EP0634058B1 - Antenne directive, notamment antenne dipole - Google Patents

Antenne directive, notamment antenne dipole Download PDF

Info

Publication number
EP0634058B1
EP0634058B1 EP94906193A EP94906193A EP0634058B1 EP 0634058 B1 EP0634058 B1 EP 0634058B1 EP 94906193 A EP94906193 A EP 94906193A EP 94906193 A EP94906193 A EP 94906193A EP 0634058 B1 EP0634058 B1 EP 0634058B1
Authority
EP
European Patent Office
Prior art keywords
reflector
dipole
directional antenna
antenna according
dipoles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94906193A
Other languages
German (de)
English (en)
Other versions
EP0634058A1 (fr
Inventor
Georg Klinger
Max GÖTTL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kathrein SE
Original Assignee
Kathrein Werke KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kathrein Werke KG filed Critical Kathrein Werke KG
Publication of EP0634058A1 publication Critical patent/EP0634058A1/fr
Application granted granted Critical
Publication of EP0634058B1 publication Critical patent/EP0634058B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials

Definitions

  • the invention relates to a directional antenna, in particular a dipole antenna according to the preamble of claim 1.
  • Dipole antennas are often used as symmetrically fed directional antennas. In principle, it is a horizontal or vertical, symmetrical linear antenna fed in the middle, depending on the polarization of the electromagnetic waves. If the dipoles are offset by 90 ° to one another, a circularly polarized electromagnetic wave can ultimately also be generated.
  • the directional antenna consisting of one or more dipoles usually includes one or more radiators, which essentially consist of the two dipole halves and the so-called symmetry loop, via which the dipole, which usually consists of the two rod halves, is offset with an offset to the reflector wall carrying it is oriented essentially parallel, but also in an angular form.
  • the directional antenna shown in Figures 10a to 10c comprises a dipole field 1 with z. B. two dipoles 3, which are arranged in front of a conductive, flat or shaped reflector 5 at a distance from it.
  • the arrangement thus comprises two radiators 2, which are arranged at a distance a in parallel alignment with one another and with an offset b in front of the reflector wall.
  • the two dipoles 3 shown in FIGS. 10a to 10c are held and fastened to the reflector 5 by means of a so-called symmetry 7, which usually consist of two holding rods 7 'running vertically to the reflector wall 5 and carrying the dipoles 3.
  • a radome 9 that is to say a protective housing.
  • the radiation diagram in the E and H planes of a dipole field is essentially determined by the shape and the mechanical dimensions of the reflector and the number and arrangement of the dipoles.
  • both the reflector width c i.e. the width of the reflector wall 5, as well as the distances a for the lateral offset transversely to the parallel dipoles 3 and the distance b from the dipoles to the reflector 5 can be varied.
  • Directional antennas are used for the current mobile radio networks used with vertical polarization, which have a horizontal directional characteristic of approx. 60 ° to 120 ° at the 3 dB point. These values can be achieved with one or two radiators in the arrangement shown. However, the arrangement of the dipoles 3, the symmetry loop 7 and including the connection point 11 of the symmetry loop 7 on the reflector 5, the so-called base point 11, and the offset must be optimized for any desired half-value width.
  • the dipole antennas described in accordance with the prior art each comprise a plurality of individual parts which then have to be mechanically connected to one another. This is done through the common connection methods, such as. B. screws, welding, soldering.
  • the individual components for the dipole rods, the balancing loop and the connection points 11 for attachment to the reflector can be tubular, flat or else shaped depending on requirements.
  • the individual parts are manufactured with the usual manufacturing tolerances. This also applies to the assembly in the assembled state.
