EP0635148B1 - System zum betreiben eines heizelements für einen keramischen sensor in einem kraftfahrzeug - Google Patents
System zum betreiben eines heizelements für einen keramischen sensor in einem kraftfahrzeug Download PDFInfo
- Publication number
- EP0635148B1 EP0635148B1 EP94900746A EP94900746A EP0635148B1 EP 0635148 B1 EP0635148 B1 EP 0635148B1 EP 94900746 A EP94900746 A EP 94900746A EP 94900746 A EP94900746 A EP 94900746A EP 0635148 B1 EP0635148 B1 EP 0635148B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- internal combustion
- combustion engine
- ceramic sensor
- operating state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05G—CONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
- G05G23/00—Means for ensuring the correct positioning of parts of control mechanisms, e.g. for taking-up play
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1493—Details
- F02D41/1494—Control of sensor heater
Definitions
- the invention relates to a system for operating a heating element for a ceramic sensor in a motor vehicle according to the preamble of claim 1.
- Such a system for operating a heating element for a ceramic Sensor in a motor vehicle is from US Pat. No. 4,348,583 known.
- the current is pulsed, so that in the second time interval with reduced Power is heated.
- This type of control of the The heating element becomes high during the first time interval provided to a desired temperature if possible to reach quickly.
- In the second time interval is reduced Power heated to maintain the temperature.
- the invention has for its object in a system of the beginning mentioned type for operating a heating element for a ceramic Sensor in a motor vehicle depending on the operating state an internal combustion engine driving the motor vehicle different Set sensor temperatures.
- Another object of the invention is the ceramic Protect the sensor from damage caused by impinging liquid. At the same time, the ceramic sensor should be ready for operation as quickly as possible and the sensor signals should be affected as little as possible become.
- the invention is also intended to protect the ceramic Sensor without any structural changes to the sensor or with allow only minor structural changes and inexpensive be.
- the invention has the advantage that it is one on the respective Operating state of the internal combustion engine adjusted setting of Temperature TSe of the ceramic sensor enables. It is a first Operating state (phase I) of the internal combustion engine defined in which it is to be expected that liquid in the exhaust duct of the internal combustion engine is present and a second operating state (phase II), in which is not to be expected that in the exhaust duct of the internal combustion engine Liquid is present. If the internal combustion engine is in the first operating state, the heating element is not in Started or the heating element is controlled so that the ceramic sensor operated below a critical temperature TSeK becomes. The critical temperature TSeK is chosen so that the Operation of the ceramic sensor below the critical temperature TSeK no significant risk of damage to the ceramic Sensor in contact with liquid. Is the Internal combustion engine in the second operating state, so the control the heating element, for example, to an optimal operating temperature of the ceramic sensor.
- the distinction between the two operating states mentioned in the control the heating element has the advantage that the risk of damage of the ceramic sensor through contact with liquid is cleared and thus the life of the ceramic sensor can be extended without constructive changes to the sensor must be made.
- the heating element is exemplary embodiment during the first operating state the internal combustion engine is not put into operation or Operated with reduced power or first with high and then operated with reduced power. The transition from the high to reduced performance occurs if since the start of the Internal combustion engine has passed a selectable period of time or if it can be assumed that the temperature TSe of the ceramic Sensor has exceeded a threshold TSel. Whether the threshold TSel is exceeded, can result from the temperature-dependent properties of the ceramic sensor or the signal of one in thermal Contact with the ceramic sensor standing temperature sensor be determined.
- the last one has the advantage that the ceramic sensor is very quickly to the maximum permissible temperature under the given circumstances is heated. This ensures that the optimal operating temperature of the ceramic sensor within a short time the transition from the first to the second operating state of the internal combustion engine can be adjusted. All three measures to Protection of the ceramic sensor is common in that they are only taken if necessary, i.e. during the first Operating state.
- the first operating state is after a cold start of the internal combustion engine in front.
- a cold start is assumed if the coolant temperature the engine at the start below one Threshold value TKM1 lies.
- the transition from the first to the second operating state the internal combustion engine takes place if from the beginning a selectable period of time has elapsed from the first operating state or if it can be assumed that the temperature TAbg of the exhaust system a threshold value TTau in the vicinity of the ceramic sensor has exceeded.
- the latter can be derived from the signal from a temperature sensor, which is installed in the vicinity of the ceramic sensor or from a model that the temperature TAbg of the exhaust system in describes the environment of the ceramic sensor approximately become.
- the system according to the invention can be particularly advantageous with a Use oxygen probe in the exhaust gas duct of the internal combustion engine seen in the flow direction of the exhaust gases before or after a catalyst is appropriate.
