühlsystems
    DE102013202980A1 (de) Verfahren und Vorrichtung zur Regeneration eines Partikelsensors
    WO2006087261A1 (de) Verfahren zur spannungsgesteuerten leistungseinstellung der heizung einer abgassonde
    DE102005022127A1 (de) Drosselklappen-Steuersystem und Drosselklappen-Steuerverfahren
    DE2340216A1 (de) Elektronisches brennstoffsteuersystem fuer brennkraftmaschinen
    DE102016113237B4 (de) Verfahren zum Bestimmen eines Integrationswerts einer Menge von Feinstaub
    DE10144275A1 (de) Verfahren zur Temperaturregelung eines Motors
    DE102011086148A1 (de) Verfahren und Vorrichtung zum Betreiben eines resistiven Sensors im Abgaskanal einer Brennkraftmaschine
    EP0505521A1 (de) Verfahren und vorrichtung zur steuerung und/oder regelung einer betriebsgrösse einer brennkraftmaschine
    DE102008040593A1 (de) Verfahren zum Ermitteln eines Maßes für einen Wassereintrag in den Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
    DE4433632B4 (de) Verfahren zur Überwachung einer Heizeinrichtung eines im Abgassystem einer Brennkraftmaschine angebrachten Sensors
    DE102009001064A1 (de) Verfahren zum Ermitteln eines Maßes für einen Wassertropfeneintrag in den Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
    DE19928561C2 (de) Verfahren zur Schätzung von Temperaturgrößen im Abgasstrang einer Brennkraftmaschine
    DE29500781U1 (de) Vorrichtung zum Kühlen von Gasen
    EP0797730B1 (de) Verfahren zur beeinflussung der kraftstoffzumessung bei einer brennkraftmaschine
    EP0239842B1 (de) Verfahren zum Regeln der Innenraumtemperatur, insbesondere eines Kraftfahrzeugs
    DE4339692C2 (de) Verfahren und Vorrichtung zur Ermittlung der Abgastemperatur mit einer Lambdasonde

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19940810

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IT

    17Q First examination report despatched

    Effective date: 19970205

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    REF Corresponds to:

    Ref document number: 59309465

    Country of ref document: DE

    Date of ref document: 19990422

    ET Fr: translation filed
    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19990518

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20031120

    Year of fee payment: 11

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041202

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20041202

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20051202

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20130225

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20130123

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59309465

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20131203