  • connection points can also have retrospective effects on the antenna function. If several RF carrier frequencies are present at the individual connection points of the individual parts at the same time, they can mix with non-linearities and generate intermodulation products which have a disruptive effect on the operation of a mobile radio network. This effect can be exacerbated by contact corrosion if the materials are paired poorly and used for a long time.
  • a generic dipole arrangement in which a dipole emitter formed as a sheet metal part is screwed to the reflector, has become known from DE 91 04 722 U1.
  • the dipole halves and the support struts carrying the dipole halves i.e. the so-called symmetry, as a uniform stamped and bent part made of sheet metal , preferably made of aluminum sheet.
  • the dipole halves are U-shaped and open to the reflector. Adequate stiffening of the support struts is to be achieved by suitable sheet metal deformations such as embossing, beads, folding etc.
  • the support struts are provided with corresponding holes so that the dipole thus produced can be screwed onto the reflector.
  • the dipole is attached to the reflector using screws.
  • holes are drilled at the foot of the support struts, so that the screws mentioned for the fixed attachment of the dipole on the reflector can be passed through and tightened on the reflector.
  • this mechanical connection has the disadvantages mentioned above.
  • the present invention achieves significant improvements over the prior art with surprisingly simple means.
  • the invention provides that the dipoles of the dipole antenna, including the so-called symmetry loop, i.e. that is, the holding struts for the dipoles are cut out of the material of the reflector wall, for example punched out, and only with an electrically conductive connection point being left to the remaining material of the reflector wall.
  • the dipole antenna is then simply folded out, i.e. Bend out or edge the radiator including the dipole to form the so-called base at the junction from the radiator to the reflector wall.
  • contour cuts can be exactly reproduced with high-precision tools, for example in the form of a computer-controlled laser or using a coordinate punching tool with tight tolerances.
  • the spotlight and reflector are made of the same material. Thereby above all, possible contact corrosion can be avoided.
  • the alignment of the radiator with respect to the plane of the reflector can be carried out at different angles. This allows a problem-free adaptation to a desired dipole field on the one hand and on the other hand enables a particularly flat design.
  • Directional diagrams with half-widths of approx. 60 to 120 ° can be realized simply by using different bending angles.
  • a very flat design of such a dipole antenna can be realized. Due to a V-shaped course of the symmetry, an electrical length of approximately ⁇ / 4 is achieved, although the dipole is, for example, a distance of approximately ⁇ / 8 from the reflector.
  • a feed can take place, for example, with a coaxial cable or else with a strip line, with one half of the balancing loop and the reflector being able to be used as an outer conductor.
  • the essentially L-shaped form of a dipole 3 with the symmetry 7 assigned to the respective two parts of the dipole is punched out of the material of the reflector 5, for example by means of a computer-controlled laser or a coordinate punching tool the connection point 11 to the reflector wall, that is to say at the base, by bending or edging according to the desired bending angle ⁇ .
  • the angle ⁇ is approximately 30 to 60 °.
  • an opening 13 is left in the reflector field 5 in the area of the punched out, which but generally does not necessarily have to be disadvantageous for the transmitting and receiving function of the directional antenna in general, it may even have advantages.
  • the forward / backward ratio of the dipole field can be influenced by targeted dimensioning of the punched-out shape in the form of the opening 13.
  • the opening 13 could also be closed with electrically conductive material, for example by gluing on a metal foil, it being possible for the metal foil to be provided with a metal layer formed on the rear side without making a galvanic contact with the reflector plate.