- FIG. 1 is a schematic representation of an internal combustion engine the components essential to the invention
- Figure 2 is a flow diagram of the system for operation according to the invention a heating element for an oxygen probe
- FIG. 3 shows diagrams for the time profile of the heating element electrical power (top), the temperature TSe of the Oxygen probe (center) and the temperature TAbg of the exhaust system in the environment of the oxygen probe (below) and
- Figure 4 is a block diagram of a device used to determine can be determined whether the temperature TSe of the oxygen probe Has exceeded the threshold TSel.
- the invention is described below using the example of an oxygen probe, which is located in the exhaust duct of an internal combustion engine.
- the oxygen probe is used to measure the oxygen content of the Exhaust gas to record and a device for controlling the To provide air / fuel ratio. So far the oxygen probe is usually very far forward in the exhaust duct, i.e. close to the internal combustion engine, attached to rapid heating the oxygen probe through the exhaust gases of the internal combustion engine to ensure. To heat the oxygen probe even faster it is usually provided with an electric heating element. Furthermore, it can be ensured by the heating element that the oxygen probe even under operating conditions under which the Exhaust gas temperature is low and / or only a very small amount Exhaust gas is present, is kept at operating temperature.
- FIG. 1 shows a schematic representation of an internal combustion engine 100 with the components essential to the invention.
- an intake tract 102 and an exhaust duct 104 are attached on the internal combustion engine 100 .
- a sensor 108 for detection the temperature of the intake air and an injector 110.
- Im Exhaust gas duct 104 of internal combustion engine 100 is located in the flow direction of the exhaust gases - an oxygen probe 112 with a heating element 114, a sensor 116 for detecting the temperature TAbg of the exhaust gases or the wall of the exhaust duct 104 in the vicinity of the oxygen probe 112, a catalyst 118 and optionally another Oxygen probe 120 with heating element 122 and another sensor 124 for recording the temperature TAbg of the exhaust gases or the wall of the Exhaust gas duct 104 in the vicinity of the oxygen probe 120.
- a sensor 126 for detecting the coolant temperature of the engine 100 attached.
- a control unit 128 is via supply lines with the air mass or air flow meter 106 the sensor 108, the injection nozzle 110, the oxygen probe 112, the heating element 114, the sensor 116, the oxygen probe 120, the Heating element 122, the sensor 124 and the sensor 126 connected.
- the oxygen probe 120 is used to regulate the air / fuel ratio not absolutely necessary, so today's systems are out Often only equipped with oxygen probe 112 due to cost reasons are. For the future, a two-probe concept appears to be both contains the oxygen probe 112 as well as the oxygen probe 120, but gain in importance. For the description below the principle of operation of the invention becomes an embodiment with only one oxygen probe 112.
- the Transfer to an embodiment with two oxygen probes 112 and 120 is very simple since each heating element 114, 122 is by itself on the same principle as in the embodiment with only one Oxygen probe 112 is controlled. A separate control is necessary because it can generally be assumed that that the oxygen probes 112 and 120 have different conditions are exposed. The differences can be particularly great after one Cold start of the internal combustion engine 100.
- the catalyst has 118 a low temperature - usually around ambient temperature - and can initially large amounts of condensation store so that the exhaust gases on their way from the oxygen probe 112 cooled to oxygen probe 120 and enriched with liquid become.
- the risk of damage from contact with liquid is therefore essential for the oxygen probe 120 longer period than with oxygen probe 112, so that the Protective measures for the oxygen probe 120 are accordingly longer are to be maintained.
- the first operating state is usually after a cold start the internal combustion engine 100 as long as the temperature TAbg of the exhaust gas duct in the vicinity of the oxygen probe 112 is lower than the dew point temperature TTau of approx. 50 - 60 ° C.
- the period within which is the internal combustion engine in the first operating state is referred to as Phase I below. Will the dew point temperature TTau exceeded, there is a transition to second operating state and a phase II begins.
- the signal of Sensor 126 which is the temperature of the coolant of the internal combustion engine 100 recorded, evaluated. If the evaluation shows that the Temperature of the coolant is greater than a threshold TKM1, the For example, if it is 75 ° C, there is no cold start.
- TKM1 a threshold
- the Internal combustion engine 100 is in the second operating state and there are no further measures to protect the oxygen probe 112 required before damage due to contact with liquid, i.e. the control of the heating element 114 is subject to FIG no restrictions in this context. Is the temperature of the Coolant, on the other hand, is less than the threshold value TKM1 Cold start before and it can initially be assumed that the Internal combustion engine 100 is in the first operating state.
- the heating element 114 remains switched off.
- the heating element 114 is reduced with respect to its nominal power P1 Power P2 operated.
- the heating element 114 is initially operated at its nominal power P1 and then if it can be assumed that the temperature TSe the Oxygen probe 112 has exceeded a threshold TSel the heating power P is reduced such that the temperature TSe Oxygen probe 112 no longer rises or only rises slightly.