  • a specific horizontal radiation diagram can be set. In other words, an adjustment of the radiation diagram can be made possible only by changing the bending angle ⁇ .
  • the production of a directional antenna with different geometrical dimensions that is to say a different size for the distance a between the dipoles and a different length of the dipoles, can be made possible only by changing the desired data in the computer-controlled laser or by changing the punching tool.
  • the symmetry loop 7, i.e. specifically the two parallel band-shaped or strip-shaped halves of the symmetry loop 7 can be designed with a lower wall section 7a connecting these two halves.
  • the two halves of the symmetry loop 7 can be punched out individually and each bent out and set up over a separate bending line 11 at the base point relative to the plane of the reflector 5 (in FIG dotted).
  • the bending line 11 is then aligned with the transverse cutting or punching line lying between the two halves of the symmetry loop 7, which lies in the plane of the reflector, if this is introduced and provided at all.
  • FIG. 3 shows that the dipole antenna according to the invention is in principle also arranged in a closed radome 15 as a protective housing.
  • FIGS. 4a and 4b and according to FIG. 5 essentially corresponds to the exemplary embodiment according to FIGS. 1a to 1d or FIG. 2.
  • FIG. 4a, 4b and FIG. 5 a possible feeding of the dipole using a strip line 17 is shown in principle.
  • One half 7a of the symmetry loop 7 and the reflector 5 are used as outer conductors.
  • the connecting conductor 17 ' is laid in the middle at a short distance above the reflector plate 5 which represents the outer conductor.
  • the strip line 17 'then branches at a branching point 23 between the two halves 7a of the respective symmetry 7 facing each other.
  • the line runs at a small uniform distance d above the associated half 7a of the symmetry 7, that is to say preferably at the same angle ⁇ with respect to the plane of the reflector.
  • an angled line piece 17 "then connects, which at the adjacent transition from the other half of the balancing 7 to the associated part of the dipole into an angled line to be run on this connection point Line section 17 "passes over. This defines the actual feed point 23.
  • the branching point 23 lies approximately at the level of the opposite dipoles 3 of the two radiators 2. From the connecting side 17 ′ which is laid at a small distance in parallel above the reflector 5, there is a vertical intermediate line 18 in a parallel alignment between the two halves of the symmetry 7 to the high branch point 23.
  • the angular laying of the strip conductors 17 ′′ and 17 ′′ ′′ also takes place in the exemplary embodiment according to FIG. 5 in a manner similar to that explained with reference to FIGS. 4a and 4b.
  • the dipoles 3 are also fed using stripline technology, using a carrier substrate 25.
  • the carrier substrate 25 is anchored in a mechanically overlying manner, in particular at a bending angle ⁇ of less than 90 ° between the two opposite symmetries 7 of the two dipoles 3 shown in the figures (for example via an insulating fixing 27 made of plastic).
  • the strip line 17 is formed with the connecting conductor 17 ', from the branching point 23 of which the connecting lines 17' then lead to the respective feed point of the two dipoles 3.
  • the carrier substrate 25 can also be attached at a greater distance from the reflector wall 5, for example at least approximately at the height of the dipoles 3 or slightly below, by means of the fixation 27.
  • the line course corresponds essentially to the exemplary embodiment formed in stripline technology according to FIGS. 4a, 4b and 5, the outer conductors 17a of the two coaxial connecting conductors 17 'ending approximately at the level of the dipoles and the outer conductors 17a here separately on the respective half 7a of the balancing 7 are connected in a conductive manner, while the inner conductor 17b leads via the subsequent conductor pieces 17 ′′ and 17 ′′ ′′ to the respective feed point 23 at the transition of the other half of the symmetry 7 to the associated part of the dipole 3 originating therefrom.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

Afin de pouvoir réaliser une antenne directive qui présente des améliorations par rapport à l'état de la technique, notamment une antenne dipôle dont la structure et la fabrication soient plus simples et qui comporte des propriétés électriques encore meilleures, l'invention prévoit de réaliser le dipôle, y compris son élément d'équilibrage des circuits (7), dans le même matériau que le réflecteur (5). Le dipôle et l'élément d'équilibrage des circuits (7) font saillie de la paroi du réflecteur (5) en passant par des encoches correspondantes et/ou des découpes pratiquées à la matrice, jusqu'à une section de jonction avec le matériau restant de la paroi du réflecteur (5), et sont repliés vers l'extérieur par rapport au plan de la paroi du réflecteur, de préférence dans la zone correspondant au point de jonction direct avec le matériau restant de la paroi du réflecteur (5).

Claims (16)

  1. Antenne directive, notamment antenne dipôle, comportant au moins un émetteur (2) sous forme d'un dipôle (3) comprenant une symétrisation (7) associée portant le dipôle (3), au dessus de laquelle le au moins un dipôle (3) est maintenu sur un réflecteur (5), la moitié (3) respective du dipôle étant réalisée d'une pièce avec la partie associée de la symétrisation (7), caractérisée en ce que le dipôle (3), y compris sa symétrisation (7), est fabriqué en le matériau du réflecteur (5) formé en tant que paroi conductrice, par le fait que le dipôle (3) et la symétrisation (5) sont issus de la paroi (5) de réflecteur par des découpes et/ou des estampages correspondants, à l'exception d'un tronçon (11) de liaison au matériau restant de la paroi (5) de réflecteur, et la symétrisation (7) est obtenue par pliage suivant un angle par rapport à la paroi (5) du réflecteur.
  2. Antenne directive suivant la revendication 1, caractérisée en ce que la symétrisation (7) est obtenue par pliage dans la zone du tronçon (11) de liaison par rapport au plan du matériau restant de la paroi (5) du réflecteur.
  3. Antenne directive suivant la revendication 1 ou 2, caractérisée en ce que l'angle α de flexion est de 90°.
  4. Antenne directive suivant la revendication 1 ou 2, caractérisée en ce que l'angle de flexion α est de 65° ou de moins de 65°.
  5. Antenne directive suivant la revendication 4, caractérisée en ce que l'angle α de flexion est plus petit de 45°.
  6. Antenne directive suivant l'une des revendications 1 à 5, caractérisée en ce que l'ouverture (13) apparaissant dans la zone de l'émetteur sortie est fermé dans le matériau du réflecteur (5) au moyen d'une couche conductrice de l'électricité.
  7. Antenne directive suivant la revendication 6, caractérisée en ce que la couche conductrice de l'électricité est constituée d'une feuille métallique.
  8. Antenne directive suivant la revendication 7, caractérisée en ce que la feuille métallique est munie de la couche métallique conductrice de l'électricité sur sa surface éloignée du matériau du réflecteur.
  9. Antenne directive suivant l'une des revendications 1 à 8, caractérisée en ce que le diagramme de directivité de l'antenne dipôle peut être modifié par modification de l'angle α de flexion.
  10. Antenne directive suivant l'une des revendications 1 à 9, caractérisée en ce que celle-ci est constituée de plusieurs dipôles (3) et est formée dans l'ensemble d'une seule pièce.
  11. Antenne directive suivant l'une des revendications 1 à 10, caractérisée en ce que les dipôles (3) sont alimentés au moyen d'une ligne (17) à ruban, l'une (7a) des moitiés de la boucle (7) de symétrisation d'un dipôle (3) ainsi que la paroi (5) des réflecteurs étant utilisées comme conducteur extérieur.
  12. Antenne directive suivant la revendication 11, caractérisée en ce que la ligne à ruban (17 ; 17', 17'', 17''') s'étend à une faible distance (d) au-dessus du réflecteur (5) et de ladite une des moitiés (7a) de la boucle (7) de symétrisation.
  13. Antenne directive suivant la revendication 11 ou 12, caractérisée en ce que les dipôles (3) sont alimentés au moyen d'une ligne à ruban s'étendant sur un substrat (25) de support.
  14. Antenne directive suivant la revendicaiton 13, caractérisée en ce que le substrat (25) de support pour la ligne (17) à ruban est disposé au moyen d'une fixation isolante (27) sur les dipôles (3), décalé latéralement et transversalement par rapport au plan du réflecteur (5).
  15. Antenne directive suivant l'une des revendications 1 à 10, caractérisée en ce que les dipôles sont alimentés par un câble (24) coaxial.
  16. Antenne directive suivant l'une des revendications 1 à 15, caractérisée en ce que la distance entre le dipôle (3) et la paroi (5) du réflecteur représente au moins 10 %, de préférence moins de 30 %, 40 % ou à peu près 50 % de la longueur d'onde électrique.
EP94906193A 1993-02-02 1994-02-01 Antenne directive, notamment antenne dipole Expired - Lifetime EP0634058B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4302905A DE4302905C1 (de) 1993-02-02 1993-02-02 Richtantenne, insbesondere Dipolantenne
DE4302905 1993-02-02
PCT/EP1994/000285 WO1994018719A1 (fr) 1993-02-02 1994-02-01 Antenne directive, notamment antenne dipole

Publications (2)