- the threshold TSel is approx. 50 K below a critical one Temperature TSeK of z. B. 300 to 350 ° C, above which the danger damage to oxygen probe 112 upon contact with liquid consists.
- the temperature TSe of the oxygen probe 112 can be off the time that has passed since the heating element 114 was switched on is estimated or from the output signals of the oxygen probe 112 or from the signals of a temperature sensor, the is in thermal contact with oxygen probe 112 or determined by other methods familiar to the person skilled in the art.
- phase I ends and phase II begins can either from empirical values collected during the application were determined approximately (option 1) or as follows be determined:
- Figure 2 shows a flow diagram of a preferred embodiment of the system according to the invention for operating the heating element 114 of an oxygen probe 112.
- measure 3 described above and the transition from phase I to phase II is according to one of those described above Possibilities 1, 2 or 3 determined.
- the flow chart begins with a first step 200, in which the Internal combustion engine 100 is started. Then in one Step 202 queries whether the engine coolant temperature 100 is less than the threshold value TKMI. Is this condition a step 204 follows. In step 204 the heating element 114 is put into operation with the nominal power P1. Then in step 206 it is queried whether the temperature TSe Oxygen probe 112 has exceeded the threshold TSel. This The query is repeated until the queried condition is met is. If the condition is met, step 208 follows Step 208 asks whether it is to be assumed that liquid is present in the vicinity of the oxygen probe 112. To answer This question will address at least one of the three above Options 1, 2 or 3 used.
- step 210 in which it is caused that the heating element 114 is reduced with respect to its nominal power P1 Power P2 is operated.
- the reduction in power P can, for example, be clocked by the heating element 114 flowing electrical current.
- Step 210 follows again Step 208.
- step follows 212 in which the heating element 114 is caused to run at nominal power P1 is operated. You can also go to step 212 directly from step 202 come out when the condition of the step 202 is not satisfied, i.e. if there is no cold start and thus also no measures to protect the oxygen probe 112 from damage due to contact with liquid are required.
- FIG. 3 shows diagrams for the time course of the heating element 114 supplied electrical power P (top), the temperature TSe of the oxygen probe 112 (middle) and the temperature TAbg in the Environment of the oxygen probe 112 (below).
- Phase I which has already been defined further above, is in two Sub-phases divided. A sub-phase Ia and a subsequent one Sub-phase Ib. Phase II follows on from phase Ib. The single ones Phases or sub-phases are by vertical dashed lines separated from each other.
- the temperature is on the ordinate TSe of the oxygen probe 112 plotted.
- TSe the temperature of the oxygen probe 112 plotted.
- an increase in temperature TSe from time t t0 as a result the heating by the heating element 114 to recognize.
- the rise in temperature is additionally achieved by the oxygen sensor 112 passing exhaust affects.
- the temperature is on the ordinate TAbg of the exhaust gas or the exhaust gas duct 104 is plotted.
- phase Ia The end point of phase Ia is reached when the temperature TSe of the oxygen probe 112, the threshold TSel, for example 250 to 300 ° C.
- the threshold TSel for example 250 to 300 ° C.
- the sub-phase Ia ends and the sub-phase begins Ib.
- the reduction the electrical power P has the consequence that the temperature TSe the oxygen probe 112 assumes an approximately constant value (see Figure 3, middle diagram).
- the time of transition from sub-phase Ib to phase II results derive from the time course of the temperature TAbg.
- TAbg remains on this Value until the liquid in the exhaust duct 104 in the vicinity of the Oxygen probe 112 and completely upstream in the gaseous Condition has passed.
- the rise in temperature TAbg against End of sub-phase Ib thus indicates that in the area there is no more liquid in the oxygen probe 112. Out for this reason the time for the transition from sub-phase Ib falls after phase II with an increase in temperature TAbg above the dew point temperature Tau together.
- the system according to the invention works more reliably the more precisely the times for the transition from phase Ia to Ib and for the Transition from sub-phase Ib to phase II can be determined. in the The following is explained using preferred exemplary embodiments, how to determine these times.
- the properties of ceramic sensors are often temperature-dependent, so that the temperature TSe of the sensors in these cases without additional thermocouples determined from the behavior of the sensors can be. This also applies to the oxygen probe described here 112, whose electrical resistance increases with temperature decreases sharply.
- Figure 4 shows a circuit known per se, from which electrical resistance of the oxygen probe 112 is determined whether the oxygen probe 112 has exceeded a threshold value TSel, i.e. the circuit serves the time of transition from Determine sub-phase Ia after sub-phase Ib.
- the Oxygen probe 112 In addition to the change in resistance, when the temperature rises the Oxygen probe 112 has another effect. Usually delivers the oxygen probe 112 is already below the critical temperature TSeK a voltage that depends on the oxygen content of the exhaust gas, for example, when the threshold TSel is exceeded. So there is usually a temperature range in which the oxygen probe 112 is ready for operation without any noteworthy warning there is damage on contact with liquid.