Publication Number Publication Date
EP0634058A1 EP0634058A1 (fr) 1995-01-18
EP0634058B1 true EP0634058B1 (fr) 1997-08-06

Family

ID=6479453

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94906193A Expired - Lifetime EP0634058B1 (fr) 1993-02-02 1994-02-01 Antenne directive, notamment antenne dipole

Country Status (8)

Country Link
US (1) US5532707A (fr)
EP (1) EP0634058B1 (fr)
CA (1) CA2131720C (fr)
DE (2) DE4302905C1 (fr)
DK (1) DK0634058T3 (fr)
ES (1) ES2107811T3 (fr)
FI (1) FI112726B (fr)
WO (1) WO1994018719A1 (fr)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4438809B4 (de) * 1994-10-31 2004-11-04 Rohde & Schwarz Gmbh & Co. Kg Dipolspeiseanordnung
DE19510236A1 (de) * 1995-03-21 1996-09-26 Lindenmeier Heinz Flächige Antenne mit niedriger Bauhöhe
US6005522A (en) * 1995-05-16 1999-12-21 Allgon Ab Antenna device with two radiating elements having an adjustable phase difference between the radiating elements
US5724051A (en) * 1995-12-19 1998-03-03 Allen Telecom Inc. Antenna assembly
US5734350A (en) * 1996-04-08 1998-03-31 Xertex Technologies, Inc. Microstrip wide band antenna
DE19627015C2 (de) * 1996-07-04 2000-07-13 Kathrein Werke Kg Antennenfeld
US6466131B1 (en) * 1996-07-30 2002-10-15 Micron Technology, Inc. Radio frequency data communications device with adjustable receiver sensitivity and method
US6069591A (en) * 1997-12-19 2000-05-30 Nortel Networks Corporation Diversity antenna system
DE19823749C2 (de) * 1998-05-27 2002-07-11 Kathrein Werke Kg Dualpolarisierte Mehrbereichsantenne
US6049314A (en) * 1998-11-17 2000-04-11 Xertex Technologies, Inc. Wide band antenna having unitary radiator/ground plane
US6157344A (en) * 1999-02-05 2000-12-05 Xertex Technologies, Inc. Flat panel antenna
DE19922699C2 (de) * 1999-05-18 2001-05-17 Hirschmann Electronics Gmbh Antenne mit wenigstens einem Vertikalstrahler
DE10012809A1 (de) * 2000-03-16 2001-09-27 Kathrein Werke Kg Dualpolarisierte Dipolantenne
US6806812B1 (en) 2000-04-26 2004-10-19 Micron Technology, Inc. Automated antenna trim for transmitting and receiving semiconductor devices
US6229496B1 (en) 2000-05-05 2001-05-08 Radiovector U.S.A., Llc Multiple element antenna from a single piece
US6476773B2 (en) * 2000-08-18 2002-11-05 Tantivy Communications, Inc. Printed or etched, folding, directional antenna
US6597324B2 (en) 2001-05-03 2003-07-22 Radiovector U.S.A. Llc Single piece element for a dual polarized antenna
US6608600B2 (en) 2001-05-03 2003-08-19 Radiovector U.S.A., Llc Single piece element for a dual polarized antenna
US6774852B2 (en) * 2001-05-10 2004-08-10 Ipr Licensing, Inc. Folding directional antenna
DE10133517A1 (de) * 2001-07-10 2002-11-07 Siemens Ag Antenne
DE10150150B4 (de) 2001-10-11 2006-10-05 Kathrein-Werke Kg Dualpolarisiertes Antennenarray
US6606065B1 (en) 2002-01-22 2003-08-12 Itron, Inc. RF antenna with unitary ground plane and surface mounting structure
US6885350B2 (en) * 2002-03-29 2005-04-26 Arc Wireless Solutions, Inc. Microstrip fed log periodic antenna
US6650301B1 (en) 2002-06-19 2003-11-18 Andrew Corp. Single piece twin folded dipole antenna
JP2004328694A (ja) * 2002-11-27 2004-11-18 Taiyo Yuden Co Ltd アンテナ及び無線通信カード
DE60324320D1 (de) * 2002-11-27 2008-12-04 Taiyo Yuden Kk Antenne, dielektrisches substrat für eine antenne, funkkommunikationskarte
JP2004328703A (ja) * 2002-11-27 2004-11-18 Taiyo Yuden Co Ltd アンテナ
JP2004328693A (ja) * 2002-11-27 2004-11-18 Taiyo Yuden Co Ltd アンテナ及びアンテナ用誘電体基板
JP4170828B2 (ja) 2002-11-27 2008-10-22 太陽誘電株式会社 アンテナ及びアンテナ用誘電体基板
US6822618B2 (en) * 2003-03-17 2004-11-23 Andrew Corporation Folded dipole antenna, coaxial to microstrip transition, and retaining element
US7095383B2 (en) * 2003-05-01 2006-08-22 Intermec Ip Corp. Field configurable radiation antenna device
US7006053B2 (en) * 2003-05-01 2006-02-28 Intermec Ip Corp. Adjustable reflector system for fixed dipole antenna
US7180448B2 (en) * 2003-09-22 2007-02-20 Centurion Wireless Technologies, Inc. Planar inverted F antenna and method of making the same
SE527757C2 (sv) * 2004-07-28 2006-05-30 Powerwave Technologies Sweden En reflektor, en antenn som använder en reflektor och en tillverkningsmetod för en reflektor
US20060202900A1 (en) * 2005-03-08 2006-09-14 Ems Technologies, Inc. Capacitively coupled log periodic dipole antenna
US7639198B2 (en) * 2005-06-02 2009-12-29 Andrew Llc Dipole antenna array having dipole arms tilted at an acute angle
US7358900B2 (en) * 2005-09-14 2008-04-15 Smartant Telecom.Co., Ltd. Symmetric-slot monopole antenna
GB2430307A (en) * 2005-09-19 2007-03-21 Antenova Ltd Compact balanced antenna arrangement
CN101154769B (zh) * 2006-09-29 2011-07-06 东莞骅国电子有限公司 双极化天线组
US7649504B2 (en) * 2007-07-27 2010-01-19 The Boeing Company Backfire antenna with upwardly oriented dipole assembly
US8068066B2 (en) * 2008-08-25 2011-11-29 Bae Systems Information And Electronic Systems Integration Inc. X-band turnstile antenna
DE102009041166B4 (de) * 2009-09-11 2020-03-05 Bayerische Motoren Werke Aktiengesellschaft Fahrzeugantenne zum Empfang und/oder zum Senden von Funksignalen
CN102315517B (zh) * 2010-06-29 2014-04-16 华为技术有限公司 一种定向天线设备、多输入多输出传输定向天线设备
CN102683823B (zh) * 2012-05-15 2015-07-29 华为技术有限公司 辐射单元、天线阵列、天线装置和基站系统
CN203445230U (zh) * 2013-09-13 2014-02-19 中怡(苏州)科技有限公司 天线结构及应用其的电子装置
CN203503773U (zh) * 2013-09-13 2014-03-26 中怡(苏州)科技有限公司 天线结构及应用该天线结构的电子装置
CN110447145B (zh) 2017-03-31 2021-01-29 华为技术有限公司 用于天线的反射器
CN112582774B (zh) * 2019-09-30 2022-05-24 京信通信技术(广州)有限公司 天线及其辐射单元、辐射单元巴伦结构和制造方法
CN114639950A (zh) * 2021-12-06 2022-06-17 广州司南技术有限公司 双极化天线