- the time of transition from phase Ib to phase II can be determine without the temperature sensor 116 using the following method, d. H. the temperature sensor 116 is for the invention System not absolutely necessary and can also be omitted. Then is using a model that shows the temperature profile of the exhaust gases simulates when the exhaust gases reach the dew point temperature TTau have exceeded.
- the input variable is that of air mass or Airflow meter 106 senses air mass or airflow into the model fed.
- the air mass or air volume is integrated in the model and the integral is determined empirically with one Threshold compared.
- the threshold value represents that of the internal combustion engine 100 air masses sucked in since the cold start or the amount of air at which the temperature TAbg is known to be the Dew point temperature exceeds TTau. Once the under the model carried out comparison shows that the threshold reached , it can be assumed that the temperature TAbg is the dew point temperature TTau has exceeded.
- Heating element 114 even before the engine 100 starts To take operation.
- the commissioning triggered by a process that occurs before the start of the internal combustion engine 100 lies, for example opening the vehicle door, switching on the interior lighting, actuation of the belt buckle or Driver seat load. This allows the time between Start of the internal combustion engine 100 and the operational readiness of the Shorten oxygen probe 112, which z. B. in connection with a heated catalyst can be important. This variant too can the described measures to protect the oxygen probe 112 can be used.
- the temperature TAbg represents the temperature in the vicinity of the Oxygen probe 112 or 120. Depending on the embodiment, it can the temperature of the exhaust gases, the wall of the exhaust duct 104 or the catalyst 118 act. If there is a possibility TAbg can also record several of these temperatures by Averaging over at least two of these temperatures can be determined.
- the temperature of the wall can also be changed of the exhaust duct (104) or the temperature of the catalyst (118) can be used to determine whether a cold start of the internal combustion engine (100) is present.
- the prerequisite for this is that a corresponding temperature sensor is available. If at Start of the internal combustion engine (100) that detected by this sensor Temperature is lower than the dew point temperature (TTau) Cold start before.
- TTau dew point temperature
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
Claims (12)
- Vorrichtung zum Betreiben eines Heizelements (114) eines keramischen Sensors (112), der im Abgaskanal (104) einer Brennkraftmaschine (100) angebracht ist und durch das Heizelement (114) aufheizbar ist, gekennzeichnet durchMittel, die das Heizelement (114) abhängig davon ansteuern, in welchem Betriebszustand sich die Brennkraftmaschine befindet,Mittel zur Feststellung eines ersten Betriebszustands (Phase I) dann, wenn beim Start der Brennkraftmaschine (100) die Kühlmitteltemperatur unterhalb eines Schwellwerts (TKM1 liegt oder wenn die Temperatur (TAbg) der Abgasanlage unterhalb eines Schwellwertes (TTau) liegt,Mittel zur Feststellung eines zweiten Betriebszustandes, der die Betriebspunkte außerhalb des ersten Betriebszustandes umfaßt,und durch Mittel, die das Heizelement nicht in Betrieb nehmen, oder das Heizelement (114) so ansteuern, daß der keramische Sensor (112) unterhalb einer kritischen Temperatur (TSeK) betrieben wird, wenn sich die Brennkraftmaschine im ersten Betriebszustand (Phase I) befindet.
- System nach den Anspruch 1, dadurch gekennzeichnet, daß das Heizelement (114) des keramischen Sensors (112) während des ersten Betriebszustands (Phase I) der Brennkraftmaschine (100) mit reduzierter Leistung (P2) betrieben wird.
- System nach den Anspruch 1, dadurch gekennzeichnet, daß das Heizelement (114) des keramischen Sensors (112) während des ersten Betriebszustands (Phase I) der Brennkraftmaschine (100) zunächst (Teilphase Ia) mit hoher (P1) und anschließend (Teilphase Ib) mit reduzierter Leistung (P2) betrieben wird, wobei der Übergang von der hohen (P1) zur reduzierten Leistung (P2) dann erfolgt, wenn seit dem Start der Brennkraftmaschine (100) eine wählbare Zeitspanne verstrichen ist oder wenn davon auszugehen ist, daß die Temperatur (TSe) des keramischen Sensors (112) einen Schwellwert (TSel) überschritten hat.
- System nach Anspruch 3, dadurch gekennzeichnet, daß aus temperaturabhängigen Eigenschaften des keramischen Sensors (112) oder aus dem Signal eines in thermischen Kontakt mit dem keramischen Sensor (112) stehenden Temperatursensors ermittelt wird, ob die Temperatur (TSe) des keramischen Sensors (112) den Schwellwert (TSel) überschritten hat.
- System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Übergang vom ersten Betriebszustand (Phase I) zum zweiten Betriebszustand (Phase II) der Brennkraftmaschine (100) erfolgt, wenn seit Beginn des ersten Betriebszustands (Phase I) eine wählbare Zeitspanne verstrichen ist.