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2430353A (en) * 1945-02-21 1947-11-04 Rca Corp Antenna
DE2325704A1 (de) * 1973-05-21 1974-12-19 Siemens Ag Richtantenne
JPS5425654A (en) * 1977-07-29 1979-02-26 Hitachi Denshi Ltd Antenna mocrowave band
US4513292A (en) * 1982-09-30 1985-04-23 Rca Corporation Dipole radiating element
FI81927C (fi) * 1988-10-26 1990-12-10 Nokia Mobira Oy Antenn foer radiotelefon.
US5166697A (en) * 1991-01-28 1992-11-24 Lockheed Corporation Complementary bowtie dipole-slot antenna
DE9104722U1 (de) * 1991-04-18 1991-08-01 Hans Kolbe & Co, 3202 Bad Salzdetfurth Dipolanordnung
US5229782A (en) * 1991-07-19 1993-07-20 Conifer Corporation Stacked dual dipole MMDS feed
US5355142A (en) * 1991-10-15 1994-10-11 Ball Corporation Microstrip antenna structure suitable for use in mobile radio communications and method for making same
DK168780B1 (da) * 1992-04-15 1994-06-06 Celwave R F A S Antennesystem samt fremgangsmåde til fremstilling heraf

Also Published As

Publication number Publication date
FI112726B (fi) 2003-12-31
ES2107811T3 (es) 1997-12-01
DE4302905C1 (de) 1994-03-17
DK0634058T3 (da) 1998-02-23
CA2131720A1 (fr) 1994-08-18
DE59403614D1 (de) 1997-09-11
WO1994018719A1 (fr) 1994-08-18
CA2131720C (fr) 1999-11-16
FI944542A (fi) 1994-09-30
EP0634058A1 (fr) 1995-01-18
FI944542A0 (fi) 1994-09-30
US5532707A (en) 1996-07-02

Similar Documents

Publication Publication Date Title
EP0634058B1 (fr) Antenne directive, notamment antenne dipole
EP2050164B1 (fr) Installation d'antenne, en particulier pour une station de base de radiocommunication mobile
DE69901026T2 (de) Doppelbandantenne
DE19829714B4 (de) Antenne mit dualer Polarisation
EP3635814B1 (fr) Ensemble dipôle croisé à double polarisation et antenne comprenant deux dipôles croisés à double polarisation
EP2050165B1 (fr) Dispositif d'antennes, en particulier pour une station de base de radiotélécommunication mobile
EP0916169B1 (fr) Systeme d'antenne
EP1344277B1 (fr) Antenne, en particulier antenne radio mobile
DE60017674T2 (de) Faltdipolantenne
DE10012809A1 (de) Dualpolarisierte Dipolantenne
EP1470615A1 (fr) Ensemble antenne rayonnante a double polarisation
WO2000039894A1 (fr) Diffuseur dipolaire a double polarisation
WO2015110136A1 (fr) Antenne, en particulier antenne de téléphonie mobile
WO1999062138A1 (fr) Reseau d'antennes a plusieurs modules excitateurs superposes
DE102014011514A1 (de) Kapazitiv geschmiertes Gehäuse, insbesondere kapazitiv geschmiertes Komponenten-Gehäuse für eine Antenneneinrichtung
DE69828848T2 (de) Richtantennensystem mit gekreuzter Polarisation
DE3787681T2 (de) Antennenelement mit einem Streifen, der zwischen zwei selbsttragenden und mit untereinanderliegenden strahlenden Schlitzen vorgesehenen Grundplatten hängt und Verfahren zur Herstellung desselben.
DE102006003402A1 (de) Kompakte Antennenvorrichtung mit zirkularpolarisierter Wellenabstrahlung
EP1561257B1 (fr) Dispositif de connexion pour raccorder au moins deux antennes actives decalees l'une par rapport a l'autre d'un ensemble antenne
DE102015007503A1 (de) Dipolförmige Strahleranordnung
DE69420886T2 (de) Antennenstruktur
DE202004008770U1 (de) Dualpolarisierte Antenne
EP2093838A1 (fr) Antenne Yagi
DE3031608A1 (de) Zick-zack-antenne
DE3409460A1 (de) Antenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES FR GB IT SE

17P Request for examination filed

Effective date: 19941124

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19961118

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES FR GB IT SE

REF Corresponds to:

Ref document number: 59403614

Country of ref document: DE

Date of ref document: 19970911

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970826

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: UFFICIO BREVETTI RICCARDI & C.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2107811

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20020212

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020221

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090225

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090223

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090223

Year of fee payment: 16

Ref country code: DE

Payment date: 20090428

Year of fee payment: 16

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202