- System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Übergang vom ersten Betriebszustand (Phase I) zum zweiten Betriebszustand (Phase II) der Brennkraftmaschine (100) erfolgt, wenn davon auszugehen ist, daß die Temperatur (TAbg) der Abgasanlage in der Umgebung des keramischen Sensors (112) einen Schwellwert (TTau) überschritten hat.
- System nach Anspruch 6, dadurch gekennzeichnet, daß aus dem Signal eines Temperatursensors, der in der Umgebung des keramischen Sensors angebracht ist oder aus einem Modell, das die Temperatur (TAbg) in der Umgebung des keramischen Sensors näherungsweise beschreibt, ermittelt wird, ob die Temperatur (TAbg) in der Umgebung des keramischen Sensors (112) den Schwellwert (TTau) überschritten hat.
- System nach Anspruch 7, dadurch gekennzeichnet, daß in dem Modell die seit dem Starten der Brennkraftmaschine (110) angesaugte Luftmenge oder Luftmasse aufintegriert wird und das Integral mit einem Schwellwert verglichen wird.
- System nach einem der vorhegehenden Ansprüche, dadurch gekennzeichnet, daß die kritische Temperatur (TSeK) so gewählt wird, daß bei einem Betrieb des keramischen Sensors (112) unterhalb der kritischen Temperatur (TSeK) keine nennenswerte Gefahr einer Beschädigung des keramischen Sensors (112) bei Kontakt mit Flüssigkeit besteht.
- System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der keramische Sensor (112) während des ersten Betriebszustands (Phase I) der Brennkraftmaschine (100) im Temperaturbereich zwischen dem Schwellwert (TSel), oberhalb dessen der keramische Sensor (112) wenigstens bedingt betriebsbereit ist, und der kritischen Temperatur (TSeK) betrieben wird.
- System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Heizelement (114) des keramischen Sensors (112) auf Veranlassung eines zeitlich vor dem Start der Brennkraftmaschine (100) liegenden Vorgangs einschaltbar ist.
- System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der keramische Sensor (112) eine Sauerstoff-Sonde ist, die im Abgaskanal (104) der Brennkraftmaschine (100) in Stromrichtung der Abgase gesehen vor oder nach einem Katalysator (118) angeordnet ist.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4300530A DE4300530C2 (de) | 1993-01-12 | 1993-01-12 | System zum Betreiben eines Heizelements für einen keramischen Sensor in einem Kraftfahrzeug |
DE4300530 | 1993-01-12 | ||
PCT/DE1993/001149 WO1994016371A1 (de) | 1993-01-12 | 1993-12-02 | System zum betreiben eines heizelements für einen keramischen sensor in einem kraftfahrzeug |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0635148A1 EP0635148A1 (de) | 1995-01-25 |
EP0635148B1 true EP0635148B1 (de) | 1999-03-17 |
Family
ID=6477994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94900746A Expired - Lifetime EP0635148B1 (de) | 1993-01-12 | 1993-12-02 | System zum betreiben eines heizelements für einen keramischen sensor in einem kraftfahrzeug |
Country Status (6)
Country | Link |
---|---|
US (1) | US5616835A (de) |
EP (1) | EP0635148B1 (de) |
JP (1) | JP3464221B2 (de) |
KR (1) | KR100261930B1 (de) |
DE (2) | DE4300530C2 (de) |
WO (1) | WO1994016371A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008040593A1 (de) | 2008-03-03 | 2009-09-10 | Robert Bosch Gmbh | Verfahren zum Ermitteln eines Maßes für einen Wassereintrag in den Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens |
DE102009000076A1 (de) | 2009-01-08 | 2010-07-15 | Robert Bosch Gmbh | Verfahren zum Ermitteln eines Maßes für einen Reagenzmitteltropfeneintrag in den Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens |
DE102009001064A1 (de) | 2009-02-23 | 2010-08-26 | Robert Bosch Gmbh | Verfahren zum Ermitteln eines Maßes für einen Wassertropfeneintrag in den Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens |
DE102009028953A1 (de) | 2009-08-27 | 2011-03-03 | Robert Bosch Gmbh | Verfahren zum Ermitteln eines Maßes für das Auftreten von Reagenzmitteltropfen im Abgasbereich einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19729696C2 (de) * | 1997-07-11 | 2002-02-21 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Funktionsüberwachung einer Gas-Sonde |
US6304813B1 (en) * | 1999-03-29 | 2001-10-16 | Toyota Jidosha Kabushiki Kaisha | Oxygen concentration detector and method of using same |
US6848439B2 (en) * | 2001-11-08 | 2005-02-01 | Hitachi Unisia Automotive, Ltd. | Air-fuel ratio control apparatus, air-fuel ratio detecting apparatus and methods thereof for engine |
JP4110874B2 (ja) * | 2002-08-09 | 2008-07-02 | 株式会社デンソー | 内燃機関のガスセンサの加熱制御装置 |
DE10260720A1 (de) * | 2002-12-23 | 2004-07-15 | Robert Bosch Gmbh | Verfahren zum Betreiben eines Gassensors und Vorrichtung zur Durchführung des Verfahrens |
JP2005207924A (ja) | 2004-01-23 | 2005-08-04 | Toyota Motor Corp | 排気センサの制御装置 |
US7084378B2 (en) * | 2004-02-26 | 2006-08-01 | Mack Trucks, Inc. | Mass-flow sensor heating element protection method and apparatus |
JP2007162486A (ja) * | 2005-12-09 | 2007-06-28 | Denso Corp | ディーゼル機関の制御装置 |
JP4710615B2 (ja) * | 2006-01-10 | 2011-06-29 | 株式会社デンソー | ガスセンサ用のヒータ制御装置 |
JP2007198158A (ja) * | 2006-01-24 | 2007-08-09 | Mazda Motor Corp | 水素エンジンの空燃比制御装置 |
JP5010674B2 (ja) * | 2006-03-31 | 2012-08-29 | ロナティ エッセ.ピ.ア. | 靴下類等のための円形編機 |
JP4325641B2 (ja) | 2006-05-24 | 2009-09-02 | トヨタ自動車株式会社 | 空燃比センサの制御装置 |
DE102007031767A1 (de) | 2007-07-27 | 2009-01-29 | Audi Ag | Beheizbarer Abgassensor mit verbesserter Erkennung von Wasser an einer Oberfläche des Abgassensors |
EP2042714B1 (de) * | 2007-09-25 | 2011-09-07 | GM Global Technology Operations LLC | Verfahren zur Bestimmung des Taupunkts in einer Abgasstrecke und Vorrichtung zur Bestimmung des Taupunkts in einer Abgasstrecke |
DE102008013515A1 (de) | 2008-03-07 | 2009-09-10 | Volkswagen Ag | Verfahren zum Betreiben einer Lambdasonde während der Aufwärmphase |
US8584445B2 (en) * | 2009-02-04 | 2013-11-19 | GM Global Technology Operations LLC | Method and system for controlling an electrically heated particulate filter |
JP4992935B2 (ja) | 2009-05-21 | 2012-08-08 | 株式会社デンソー | 排気ガスセンサの活性化制御装置 |
US8950177B2 (en) * | 2009-06-17 | 2015-02-10 | GM Global Technology Operations LLC | Detecting particulate matter load density within a particulate filter |
US8443590B2 (en) * | 2009-07-02 | 2013-05-21 | GM Global Technology Operations LLC | Reduced volume electrically heated particulate filter |
US8479496B2 (en) * | 2009-07-02 | 2013-07-09 | GM Global Technology Operations LLC | Selective catalytic reduction system using electrically heated catalyst |
US8475574B2 (en) * | 2009-08-05 | 2013-07-02 | GM Global Technology Operations LLC | Electric heater and control system and method for electrically heated particulate filters |
US8511069B2 (en) * | 2009-08-12 | 2013-08-20 | GM Global Technology Operations LLC | Systems and methods for layered regeneration of a particulate matter filter |
DE102009054127B4 (de) * | 2009-11-20 | 2021-11-25 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zum Aktivieren der Heizung einer Lambda-Sonde in einer Abgasanlage mit einem über das Abgas heizbaren Katalysator |
DE102009055041B4 (de) | 2009-12-21 | 2021-12-09 | Robert Bosch Gmbh | Verfahren zum schnellen Erreichen der Betriebsbereitschaft einer beheizbaren Abgassonde |
ITBO20120111A1 (it) * | 2012-03-06 | 2013-09-07 | Magneti Marelli Spa | Metodo di controllo di una trasmissione manuale automatica provvista di un dispositivo di blocco di parcheggio |
JP5737262B2 (ja) * | 2012-10-16 | 2015-06-17 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
DE102013226175A1 (de) | 2013-12-17 | 2015-07-02 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Betreiben von Abgassensoren |
KR101619609B1 (ko) | 2014-09-05 | 2016-05-18 | 현대자동차주식회사 | 디젤 하이브리드 차량의 공기유량센서 칩 히팅 제어 장치 |
DE102016205060A1 (de) * | 2016-03-24 | 2017-04-27 | Continental Automotive Gmbh | Verfahren zum Betreiben eines Sensors zur Detektion oxidierbarer Gase |
DE102017211024B4 (de) * | 2017-06-29 | 2019-06-27 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Aktivierung einer Diagnose eines Partikelfilters einer Brennkraftmaschine |
US10975746B1 (en) * | 2019-12-12 | 2021-04-13 | GM Global Technology Operations LLC | Varying closed loop gain control to constrain ramp rate of oxygen sensors in exhaust systems |
JP7415903B2 (ja) * | 2020-12-08 | 2024-01-17 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
DE102021208577A1 (de) * | 2021-08-06 | 2023-02-09 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zum Betreiben eines Abgassensors in einem Abgastrakt einer Brennkraftmaschine eines Kraftfahrzeugs |
CN114967785A (zh) * | 2021-08-13 | 2022-08-30 | 长城汽车股份有限公司 | 氧传感器加热控制的方法、装置、电子设备及存储介质 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2726458A1 (de) * | 1977-06-11 | 1979-01-04 | Bosch Gmbh Robert | Elektrisch betriebene schnellheizeinrichtung |
JPS55122143A (en) * | 1979-03-15 | 1980-09-19 | Nippon Soken Inc | Gas detector |
JPS57203940A (en) * | 1981-06-11 | 1982-12-14 | Nissan Motor Co Ltd | Gas sensor |
JPS60235047A (ja) * | 1984-05-07 | 1985-11-21 | Toyota Motor Corp | 内燃機関用ヒ−タ付酸素センサの温度制御方法 |
JPS60235048A (ja) * | 1984-05-07 | 1985-11-21 | Toyota Motor Corp | 酸素センサの抵抗発熱式電気ヒ−タの通電制御方法 |
JPS60235050A (ja) * | 1984-05-07 | 1985-11-21 | Toyota Motor Corp | 酸素センサの電気ヒ−タの通電制御方法 |
US4715343A (en) * | 1985-09-17 | 1987-12-29 | Toyota Jidosha Kabushiki Kaisha | Method and apparatus for controlling heater for heating air-fuel ratio sensor |
JPS62129754A (ja) * | 1985-11-29 | 1987-06-12 | Honda Motor Co Ltd | 酸素濃度検出装置の制御方法 |
US4753204A (en) * | 1986-09-30 | 1988-06-28 | Mitsubishi Denki Kabushiki Kaisha | Air-fuel ratio control system for internal combustion engines |
JPH01147138A (ja) * | 1987-12-01 | 1989-06-08 | Mitsubishi Electric Corp | 空燃比センサのヒータ制御装置 |
JPH07122627B2 (ja) * | 1987-12-16 | 1995-12-25 | 日本電装株式会社 | 酸素濃度センサ用ヒータの制御装置 |
JPH0738844Y2 (ja) * | 1988-10-07 | 1995-09-06 | トヨタ自動車株式会社 | 酸素センサ用ヒータ制御装置 |
DE3840148A1 (de) * | 1988-11-29 | 1990-05-31 | Bosch Gmbh Robert | Verfahren und vorrichtung zum erkennen eines fehlerzustandes einer lambdasonde |
US4993392A (en) * | 1989-04-24 | 1991-02-19 | Toyota Jidosha Kabushiki Kaisha | Apparatus for controlling heater for heating oxygen sensor |
DE3941995A1 (de) * | 1989-12-20 | 1991-06-27 | Bosch Gmbh Robert | Verfahren und vorrichtung zur ueberwachung der funktionsfaehigkeit einer sonden-heizeinrichtung |
DE9006431U1 (de) * | 1990-06-07 | 1990-08-30 | Ortmann, Helmut, 8900 Augsburg | Möbelgleitfuß |
JPH04148856A (ja) * | 1990-10-12 | 1992-05-21 | Toyota Motor Corp | 酸素濃度検出センサのヒータ制御装置 |
DE4106541A1 (de) * | 1991-03-01 | 1992-09-03 | Bosch Gmbh Robert | Verfahren zur temperatursteuerung und regelung von abgassonden |
DE9109219U1 (de) * | 1991-07-26 | 1992-01-09 | Wu, Chia Long, Kuei Ren Hsiang, Tainan | Kette mit Kettengliedern |
DE4132008C2 (de) * | 1991-09-26 | 2000-04-06 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Überprüfung der Funktionsfähigkeit einer Heizung einer Sauerstoffsonde |
-
1993
- 1993-01-12 DE DE4300530A patent/DE4300530C2/de not_active Expired - Fee Related
- 1993-12-02 DE DE59309465T patent/DE59309465D1/de not_active Expired - Lifetime
- 1993-12-02 EP EP94900746A patent/EP0635148B1/de not_active Expired - Lifetime
- 1993-12-02 JP JP51557094A patent/JP3464221B2/ja not_active Expired - Lifetime
- 1993-12-02 WO PCT/DE1993/001149 patent/WO1994016371A1/de active IP Right Grant
- 1993-12-02 US US08/295,903 patent/US5616835A/en not_active Expired - Lifetime
- 1993-12-02 KR KR1019940703135A patent/KR100261930B1/ko not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008040593A1 (de) | 2008-03-03 | 2009-09-10 | Robert Bosch Gmbh | Verfahren zum Ermitteln eines Maßes für einen Wassereintrag in den Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens |
DE102009000076A1 (de) | 2009-01-08 | 2010-07-15 | Robert Bosch Gmbh | Verfahren zum Ermitteln eines Maßes für einen Reagenzmitteltropfeneintrag in den Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens |
DE102009001064A1 (de) | 2009-02-23 | 2010-08-26 | Robert Bosch Gmbh | Verfahren zum Ermitteln eines Maßes für einen Wassertropfeneintrag in den Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens |
DE102009028953A1 (de) | 2009-08-27 | 2011-03-03 | Robert Bosch Gmbh | Verfahren zum Ermitteln eines Maßes für das Auftreten von Reagenzmitteltropfen im Abgasbereich einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens |
Also Published As
Publication number | Publication date |
---|---|
JPH07504754A (ja) | 1995-05-25 |
WO1994016371A1 (de) | 1994-07-21 |
DE59309465D1 (de) | 1999-04-22 |
DE4300530C2 (de) | 2001-02-08 |
KR950700566A (ko) | 1995-01-16 |
DE4300530A1 (de) | 1994-07-14 |
KR100261930B1 (ko) | 2000-08-01 |
EP0635148A1 (de) | 1995-01-25 |
US5616835A (en) | 1997-04-01 |
JP3464221B2 (ja) | 2003-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0635148B1 (de) | System zum betreiben eines heizelements für einen keramischen sensor in einem kraftfahrzeug | |
DE19643674C2 (de) | Vorrichtung zum Ermitteln der Temperatur eines Abgas-Katalysators | |
EP3551857B1 (de) | Verfahren zum betrieb eines elektrisch beheizbaren katalysators | |
DE102006005794B4 (de) | Steuervorrichtung für einen Verbrennungsmotor | |
DE69320445T2 (de) | Vorrichtung zur Reinigung von Abgasen einer Dieselbrennkraftmaschine | |
DE19728577C2 (de) | Verfahren zur außentaupunktabhängigen Steuerung der Verdampfertemperatur einer Klimaanlage | |
EP1983170B1 (de) | Verfahren zum Betreiben eines Kältemittelkreislaufs mit einem Ladeluft/Kältemittel-Verdampfer | |
EP1807614A1 (de) | Verfahren zur steuerung eines betriebs eines beheizbaren abgassensors eines kraftfahrzeugs | |
DE102018127409A1 (de) | Strategie/verfahren zur regelung eines gleichungsbasierten kühlsystems | |
DE102013202980A1 (de) | Verfahren und Vorrichtung zur Regeneration eines Partikelsensors | |
WO2006087261A1 (de) | Verfahren zur spannungsgesteuerten leistungseinstellung der heizung einer abgassonde | |
DE102005022127A1 (de) | Drosselklappen-Steuersystem und Drosselklappen-Steuerverfahren | |
DE2340216A1 (de) | Elektronisches brennstoffsteuersystem fuer brennkraftmaschinen | |
DE102016113237B4 (de) | Verfahren zum Bestimmen eines Integrationswerts einer Menge von Feinstaub | |
DE10144275A1 (de) | Verfahren zur Temperaturregelung eines Motors | |
DE102011086148A1 (de) | Verfahren und Vorrichtung zum Betreiben eines resistiven Sensors im Abgaskanal einer Brennkraftmaschine | |
EP0505521A1 (de) | Verfahren und vorrichtung zur steuerung und/oder regelung einer betriebsgrösse einer brennkraftmaschine | |
DE102008040593A1 (de) | Verfahren zum Ermitteln eines Maßes für einen Wassereintrag in den Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens | |
DE4433632B4 (de) | Verfahren zur Überwachung einer Heizeinrichtung eines im Abgassystem einer Brennkraftmaschine angebrachten Sensors | |
DE102009001064A1 (de) | Verfahren zum Ermitteln eines Maßes für einen Wassertropfeneintrag in den Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens | |
DE19928561C2 (de) | Verfahren zur Schätzung von Temperaturgrößen im Abgasstrang einer Brennkraftmaschine | |
DE29500781U1 (de) | Vorrichtung zum Kühlen von Gasen | |
EP0797730B1 (de) | Verfahren zur beeinflussung der kraftstoffzumessung bei einer brennkraftmaschine | |
EP0239842B1 (de) | Verfahren zum Regeln der Innenraumtemperatur, insbesondere eines Kraftfahrzeugs | |
DE4339692C2 (de) | Verfahren und Vorrichtung zur Ermittlung der Abgastemperatur mit einer Lambdasonde |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19940810 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 19970205 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 59309465 Country of ref document: DE Date of ref document: 19990422 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19990518 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20031120 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041202 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20041202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051202 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20130225 Year of fee payment: 20 Ref country code: FR Payment date: 20130123 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59309465 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20131203 |